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ABSTRACT

We prove that a polynomial fraction of the set of k-component
forests in the m X n grid graph have equal numbers of vertices in
each component, for any constant k. This resolves a conjecture of
Charikar, Liu, Liu, and Vuong, and establishes the first provably
polynomial-time algorithm for (exactly or approximately) sampling
balanced grid graph partitions according to the spanning tree dis-
tribution, which weights each k-partition according to the product,
across its k pieces, of the number of spanning trees of each piece.
Our result follows from a careful analysis of the probability a uni-
formly random spanning tree of the grid can be cut into balanced
pieces.

Beyond grids, we show that for a broad family of lattice-like
graphs, we achieve balance up to any multiplicative (1 + ¢) con-
stant with constant probability. More generally, we show that, with
constant probability, components derived from uniform spanning
trees can approximate any given partition of a planar region spec-
ified by Jordan curves. This implies polynomial-time algorithms
for sampling approximately balanced tree-weighted partitions for
lattice-like graphs.

Our results have applications to understanding political district-
ings, where there is an underlying graph of indivisible geographic
units that must be partitioned into k population-balanced connected
subgraphs. In this setting, tree-weighted partitions have interesting
geometric properties, and this has stimulated significant effort to
develop methods to sample them.
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1 INTRODUCTION

We consider the following question: given a graph G and an integer
constant k, how can one randomly sample partitions of G into k
connected pieces, each of equal size? We address this question in
the context of the spanning tree distribution on partitions, under
which the weight of a partition is proportional to the product of
the numbers of spanning trees in each partition class. This dis-
tribution has been the subject of intense research in the context
of mathematical approaches to the analysis of political district-
ings [8, 9, 12, 16, 25, 27, 29]. While efficient algorithms exist to
sample from this distribution when there are no size constraints on
the partition classes, there is no general recipe for converting such
a sampler to an efficient sampler for the balanced spanning tree
distribution, where we condition the spanning tree distribution on
the event that the partition classes are equal in size. For the proto-
typical case of grid graphs, the following conjecture of Charikar,
Liu, Liu, and Vuong asserted that rejection sampling would suffice:

CoNJECTURE 1.1 (CHARIKAR, L1u, L1u, AND VUONG [9]). For the
m X n grid graph, the proportion of balanced k-partitions under the
spanning tree distribution is at least 1/poly(m, n), when k = O(1).

We confirm this conjecture as follows:

THEOREM 1.2. Let G be an m X n grid graph wherem > n and k|m.
The probability that a k-partition from the spanning tree distribution
is balanced is at least

1
R k=5 1y3k—=3

1)

for a fixed constant f.

We note that the assumption that k divides the longer dimension is
mostly for ease of exposition. With some more effort (and worse
constant factors) one could require just k|nm, with essentially the
same proof techniques. Theorem 1.2 will follow from Theorem 3.5,
which will assert that, for a uniformly random spanning tree of the
m X n grid graph (m > n, k|m), there is a 1/poly(mn) chance that
there are k — 1 edges whose removal divides the tree into equal-size
components. Section 3 is devoted to proving Theorem 3.5, along
with stronger bounds for the special case of k = 2.

The relative frequency of balanced partitions under the spanning
tree distribution is particularly salient given the significant progress
made in sampling algorithms for this distribution. For example, in
2020, leveraging recent breakthroughs in the polynomial-method
approach to Markov chain mixing, Anari, Liu, Gharan, Vinzant,
and Vuong gave an O(N log? N) approximate sampler based on the
‘down-up’ walk on the complement of k-component forests of an N-
vertex graph [1]. In Section 2.5, we discuss the use of our results in
the context of an additional rejection step for approximate samplers
based on Markov chains, and also show how to exactly sample from
the spanning tree distribution on balanced k-partitions in expected
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time O(N3k=2log N) for a grid graph with N vertices. These are
the first provably polynomial-time algorithms for (perfectly or
approximately) sampling from the spanning tree distribution on
balanced partitions.

In Section 4, we turn to analyze partitions in grid-like graphs
under a looser balance constraint. If we are interested in dividing
a random spanning tree into components that are only approxi-
mately balanced (up to a (1 + ¢) multiplicative error), we show
on lattice-like graphs (including grids) that this is possible with
constant probability; Corollary 4.3 gives the precise statement for
grids. In fact, we prove a more general result, which is that a uni-
form spanning tree on a sufficiently refined lattice-like graph will,
with probability bounded below by a constant, be splittable into
components that approximately match any partition of a region
of the plane given by a collection of Jordan curves (Figure 1). In
particular, suppose A, is a sequence of infinite planar graphs of de-
creasing scale embedded in R? which are lattice-like (see Definition
4.1). For example, our definition of “lattice-like” is broad enough
to apply almost surely to the sequence where A, is the Delauney
triangulation of a Poisson point cloud in R? of rate n. If D is a fixed
plane graph, and Qp 5, denotes a region of A, whose boundary
approximates the boundary of the outer face of D, we have that:

THEOREM 1.3 (INFORMAL VERSION OF THEOREM 4.2). Given any
plane graph D with k + 1 faces, let ¢y, . .., ¢ € R? denote its inner
faces. For any ¢ > 0, asn — oo, there is a constant lower bound,
depending only on the plane graph and e, on the probability that
a random spanning tree T of Qp a, contains k — 1 edges whose
removal disconnects T into components Cy, ..., Cy, where each C; is
at Hausdorff distance < ¢ from a corresponding face ¢; of D.

Again, combining these results with known algorithms and re-
jection sampling gives corresponding polynomial-time sampling
algorithms in these more general settings.

1.1 Random Sampling of Political Districting
Plans

In the context of the analysis of districting plans, sampling algo-
rithms enable the generation of large ensembles of plans, which are
useful for several purposes (detecting outliers, understanding the
impacts of rules, evaluating the stated intentions of map-drawers,
and more). Ensemble analysis has been used in many academic stud-
ies, including [2, 3, 5-8, 11, 13, 15, 16, 18, 19, 21, 22, 25, 32], as well
as in mathematicians’ expert reports in court cases [4, 10, 17, 24].

Randomly sampling political districting plans is equivalent to a
sampling problem for suitable partitions of a graph, with vertices
representing small geographic regions such as precincts or census
blocks and edges representing adjacencies. Because they represent
physical geography, these graphs are typically planar or nearly
planar. While they are not usually perfect grids (except at times in
cities), there is general consensus that grids are the logical simplified
setting to first consider. By going beyond grids to lattice-like graphs,
we move to a much more expressive graph class that can describe
significant additional real-world geography.

A districting plan with k districts is a partition of this graph into k
pieces, which are generally required to be connected. Throughout,
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Figure 1: A partition of a region of a lattice-like graph approx-
imating a division of the plane given by Jordan curves, and
induced by the components remaining after deleting the four
bright purple edges from a spanning tree of the region. The-
orem 4.2 shows that given a division of the plane by curves,
a random spanning tree of a sufficiently refined lattice-like
graph can, with probability bounded below by a constant, be
cut into components inducing a partition whose classes each
has small Hausdorff distance from the corresponding face
of the drawing.

we will call a partition of a graph into k connected pieces a k-
partition, and we will refer to the k partition classes of a partition
as districts.

In the context of redistricting, there are other constraints on
partitions one must consider, including those related to population
and shape. Our interest in balanced partitions stems from common
requirements that districts have equal or near-equal populations.
While our first main result resolves a conjecture about exactly
balanced partitions, in practice most processes for sampling political
districting plans do not aim for exact population balance but instead
aim to keep the population to within a tolerance of 1-2%. This
naturally corresponds to the setting of Theorem 1.3, where district
sizes may vary by a multiplicative 1 + ¢ factor. Related to district
shape, the spanning-tree distribution we analyze is targeted by
several sampling algorithms designed for redistricting analysis [8,
16, 25], and has been shown to strongly correlate with geometric
properties intended to capture legal requirements for ‘compactness’
of districts [12, 27, 29].

Unlike Markov chains such as the up-down walk, which oper-
ating in a context without balance constraints, we know that the
approaches cited above such as recombination Markov chains can
have exponential mixing time for some special families of graphs
(including carefully chosen subgraphs of the grid) [9]. Even on rect-
angular grids, recombination chains with strict balance constraints
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can fail to be ergodic if there are many small districts [30]. Posi-
tive mixing time results for any reasonable class of graphs are not
available. However, by giving the first polynomial lower bounds in
grid and grid-like graphs on the probability of finding edges that
cut random spanning trees in balanced ways, our approach also
addresses a crucial factor for Markov chains like those in [8, 16, 25]
that aim to achieve balance by preserving it at every step, by only
using such balanced cuts in transitions.

Other Markov chains employed in the redistricting context in-
clude Glauber dynamics for contiguous partitions, which exchange
individual vertices between districts. Here, without any additional
constraints or weighting, stationary distributions are uniform on
partitions with connected districts. Mixing time can again be expo-
nential for some classes of graphs [20]. In fact, even in the absence
of balance, it is not known whether the Glauber dynamics has poly-
nomial mixing time for partitions of grid graphs into k connected
pieces, or indeed whether any polynomial time algorithm to uni-
formly sample partitions of grid graphs uniformly randomly into k
connected pieces exists, even for k = 2.

1.2 Approach

Rather than working with the tree distribution on partitions, we
work with the uniform distribution on spanning trees. As we prove
in Lemma 2.4, if there is a polynomial lower bound on the proba-
bility a random spanning tree can be split into k equal-sized com-
ponents, there is a polynomial lower bound on the probability a
random tree-weighted forest with k components is balanced. The
majority of our work therefore focuses on uniformly random span-
ning trees and the probability they can be split into components
with desired properties.

Spanning trees of planar graphs are in bijective correspondence
with the spanning trees of their dual graphs: If T is a spanning
tree of G, its dual spanning tree T* contains all edges in G* whose
corresponding edges are missing from T. The first key idea behind
our approach is to study the structure of T* rather than T. If T
is a spanning tree of G with dual tree T*, then the k connected
components of T \ ey, ..., er_; are bounded by k cycles in T* U
e1U---Uer_q.In particular, to show that components with certain
sizes or structure can be created by removing edges in T, it suffices
to show that suitable boundary cycles almost already exist in T*.

The second key idea is to study the probability of such suitable
near-cycles occurring in T* by analyzing the steps of Wilson’s
algorithm on the dual graph. For an arbitrary root vertex, Wilson’s
algorithm builds a uniformly random spanning tree by running a
series of loop-erased random walks from arbitrary starting points
to the component containing the root [31]. By choosing the root
to be the dual graph vertex corresponding to the exterior face and
carefully choosing the starting points of each random walk, we are
able to show the algorithm is sufficiently likely to produce paths in
T* that have the properties we desire.

For our results on general lattice sequences, we will use a par-
ticular implementation of Wilson’s algorithm described in Section
4.3 in which, having completed one loop erased random walk, we
(sometimes) choose the next starting point for a new loop-erased
random walk as the exit vertex of simple random walk within the
induced subgraph of the already-built tree itself. This allows us
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to analyze the progress of the algorithm in long phases that may
include many separate loop-erased random walks, but for which
these separate loop-erased random walks can all be seen as being
generated using a single random walk on the graph.

1.3 Note About Full Version of Paper

This is the conference version of this paper. Several things have
been omitted due to space considerations. The full version of this pa-
per is available at https://arxiv.org/abs/2310.15152 and additionally
contains:

o All missing proofs, and some additional supporting lemmas.
e A short section on empirical experiments on grid graphs,
where we estimate the probabilities of certain edges being
contained in a uniformly random spanning tree and splitting
it into parts of various sizes.

A new theoretical result about lattice-like graphs which we
did not have ready in time for the conference submission
deadline. It is similar to Corollary 4.3, except that we ob-
tain an additive approximation to balance with polynomial
probability (rather than a multiplicative approximation with
polynomial probability), assuming some mild additional ax-
ioms about the family of graphs.

2 PRELIMINARIES
2.1 Notation

For a positive integer n, we denote [n] := {1,2,...,n}. Unless
otherwise specified, all graphs we consider are undirected with
no self-loops, but multiple edges may be allowed between any
pair of vertices. The m X n grid graph is the graph with vertex
set [m] x [n], with an edge between (i, j) and (i’, j*) whenever
li” —i| +|j’ — j| = 1. We always draw grid graphs in a Cartesian
coordinate system, with m being the horizontal dimension and n
being the vertical dimension. We denote by Z? the infinite grid
graph, where the vertex set is Z X Z and the edge relation is the
same as in finite grids.

A forest is a graph with no cycles, and a tree is a connected
forest. A k-forest is a forest with k connected components. A forest
is balanced if every connected component has exactly the same
number of vertices. If T is a tree and S C E(T), we define T \ S to
be the forest F with vertex set V(F) := V(T) and edge set E(F) :=
E(T) \ S. Thus, a tree T is k-splittable if there is some set S € E(T)
of size k — 1 such that T \ S is a balanced k-forest.

For a graph H, we let sp(H) denote the number of spanning trees
of H. For a k-partition P of G with districts Py, ..., P, we denote
by 7sp the spanning tree distribution, given by
H?:l SP(P i )

”sp(P) = 7 >

where Z is the normalizing constant, also called the partition func-

tion, given by
k
Z = Z I_[ sp(P;).

k-partitions P i=1
Note that the uniform distribution over k-forests of G is equivalent
to the spanning tree distribution over k-partitions of G when a
forest is identified with its connected components.



STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

We write d(x, y) to denote the Euclidean distance between two
points x, y € R2. The Hausdorff distance between two subsets X, Y C
RZ?, written d (X,Y), is defined as

d(X,Y) := max{sup inf d(x,y), sup inf d(x,y)}.
xex YeY yey X€X

2.2 Duality

Let G be a connected, planar graph, and fix an embedding of G
in the plane with no edges crossing. The dual graph of G (with
respect to the embedding) is the graph G* whose vertices are faces
of G, with an edge between two faces a* € V(G*) and b* € V(G*)
whenever the two faces share a common boundary edge. Note that
we count the outer face of G as a vertex of G* as well.

For any edge e € E(G), let e* € E(G*) be the edge between the
faces it bounds. For any set of edges S € E(G), we analogously
define S* := {e* | e € S} € E(G"). The following lemma is a
standard result.

LEMMA 2.1. Assume that G is connected and embedded in the plane
such that no edge of G has the same face on both sides. Then e — e*
is a bijection between edges of G and edges of G*, and T v T* :=
(V(G*),E(G*) \ E(T)") is a bijection between spanning trees of G
and spanning trees of G*.

Note that T* does not contain the edges e* for each e € T, but rather
those edges that are not in this set. The hypotheses of Lemma 2.1
hold for all m x n grid graphs with m,n > 1.

2.3 Wilson’s Algorithm

Wilson’s algorithm [31] is important for us not just because it
samples uniformly random trees efficiently, thus serving as a key
subroutine in our perfect sampling algorithm (See Section 2.5.1),
but also because our proofs rely on running Wilson’s algorithm in
a specific way.
For an input graph G, the steps of Wilson’s algorithm are as
follows:
(1) Set T « {r} for an arbitrary “root” vertex r € V(G)
(2) While T does not connect all vertices of G:
(a) Do a loop-erased random walk! starting at an arbitrary
vertex v ¢ T until it reaches a vertex of T
(b) Add all vertices and edges along this loop-erased random
walk to T
(3) Return T

Importantly, it does not matter which vertex is initially chosen as
the root, and in each iteration of the while loop, it does not matter

at which vertex not in T the next loop-erased random walk begins.

Regardless of what arbitrary choices are made at these steps, one can
prove the end result is a perfectly uniformly random spanning tree
of G. We use this crucial fact in our proofs, analyzing the process
of Wilson’s algorithm (in the dual graph G*) from carefully-chosen
starting vertices.

Recall that the hitting time 7, (v) of u from v is the expected time
before a simple random walk reaches v from u, and the commute
time between u and v is 7, (v) + 7, (). A mw-random vertex of G is a
vertex chosen according to the stationary distribution of the simple

IThat is, every time the random walk revisits a node u, erase the cycle and resume the
random walk from u.
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random walk on G, 7(v) = deg(v)/2m. Wilson characterizes the
expected running time of his algorithm (measured by the number
of times we need to find a random neighbor of a vertex) in terms of
the commute time as follows:

PROPOSITION 2.2 (WILSON). The expected number of times we
generate a random neighbor for a vertex in the course of running
Wilson’s algorithm on a graph G with root r is precisely the expected
commute time between r and a -random vertex v. O

For general graphs with N vertices and M edges, it is well-known
that the hitting time and thus the commute time between any pair of
vertices is at most O(NM) [23]; this implies that Wilson’s algorithm
runs in time O(N?) for any planar graph on N vertices. However,
this can be improved for grid graphs by considering the dual graph
and a carefully-chosen root:

PRropOSITION 2.3. Wilson’s algorithm has expected running time
O(Nlog N) on the dual of any grid graph on N vertices, when the
root is chosen to be the dual vertex corresponding to the outer face of
the grid graph.

This is easily proved using the characterization of the commute
time in terms of effective resistance; we include a proof in the full
version of this paper.

2.4 Splittability and the Spanning Tree
Distribution

Here we explicitly connect the uniform distribution over spanning
trees of a graph G with the uniform distribution over k-forests
of G. This enables us to analyze the likelihood of obtaining a bal-
anced partition when sampling from the spanning tree distribution
over forests, as the up-down walk of [9] (approximately) does; see
Section 2.5.2.

LEmMA 2.4. If the probability a uniformly random spanning tree
of G with N vertices and M edges is k-splittable is at least a, then the
probability a uniformly random k-forest of P is balanced is at least

a
Nk=1(M - N + 1)k-1’

O

The (short) proof of this lemma can be found in the full version. We
now use it to prove Theorem 1.2

PROOF THAT THEOREM 3.5 IMPLIES THEOREM 1.2. Sampling a k-
partition P of G according to the spanning tree distribution is the
same as sampling a k-forest F of G uniformly at random and then
considering its connected components. By Theorem 3.5, the proba-
bility that a uniformly random spanning tree T of G is k-splittable
is a least m for some fixed constant . By Lemma 2.4,
as G has nm vertices and strictly less than 2nm edges, the proba-
bility a uniformly random k-forest is balanced is therefore at most

1
ﬁkz nok=5y3k=-3" =
There is hope this bound could be improved by studying random
forests directly, rather than studying spanning trees and then con-
sidering cutting them to obtain forests.
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2.5 Algorithms for Sampling Balanced
Tree-Weighted Partitions

Our theorems imply that known approaches sampling (not nec-
essarily balanced) k-partitions according to the spanning tree dis-
tribution in polynomial time can be combined with a rejection
sampling step to obtain an expected polynomial-time algorithm for
sampling balanced k-partitions. Here we present two methods by
which this could be done, for the case of sampling exactly balanced
k-partitions.

2.5.1 Perfectly Sampling Balanced k-Partitions with Wilson’s Algo-
rithm. Wilson’s algorithm generates a perfectly uniform random
spanning tree of a graph G. We can use it to randomly sample a
balanced k-partition as follows.

(1) Uniformly sample a random spanning tree T of G using
Wilson’s algorithm.

(2) Checkif T has k — 1 edges whose removal disconnects T into
k components of equal size. If no, reject and return to step 1.

(3) If yes, create a k-partition P of G comprised of the connected
components when these k — 1 edges are removed from T.

(4) Create a graph G/P which contracts each district of P into a
single point and retains all edges between components with
the appropriate multiplicity.

(5) Compute the number s of spanning trees of G/P.

(6) Return P with probability 1/s. With the remaining probabil-
ity (s — 1)/s reject and return to step 1.

THEOREM 2.5. For N-vertex grid graphs, this algorithm produces
a balanced k-partition drawn perfectly from the spanning tree distri-
bution in expected running time O(N3*=2log N).

See the full version for a proof of this theorem. Briefly, the expected
run time bounds are because it takes expected time O(N log N)
steps to sample a random spanning tree and check if it is k-splittable,
O(N?%k=2) attempts in expectation to see a k-splittable tree, and
O(N*~1) attempts to be successful in the final rejection of Step 5,
by Theorem 3.5.

2.5.2  Approximately Sampling Balanced k-Partitions with the Up-
Down Walk. An alternate method using the up-down Markov chain
described in Charikar et al. can produce an approximately uni-
formly random k-forest [1, 9]. We briefly motivate and describe
this approach here.

On any graph G, the spanning forests with at least k components
form a matroid whose bases are exactly the k-component spanning
forests of G. The well-known down-up chain on bases of a matroid
mixes in time O(r(logr + loglog n)) when bases have r elements
and the matroid has n total elements [14]; when run for longer than
its mixing time, this chain produces an approximately uniformly
random basis. For k-component forests, this down-up chain ran-
domly removes an edge of the forest (to produce k + 1 components),
and then randomly adds back in an edge connecting two different
components. It’s mixing time is O((N — k) (log(N — k) +log log M))
for graphs with N vertices and M edges; for constant k, this be-
comes O(N log N). However, naively implementing one down-up
step requires O(M) time, making the overall time for this chain to
produce an approximate sample O(NM log N).
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This was improved in [1] by considering the up-down walk
instead. This walk randomly adds an edge to the forest. If adding
this edge creates a cycle, a random edge of the cycle is removed.
If adding this edge did not create a cycle (e.g. the edge connected
two components of the forest) then a random edge of the forest is
removed. This chain has mixing time O(M log M) for graphs with
M edges, as the up-down walk can also be viewed as the down-
up walk on the dual matroid whose bases are the complements
of k-component forests. Using a link-cut tree data structure, each
up-down step can be implemented in amortized quasi-constant
time, resulting in an overall runtime of O(Mlog? M) to produce
one random sample. For planar graphs where M = O(N), this
mixing time is O(N log? N). It is this up-down chain, rather than
the usual down-up chain, that we will use.

The following is our algorithm for approximately randomly sam-
pling a balanced k-forest of a N-vertex graph.

(1) Run the up-down Markov chain on k-forests for some fixed
amount of time longer than its mixing time.

(2) If the current state of the chain is a balanced k-forest, return
the partition P consisting of the connected components of
the forest. Else, return to step 1 and repeat.

THEOREM 2.6. For N-vertex grid graphs, this algorithm produces
a balanced k-partition drawn approximately from the spanning tree
distribution in expected running time O(N*-3 log? N). O

See the full version for a proof of this theorem. Briefly, the expected
running time is because it takes O(N log? N) steps to approximately
sample a random k-forest and O(N' k1) attempts in expectation to
see a balanced one, by Theorem 1.2. Note that, with the relatively
crude estimates we employ to deduce Theorem 1.2 from Theorem
3.5 (in Section 2.4), the runtime we prove for this approximate
sampling approach is actually worse than for the exact sampler
above. There is little reason to believe this to be the truth, however.

3 EXACT BALANCE ON GRID GRAPHS
3.1 Exactly Balanced Bipartitions

In this section we prove the following:

THEOREM 3.1. Let G be a grid graph with N vertices, where N is
even. The probability that a uniformly random spanning tree T of G
is 2-splittable is at least 1/N?.

In fact, we prove a stronger result, namely that specific edges
near the center of the grid have a decent probability of being the
edge that splits the tree. Formally, If G is an m X n grid graph,
we define a horizontal central edge of G to be an edge of the form
{(i, ), (i, j + 1)} that is as close to the center of G as possible. Note
that there may be 1, 2, or 4 horizontal central edges depending on
the parities of m and n.

LEmMMA 3.2. Let G be an m X n grid graph wherem > n, and mn is
even, and let e € E(G) be any horizontal central edge of G. Then the
probability that a uniformly random spanning tree T of G contains e,
and T \ {e} is a balanced 2-forest, is at least

1
mn3
1

4mn3

if m is even
ifmisodd
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Figure 2: A possible run of the dual graph spanning tree sampling algorithm in the proof of Lemma 3.2 when m is odd. In this
example, m = 10 and n = 7. The primal graph G is depicted in gray, and the first two random walks in the dual graph G* are

depicted in black.

To prove Lemma 3.2, we will require two further lemmas.

LEMMA 3.3. Let G be the m X n grid graph induced by the subset
[m] x [n] of the grid Z?, and (io, jo) € V(G). The probability that a
random walk from (ig, jo) in Z? exits G for the first time to a vertex
(i, j') with j > 0 is at least %

Proor. Let (Xo, Yo) = (io, jo), (X1, Y1), (X2, Y2), ... be an infinite
random walk in Z2. Let Yy = Jos Y1, Yy, ... be the subsequence of
vertical coordinates Yy, Y7, Yo, ... where we delete terms that repeat
the previous value (because the horizontal coordinate changed
instead). A sufficient condition for the original two-dimensional
walk to first exit G to a vertex (i’, j*) with j* > 0 is for Yo, Y1, Yo, ...
to reach n + 1 before it reaches zero, as reaching n + 1 necessitates
exiting G. Since }70, Yl, ?2 ... is just an unbiased one-dimensional
random walk from jo, it is a well-known fact? that this probability

Jo o

is precisely 5.

LEmMMA 3.4. Let X be a discrete probability distribution supported
on a set of size k. Then

Pr

(x1=x2) 2
x1,X~X XX

-

ProoF. Suppose the probabilities of each element in the support
of X are p1, pa, ..., pr, where these values sum to one. Then the
probability that two independent samples are the same is given by

2;11 pi.Letp = (p1,p2.....px) andletv = (%, % e l) be length
St pf VP = 1/k, and [(p.v)I?
1/k?, so the lemma follows immediately from the Cauchy-Schwarz
inequality. O

k vectors. We see ||p||?

This is an instance of the classic “Gambler’s Ruin” problem. This proof can be found
in [26, Section 7.2.1], where £, := jo and £, := (n+1) — jj.

1681

PRrOOF OF LEMMA 3.2. Assume n > 1 (otherwise there is nothing
to show; the probability is one). Then note that Lemma 2.1 applies
to G. We first consider the case where n is odd (so m must be even).
In this case there is a unique horizontal central edge e, connecting
the vertices (m/2, (n + 1)/2) and (m/2 + 1, (n + 1)/2). Let G* be
the dual graph of G in the plane, and denote the outer face by
r* € V(G*). Let a* € V(G*) be the face above e and let b* € V(G™)
be the face below e, as in Figure 2.

Consider the following algorithm for generating a uniformly
random spanning tree T of G. Run Wilson’s algorithm on G* with
r* as the root, starting the first loop-erased random walk from a*
and the second random walk from b* (if it is not already added to
the tree in the first random walk). The remaining random walks in
Wilson’s algorithm can be executed from arbitrary starting points.
This gives us spanning tree T* of G*. We then output the primal
tree T whose dual is T*. Since Wilson’s algorithm gives a uniformly
random sample from the set of spanning trees of G*, and those dual
trees are in bijection with the primal spanning trees of G (Lemma
2.1), this algorithm gives us a uniformly random sample from the
set of spanning trees of G.

We apply Lemma 3.3 to the (m—1) X "T_l dual sub-grid outlined
in the top (red) rectangle in Figure 2, with initial vertex a*. Note
that jo = 1 because the coordinate system is shifted so that a* is
in the bottom row. Lemma 3.3 says that a random walk from a*
will first exit the sub-grid above, to the left, or to the right (just not
below) with probability at least

1

n—1
2

1 1
+1 (=-D+1 n

This clearly applies to our loop-erased random walk as well: The
probability that the first walk in Wilson’s algorithm, which starts
from a*, makes it to the outer face r* without ever entering the
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Figure 3: The cases in the proof of Lemma 3.2 when m is even,
in which we must assume that the initial steps of the random
walk from b* takes a specific path into the blue rectangle,
from which it never leaves until hitting the outer face.

bottom half of the grid is at least % Assuming this happens, we
may then apply the same argument to the bottom (blue) rectangle,
for the next random walk starting from b*. By independence, with
probability at least # both paths will have made it to r* without
crossing the horizontal midline.

Assume that this happens, as it does in Figure 2. Let P} be the
path from a” to the boundary, and let P, be the path from b" to the
boundary. Since both P; and P, will be included in T*, we know
that T cannot cross these paths. This means e must be included
in T. Moreover, P; and P; completely determine the number of
vertices on each side of e in T, as follows. Suppose there are X
vertices in the top-half of the grid to the left of P}, Y vertices in the
top-half of the grid to the right of P}, Z vertices in the bottom-half
of the grid to the left of PZ, and W vertices in the bottom-half of
the grid to the right of P;. Then the subtree of T to the left of e
will have X + Z + % vertices, and the subtree to the right of e will
have Y + W + Z vertices (the % terms come from the vertices
on the horizontal midline). Observe that the distribution, over the
random path Py, of the possible values of X — Y is independent of
and identical to the distribution, over the random path P}, of the
possible values of W — Z. Both distributions can take any integral

value from —mT_ln to mT_ln. Thus, applying Lemma 3.4, we know
that, with probability at least
1 1 1
-1 -1 = i
(m"T)_(_m"T)+1 mn—-m+1 mn

we have X — Y = W — Z, which implies
m m
X+Z+E=Y+W+E’

i.e., the subtrees are balanced.

Thus, we have shown that the probability e is included in a
uniformly random spanning tree T of G and splits it into a balanced
2-forest is at least

1 1
n? mn3’

The remaining cases, where n is even, are almost the same. There

are just a few minor additional assumptions we must impose about

1 —_
mn
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what happens to the random walks at the very beginning, as illus-
trated in Figure 3.

If m is even as well, there are two horizontal central edges bor-
dering the unique central face of the grid. Without loss of generality,
take e to be the top one, then define a* and b* as before. We suppose
that the random walk from b* first steps directly downward, as
in Figure 3 (left). This happens with probability 4—1. From there, by
the same arguments as before, noting that the two subgrids are
now each m x (n/2 — 1), the probabilities that the paths leave their
respective red and blue rectangles at the boundary of the grid are
both at least

12
(2-1)+1 n
The probabilities that the number of vertices on each side are the
same is at least

1 ~ 1
)_(_m"T—2)+1 T mn-2m+1

1

mn’

2
Thus, the probability that e splits a uniformly random spanning

tree T into a balanced 2-forest is at least

( )2.

Finally, consider the case where m is odd and n is even. Now there
are four horizontal central edges, of which we pick the top-right
one without loss of generality. With probability %, the random
walk from b* first steps to the left and then down into the blue
rectangle, as in Figure 3 (right). Now we can again apply the same
arguments as above to the subgrids of dimensions m X (n/2 — 1)
showing the probability the remaining paths leave their subgrids at
the boundary of G are both at least % While the random walk in
the top grid no longer begins exactly in the center of the top grid (it
can’t, because this grid is now of even width), the top and bottom
grids are rotationally symmetric, with the top walk beginning just
one unit left of center and the bottom walk beginning one unit right
of center. As before, the distributions of difference of the number
of vertices on each side of the path are identical and are supported
on sets of size at most mn, so by Lemma 3.4, the probability these
differences are identical is at least % Thus, the probability that e
splits a uniformly random spanning tree T into a balanced 2-forest

is at least
( )2

We now use this lemma to prove Theorem 3.1.

1

4

2

n

1

mn

1

mn3’

1
16

2

n

1 1

mn  4mn3’

Proor oF THOEREM 3.1. Recall that N = nm is the total number
of vertices. Assuming m > n, we know that mn® < m?n? = N2.
Thus, in the case where m is even, we simply choose one of the
horizontal central edges, which, by Lemma 3.2, splits a random tree
into a balanced 2-forest with probability at least # > # In the
case where m is odd (and so n must be even) there are 4 horizontal
central edges, each of which will split a random tree into a balanced
2-forest with probability at least ——. Since these 4 events are
mutually exclusive, one of these four will give a balanced split with
probability at least # > O

NZ*
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3.2 Exactly Balanced k-Partitions

With some additional effort, we can generalize the proof of Theorem
3.1 to handle values of k > 2:

THEOREM 3.5. Form > n, let G be an m X n grid graph, and let k
be a positive integer dividing m. There exists a set S C E(G) of size
k — 1 such that the probability a uniformly random spanning tree T
of G contains each edge in S, and T \ S is a balanced k-forest, at least

1
R 3k =3 k=1 @

for a fixed constant p.

The proof proceeds along similar lines as the proof of Lemma 3.2,
and is contained in the full version of this paper; here we just give
a sketch. We require the following stronger lemma about random
walks on grids. This is similar to Lemma 3.3, except that now we
are also not allowed to hit the left or right sides, which makes the
proof significantly more involved.

LEMMA 3.6. Suppose there is a constant € > 0 such that m > en.
Let G be the (m + 1) X (n + 1) grid graph induced by the subset
{0,...,m} x{0,...,n} of the grid 72, where m + 1 is odd, and let
(i0, jo) = (%, 0). The probability that a random walk from (o, jo) in
72 exits G for the first time to a vertex (i’, j') with j/ = n+ 1 is at
least m,for a fixed constant A. O

The proof approach is to first handle the case where m = n. For
this we decompose the 2-dimensional random walk into two 1-
dimensional random walks and show that, with decent probability,
the vertical walk makes it to the far side of the square quickly
and the horizontal walk does not stray to either side too fast. The
technical tools we require are the reflection principle and Bertrand’s
ballot theorem.

To handle the more difficult case where m < n (but n is only
greater than m by some constant factor), we lower-bound the proba-
bility that the random walk leaves a sequence of squares in specific
directions, as depicted in Figure 4. This is an argument we reuse
later in our results for lattice-like graphs.

With Lemma 3.6 in hand, Theorem 3.5 follows from considering
an implementation of Wilson’s algorithm as depicted in Figure
5, where we start the first 2(k — 1) random walks from the dual
vertices aT, b;, b;, .. bz_l, hoping each one makes it to
the respective far side.

* %
a4y o O_p

4 APPROXIMATING PARTITIONS OF
LATTICE-LIKE GRAPHS

In this section we move beyond grid graphs to a more general class
of lattice-like graphs. In Section 4.1, we begin by defining what
we mean by lattice-like graphs. In Section 4.2 we state our main
result, along with a corollary that random trees on grid graphs are
approximately balanced with constant probability. Section 4.3 gives
a sketch of the proof; the details are included in the full version of
the paper.

4.1 Lattice Sequences

Recall that d(x, y) and d(X, Y) denote Euclidean distances between
points and Hausdorff distance between sets, respectively. Recall
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Figure 4: Illustration of the proof of Lemma 3.6, which is
included in the full version. A random walk from the bottom
of the red rectangle that first exits at the very top because it
exits a sequence of squares at the top, and on the side pulling
it closer to the center. Most of the work goes into showing
that the walk leaves the very first square (in purple, at the
bottom), since it must cross to the far side. This happens with
inverse polynomial probability. For the subsequent green
squares, the walk starts at the center, so the probability is
constant. And there are a constant number of squares since
n is larger than m by a constant factor.

that a curve y is a continuous function y : [a,b] — R? for a < b.
Except where specified otherwise, we take a = 0,b = 1. A plane
graph D = (V,T) is a drawing of a (planar) graph in the plane
without intersections. In particular, V. = V(D) is a finite set of
points in the plane R2. T is a finite collection of curves given by
continuous functions y; : [0,1] — R? such that no two such curves
intersect except possibly at their endpoints, and such that if E is
the set of pairs of endpoints:

E={ri(0),yi(D} [i=1,....[Tl}
then (V, E) is a graph. The faces of D are the connected components
of R2\ U gll im(y;) (here im(y) is the image of the function y), and
we refer to the unique unbounded face as the outer face.
We state our results in terms of sequences of infinite plane graphs

that get finer and finer with properties defined as follows.

Definition 4.1. A lattice sequence is a pair ({An}, p), where {An}
is sequence of plane graphs with vertex sets V(A,) € R? for which
there are corresponding dual plane graphs Ay, with each vertex
v € V(A},) a point in the corresponding face of A, such that for
all ¢ > 0, there exists N such that for alln > N,
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®
¢

Figure 5: A possible run of the dual graph spanning tree sampling algorithm in the proof of Theorem 3.5 when m is odd. In this
example, m = 12, n = 11, and k = 3. The primal graph G is depicted in gray, and the first four random walks in the dual graph G*

are depicted in black.

(a) For any adjacent pair x,y € V(A},), d(x,y) <,

(b) For any p € R?, the ball B,(p) contains a vertex of Ay,

(c) For any dual vertex v and ¢ > 0 there is a division of the circle
Ce,p of radius ¢ into arcs Ay, . . ., A each of length at most %27[5,
such that the following holds for each i € [s]: In a simple
random walk v = v, 01,02, . .., with probability at least p > 0,
letting j the first index where d(vg,v;) > ¢, the straight line
segment joining vj—1 with v; passes through C¢ , in A;.

This definition generalizes sequences of finer and finer grids.
Specifically, the family of plane graphs {Zz, %Zz, %Zz, e } is a lat-
tice sequence with p = %. Properties (a) and (b) say that, as we
increase n, neighboring vertices in %Zz become arbitrarily close,
and the vertex set becomes arbitrarily dense. Property (c) holds
using the partition of C¢ ; obtained by drawing horizontal, vertical,
and both 45 degree diagonal lines through v. By symmetry, a ran-
dom walk from v is equally likely to exit through each of these 8
arcs.

The definition also applies to scalings of lattices like the triangu-
lar or hexagonal lattice, since, for example, property (c) holds for
any sequence of lattices for which the scaling limit of random walk
on the dual is Brownian motion. For the same reason, it applies
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a.s., for example, to the sequence where A, denotes the Delauney
triangulation of a Poisson cloud in R? of rate n, see [28]. The choice
of é in the definition is made just for convenience; replacing it with
any constant < % would give exactly the same definition.

4.2 Statement of Results

In addition to lattice sequences, we will also consider a fixed bounded
plane graph D that gives the partition structure we are looking to
approximate. In doing this, we will need to restrict the infinite
graphs in the lattice sequence to a reasonable bounded subgraph
that falls inside D, and we do this as follows. Let D be a bounded
plane graph, and fix § > 0 that will be chosen later in terms of D
(in Lemma 4.5). Given plane graph A, with dual A}, from a lattice
sequence, and a cycle C* in A* at Hausdorff distance < § from the
outer face boundary of D, we let Qp A, be the subgraph of of A,
lying inside C*. We let Ql*), A be the subgraph of A}, induced by all
vertices of C* along with the vertices of A}, lying inside C*. In this
way, we can consider the planar dual of Qp A, to be QB A, with
wired boundary condition, where the entire cycle C* (rather than
a single dual vertex) corresponds to the outer face of Qp A,. (In
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particular, for our proofs, we will run Wilson’s algorithm on QB A,
with the cycle C* identified as a single root.)

Given this plane graph D describing the partition structure we
are looking to approximate, let k + 1 be the number of faces and
denote the k bounded faces by ¢4, . .., §r.. We say a partition of the
graph Qp A into connected components Cy, ..., Ck is e-compatible
with D if for all i and vertices v € Qp , the implication

veC; = d(v,¢i) <¢

®)
holds. By subdividing edges if necessary, we will assume that D
has no loops, so that y(0) # y(1) for all y € T(D).

For a lattice sequence ({An}, p) and a probability space on the
set of spanning trees of Qp A, and given ¢ > 0, we define the
event Ep A, ¢, which holds whenever there are k — 1 edges whose
removal from T results in a forest with components Cy, ..., Cy that
is e-compatible with D.

THEOREM 4.2. Let ({An}, p) be a lattice sequence, let D be a plane
graph with k + 1 faces, and let Qp A, be as above. For the uniform
probability space on the set of spanning trees of a graph Qp a,,, we
have that asn — oo, Pr(Ep p,,.) is bounded below by a constant
depending only on D and e.

As a consequence, if we draw the partition so that the parts
contain approximately equal numbers of vertices, we can conclude
that random trees are splittable into approximately balanced pieces
with constant probability. This is possible so long as {A,} has the
property that for any § > 0 and R, there is an ¢ > 0 so that every
¢ ball B.(p) satisfies |B:(p) N V(Ap)| < §|Br(0) N V(Ap)|. In the
case of grid graphs, for instance, we obtain the following corollary.

CoROLLARY 4.3. Fix ¢ > 0 and k a positive integer. Let m,n be
positive integers such that n < m, k|lm, and 20/n < ¢ < 1/(3k).
Let G be an m X n grid graph. There is a constant C(k, €) such that
the probability a uniformly random spanning tree of G is (k,¢)-

approximately splittable is at least C(k, €).

4.3 Proof Sketch

We begin with a lemma generalizing the argument described in
Figure 4 to lattice sequences.

LEmMMA 4.4. Let ({An}, p) be a lattice sequence, let y1, y2 be non-
trivial curves in the plane, where y1 has length T and y2(0) = y1(1).
For all sufficiently small ¢ > 0, for any vy € Ap with d(vg, y1(0)) <
¢/2, and for a random walk in Ay, started fromvg, let &' = &}, 4 1, 1,
be the event that the walk traverses an edge which intersects the curve
Y2 at a point within e/2 of y1(1) before ever reaching a vertex at
distance > ¢ from the curve y1. For all sufficiently large n,

Pr(&

7’

1007/ £+200
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Fixing a plane graph D = (V,T) as in Theorem 4.2 we have the
following.

LEMMA 4.5. For0 < § < ¢ sufficiently small, we have that:
(A1) The distance between any two vertices u,v € V is at least 3¢.
(A2) If ay denotes the last time t at which y(t) is in the closed ball
of radius € about y(0), and b, denotes the first time t at which
y(t) is in the closed ball of radius ¢ about y(1), the restricted
curves ¥ = ¥|[a,.b,] are all at distance at least 3¢ from each
other.
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C*

Figure 6: A run of the first four phases of Wilson’s algorithm
approximating the first four inner curves y{ , y%, yg, yi. Note
that paths corresponding to yg and yﬁ each are missing an
edge, and in particular, the edges present do not disconnect
the interior of C*. These missing edges are dual to the edges
in the corresponding primal spanning tree whose removal
would disconnect the tree into components approximating
the faces of this drawing.

(A3) For any two points p,q in a common face of D and both at
distance at least € from any curve of D, there is a curve y (not a
curve of D) joining p to q whose distance to every curve of D is
at least 6. O

From here on, we let ¢, be as promised by Lemma 4.5. We
call a curve of D an outer curve if every point of the curve lies
on the boundary of the outer face, and an inner curve if no point
does, other than possibly its endpoints. Note that every curve must
be one of these two types. We let I’ and I'C denote set of inner
curves and outer curves, respectively. Since D is connected, we
can order the inner curves of D as y{ e, anl- such that for all ¢,
the plane graph D, of D with edges I; = TO U {y{, ey y{{} and
vertex set V; = {{y(x) | y € Ir,x € {0,1}} is connected (see
Figure 6). Moreover, without loss of generality we assume that the
orientation of each curve is such that y[{ (1) is a vertex of Tp_1 for
all £ = 1,..., m; (the curves are oriented “towards the outer face”).

We prove the theorem by analyzing how Wilson’s algorithm con-
structs spanning trees of QB A, with wired boundary conditions,
where the whole boundary cycle C* is used as the root of Wilson’s
algorithm. In particular, it is equivalent to view Wilson’s algorithm
as building a unicylic graph, initialized with the boundary cycle
of QB Ay The freedom to choose the starts of loop-erased random
walks in Wilson’s algorithm allows us to use the following imple-
mentation, which determines starts by using additional random
walks. We proceed in phases, creating a sequence of trees Tij where
the subscript i denotes the phase and the superscript j denotes the
step within phase i. Within phase i, we alternate a loop-erased ran-
dom walk from a vertex outside Tij to a vertex in Tij that gets added

to the tree to obtain Tl.j * (one step of Wilson’s algorithm) with a

random walk among the vertices in Tl] *1 until a vertex outside TIJ +
is reached (choosing the starting point for the next step of Wilson’s
algorithm). Here we describe the procedure for one phase of this
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process; the particular choices of source vertex and target subsets
that will be useful for our purposes will be specified below.

(1) At the beginning of each phase i, we have an existing tree
T;—1 that has already been built. (For i = 1, Ty consists of
just the root vertex). We choose a source vertex v and target
subset U; C T;_1 for this phase, and initialize Tl.o_1 =T;-1.

(2) We begin each step of this phase with Tl.]__l1 (at the beginning
of the phase, for j = 1) and a source vertex. We do one of
two things according to whether the source belongs to the
tree Ti]__llz

(a) If the source vertex is not in TiJ__ll, we conduct a loop-

erased random walk from the source until it hits TI.J__I1
at a vertex u. This loop-erased random walk is added to
Tij__l1 to create Tij_l. If u € U; this phase ends, and we set
T; = Ti]—l' Otherwise, we increment j, and continue this
phase with u as the new source vertex (we will be in case
(b) next). )

If the source vertex is in Tl.J__ll, we take a random walk
from the source until we reach a vertex u outside of T;_1,
and then increment j and restart this step from the vertex

(b)

u as the new source vertex, and Tij_1 = Tij__ll (we will be
in case (a) next).
(3) The previous loop continues until either the target is even-
tually hit by an instance of the loop-erased random walk, or
the entire spanning tree is completed.

Note that we can use a single random walk W; from v ¢ T;_1 to
implement each phase of the algorithm (with loop erasure while in
case (2a), and without loop erasure while in case (2b)). In particular,
with this implementation, we have the following observation for
general graphs:

OBSERVATION 1. Suppose that we run the implementation of Wil-
son’s algorithm above on a graph G, and have built the tree Ty after
the first £ phases.

(a) For a connected set of vertices S, if the walk Wp41 begins from a
vertexv € S and ends phase £ +1 by hitting T, for the first time at
the target Upr1 C S and without leaving S, then after this phase,
there is a path P in Tyyq joining v to Upiy.

(b) For a connected set of vertices S, suppose the walk Wyy1 begins
from a vertex in S that is adjacent tov € Ty N S and ends phase
¢+ 1 by hitting the target Upy1 C S without leaving S. Then after
this phase, there is a path P from a vertexv’ € (SN Ty) \ Upyq to
Up+1, all of whose vertices belong to S, and all but one of whose
edges belong to Ty41. m}

In particular, applied to our situation, using as S the set of vertices
close to a given curve, we obtain the following:

OBSERVATION 2. Suppose that we run the implementation of Wil-
son’s algorithm above on the dual graph Q7F, , , and have built the
tree Ty after the first £ phases. Then:

(a) If the walk Wy41 begins from a vertex v and ends phase £ + 1 by
hitting Ty for the first time at the target Upy1 = Ty N B(6, ye+1(1))
while also staying within distance § of the curve yr41, then after
this phase, there is a path P in Ty41 joining v to Upy1 whose vertices
are all within distance § from the curve yp41.
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(b) Suppose the walk Wyy1 begins from a vertex adjacent to a vertex
v € Tp N B(J, yr+1(0)) and ends phase £ + 1 by hitting the target
Ur+1 = Tp N B(6, ye+1(1)) while also staying within distance §
of the curve yp41 throughout the phase. Suppose all vertices of Ty
that are within § of the curve yp41 are in either B(J, yr+1(0)) or
B(d, ye+1(1)). Then after this phase, there is a path P in the dual
graph joining some vertex in Ty N B(3, yr+1(0)) to Upy1 whose
vertices are all within distance § from the curve yp41, and such
that all but at most one edge of P belongs to the tree Tp4.

Proor. This follows from Observation 1, with G = QE A and
»iin

S to be all the vertices of QE A within distance § of the curve

Yes1. [}

Using Observation 2, we complete the proof as follows. For a plane
graph D, let f(D) be the number of interior faces of D. We say a (not-

necessarily-spanning) tree T in the dual graph Q) ,  &-corresponds
to a plane graph D with inner curves y{ b .,}/{{ if there are paths

Pi,...,Ppin QEA , such that for each i:
siin

(a) For f(D) — 1 of the paths, all but one edge of P; belongs to the
tree T, while for the rest of the paths, the whole path belongs to
T. Intuitively, T is the dual tree that partitions the lattice, and
the P; are obtained by adding the “missing” edges whose duals
are the split edges of the tree in the primal graph, such as the
gap in the center of Figure 6.

(b) P; N Pj # 0 if and only if yl.I and yjI. share a common endpoint.

(c) For any point p, if yl.ll, s inS are all the curves of D that have p
as an endpoint, then the union of the paths P;,, ..., P;_ is a tree.

(d) Every vertex of P; is within distance § of the curve in .

This definition then allows the following lemma, which applies to

each plane graph Dy in the sequence constructed above.

*

LEMMA 4.6. Let T be a tree in the dual graph QD,A,,’ and let
Hr be the spanning subgraph of the primal graph Qp ;, obtained
by removing from Qp A, all the edges e for which e* € T. If T -
corresponds to Dy, then there are f (D¢) — 1 edges of H whose removal
results in connected components Cy, . .
of Qp p,, is e-compatible with D.

., Cx whose induced partition
m]

Let us now use Lemma 4.6 and induction on the sequence of plane
graphs Dy to prove the Theorem. Initially, tree Ty consisting of just
the root vertex of QB A, (equivalently, of just the wired boundary
cycle of QF, , ) trivially §-corresponds to the plane graph Dy with
no interior curves. Having already constructed a tree T;_; that §-
corresponds to Dy_1, we begin another phase of Wilson’s algorithm
from a vertex v € Qp a,,. If T,—1 N B(J, )/({(0)) = 0, we begin from
a vertex v at minimum distance from y{, (0) (call this Case A), and
note o will not be in T;—;. Otherwise, if T,—1 N B(S, yg(O)) =0, we
begin at a vertex v adjacent to any vertex in this set (Case B). In
both cases, we use the target Uy, = Tp—1 N B(4, yt{(l)). Note that
when y({ (1) is incident on the outer face of D, the target Uy contains
a portion of the boundary cycle of QB’ A, within distance § of y{; (1).
By Lemma 4.4, with constant probability, the walk Wp for this phase
will hit the target Uy while staying within distance § of yt{ . Thus, by
Observation 2, and the fact that we are in Case A instead of Case B
if and only if f(D¢) = f(D¢-1) (as in Euler’s formula), at the end
of the phase, the tree Ty §-corresponds to Dy.
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In particular, after phase ¢ = m; (recall m; is the total number of
interior curves in D) we have that with constant probability, our
tree Ty, consists only of the root and vertices within distance &
of the internal curves of D, and that there is a collection of paths
P1,..., Py, satisfying properties (a), (b), (c), and (d) above, and
additionally that all but precisely f(D) — 1 = k — 2 of the paths
belong entirely to three Ty, .

From here, we complete Wilson’s algorithm with arbitrary choices
for starting vertices to produce a final tree T, which still contains
all but at most one edge of each path P;, and the whole path in all
but precisely k — 1 cases. In particular, in the primal graph, the tree
T corresponds to a tree from which k — 1 edges can be deleted, to
produce a partition that is e-compatible with the drawing D. O

Corollary 4.3 follows with some additional observations about
how the parameters of Theorem 4.2 applies to grids.
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