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ABSTRACT

We prove that a polynomial fraction of the set of :-component

forests in the< × = grid graph have equal numbers of vertices in

each component, for any constant : . This resolves a conjecture of

Charikar, Liu, Liu, and Vuong, and establishes the �rst provably

polynomial-time algorithm for (exactly or approximately) sampling

balanced grid graph partitions according to the spanning tree dis-

tribution, which weights each :-partition according to the product,

across its : pieces, of the number of spanning trees of each piece.

Our result follows from a careful analysis of the probability a uni-

formly random spanning tree of the grid can be cut into balanced

pieces.

Beyond grids, we show that for a broad family of lattice-like

graphs, we achieve balance up to any multiplicative (1 ± Y) con-

stant with constant probability. More generally, we show that, with

constant probability, components derived from uniform spanning

trees can approximate any given partition of a planar region spec-

i�ed by Jordan curves. This implies polynomial-time algorithms

for sampling approximately balanced tree-weighted partitions for

lattice-like graphs.

Our results have applications to understanding political district-

ings, where there is an underlying graph of indivisible geographic

units that must be partitioned into: population-balanced connected

subgraphs. In this setting, tree-weighted partitions have interesting

geometric properties, and this has stimulated signi�cant e�ort to

develop methods to sample them.
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1 INTRODUCTION

We consider the following question: given a graph� and an integer

constant : , how can one randomly sample partitions of � into :

connected pieces, each of equal size? We address this question in

the context of the spanning tree distribution on partitions, under

which the weight of a partition is proportional to the product of

the numbers of spanning trees in each partition class. This dis-

tribution has been the subject of intense research in the context

of mathematical approaches to the analysis of political district-

ings [8, 9, 12, 16, 25, 27, 29]. While e�cient algorithms exist to

sample from this distribution when there are no size constraints on

the partition classes, there is no general recipe for converting such

a sampler to an e�cient sampler for the balanced spanning tree

distribution, where we condition the spanning tree distribution on

the event that the partition classes are equal in size. For the proto-

typical case of grid graphs, the following conjecture of Charikar,

Liu, Liu, and Vuong asserted that rejection sampling would su�ce:

Conjecture 1.1 (Charikar, Liu, Liu, and Vuong [9]). For the

< × = grid graph, the proportion of balanced :-partitions under the

spanning tree distribution is at least 1/poly(<,=), when : = $ (1).

We con�rm this conjecture as follows:

Theorem 1.2. Let� be an<×= grid graph where< ≥ = and : |<.

The probability that a :-partition from the spanning tree distribution

is balanced is at least
1

V:
2
=5:−5<3:−3

(1)

for a �xed constant V .

We note that the assumption that : divides the longer dimension is

mostly for ease of exposition. With some more e�ort (and worse

constant factors) one could require just : |=<, with essentially the

same proof techniques. Theorem 1.2 will follow from Theorem 3.5,

which will assert that, for a uniformly random spanning tree of the

< × = grid graph (< ≥ =, : |<), there is a 1/poly(<=) chance that

there are : − 1 edges whose removal divides the tree into equal-size

components. Section 3 is devoted to proving Theorem 3.5, along

with stronger bounds for the special case of : = 2.

The relative frequency of balanced partitions under the spanning

tree distribution is particularly salient given the signi�cant progress

made in sampling algorithms for this distribution. For example, in

2020, leveraging recent breakthroughs in the polynomial-method

approach to Markov chain mixing, Anari, Liu, Gharan, Vinzant,

and Vuong gave an$ (# log2 # ) approximate sampler based on the

‘down-up’ walk on the complement of :-component forests of an # -

vertex graph [1]. In Section 2.5, we discuss the use of our results in

the context of an additional rejection step for approximate samplers

based on Markov chains, and also show how to exactly sample from

the spanning tree distribution on balanced :-partitions in expected

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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time $ (# 3:−2 log# ) for a grid graph with # vertices. These are

the �rst provably polynomial-time algorithms for (perfectly or

approximately) sampling from the spanning tree distribution on

balanced partitions.

In Section 4, we turn to analyze partitions in grid-like graphs

under a looser balance constraint. If we are interested in dividing

a random spanning tree into components that are only approxi-

mately balanced (up to a (1 ± Y) multiplicative error), we show

on lattice-like graphs (including grids) that this is possible with

constant probability; Corollary 4.3 gives the precise statement for

grids. In fact, we prove a more general result, which is that a uni-

form spanning tree on a su�ciently re�ned lattice-like graph will,

with probability bounded below by a constant, be splittable into

components that approximately match any partition of a region

of the plane given by a collection of Jordan curves (Figure 1). In

particular, suppose Λ= is a sequence of in�nite planar graphs of de-

creasing scale embedded in R2 which are lattice-like (see De�nition

4.1). For example, our de�nition of “lattice-like” is broad enough

to apply almost surely to the sequence where Λ= is the Delauney

triangulation of a Poisson point cloud in R2 of rate =. If � is a �xed

plane graph, and Ω�,Λ=
denotes a region of Λ= whose boundary

approximates the boundary of the outer face of � , we have that:

Theorem 1.3 (Informal version of Theorem 4.2). Given any

plane graph � with : + 1 faces, let q1, . . . , q: ⊆ R
2 denote its inner

faces. For any Y > 0, as = → ∞, there is a constant lower bound,

depending only on the plane graph and Y, on the probability that

a random spanning tree ) of Ω�,Λ=
contains : − 1 edges whose

removal disconnects ) into components �1, . . . ,�: , where each �8 is

at Hausdor� distance < Y from a corresponding face q8 of � .

Again, combining these results with known algorithms and re-

jection sampling gives corresponding polynomial-time sampling

algorithms in these more general settings.

1.1 Random Sampling of Political Districting
Plans

In the context of the analysis of districting plans, sampling algo-

rithms enable the generation of large ensembles of plans, which are

useful for several purposes (detecting outliers, understanding the

impacts of rules, evaluating the stated intentions of map-drawers,

and more). Ensemble analysis has been used in many academic stud-

ies, including [2, 3, 5–8, 11, 13, 15, 16, 18, 19, 21, 22, 25, 32], as well

as in mathematicians’ expert reports in court cases [4, 10, 17, 24].

Randomly sampling political districting plans is equivalent to a

sampling problem for suitable partitions of a graph, with vertices

representing small geographic regions such as precincts or census

blocks and edges representing adjacencies. Because they represent

physical geography, these graphs are typically planar or nearly

planar. While they are not usually perfect grids (except at times in

cities), there is general consensus that grids are the logical simpli�ed

setting to �rst consider. By going beyond grids to lattice-like graphs,

we move to a much more expressive graph class that can describe

signi�cant additional real-world geography.

A districting planwith: districts is a partition of this graph into:

pieces, which are generally required to be connected. Throughout,

Figure 1: A partition of a region of a lattice-like graph approx-

imating a division of the plane given by Jordan curves, and

induced by the components remaining after deleting the four

bright purple edges from a spanning tree of the region. The-

orem 4.2 shows that given a division of the plane by curves,

a random spanning tree of a su�ciently re�ned lattice-like

graph can, with probability bounded below by a constant, be

cut into components inducing a partition whose classes each

has small Hausdor� distance from the corresponding face

of the drawing.

we will call a partition of a graph into : connected pieces a :-

partition, and we will refer to the : partition classes of a partition

as districts.

In the context of redistricting, there are other constraints on

partitions one must consider, including those related to population

and shape. Our interest in balanced partitions stems from common

requirements that districts have equal or near-equal populations.

While our �rst main result resolves a conjecture about exactly

balanced partitions, in practicemost processes for sampling political

districting plans do not aim for exact population balance but instead

aim to keep the population to within a tolerance of 1-2%. This

naturally corresponds to the setting of Theorem 1.3, where district

sizes may vary by a multiplicative 1 ± Y factor. Related to district

shape, the spanning-tree distribution we analyze is targeted by

several sampling algorithms designed for redistricting analysis [8,

16, 25], and has been shown to strongly correlate with geometric

properties intended to capture legal requirements for ‘compactness’

of districts [12, 27, 29].

Unlike Markov chains such as the up-down walk, which oper-

ating in a context without balance constraints, we know that the

approaches cited above such as recombination Markov chains can

have exponential mixing time for some special families of graphs

(including carefully chosen subgraphs of the grid) [9]. Even on rect-

angular grids, recombination chains with strict balance constraints
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can fail to be ergodic if there are many small districts [30]. Posi-

tive mixing time results for any reasonable class of graphs are not

available. However, by giving the �rst polynomial lower bounds in

grid and grid-like graphs on the probability of �nding edges that

cut random spanning trees in balanced ways, our approach also

addresses a crucial factor for Markov chains like those in [8, 16, 25]

that aim to achieve balance by preserving it at every step, by only

using such balanced cuts in transitions.

Other Markov chains employed in the redistricting context in-

clude Glauber dynamics for contiguous partitions, which exchange

individual vertices between districts. Here, without any additional

constraints or weighting, stationary distributions are uniform on

partitions with connected districts. Mixing time can again be expo-

nential for some classes of graphs [20]. In fact, even in the absence

of balance, it is not known whether the Glauber dynamics has poly-

nomial mixing time for partitions of grid graphs into : connected

pieces, or indeed whether any polynomial time algorithm to uni-

formly sample partitions of grid graphs uniformly randomly into :

connected pieces exists, even for : = 2.

1.2 Approach

Rather than working with the tree distribution on partitions, we

work with the uniform distribution on spanning trees. As we prove

in Lemma 2.4, if there is a polynomial lower bound on the proba-

bility a random spanning tree can be split into : equal-sized com-

ponents, there is a polynomial lower bound on the probability a

random tree-weighted forest with : components is balanced. The

majority of our work therefore focuses on uniformly random span-

ning trees and the probability they can be split into components

with desired properties.

Spanning trees of planar graphs are in bijective correspondence

with the spanning trees of their dual graphs: If ) is a spanning

tree of � , its dual spanning tree ) ∗ contains all edges in �∗ whose

corresponding edges are missing from ) . The �rst key idea behind

our approach is to study the structure of ) ∗ rather than ) . If )

is a spanning tree of � with dual tree ) ∗, then the : connected

components of ) \ 41, . . . , 4:−1 are bounded by : cycles in ) ∗ ∪

41 ∪ · · · ∪ 4:−1. In particular, to show that components with certain

sizes or structure can be created by removing edges in ) , it su�ces

to show that suitable boundary cycles almost already exist in ) ∗.

The second key idea is to study the probability of such suitable

near-cycles occurring in ) ∗ by analyzing the steps of Wilson’s

algorithm on the dual graph. For an arbitrary root vertex, Wilson’s

algorithm builds a uniformly random spanning tree by running a

series of loop-erased random walks from arbitrary starting points

to the component containing the root [31]. By choosing the root

to be the dual graph vertex corresponding to the exterior face and

carefully choosing the starting points of each random walk, we are

able to show the algorithm is su�ciently likely to produce paths in

) ∗ that have the properties we desire.

For our results on general lattice sequences, we will use a par-

ticular implementation of Wilson’s algorithm described in Section

4.3 in which, having completed one loop erased random walk, we

(sometimes) choose the next starting point for a new loop-erased

random walk as the exit vertex of simple random walk within the

induced subgraph of the already-built tree itself. This allows us

to analyze the progress of the algorithm in long phases that may

include many separate loop-erased random walks, but for which

these separate loop-erased random walks can all be seen as being

generated using a single random walk on the graph.

1.3 Note About Full Version of Paper

This is the conference version of this paper. Several things have

been omitted due to space considerations. The full version of this pa-

per is available at https://arxiv.org/abs/2310.15152 and additionally

contains:

• All missing proofs, and some additional supporting lemmas.

• A short section on empirical experiments on grid graphs,

where we estimate the probabilities of certain edges being

contained in a uniformly random spanning tree and splitting

it into parts of various sizes.

• A new theoretical result about lattice-like graphs which we

did not have ready in time for the conference submission

deadline. It is similar to Corollary 4.3, except that we ob-

tain an additive approximation to balance with polynomial

probability (rather than a multiplicative approximation with

polynomial probability), assuming some mild additional ax-

ioms about the family of graphs.

2 PRELIMINARIES

2.1 Notation

For a positive integer =, we denote [=] := {1, 2, . . . , =}. Unless

otherwise speci�ed, all graphs we consider are undirected with

no self-loops, but multiple edges may be allowed between any

pair of vertices. The < × = grid graph is the graph with vertex

set [<] × [=], with an edge between (8, 9) and (8′, 9 ′) whenever

|8′ − 8 | + | 9 ′ − 9 | = 1. We always draw grid graphs in a Cartesian

coordinate system, with< being the horizontal dimension and =

being the vertical dimension. We denote by Z2 the in�nite grid

graph, where the vertex set is Z × Z and the edge relation is the

same as in �nite grids.

A forest is a graph with no cycles, and a tree is a connected

forest. A :-forest is a forest with : connected components. A forest

is balanced if every connected component has exactly the same

number of vertices. If ) is a tree and ( ⊆ � () ), we de�ne ) \ ( to

be the forest � with vertex set + (� ) := + () ) and edge set � (� ) :=

� () ) \ ( . Thus, a tree ) is :-splittable if there is some set ( ⊆ � () )

of size : − 1 such that ) \ ( is a balanced :-forest.

For a graph� , we let sp(� ) denote the number of spanning trees

of � . For a :-partition % of � with districts %1, . . ., %: , we denote

by csp the spanning tree distribution, given by

csp (%) =

∏:
8=1 sp(%8 )

/
,

where / is the normalizing constant, also called the partition func-

tion, given by

/ =

∑

:-partitions %

:∏

8=1

sp(%8 ).

Note that the uniform distribution over :-forests of� is equivalent

to the spanning tree distribution over :-partitions of � when a

forest is identi�ed with its connected components.
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We write 3 (G,~) to denote the Euclidean distance between two

points G,~ ∈ R2. TheHausdor� distance between two subsets-,. ⊆

R
2, written 3 (-,. ), is de�ned as

3 (-,. ) := max{ sup
G∈-

inf
~∈.

3 (G,~), sup
~∈.

inf
G∈-

3 (G,~)}.

2.2 Duality

Let � be a connected, planar graph, and �x an embedding of �

in the plane with no edges crossing. The dual graph of � (with

respect to the embedding) is the graph �∗ whose vertices are faces

of � , with an edge between two faces 0∗ ∈ + (�∗) and 1∗ ∈ + (�∗)

whenever the two faces share a common boundary edge. Note that

we count the outer face of � as a vertex of �∗ as well.

For any edge 4 ∈ � (�), let 4∗ ∈ � (�∗) be the edge between the

faces it bounds. For any set of edges ( ⊆ � (�), we analogously

de�ne (∗ := {4∗ | 4 ∈ (} ⊆ � (�∗). The following lemma is a

standard result.

Lemma 2.1. Assume that� is connected and embedded in the plane

such that no edge of � has the same face on both sides. Then 4 ↦→ 4∗

is a bijection between edges of � and edges of �∗, and ) ↦→ ) ∗ :=

(+ (�∗), � (�∗) \ � () )∗) is a bijection between spanning trees of �

and spanning trees of �∗.

Note that) ∗ does not contain the edges 4∗ for each 4 ∈ ) , but rather

those edges that are not in this set. The hypotheses of Lemma 2.1

hold for all< × = grid graphs with<,= > 1.

2.3 Wilson’s Algorithm

Wilson’s algorithm [31] is important for us not just because it

samples uniformly random trees e�ciently, thus serving as a key

subroutine in our perfect sampling algorithm (See Section 2.5.1),

but also because our proofs rely on running Wilson’s algorithm in

a speci�c way.

For an input graph � , the steps of Wilson’s algorithm are as

follows:

(1) Set ) ← {A } for an arbitrary “root” vertex A ∈ + (�)

(2) While ) does not connect all vertices of � :

(a) Do a loop-erased random walk1 starting at an arbitrary

vertex E ∉ ) until it reaches a vertex of )

(b) Add all vertices and edges along this loop-erased random

walk to )

(3) Return )

Importantly, it does not matter which vertex is initially chosen as

the root, and in each iteration of the while loop, it does not matter

at which vertex not in ) the next loop-erased random walk begins.

Regardless of what arbitrary choices aremade at these steps, one can

prove the end result is a perfectly uniformly random spanning tree

of � . We use this crucial fact in our proofs, analyzing the process

of Wilson’s algorithm (in the dual graph�∗) from carefully-chosen

starting vertices.

Recall that the hitting time gD (E) ofD from E is the expected time

before a simple random walk reaches E from D, and the commute

time between D and E is gD (E) + gE (D). A c-random vertex of � is a

vertex chosen according to the stationary distribution of the simple

1That is, every time the random walk revisits a nodeD , erase the cycle and resume the
random walk from D.

random walk on � , c (E) = 346(E)/2<. Wilson characterizes the

expected running time of his algorithm (measured by the number

of times we need to �nd a random neighbor of a vertex) in terms of

the commute time as follows:

Proposition 2.2 (Wilson). The expected number of times we

generate a random neighbor for a vertex in the course of running

Wilson’s algorithm on a graph � with root A is precisely the expected

commute time between A and a c-random vertex E . □

For general graphs with# vertices and" edges, it is well-known

that the hitting time and thus the commute time between any pair of

vertices is at most$ (#") [23]; this implies thatWilson’s algorithm

runs in time $ (# 2) for any planar graph on # vertices. However,

this can be improved for grid graphs by considering the dual graph

and a carefully-chosen root:

Proposition 2.3. Wilson’s algorithm has expected running time

$ (# log# ) on the dual of any grid graph on # vertices, when the

root is chosen to be the dual vertex corresponding to the outer face of

the grid graph.

This is easily proved using the characterization of the commute

time in terms of e�ective resistance; we include a proof in the full

version of this paper.

2.4 Splittability and the Spanning Tree
Distribution

Here we explicitly connect the uniform distribution over spanning

trees of a graph � with the uniform distribution over :-forests

of � . This enables us to analyze the likelihood of obtaining a bal-

anced partition when sampling from the spanning tree distribution

over forests, as the up-down walk of [9] (approximately) does; see

Section 2.5.2.

Lemma 2.4. If the probability a uniformly random spanning tree

of� with # vertices and" edges is :-splittable is at least U , then the

probability a uniformly random :-forest of % is balanced is at least

U

#:−1 (" − # + 1):−1
. □

The (short) proof of this lemma can be found in the full version. We

now use it to prove Theorem 1.2

Proof that Theorem 3.5 implies Theorem 1.2. Sampling a :-

partition % of � according to the spanning tree distribution is the

same as sampling a :-forest � of � uniformly at random and then

considering its connected components. By Theorem 3.5, the proba-

bility that a uniformly random spanning tree ) of � is :-splittable

is a least 1

V:
2
=3:−3<:−1

for some �xed constant V . By Lemma 2.4,

as � has =< vertices and strictly less than 2=< edges, the proba-

bility a uniformly random :-forest is balanced is therefore at most
1

V:
2
=5:−5<3:−3

. □

There is hope this bound could be improved by studying random

forests directly, rather than studying spanning trees and then con-

sidering cutting them to obtain forests.
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2.5 Algorithms for Sampling Balanced
Tree-Weighted Partitions

Our theorems imply that known approaches sampling (not nec-

essarily balanced) :-partitions according to the spanning tree dis-

tribution in polynomial time can be combined with a rejection

sampling step to obtain an expected polynomial-time algorithm for

sampling balanced :-partitions. Here we present two methods by

which this could be done, for the case of sampling exactly balanced

:-partitions.

2.5.1 Perfectly Sampling Balanced :-Partitions with Wilson’s Algo-

rithm. Wilson’s algorithm generates a perfectly uniform random

spanning tree of a graph � . We can use it to randomly sample a

balanced :-partition as follows.

(1) Uniformly sample a random spanning tree ) of � using

Wilson’s algorithm.

(2) Check if) has : −1 edges whose removal disconnects) into

: components of equal size. If no, reject and return to step 1.

(3) If yes, create a :-partition % of� comprised of the connected

components when these : − 1 edges are removed from ) .

(4) Create a graph�/% which contracts each district of % into a

single point and retains all edges between components with

the appropriate multiplicity.

(5) Compute the number B of spanning trees of �/% .

(6) Return % with probability 1/B . With the remaining probabil-

ity (B − 1)/B reject and return to step 1.

Theorem 2.5. For # -vertex grid graphs, this algorithm produces

a balanced :-partition drawn perfectly from the spanning tree distri-

bution in expected running time $ (# 3:−2 log# ).

See the full version for a proof of this theorem. Brie�y, the expected

run time bounds are because it takes expected time $ (# log# )

steps to sample a random spanning tree and check if it is:-splittable,

$ (# 2:−2) attempts in expectation to see a :-splittable tree, and

$ (#:−1) attempts to be successful in the �nal rejection of Step 5,

by Theorem 3.5.

2.5.2 Approximately Sampling Balanced :-Partitions with the Up-

Down Walk. An alternate method using the up-down Markov chain

described in Charikar et al. can produce an approximately uni-

formly random :-forest [1, 9]. We brie�y motivate and describe

this approach here.

On any graph� , the spanning forests with at least : components

form a matroid whose bases are exactly the :-component spanning

forests of� . The well-known down-up chain on bases of a matroid

mixes in time $ (A (log A + log log=)) when bases have A elements

and the matroid has = total elements [14]; when run for longer than

its mixing time, this chain produces an approximately uniformly

random basis. For :-component forests, this down-up chain ran-

domly removes an edge of the forest (to produce : + 1 components),

and then randomly adds back in an edge connecting two di�erent

components. It’s mixing time is$ ((# −:) (log(# −:) + log log"))

for graphs with # vertices and " edges; for constant : , this be-

comes $ (# log# ). However, naively implementing one down-up

step requires $ (") time, making the overall time for this chain to

produce an approximate sample $ (#" log# ).

This was improved in [1] by considering the up-down walk

instead. This walk randomly adds an edge to the forest. If adding

this edge creates a cycle, a random edge of the cycle is removed.

If adding this edge did not create a cycle (e.g. the edge connected

two components of the forest) then a random edge of the forest is

removed. This chain has mixing time $ (" log") for graphs with

" edges, as the up-down walk can also be viewed as the down-

up walk on the dual matroid whose bases are the complements

of :-component forests. Using a link-cut tree data structure, each

up-down step can be implemented in amortized quasi-constant

time, resulting in an overall runtime of $ (" log2") to produce

one random sample. For planar graphs where " = $ (# ), this

mixing time is $ (# log2 # ). It is this up-down chain, rather than

the usual down-up chain, that we will use.

The following is our algorithm for approximately randomly sam-

pling a balanced :-forest of a # -vertex graph.

(1) Run the up-down Markov chain on :-forests for some �xed

amount of time longer than its mixing time.

(2) If the current state of the chain is a balanced :-forest, return

the partition % consisting of the connected components of

the forest. Else, return to step 1 and repeat.

Theorem 2.6. For # -vertex grid graphs, this algorithm produces

a balanced :-partition drawn approximately from the spanning tree

distribution in expected running time $ (# 4:−3 log2 # ). □

See the full version for a proof of this theorem. Brie�y, the expected

running time is because it takes$ (# log2 # ) steps to approximately

sample a random :-forest and$ (# 4:−4) attempts in expectation to

see a balanced one, by Theorem 1.2. Note that, with the relatively

crude estimates we employ to deduce Theorem 1.2 from Theorem

3.5 (in Section 2.4), the runtime we prove for this approximate

sampling approach is actually worse than for the exact sampler

above. There is little reason to believe this to be the truth, however.

3 EXACT BALANCE ON GRID GRAPHS

3.1 Exactly Balanced Bipartitions

In this section we prove the following:

Theorem 3.1. Let � be a grid graph with # vertices, where # is

even. The probability that a uniformly random spanning tree ) of �

is 2-splittable is at least 1/# 2.

In fact, we prove a stronger result, namely that speci�c edges

near the center of the grid have a decent probability of being the

edge that splits the tree. Formally, If � is an < × = grid graph,

we de�ne a horizontal central edge of � to be an edge of the form

{(8, 9), (8, 9 + 1)} that is as close to the center of� as possible. Note

that there may be 1, 2, or 4 horizontal central edges depending on

the parities of< and =.

Lemma 3.2. Let� be an< ×= grid graph where< ≥ =, and<= is

even, and let 4 ∈ � (�) be any horizontal central edge of � . Then the

probability that a uniformly random spanning tree ) of� contains 4 ,

and ) \ {4} is a balanced 2-forest, is at least
{

1
<=3 if< is even
1

4<=3 if< is odd
.
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%∗0

%∗
1

<

=

-

/

4

0∗

1∗

,

.

Figure 2: A possible run of the dual graph spanning tree sampling algorithm in the proof of Lemma 3.2 when< is odd. In this

example,< = 10 and = = 7. The primal graph � is depicted in gray, and the �rst two random walks in the dual graph �∗ are

depicted in black.

To prove Lemma 3.2, we will require two further lemmas.

Lemma 3.3. Let � be the< × = grid graph induced by the subset

[<] × [=] of the grid Z2, and (80, 90) ∈ + (�). The probability that a

random walk from (80, 90) in Z
2 exits � for the �rst time to a vertex

(8′, 9 ′) with 9 ′ > 0 is at least
90

=+1 .

Proof. Let (-0, .0) = (80, 90), (-1, .1), (-2, .2), . . . be an in�nite

random walk in Z2. Let .̃0 = 90, .̃1, .̃2, . . . be the subsequence of

vertical coordinates .0, .1, .2, . . . where we delete terms that repeat

the previous value (because the horizontal coordinate changed

instead). A su�cient condition for the original two-dimensional

walk to �rst exit� to a vertex (8′, 9 ′) with 9 ′ > 0 is for .̃0, .̃1, .̃2, . . .

to reach = + 1 before it reaches zero, as reaching = + 1 necessitates

exiting � . Since .̃0, .̃1, .̃2, . . . is just an unbiased one-dimensional

random walk from 90, it is a well-known fact2 that this probability

is precisely
90

=+1 . □

Lemma 3.4. Let - be a discrete probability distribution supported

on a set of size : . Then

Pr
G1,G2∼-×-

(G1 = G2) ≥
1

:
.

Proof. Suppose the probabilities of each element in the support

of - are ?1, ?2, . . . , ?: , where these values sum to one. Then the

probability that two independent samples are the same is given by
∑:
8=1 ?

2
8 . Let p = (?1, ?2, . . . , ?: ) and let v =

(
1
:
, 1
:
, . . . , 1

:

)
be length

: vectors. We see | |p| |2 =
∑:
8=1 ?

2
8 , | |v| |

2
= 1/: , and |⟨p, v⟩|2 =

1/:2, so the lemma follows immediately from the Cauchy-Schwarz

inequality. □

2This is an instance of the classic “Gambler’s Ruin” problem. This proof can be found
in [26, Section 7.2.1], where ℓ1 := 90 and ℓ2 := (= + 1) − 90 .

Proof of Lemma 3.2. Assume = > 1 (otherwise there is nothing

to show; the probability is one). Then note that Lemma 2.1 applies

to� . We �rst consider the case where = is odd (so< must be even).

In this case there is a unique horizontal central edge 4 , connecting

the vertices (</2, (= + 1)/2) and (</2 + 1, (= + 1)/2). Let �∗ be

the dual graph of � in the plane, and denote the outer face by

A∗ ∈ + (�∗). Let 0∗ ∈ + (�∗) be the face above 4 and let 1∗ ∈ + (�∗)

be the face below 4 , as in Figure 2.

Consider the following algorithm for generating a uniformly

random spanning tree ) of � . Run Wilson’s algorithm on�∗ with

A∗ as the root, starting the �rst loop-erased random walk from 0∗

and the second random walk from 1∗ (if it is not already added to

the tree in the �rst random walk). The remaining random walks in

Wilson’s algorithm can be executed from arbitrary starting points.

This gives us spanning tree ) ∗ of �∗. We then output the primal

tree) whose dual is) ∗. Since Wilson’s algorithm gives a uniformly

random sample from the set of spanning trees of�∗, and those dual

trees are in bijection with the primal spanning trees of � (Lemma

2.1), this algorithm gives us a uniformly random sample from the

set of spanning trees of � .

We apply Lemma 3.3 to the (< − 1) × =−1
2 dual sub-grid outlined

in the top (red) rectangle in Figure 2, with initial vertex 0∗. Note

that 90 = 1 because the coordinate system is shifted so that 0∗ is

in the bottom row. Lemma 3.3 says that a random walk from 0∗

will �rst exit the sub-grid above, to the left, or to the right (just not

below) with probability at least

1
=−1
2 + 1

>

1

(= − 1) + 1
=

1

=
.

This clearly applies to our loop-erased random walk as well: The

probability that the �rst walk in Wilson’s algorithm, which starts

from 0∗, makes it to the outer face A∗ without ever entering the
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0∗

1∗

4

0∗

1∗

4

Figure 3: The cases in the proof of Lemma 3.2 when< is even,

in which wemust assume that the initial steps of the random

walk from 1∗ takes a speci�c path into the blue rectangle,

from which it never leaves until hitting the outer face.

bottom half of the grid is at least 1
= . Assuming this happens, we

may then apply the same argument to the bottom (blue) rectangle,

for the next random walk starting from 1∗. By independence, with

probability at least 1
=2 , both paths will have made it to A∗ without

crossing the horizontal midline.

Assume that this happens, as it does in Figure 2. Let %∗0 be the

path from 0∗ to the boundary, and let %∗
1
be the path from 1∗ to the

boundary. Since both %∗0 and %∗
1
will be included in ) ∗, we know

that ) cannot cross these paths. This means 4 must be included

in ) . Moreover, %∗0 and %∗
1
completely determine the number of

vertices on each side of 4 in ) , as follows. Suppose there are -

vertices in the top-half of the grid to the left of %∗0 , . vertices in the

top-half of the grid to the right of %∗0 , / vertices in the bottom-half

of the grid to the left of %∗
1
, and, vertices in the bottom-half of

the grid to the right of %∗
1
. Then the subtree of ) to the left of 4

will have - + / + <
2 vertices, and the subtree to the right of 4 will

have . +, + <
2 vertices (the <

2 terms come from the vertices

on the horizontal midline). Observe that the distribution, over the

random path %∗0 , of the possible values of - − . is independent of

and identical to the distribution, over the random path %∗
1
, of the

possible values of, − / . Both distributions can take any integral

value from −<−12 = to <−1
2 =. Thus, applying Lemma 3.4, we know

that, with probability at least

1

(<=−1
2 ) − (−<

=−1
2 ) + 1

=
1

<= −< + 1
>

1

<=
,

we have - − . =, − / , which implies

- + / +
<

2
= . +, +

<

2
,

i.e., the subtrees are balanced.

Thus, we have shown that the probability 4 is included in a

uniformly random spanning tree) of� and splits it into a balanced

2-forest is at least
1

=2
·

1

<=
=

1

<=3
.

The remaining cases, where = is even, are almost the same. There

are just a few minor additional assumptions we must impose about

what happens to the random walks at the very beginning, as illus-

trated in Figure 3.

If< is even as well, there are two horizontal central edges bor-

dering the unique central face of the grid. Without loss of generality,

take 4 to be the top one, then de�ne 0∗ and 1∗ as before. We suppose

that the random walk from 1∗ �rst steps directly downward, as

in Figure 3 (left). This happens with probability 1
4 . From there, by

the same arguments as before, noting that the two subgrids are

now each< × (=/2 − 1), the probabilities that the paths leave their

respective red and blue rectangles at the boundary of the grid are

both at least
1(=

2 − 1
)
+ 1

=
2

=
.

The probabilities that the number of vertices on each side are the

same is at least

1

(<=−2
2 ) − (−<

=−2
2 ) + 1

=
1

<= − 2< + 1
>

1

<=
.

Thus, the probability that 4 splits a uniformly random spanning

tree ) into a balanced 2-forest is at least

1

4
·

(
2

=

)2
·

1

<=
=

1

<=3
.

Finally, consider the case where< is odd and= is even. Now there

are four horizontal central edges, of which we pick the top-right

one without loss of generality. With probability 1
16 , the random

walk from 1∗ �rst steps to the left and then down into the blue

rectangle, as in Figure 3 (right). Now we can again apply the same

arguments as above to the subgrids of dimensions< × (=/2 − 1)

showing the probability the remaining paths leave their subgrids at

the boundary of � are both at least 2
< . While the random walk in

the top grid no longer begins exactly in the center of the top grid (it

can’t, because this grid is now of even width), the top and bottom

grids are rotationally symmetric, with the top walk beginning just

one unit left of center and the bottom walk beginning one unit right

of center. As before, the distributions of di�erence of the number

of vertices on each side of the path are identical and are supported

on sets of size at most<=, so by Lemma 3.4, the probability these

di�erences are identical is at least 1
<= . Thus, the probability that 4

splits a uniformly random spanning tree ) into a balanced 2-forest

is at least

1

16
·

(
2

=

)2
·

1

<=
=

1

4<=3
. □

We now use this lemma to prove Theorem 3.1.

Proof of Thoerem 3.1. Recall that # = =< is the total number

of vertices. Assuming < ≥ =, we know that <=3 ≤ <2=2 = # 2.

Thus, in the case where< is even, we simply choose one of the

horizontal central edges, which, by Lemma 3.2, splits a random tree

into a balanced 2-forest with probability at least 1
<=3 ≥

1
# 2 . In the

case where< is odd (and so = must be even) there are 4 horizontal

central edges, each of which will split a random tree into a balanced

2-forest with probability at least 1
4<=3 . Since these 4 events are

mutually exclusive, one of these four will give a balanced split with

probability at least 1
<=3 ≥

1
# 2 . □
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3.2 Exactly Balanced k-Partitions

With some additional e�ort, we can generalize the proof of Theorem

3.1 to handle values of : > 2:

Theorem 3.5. For< ≥ =, let � be an< × = grid graph, and let :

be a positive integer dividing<. There exists a set ( ⊆ � (�) of size

: − 1 such that the probability a uniformly random spanning tree )

of� contains each edge in ( , and) \ ( is a balanced :-forest, at least

1

V:
2
=3:−3<:−1

(2)

for a �xed constant V .

The proof proceeds along similar lines as the proof of Lemma 3.2,

and is contained in the full version of this paper; here we just give

a sketch. We require the following stronger lemma about random

walks on grids. This is similar to Lemma 3.3, except that now we

are also not allowed to hit the left or right sides, which makes the

proof signi�cantly more involved.

Lemma 3.6. Suppose there is a constant Y > 0 such that< > Y=.

Let � be the (< + 1) × (= + 1) grid graph induced by the subset

{0, . . . ,<} × {0, . . . , =} of the grid Z2, where < + 1 is odd, and let

(80, 90) = (
<
2 , 0). The probability that a random walk from (80, 90) in

Z
2 exits � for the �rst time to a vertex (8′, 9 ′) with 9 ′ = = + 1 is at

least 1
�=4�/Y

, for a �xed constant �. □

The proof approach is to �rst handle the case where< = =. For

this we decompose the 2-dimensional random walk into two 1-

dimensional random walks and show that, with decent probability,

the vertical walk makes it to the far side of the square quickly

and the horizontal walk does not stray to either side too fast. The

technical tools we require are the re�ection principle and Bertrand’s

ballot theorem.

To handle the more di�cult case where < < = (but = is only

greater than< by some constant factor), we lower-bound the proba-

bility that the random walk leaves a sequence of squares in speci�c

directions, as depicted in Figure 4. This is an argument we reuse

later in our results for lattice-like graphs.

With Lemma 3.6 in hand, Theorem 3.5 follows from considering

an implementation of Wilson’s algorithm as depicted in Figure

5, where we start the �rst 2(: − 1) random walks from the dual

vertices 0∗1, 1
∗
1, 0
∗
2, 1
∗
2, . . . , 0

∗
:−1

, 1∗
:−1

, hoping each one makes it to

the respective far side.

4 APPROXIMATING PARTITIONS OF
LATTICE-LIKE GRAPHS

In this section we move beyond grid graphs to a more general class

of lattice-like graphs. In Section 4.1, we begin by de�ning what

we mean by lattice-like graphs. In Section 4.2 we state our main

result, along with a corollary that random trees on grid graphs are

approximately balanced with constant probability. Section 4.3 gives

a sketch of the proof; the details are included in the full version of

the paper.

4.1 Lattice Sequences

Recall that 3 (G,~) and 3 (-,. ) denote Euclidean distances between

points and Hausdor� distance between sets, respectively. Recall

(0

E1

E2

E3

E4

=

<

Figure 4: Illustration of the proof of Lemma 3.6, which is

included in the full version. A randomwalk from the bottom

of the red rectangle that �rst exits at the very top because it

exits a sequence of squares at the top, and on the side pulling

it closer to the center. Most of the work goes into showing

that the walk leaves the very �rst square (in purple, at the

bottom), since it must cross to the far side. This happens with

inverse polynomial probability. For the subsequent green

squares, the walk starts at the center, so the probability is

constant. And there are a constant number of squares since

= is larger than< by a constant factor.

that a curve W is a continuous function W : [0, 1] → R2 for 0 < 1.

Except where speci�ed otherwise, we take 0 = 0, 1 = 1. A plane

graph � = (+ , Γ) is a drawing of a (planar) graph in the plane

without intersections. In particular, + = + (�) is a �nite set of

points in the plane R2. Γ is a �nite collection of curves given by

continuous functions W8 : [0, 1] → R
2 such that no two such curves

intersect except possibly at their endpoints, and such that if � is

the set of pairs of endpoints:

� = {{W8 (0), W8 (1)} | 8 = 1, . . . , |Γ |},

then (+ , �) is a graph. The faces of� are the connected components

of R2 \
⋃ |Γ |

8=1 im(W8 ) (here im(W) is the image of the function W ), and

we refer to the unique unbounded face as the outer face.

We state our results in terms of sequences of in�nite plane graphs

that get �ner and �ner with properties de�ned as follows.

De�nition 4.1. A lattice sequence is a pair ({Λ=}, d), where {Λ=}

is sequence of plane graphs with vertex sets+ (Λ=) ⊆ R
2 for which

there are corresponding dual plane graphs Λ∗= , with each vertex

E ∈ + (Λ∗=) a point in the corresponding face of Λ= , such that for

all Y > 0, there exists # such that for all = > # ,
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0∗1

1∗1

41 42

0∗2

1∗2

=

<

Figure 5: A possible run of the dual graph spanning tree sampling algorithm in the proof of Theorem 3.5 when< is odd. In this

example,< = 12, = = 11, and : = 3. The primal graph� is depicted in gray, and the �rst four random walks in the dual graph �∗

are depicted in black.

(a) For any adjacent pair G,~ ∈ + (Λ∗=), 3 (G,~) < Y,

(b) For any ? ∈ R2, the ball �Y (?) contains a vertex of Λ
∗
= ,

(c) For any dual vertex E and Y > 0 there is a division of the circle

�Y,E of radius Y into arcs�1, . . . , �B each of length at most 1
82cY,

such that the following holds for each 8 ∈ [B]: In a simple

random walk E = E0, E1, E2, . . . , with probability at least d > 0,

letting 9 the �rst index where 3 (E0, E 9 ) > Y, the straight line

segment joining E 9−1 with E 9 passes through �Y,E in �8 .

This de�nition generalizes sequences of �ner and �ner grids.

Speci�cally, the family of plane graphs
{
Z
2, 12Z

2, 13Z
2, . . .

}
is a lat-

tice sequence with d =
1
8 . Properties (a) and (b) say that, as we

increase =, neighboring vertices in 1
=Z

2 become arbitrarily close,

and the vertex set becomes arbitrarily dense. Property (c) holds

using the partition of �Y,E obtained by drawing horizontal, vertical,

and both 45 degree diagonal lines through E . By symmetry, a ran-

dom walk from E is equally likely to exit through each of these 8

arcs.

The de�nition also applies to scalings of lattices like the triangu-

lar or hexagonal lattice, since, for example, property (c) holds for

any sequence of lattices for which the scaling limit of random walk

on the dual is Brownian motion. For the same reason, it applies

a.s., for example, to the sequence where Λ= denotes the Delauney

triangulation of a Poisson cloud in R2 of rate =, see [28]. The choice

of 1
8 in the de�nition is made just for convenience; replacing it with

any constant < 1
2 would give exactly the same de�nition.

4.2 Statement of Results

In addition to lattice sequences, wewill also consider a �xed bounded

plane graph � that gives the partition structure we are looking to

approximate. In doing this, we will need to restrict the in�nite

graphs in the lattice sequence to a reasonable bounded subgraph

that falls inside � , and we do this as follows. Let � be a bounded

plane graph, and �x X > 0 that will be chosen later in terms of �

(in Lemma 4.5). Given plane graph Λ= with dual Λ∗= from a lattice

sequence, and a cycle �∗ in Λ
∗ at Hausdor� distance < X from the

outer face boundary of � , we let Ω�,Λ=
be the subgraph of of Λ=

lying inside�∗. We let Ω∗
�,Λ=

be the subgraph of Λ∗= induced by all

vertices of �∗ along with the vertices of Λ∗= lying inside �∗. In this

way, we can consider the planar dual of Ω�,Λ=
to be Ω∗

�,Λ=
with

wired boundary condition, where the entire cycle �∗ (rather than

a single dual vertex) corresponds to the outer face of Ω�,Λ=
. (In
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particular, for our proofs, we will run Wilson’s algorithm on Ω
∗
�,Λ=

with the cycle �∗ identi�ed as a single root.)

Given this plane graph � describing the partition structure we

are looking to approximate, let : + 1 be the number of faces and

denote the : bounded faces by q1, . . . , q: . We say a partition of the

graph Ω�,Λ into connected components �1, . . . ,�: is Y-compatible

with � if for all 8 and vertices E ∈ Ω�,Λ, the implication

E ∈ �8 =⇒ 3 (E, q8 ) ≤ Y (3)

holds. By subdividing edges if necessary, we will assume that �

has no loops, so that W (0) ≠ W (1) for all W ∈ Γ(�).

For a lattice sequence ({Λ=}, d) and a probability space on the

set of spanning trees of Ω�,Λ=
and given Y > 0, we de�ne the

event E�,Λ=,Y , which holds whenever there are : − 1 edges whose

removal from) results in a forest with components�1, . . . ,�: that

is Y-compatible with � .

Theorem 4.2. Let ({Λ=}, d) be a lattice sequence, let � be a plane

graph with : + 1 faces, and let Ω�,Λ=
be as above. For the uniform

probability space on the set of spanning trees of a graph Ω�,Λ=
, we

have that as = → ∞, Pr(E�,Λ=,Y ) is bounded below by a constant

depending only on � and Y.

As a consequence, if we draw the partition so that the parts

contain approximately equal numbers of vertices, we can conclude

that random trees are splittable into approximately balanced pieces

with constant probability. This is possible so long as {Λ=} has the

property that for any X > 0 and ', there is an Y > 0 so that every

Y ball �Y (?) satis�es |�Y (?) ∩+ (Λ=) | ≤ X |�' (0) ∩+ (Λ=) |. In the

case of grid graphs, for instance, we obtain the following corollary.

Corollary 4.3. Fix Y ≥ 0 and : a positive integer. Let <,= be

positive integers such that = ≤ <, : |<, and 20/= ≤ Y ≤ 1/(3:).

Let � be an< × = grid graph. There is a constant � (:, Y) such that

the probability a uniformly random spanning tree of � is (:, Y)-

approximately splittable is at least � (:, Y).

4.3 Proof Sketch

We begin with a lemma generalizing the argument described in

Figure 4 to lattice sequences.

Lemma 4.4. Let ({Λ=}, d) be a lattice sequence, let W1, W2 be non-

trivial curves in the plane, where W1 has length ) and W2 (0) = W1 (1).

For all su�ciently small Y > 0, for any E0 ∈ Λ= with 3 (E0, W1 (0)) ≤

Y/2, and for a random walk in Λ= started from E0, let E
′
= E′=,E0,W1,W2

be the event that the walk traverses an edge which intersects the curve

W2 at a point within Y/2 of W1 (1) before ever reaching a vertex at

distance > Y from the curve W1. For all su�ciently large =,

Pr(E′=,E0,W1,W2 ) ≥ d100) /Y+200 . □

Fixing a plane graph � = (+ , Γ) as in Theorem 4.2 we have the

following.

Lemma 4.5. For 0 < X < Y su�ciently small, we have that:

(A1) The distance between any two vertices D, E ∈ + is at least 3Y.

(A2) If 0W denotes the last time C at which W (C) is in the closed ball

of radius Y about W (0), and 1W denotes the �rst time C at which

W (C) is in the closed ball of radius Y about W (1), the restricted

curves W̄ = W | [0W ,1W ] are all at distance at least 3Y from each

other.

W �1

W �2

W �4

W �3

W �5

�∗

Figure 6: A run of the �rst four phases of Wilson’s algorithm

approximating the �rst four inner curves W �1, W
�
2, W

�
3, W

�
4. Note

that paths corresponding to W �2 and W �4 each are missing an

edge, and in particular, the edges present do not disconnect

the interior of �∗. These missing edges are dual to the edges

in the corresponding primal spanning tree whose removal

would disconnect the tree into components approximating

the faces of this drawing.

(A3) For any two points ?, @ in a common face of � and both at

distance at least Y from any curve of � , there is a curve W (not a

curve of �) joining ? to @ whose distance to every curve of � is

at least X . □

From here on, we let Y, X be as promised by Lemma 4.5. We

call a curve of � an outer curve if every point of the curve lies

on the boundary of the outer face, and an inner curve if no point

does, other than possibly its endpoints. Note that every curve must

be one of these two types. We let Γ� and Γ
$ denote set of inner

curves and outer curves, respectively. Since � is connected, we

can order the inner curves of � as W �1, . . . , W
�
<8

such that for all ℓ ,

the plane graph �ℓ of � with edges Γℓ = Γ
$ ∪ {W �1, . . . , W

�
ℓ } and

vertex set +ℓ = {{W (G) | W ∈ Γℓ , G ∈ {0, 1}} is connected (see

Figure 6). Moreover, without loss of generality we assume that the

orientation of each curve is such that W �ℓ (1) is a vertex of Γℓ−1 for

all ℓ = 1, . . . ,<8 (the curves are oriented “towards the outer face”).

We prove the theorem by analyzing howWilson’s algorithm con-

structs spanning trees of Ω∗
�,Λ=

with wired boundary conditions,

where the whole boundary cycle �∗ is used as the root of Wilson’s

algorithm. In particular, it is equivalent to view Wilson’s algorithm

as building a unicylic graph, initialized with the boundary cycle

of Ω∗
�,Λ=

. The freedom to choose the starts of loop-erased random

walks in Wilson’s algorithm allows us to use the following imple-

mentation, which determines starts by using additional random

walks. We proceed in phases, creating a sequence of trees)
9
8 where

the subscript 8 denotes the phase and the superscript 9 denotes the

step within phase 8 . Within phase 8 , we alternate a loop-erased ran-

dom walk from a vertex outside)
9
8 to a vertex in)

9
8 that gets added

to the tree to obtain )
9+1
8 (one step of Wilson’s algorithm) with a

random walk among the vertices in)
9+1
8 until a vertex outside)

9+1
8

is reached (choosing the starting point for the next step of Wilson’s

algorithm). Here we describe the procedure for one phase of this
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process; the particular choices of source vertex and target subsets

that will be useful for our purposes will be speci�ed below.

(1) At the beginning of each phase 8 , we have an existing tree

)8−1 that has already been built. (For 8 = 1, )0 consists of

just the root vertex). We choose a source vertex E and target

subset*8 ⊆ )8−1 for this phase, and initialize ) 0
8−1 = )8−1.

(2) We begin each step of this phase with)
9−1
8−1 (at the beginning

of the phase, for 9 = 1) and a source vertex. We do one of

two things according to whether the source belongs to the

tree )
9−1
8−1 :

(a) If the source vertex is not in )
9−1
8−1 , we conduct a loop-

erased random walk from the source until it hits )
9−1
8−1

at a vertex D. This loop-erased random walk is added to

)
9−1
8−1 to create )

9
8−1. If D ∈ *8 this phase ends, and we set

)8 = )
9
8−1. Otherwise, we increment 9 , and continue this

phase with D as the new source vertex (we will be in case

(b) next).

(b) If the source vertex is in )
9−1
8−1 , we take a random walk

from the source until we reach a vertex D outside of )8−1,

and then increment 9 and restart this step from the vertex

D as the new source vertex, and )
9
8−1 = )

9−1
8−1 (we will be

in case (a) next).

(3) The previous loop continues until either the target is even-

tually hit by an instance of the loop-erased random walk, or

the entire spanning tree is completed.

Note that we can use a single random walk,8 from E ∉ )8−1 to

implement each phase of the algorithm (with loop erasure while in

case (2a), and without loop erasure while in case (2b)). In particular,

with this implementation, we have the following observation for

general graphs:

Observation 1. Suppose that we run the implementation of Wil-

son’s algorithm above on a graph � , and have built the tree )ℓ after

the �rst ℓ phases.

(a) For a connected set of vertices ( , if the walk,ℓ+1 begins from a

vertex E ∈ ( and ends phase ℓ + 1 by hitting)ℓ for the �rst time at

the target*ℓ+1 ⊆ ( and without leaving ( , then after this phase,

there is a path % in )ℓ+1 joining E to*ℓ+1.

(b) For a connected set of vertices ( , suppose the walk,ℓ+1 begins

from a vertex in ( that is adjacent to E ∈ )ℓ ∩ ( and ends phase

ℓ + 1 by hitting the target*ℓ+1 ⊆ ( without leaving ( . Then after

this phase, there is a path % from a vertex E ′ ∈ (( ∩)ℓ ) \*ℓ+1 to

*ℓ+1, all of whose vertices belong to ( , and all but one of whose

edges belong to )ℓ+1. □

In particular, applied to our situation, using as ( the set of vertices

close to a given curve, we obtain the following:

Observation 2. Suppose that we run the implementation of Wil-

son’s algorithm above on the dual graph Ω
∗
�,Λ=

, and have built the

tree )ℓ after the �rst ℓ phases. Then:

(a) If the walk,ℓ+1 begins from a vertex E and ends phase ℓ + 1 by

hitting)ℓ for the �rst time at the target*ℓ+1 = )ℓ ∩�(X,Wℓ+1 (1))

while also staying within distance X of the curve Wℓ+1, then after

this phase, there is a path % in)ℓ+1 joining E to*ℓ+1 whose vertices

are all within distance X from the curve Wℓ+1.

(b) Suppose the walk,ℓ+1 begins from a vertex adjacent to a vertex

E ∈ )ℓ ∩ �(X,Wℓ+1 (0)) and ends phase ℓ + 1 by hitting the target

*ℓ+1 = )ℓ ∩ �(X,Wℓ+1 (1)) while also staying within distance X

of the curve Wℓ+1 throughout the phase. Suppose all vertices of )ℓ
that are within X of the curve Wℓ+1 are in either �(X,Wℓ+1 (0)) or

�(X,Wℓ+1 (1)). Then after this phase, there is a path % in the dual

graph joining some vertex in )ℓ ∩ �(X,Wℓ+1 (0)) to *ℓ+1 whose

vertices are all within distance X from the curve Wℓ+1, and such

that all but at most one edge of % belongs to the tree )ℓ+1.

Proof. This follows from Observation 1, with � = Ω
∗
�,Λ=

and

( to be all the vertices of Ω∗
�,Λ=

within distance X of the curve

Wℓ+1. □

Using Observation 2, we complete the proof as follows. For a plane

graph� , let 5 (�) be the number of interior faces of� . We say a (not-

necessarily-spanning) tree) in the dual graph Ω
∗
�,Λ=

X-corresponds

to a plane graph � with inner curves W �1, . . . , W
�
ℓ if there are paths

%1, . . . , %ℓ in Ω
∗
�,Λ=

, such that for each 8:

(a) For 5 (�) − 1 of the paths, all but one edge of %8 belongs to the

tree) , while for the rest of the paths, the whole path belongs to

) . Intuitively, ) is the dual tree that partitions the lattice, and

the %8 are obtained by adding the “missing” edges whose duals

are the split edges of the tree in the primal graph, such as the

gap in the center of Figure 6.

(b) %8 ∩ % 9 ≠ ∅ if and only if W �8 and W �9 share a common endpoint.

(c) For any point ? , if W �81 , . . . , W
�
8B
are all the curves of � that have ?

as an endpoint, then the union of the paths %81 , . . . , %8B is a tree.

(d) Every vertex of %8 is within distance X of the curve W �8 .

This de�nition then allows the following lemma, which applies to

each plane graph �ℓ in the sequence constructed above.

Lemma 4.6. Let ) be a tree in the dual graph Ω
∗
�,Λ=

, and let

�) be the spanning subgraph of the primal graph Ω�,ℎ obtained

by removing from Ω�,Λ=
all the edges 4 for which 4∗ ∈ ) . If ) X-

corresponds to �ℓ , then there are 5 (�ℓ ) − 1 edges of� whose removal

results in connected components �1, . . . ,�: whose induced partition

of Ω�,Λ=
is Y-compatible with �ℓ . □

Let us now use Lemma 4.6 and induction on the sequence of plane

graphs �ℓ to prove the Theorem. Initially, tree )0 consisting of just

the root vertex of Ω∗
�,Λ=

(equivalently, of just the wired boundary

cycle of Ω∗
�,Λ=

) trivially X-corresponds to the plane graph �0 with

no interior curves. Having already constructed a tree )ℓ−1 that X-

corresponds to�ℓ−1, we begin another phase of Wilson’s algorithm

from a vertex E ∈ Ω�,Λ=
. If )ℓ−1 ∩ �(X,W

�
ℓ (0)) = ∅, we begin from

a vertex E at minimum distance from W �ℓ (0) (call this Case A), and

note E will not be in )ℓ−1. Otherwise, if )ℓ−1 ∩ �(X,W
�
ℓ (0)) = ∅, we

begin at a vertex E adjacent to any vertex in this set (Case B). In

both cases, we use the target *ℓ = )ℓ−1 ∩ �(X,W �ℓ (1)). Note that

when W �ℓ (1) is incident on the outer face of � , the target*ℓ contains

a portion of the boundary cycle of Ω∗
�,Λ=

within distance X of W �ℓ (1).

By Lemma 4.4, with constant probability, the walk,ℓ for this phase

will hit the target*ℓ while staying within distance X of W �ℓ . Thus, by

Observation 2, and the fact that we are in Case A instead of Case B

if and only if 5 (�ℓ ) = 5 (�ℓ−1) (as in Euler’s formula), at the end

of the phase, the tree )ℓ X-corresponds to �ℓ .
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In particular, after phase ℓ =<8 (recall<8 is the total number of

interior curves in �) we have that with constant probability, our

tree )<8 consists only of the root and vertices within distance X

of the internal curves of � , and that there is a collection of paths

%1, . . . , %<8 satisfying properties (a), (b), (c), and (d) above, and

additionally that all but precisely 5 (�) − 1 = : − 2 of the paths

belong entirely to three )<8 .

Fromhere, we completeWilson’s algorithmwith arbitrary choices

for starting vertices to produce a �nal tree ) , which still contains

all but at most one edge of each path %8 , and the whole path in all

but precisely : − 1 cases. In particular, in the primal graph, the tree

) corresponds to a tree from which : − 1 edges can be deleted, to

produce a partition that is Y-compatible with the drawing � . □

Corollary 4.3 follows with some additional observations about

how the parameters of Theorem 4.2 applies to grids.
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