
Decentralized Sparse Matrix Multiplication Under
Byzantine Attacks

Sara Ghasvarianjahromi, Yauhen Yakimenka, Jörg Kliewer
Helen and John C. Hartmann Department of Electrical and Computer Engineering

New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
Email: {sg273, yauhen.yakimenka, jkliewer}@njit.edu

Abstract—In this paper, we propose a sparse matrix multipli-
cation in a decentralized setting, where a set of worker nodes
wishes to compute a task collaboratively over a logical ring.
We consider a subset of Byzantine nodes in the system who
want to maliciously corrupt the result by corrupting their own
computed blocks. In particular, the main focus of this paper
is to compute the result with the least possible distortion by
identifying the Byzantine nodes and re-assigning their tasks to
the benign nodes. Our results demonstrate the feasibility of our
proposed decentralized scheme and provide a trade-off between
the computational complexity required at each worker node and
the reconstruction distortion.

Index Terms—Distributed matrix multiplication, decentralized
computation, sparse matrices, byzantine attack

I. INTRODUCTION

Recently, tensor operations such as matrix multiplication
have emerged as an important ingredient of many signal pro-
cessing and machine learning applications. These operations
are often complex due to the large size of the associated
matrices, even if these matrices in many cases are sparse,
as, e.g., in recommender systems [1]. Thus, due to limited
memory size and restricted computational capabilities, a server
often is not able to perform these computations on its own.
Therefore, the server typically partitions the input matrices
into submatrices and offloads those to a set of worker nodes
in the cloud. In such a system, the worker nodes compute
their assigned task(s) in parallel and return it to the server,
where the results are aggregated to obtain the multiplication
result [2].

As these worker nodes are cloud-based and thus may
not be trusted, there exists the threat of Byzantine attackers
interfering arbitrarily with the computation of these worker
nodes. This represents an important security bottleneck in
distributed computation systems [3]. Also, verification of the
results and identification of the attacked workers impose extra
computational complexity on the server. In addition, the server,
considered as a trusted entity by the worker nodes in the
system, may be maliciously attacked as well [4].

An alternative is to consider a fully decentralized setting
where the nodes exchange their partial computation results
in such a way that each of them ends up with the complete
result. An example of such a scenario is the internet-of-things

This work was in part supported by US NSF grants 1815322, 1908756,
and 2107370.

(IoT) setting, where the IoT devices aim to complete the
same computation individually, but rely on their neighbors
to perform this computation due to their limited hardware
capabilities. As in general such an environment is untrusted,
the additional goal beyond computation is to detect and mit-
igate partial results provided by adversarial neighbors. While
decentralized computation has been proposed in the context
of decentralized learning (see, e.g., [5]–[9]), to the best of
our knowledge, a fully decentralized matrix multiplication
approach has not been addressed in the open literature. We
aim to fill this void in this paper and, inspired by results from
decentralized learning, propose a decentralized sparse matrix
multiplication approach on a logical ring. Additionally, we
take the potential presence of Byzantine nodes into account to
address the security concerns in such a setting.

Note that in recent years the majority of the works in dis-
tributed matrix multiplication have focused on dense matrices.
Specifically, it has been shown that encoding the input matrices
via polynomial codes can improve the system performance in
terms of latency and straggler tolerance [10]. Different coding
schemes provide different trade-offs between the recovery
threshold, i.e., the number of workers that have to complete
their tasks before the server can recover the result, and the
communication load, i.e., the amount of information to be
downloaded from the workers (see, e.g., [2], [11]–[14]).

However, for sparse input matrices, encoding the sub-
matrices in general decreases the sparsity of their coded
representations sent to the worker nodes. This eliminates the
complexity gains obtained by offloading the computation;
for example, a coded sparse matrix multiplication scheme
proposed in [15] achieves a sub-optimal recovery threshold. In
[16], the authors consider a convolutional coding scheme and
low-complexity peeling decoder for sparse distributed matrix-
vector multiplication. The papers [17], [18] propose coding
schemes for sparse matrix multiplication, which provides a
trade-off between straggler resilience and worker computation
speed. A coded scheme for distributed vector-matrix multipli-
cation proposed in [19] is based on a secret sharing scheme
and trades privacy guarantees with sparsity.

Similarly, distributed matrix multiplication in the presence
of Byzantine attackers has been addressed recently for archi-
tectures with a centralized server. Specifically, in [20], [21], a
distributed matrix-vector multiplication in presence of a subset
of Byzantine workers is considered. In [20] a probabilistic

2023 IEEE Global Communications Conference: Communication & Information Systems Security

1723

GL
O

BE
CO

M
 2

02
3

- 2
02

3
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

9-
8-

35
03

-1
09

0-
0/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
54

14
0.

20
23

.1
04

37
85

8

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on July 28,2024 at 17:21:22 UTC from IEEE Xplore. Restrictions apply.

scheme based on group testing is proposed to identify the
attacked workers with high probability. Further, [22] presents
a coded distributed computing scheme to preserve data security
and privacy by improving the adversarial tolerance. A private
and secure coded matrix-matrix multiplication scheme SRPM3
is proposed in [23], where Freivalds’ test [24] is applied
to detect the adversaries. However, little attention has been
devoted to decentralized adversarial schemes.

In summary, our work has the following novel contributions
beyond existing work in distributed matrix multiplication. (i)
We extend the well-known setting with a trusted server to the
fully decentralized case on a logical ring. Our scheme uses an
uncoded scheme which preserves the computational savings
at the workers for sparse input matrices. (ii) We propose
a new algorithm to detect and mitigate Byzantine nodes
in the fully decentralized setting under sparsity assumptions
for the input matrices. The resulting algorithm is applied to
both deterministic and probabilistic Byzantine adversaries and
allows for both perfect recovery and an approximation of the
correct matrix product at each node, depending on the number
of active adversaries in the system.

Notation: We denote by Fq the finite field of size q.
Matrix and vectors are denoted in boldface: A and a. The
transposition of matrix A is denoted by AT , and coli(A)
denotes the i-th column of A. For a vector a, we denote by
supp(a) the set of indices of the non-zero entries of a, and
by wH(a) its Hamming weight. The probability of an event A
is denoted by P[A].

II. SYSTEM MODEL

Consider a computing system where N worker nodes W =
{W0, . . . ,WN−1} need to compute the multiplication C =
ATB of two large sparse matrices A ∈ FP×S

q , and B ∈
FP×D
q . It is assumed that the sparsity levels of input matrices

A and B are L(A) and L(B), respectively.

Definition 1. The sparsity level of matrix X = (xij) ∈ Fm×n
q ,

denoted by L(X), is the fraction of the number of zero
elements with respect to the size of the matrix, i.e.,

L(X) ≜
|{i, j : xij = 0}|

mn
. (1)

We assume that all the worker nodes have enough memory
capacity to store the entire input matrices A and B, possibly
in a compressed form1. As mentioned, the goal is to compute
C = ATB, however, due to computational complexity con-
straints, each node Wn can compute only dn multiplication
tasks. This number in general depends on the size of the
tasks. For the sake of simplicity, we assume that dn = d
holds for all the nodes. However, the scheme can be easily
adapted to the case of different dn’s. Therefore, the nodes
employ a decentralized protocol where each node computes its
corresponding task and sends it to its neighbor downstream,
according to some predefined path. We generally assume that

1Compressed sparse row (CSR) and compressed sparse column (CSC) are
the most common compression techniques for sparse matrix storage [25].

nodes can communicate on a complete graph where some
links are associated with smaller communication costs than
others, e.g., as in wireless networks. Therefore, some links are
preferred for communication, and they may follow a logical
ring as depicted in Fig. 1(a). Additionally, the ring topology
eases the information exchange between the nodes to facilitate
decentralized matrix multiplication.

To this end, the worker nodes partition the input matrices
A, B into ∆A and ∆B block-columns as

A=
[
A0, . . . ,A∆A−1

]
, B=

[
B0, . . . , B∆B−1

]
, (2)

where each block-column Ai is of size P × S′, S′ = S/∆A,
and Bj is of size P ×D′, D′ = D/∆B. We imply that S is
divisible by ∆A and that D is divisible by ∆B , and thus both
S′ and D′ are integers. With such a partitioning, the matrix
C ∈ FS×D

q consists of blocks Cij=AT
i Bj ∈ FS′×D′

q .
We consider a multiplication of two block-columns AT

i Bj ,
i∈ [∆A], j∈ [∆B], to be one multiplication task. Hence, the
total number of tasks is ∆A∆B = ∆. We use both double
indexing (i, j) ∈ [∆A] × [∆B] and single indexing n ∈ [∆]
interchangeably, when it is not ambiguous.

We assume that the worker nodes can run their computations
in parallel. Additionally, they are able to communicate in
parallel, i.e., each node transmits and receives a bounded
number of computed block-columns simultaneously within a
fixed amount of time, which is synchronized across all the
worker nodes.

Ideally, each node computes one block Cij=AT
i Bj , and

then the nodes exchange their results over the ring. However,
there may exist an arbitrary subset of non-colluding Byzantine
worker nodes (i.e., adversaries) {Wn}n∈A indexed by A⊂ [N]
with cardinality |A|=z in the system (the N−z benign nodes
remain benign during the whole process). The adversaries want
to maliciously corrupt the result by sending wrong results C̃ij

to the next neighboring worker node. It is assumed that these
Byzantine nodes can only manipulate their own computed
blocks. This means that each worker node sends the read-
only version of its computed task to the next worker node
on the ring [26]. Note that the read-only requirement can be
implemented by cryptographic tools.

We model the existence of adversaries via a probabilistic
model. More precisely, each nodeWn is adversarial with prob-
ability α, independently of others. The number of adversaries
z is then a random variable (RV), distributed according to the
binomial distribution with parameters N and α. Moreover,

Cij =

{
AiBj with probability 1− α,

Zij with probability α.
(3)

To verify the results and also to detect the Byzantine worker
nodes, we apply Freivalds’ test [24] as outlined below.

A. Adversarial attack detection

Verifying the correctness of the results and also identi-
fying the attacked worker nodes is a critical design issue
in distributed computation systems. Freivalds’ test [24] is a

2023 IEEE Global Communications Conference: Communication & Information Systems Security

1724
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on July 28,2024 at 17:21:22 UTC from IEEE Xplore. Restrictions apply.

W2

W1W0

W5

W4 W3

C̃
1
=
Z

1
,0

C0 = AT
0 B0

C̃
5
=
Z
2
,1

C
4
=
A
T 1
B

1

C3 = AT
0 B1

C̃
2
=
Z
2
,0

(a)

W0

W2 W1

C
1
=
A
T1 B

0

C2 = AT
2 B0

C
5
=

A
T 2
B

1

(b)

Fig. 1: Decentralized sparse matrix multiplication in the pres-
ence of Byzantine nodes.

well-known randomized method to verify the correctness of a
matrix multiplication more efficiently than by recomputing the
product. The algorithm is based on the following observation.
If AT

i Bj ̸=Cij , then for a vector v drawn uniformly at random
from FD

q , the probability that AT
i Bjv=Cijv is small. At the

same time, computing this requires only three matrix-vector
multiplications, instead of one matrix-matrix multiplication.
Note that the time complexity of matrix-vector multiplica-
tion is much smaller than the complexity of matrix-matrix
multiplication. The test can be amplified by drawing several
independent vectors v. The original paper [24] provides an
upper bound on the failure probability (i.e., the misdetection
probability) of the test for a general attack model. Since Zij

is uniformly distributed in our model, we can improve on
this probability as outlined in the following lemma. We also
use random vectors v of a constant weight wH > 0. The
misdetection probability is the same for any fixed weight, and
the multiplication by sparse vectors reduces complexity.

Lemma 1. Assume Wn is an adversary. If we draw vec-
tors v1,v2, . . . ,vζ uniformly at random from {v ∈ FD′

q :
wH(v) = wv}, the probability of misdetection is

Pm ≜ P
[
AT

i Bjvk = Zijvk, ∀k = 1, 2, . . . , ζ
]
=

1

qS′ζ

Proof: The proof of the lemma follows along the lines
of the original result by Freivalds [24] with the exploitation
of the fact that the entries of matrix Zij are independent
and uniform. Having ζ i.i.d vectors, v1,v2, . . . ,vζ , drawn
uniformly at random from {v ∈ FD′

q : wH(v) = wv}, and
independent from the input matrices we have that

Pm =
(
P
[
(AT

i Bj − Zij)v1 = 0
])ζ

,

Moreover, since Zij is uniform and independent of Ai and
Bj , the matrix U = AT

i Bj−Zij is uniform over FS′×D′

q (Zij

acts as a one-time pad). For each fixed v, there are precisely
qD

′−1 vectors u ∈ FD′

q , such that uTv = 0 (as the number
of solutions of the linear system uTv = 0 which has rank 1
and D′ variables). Therefore, there are q(D

′−1)S′
matrices U

in FS′×D′

q such that Uv = 0. In other words,

P[Uv = 0] =
q(D

′−1)S′∣∣FS′×D′
q

∣∣ =
1

qS′ .

and we obtain the statement of the lemma.
Note that the misdetection probability decreases exponen-

tially with the increase of the field size q.

III. PROPOSED SCHEME

In this section, we present our proposed scheme in two
variants: either perfect or imperfect reconstruction of the
product C, which we denote by Ĉ. In the proposed scheme,
each node computes its assigned block multiplication task
and shares the results over the ring in a sequence of parallel
transmissions. Each node is responsible for verification of the
calculation results from its upstream neighbors by employing
Freivalds’ test.

After the computed blocks have been distributed among all
the nodes, the nodes skip all the identified adversaries, and
thus the communication is performed over the smaller ring,
albeit at a potentially higher communication cost.2 The block
multiplications that were assigned to the adversaries are re-
assigned between the remaining nodes, and they proceed in
a similar manner. If the number of remaining multiplication
tasks is larger than the number of benign nodes, this procedure
may be repeated several times.

A. Perfect reconstruction

First, we describe the case of reconstructing the product C
perfectly. This is possible if the total number of multiplication
tasks the benign nodes can perform is larger than the number
of the tasks, i.e., |B|d ≥ ∆. The proposed scheme has multiple
steps including computation, communication, and verification.
Since every node has full access to A and B, it can verify
(via Freivands’ test) any block multiplication result.

Task assignment: The workers form the pool of computa-
tional tasks T , and each node is assigned one task from T .

Computation: Each worker node computes the assigned
task.

Verification and distribution: The steps below are per-
formed in a synchronized fashion in parallel by all the nodes
repeatedly until all the nodes receive all the blocks (exactly
N − 1 repetitions required). At step t = 1, 2, . . . , N − 1, a
node

1) receives a new block forwarded by the upstream node;
2) performs Freivalds’ test on the received block;
3) if the test fails, marks the node that produced this block as

an adversary, and returns the corresponding computation
task back to T for further computation;

4) forwards the received block further downstream.
After that, everybody has the same list of nodes marked

adversarial since they all have tested the same computed
blocks. Now, the benign nodes are renumbered in increasing
order and skip all the adversaries, thus forming a smaller ring.

If there are still tasks left to compute and each benign
node has performed less than d computations, the protocol
execution goes back to the task assignment step, otherwise, it

2We do not consider communication cost in this work to show the feasibility
of our proposed scheme and leave it for future work.

2023 IEEE Global Communications Conference: Communication & Information Systems Security

1725
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on July 28,2024 at 17:21:22 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Proposed scheme
Input: matrices A and B, ∆A, ∆B , node Wn

Output: Ĉ
1 Partition A and B into ∆A and ∆B blocks, resp.
2 A ← ∅, B ← [N], ∆← ∆A∆B , T ← [0 : ∆− 1]
3 for t = 1 : d do
4 m0,m1, . . . ,mN−1 ← first N elements3 of T
5 T ← T \ {mn}
6 Compute Cmn = Amn (mod ∆A)B⌊mn/∆A⌋
7 Send Cmn to the node downstream
8 for i = 1 : N − 1 do
9 Receive Cmn−i (mod N)

from the node upstream
10 Run Freivalds’ test on Cmn−i (mod N)

11 if test succeeds then
12 Ĉmn−i (mod N)

← Cmn−i (mod N)

13 T ← T \ {mn−i (mod N)}
14 else
15 B ← B \ {n− i (mod N)}
16 Forward Cmn−i (mod N)

to the node downstream

17 N ← |B|, n← index of n in B
18 Renumber benign nodes:

W0, . . . ,WN−1 ← {Wm | m ∈ B}
19 B ← [0 : N − 1]
20 if T = ∅ then
21 goto Line 25

22 if T ̸= ∅ then
23 Replace γ = ∆− (N − z)d blocks with all-zero

blocks
24 goto Line 25

25 return Ĉ

finishes. The detailed description of the scheme is presented
in Algorithm 1. The same algorithm runs on every node, but
each node Wn is aware of its index n in the system.

Proposition 1. Algorithm 1 is resilient to at most N − ⌈∆/d⌉
adversaries.

Proof: Based on our construction, the total number of
tasks that benign worker nodes are able to perform must be not
smaller than the total number of tasks ∆, i.e., (N − z)d ≥ ∆,
which proves the proposition.

As a remark, once the nodeWn detectsWm as an adversary,
it can append the vector v to the corrupted block (i.e., Cm||v)
and forward it along with the corrupted result to help the
downstream nodes to run the Freivalds’ test faster. Indeed,
after such a vector v is found, it acts as a certificate that
proves the incorrectness of the multiplication. We omit this
optimization in the paper for the sake of clarity.

B. Imperfect reconstruction

For the case |B|d < ∆, perfect reconstruction of the multi-
plication result is not possible. In this case, γ = ∆−(N−z)d

tasks cannot be reconstructed since this exceeds the compu-
tational capabilities of the worker nodes. Due to the sparse
nature of the matrices, these γ blocks can be substituted with
all-zero blocks in Line 23 of alg. 1. This substitution is the
element-wise maximum likelihood estimate and it imposes a
relatively small error/distortion to the result. It should be noted
that unlike the scheme in Section III-A, this variant of the
scheme never fails, even if |B|d < ∆.

IV. RECONSTRUCTION DISTORTION

In this section, we present the results on the average
reconstruction distortion of the proposed scheme for random
matrices A and B, when the imperfect reconstruction variant
outlined in Section III-B is used. We consider two sparsity
models for the matrices A and B: (i) with constant column
weight and (ii) with i.i.d. entries distributed according to
Bernoulli distribution. We measure the reconstruction distor-
tion in terms of the normalized Hamming distance between
the matrices.

Definition 2. The normalized Hamming distance between two
m × n matrices X = (xij) and Y = (yij) is defined as the
number of positions where X and Y differ:

dH(X,Y) ≜
|{i, j : xij ̸= yij}|

mn
.

In both models below, the columns of A have the same
(marginal) distributions, and this is also true for the columns
of B. In this case, the average distortion depends only on the
expected sparsity level of the resulting matrix C.

Theorem 1. If the columns of A have the same marginal
distributions (the same for the columns of B), the proposed
scheme in Algorithm 1 with imperfect reconstruction achieves
the following expected distortion:

E
[
dH(C, Ĉ)

]
= E[L(C)]

×
N∑

z=N−⌈∆/d⌉

(
N

z

)
αz(1− α)N−z

(
1− (N − z)d

∆

)
.

Proof: If every column in A and B has the same marginal
distribution, then every element cij in matrix C has the same
marginal distribution as the product of the i-th column in A
and the j-th column in B, for any choice of i and j, and
P[cij = 0] = E[L(C)].

For a fixed number of adversaries z > N −⌈∆/d⌉, precisely
γ = ∆−(N−z)d blocks of C will be not computed and they
need to be substituted with all zeros. The average number of
non-zero elements in these blocks is γS′D′E[L(C)] and this
is also the average number of positions where C and C̃ differ.
Therefore, for a fixed number of adversaries z, the expected
normalized Hamming distance between C and C̃ is given as

γS′D′E[L(C)]

SD
= E[L(C)]

(
1− (N − z)d

∆

)
.

3If there are fewer tasks than remaining benign nodes, some of them do
not perform computations but still participate in verification and distribution.

2023 IEEE Global Communications Conference: Communication & Information Systems Security

1726
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on July 28,2024 at 17:21:22 UTC from IEEE Xplore. Restrictions apply.

Finally, we need to average over the number of adversaries
z, which is binomially distributed with parameters N and α.
This yields the result of the theorem.

Below, we derive the exact expressions for E[L(C)] based
on the two sparsity models for A and B.

A. Constant column weight matrices

Let the matrix A be drawn uniformly at random from the
set of all matrices in FP×S

q with constant column weight wA

and the matrix B be drawn from FP×D
q with column weight

wB , respectively. We assume that A and B are independent.
With these distributions, the sparsity levels of the matrices are
deterministic: L(A) = 1− wA/P and L(B) = 1− wB/P . Note
that the non-zero entries of the input matrices are i.i.d. over
the multiplicative group of the field Fq .

Lemma 2. For random matrices A and B with constant
column weights wA and wB , resp., the expected sparsity level
of C = ATB is

E[L(C)] =

(
P−wA

wB

)(
P
wB

) +
1

q − 1

min(wA,wB)∑
ℓ=2

(
wA

ℓ

)(
P−wA

wB−ℓ

)(
P
wB

) . (4)

Proof: The element in i-th row and j-th column of C is
the dot product of coli(AT) and colj(B). For fixed i and j and
random matrices, these columns are random vectors with fixed
weights. Let ℓ be the size of the intersection of supp(coli(A))
and supp(colj(B)), i.e., the number of positions where both
columns have non-zero values. Only these values are important
for the result of the dot product.

If ℓ = 0 (both supports have an empty intersection), the
dot product is trivially 0. If ℓ = 1, the dot product is never
0 as no product of two non-zero elements of Fq is 0. If 2 ≤
ℓ ≤ min(wA, wB), we have a dot product of two vectors of
ℓ elements each, where all the elements are non-zero. Since
these elements are drawn uniformly and independently from
Fq \ {0}, the probability of this product to be 0 is 1/(q−1).

The final ingredient of the proof is the distribution of ℓ.
There are wA non-zeros in coli(A

T), and
(

P
wA

)
ways to choose

these positions. Among those wA positions, there are
(
wA

ℓ

)
ways to choose ℓ positions for the support intersection set.
Finally, there are

(
P−wA

wB−ℓ

)
ways to choose the remaining non-

zero positions of colj(B). Altogether, the size of the support
intersection set equals ℓ with probability(

P
wA

)(
wA

ℓ

)(
P−wA

wB−ℓ

)(
P
wA

)(
P
wB

) =

(
wA

ℓ

)(
P−wA

wB−ℓ

)(
P
wB

) .

B. Matrices with i.i.d. entries

Again, we assume that A and B are drawn independently.
Each element of A is 0 with probability 1 − λa, and any
other element of Fq with probability λa/(q−1). Likewise, each
element of B is 0 with probability 1−λb and any other element
of Fq with probability λb/(q−1). The expected sparsities are as
follows:

E[L(A)] = 1− λa, E[L(B)] = 1− λb.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
il

z
e
d
 d

is
to

rt
io

n

d = 1

d = 2

d = 3

no-detection

Fig. 2: Expected normalized distortion versus the probability
that a node is adversarial

Lemma 3. For random matrices A and B with independent
entries, the expected sparsity level of C = ATB is

E[L(C)] =

(
1− 1

q − 1

)
(1− λ)P +

1− Pλ(1− λ)P

q − 1
,

where λ = λaλb.

Proof: The proof of the lemma follows along the same
lines as the proof of Lemma 2. The only difference is the
distribution of the support intersection size ℓ: it follows a
binomial distribution with parameters P and λ,

V. COMPUTATIONAL COMPLEXITY

The average computational complexity of the proposed
scheme for each worker node can be summarized as follows.
Considering L(A), L(B), and L(C) as the sparsity levels
of the input matrices A, B, and the resulting matrix C,
resp., and by defining L1 = max(L(A),L(B)), the com-
putational complexity required at each worker node is at
most O(S′(1−L1)PD′) to compute its corresponding task.
Note that this complexity is much lower in practice, due
to the sparsity of the input matrices and also the uniform
i.i.d. distribution of the non-zero elements in each col-
umn. Hence, we have supp(coli(A)∩colj(B))≪(1−L1)P .
The computational complexity of running one round of
Freivalds’ test for each node to verify one block-column is
at most O(P (1−L2)D

′+S′(1−L3)P+S′(1−L4)D
′), where

L2 = max(L(B),L(v)), L3 = max(L(A),L2), L4 =
max(L(C),L(v)). L(v) = 1−wv/D

′ denotes the sparsity
level of vector v.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme based on the analytical results derived in Section IV
and compare them with the “no-detection” case, in which the
environment is considered as fully trusted and the worker

2023 IEEE Global Communications Conference: Communication & Information Systems Security

1727
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on July 28,2024 at 17:21:22 UTC from IEEE Xplore. Restrictions apply.

nodes do not verify their neighboring nodes. The expected
normalized distortion, considering the probabilistic model for
an adversarial attack, is illustrated in Fig. 2. We consider z
adversarial nodes, z being distributed according to a binomial
distribution with parameters N = 100, the total number of
nodes, and α, the probability of each node being adversarial.
Therefore, the normalized distortion for the no-detection case
is

(
1− 1

q

)
α.

Fig. 2 shows the results for different numbers of tasks that
each worker node can perform, i.e., d=1, 2, 3, and two sparsity
levels L(A) = L(B) of 0.98 and 0.99 for input matrices A
and B of size 5000×10000. The column weights are set to
wA = wB = 50 and wA = wB = 100 for sparsity levels
of 0.99 and 0.98, respectively. A moderate-size prime field
Fq = F210−3 is considered for this implementation. As can
be seen from the figure, the adversarial tolerance increases
significantly with the number of tasks that each worker node
can perform. For example, for d = 1 no adversaries can be
tolerated, but for d = 2, the system can tolerate roughly up
to z = N/2 adversaries without any distortion in the final
result. The effect of sparsity on the distortion can also be
observed in Fig. 2. As shown, the straight dash-dotted lines in
Fig. 2 depicts precisely the fraction of non-zero elements in
the resulting matrix C. Similar observations can be made for
the i.i.d. entry case in Section IV-B. This is due to the fact that
the reconstruction distortion is only a function of the sparsity
level of C. In fact, we can observe from Theorem 1 that the
expected distortion only depends multiplicatively on L(C),
and therefore the i.i.d. entry case shows qualitatively the same
behavior as the constant column-weight case in Fig. 2.

VII. CONCLUSION

In this paper, we have proposed a new scheme to show the
feasibility of sparse matrix multiplication in a decentralized
manner. We have considered the potential presence of Byzan-
tine nodes to address the security concerns in such a setting,
and evaluated our proposed scheme by applying an adversarial
detection method. Then the scheme was applied to both de-
terministic and probabilistic Byzantine adversaries for perfect
and imperfect reconstruction of the matrix product. Our results
demonstrated the feasibility of the proposed scheme and also
show a significant performance improvement compared to the
no-detection case.

REFERENCES

[1] X. Luo, M. Zhou, S. Li, Y. Xia, Z. You, Q. Zhu, and H. Leung,
“An efficient second-order approach to factorize sparse matrices in
recommender systems,” IEEE Transactions on Industrial Informatics,
vol. 11, no. 4, pp. 946–956, 2015.

[2] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” IEEE Transactions on Information Theory, vol. 66, no. 1,
pp. 278–301, 2020.

[3] S. Hong, H. Yang, and J. Lee, “Hierarchical group testing for Byzantine
attack identification in distributed matrix multiplication,” IEEE Journal
on Selected Areas in Communications, vol. 40, no. 3, pp. 1013–1029,
2022.

[4] T. Sun, D. Li, and B. Wang, “Decentralized federated averaging,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

[5] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? A case
study for decentralized parallel stochastic gradient descent,” Advances
in Nneural Information Processing Systems, vol. 30, 2017.

[6] G. Neglia, C. Xu, D. Towsley, and G. Calbi, “Decentralized gradient
methods: does topology matter?” in International Conference on Artifi-
cial Intelligence and Statistics. PMLR, 2020, pp. 2348–2358.

[7] E. Cyffers and A. Bellet, “Privacy amplification by decentralization,”
in International Conference on Artificial Intelligence and Statistics.
PMLR, 2022, pp. 5334–5353.

[8] Z. Yang and W. U. Bajwa, “Byrdie: Byzantine-resilient distributed
coordinate descent for decentralized learning,” IEEE Transactions on
Signal and Information Processing over Networks, vol. 5, no. 4, pp.
611–627, 2019.

[9] A. R. Elkordy, S. Prakash, and S. Avestimehr, “Basil: A fast and
Byzantine-resilient approach for decentralized training,” IEEE Journal
on Selected Areas in Communications, vol. 40, no. 9, pp. 2694–2716,
2022.

[10] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in 2017 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2017, pp. 2418–2422.

[11] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix multipli-
cation,” in 2017 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, 2017, pp. 1264–1270.

[12] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an opti-
mal design for high-dimensional coded matrix multiplication,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

[13] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 2722–2734,
2020.

[14] Q. Yu and A. S. Avestimehr, “Entangled polynomial codes for secure,
private, and batch distributed matrix multiplication: Breaking the" cubic"
barrier,” in 2020 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2020, pp. 245–250.

[15] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,”
in International Conference on Machine Learning. PMLR, 2018, pp.
5152–5160.

[16] A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multipli-
cation: A convolutional coding approach,” in 2019 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2019, pp. 3022–3026.

[17] ——, “Coded sparse matrix computation schemes that leverage partial
stragglers,” IEEE Transactions on Information Theory, vol. 68, no. 6,
pp. 4156–4181, 2022.

[18] ——, “An integrated method to deal with partial stragglers and sparse
matrices in distributed computations,” in 2022 IEEE International Sym-
posium on Information Theory (ISIT). IEEE, 2022, pp. 1010–1015.

[19] M. Xhemrishi, R. Bitar, and A. Wachter-Zeh, “Distributed matrix-vector
multiplication with sparsity and privacy guarantees,” arXiv preprint
arXiv:2203.01728, 2022.

[20] A. Solanki, M. Cardone, and S. Mohajer, “Non-colluding attacks iden-
tification in distributed computing,” in 2019 IEEE Information Theory
Workshop (ITW). IEEE, 2019, pp. 1–5.

[21] S. Jain, M. Cardone, and S. Mohajer, “Identifying reliable machines
for distributed matrix-vector multiplication,” in 2022 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2022, pp. 820–825.

[22] M. Soleymani, R. E. Ali, H. Mahdavifar, and A. S. Avestimehr, “List-
decodable coded computing: Breaking the adversarial toleration barrier,”
IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 3,
pp. 867–878, 2021.

[23] C. Hofmeister, R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Secure
private and adaptive matrix multiplication beyond the Singleton bound,”
IEEE Journal on Selected Areas in Information Theory, 2022.

[24] R. Freivalds, “Fast probabilistic algorithms,” in International Symposium
on Mathematical Foundations of Computer Science. Springer, 1979,
pp. 57–69.

[25] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 766–780.

[26] K. Fu, M. F. Kaashoek, and D. Mazieres, “Fast and secure distributed
read-only file system,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 1, pp. 1–24, 2002.

2023 IEEE Global Communications Conference: Communication & Information Systems Security

1728
Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on July 28,2024 at 17:21:22 UTC from IEEE Xplore. Restrictions apply.

