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Cells self-organize into functional, ordered structures during tissue morphogenesis,
a process that is evocative of colloidal self-assembly into engineered soft materials.
Understanding how intercellular mechanical interactions may drive the formation of
ordered and functional multicellular structures is important in developmental biology
and tissue engineering. Here, by combining an agent-based model for contractile cells
on elastic substrates with endothelial cell culture experiments, we show that substrate
deformation–mediated mechanical interactions between cells can cluster and align
them into branched networks. Motivated by the structure and function of vasculogenic
networks, we predict howmeasures of network connectivity like percolation probability
and fractal dimension as well as local morphological features including junctions,
branches, and rings depend on cell contractility and density and on substrate elastic
properties including stiffness and compressibility. We predict and confirm with
experiments that cell network formation is substrate stiffness dependent, being optimal
at intermediate stiffness. We also show the agreement between experimental data and
predicted cell cluster types by mapping a combined phase diagram in cell density
substrate stiffness. Overall, we show that long-range, mechanical interactions provide
an optimal and general strategy for multicellular self-organization, leading to more
robust and efficient realizations of space-spanning networks than through just local
intercellular interactions.

mechanobiology | computational physics | soft matter | biomaterials | cell networks

The morphogenesis of biological tissue involves the organization of cells into functional,
self-assembled structures (1). The aggregation of cells into ordered structures requires
effectively attractive cell–cell interactions (2). An example of such a process that is relevant
to biological development, disease and tissue engineering, is the morphogenesis of blood
vessels. This is initiated by patterned structures of endothelial cells (ECs), which align end
to end to form elongated chains that intersect to give a branched morphology. Although
the conditions required for vascular-like development in engineered in vitro systems are
well established and EC vascular networks have been mathematically modeled using
various approaches (3–9), the nature of the cell–cell interactions that drive the ECs to
find each other to form networks and the dependence of these interactions on matrix
stiffness have not been definitively identified.

The emergence of complex structures from the interactions of individual agents
bears resemblance to colloidal self-assembly. For example, dipolar particles, such as
ferromagnetic colloids, will align end-to-end into equilibrium, linear structures such as
chains or rings (10). At higher densities, the chains intersect to form gel-like network
structures (11). Such structures have been studied in simulation in the context of active
dipoles representing synthetic active colloids endowed with a permanent or induced
dipole moment (12–14) and swimming microorganisms (15) such as magnetotactic
bacteria (16). Animal cells that adhere to and crawl on elastic substrates and interact
through mechanical deformations of the substrate (17) are also expected to attract and
align to form multicellular structures (18). Such mechanically directed self-organization
of cells into functional structures, such as vascular networks, implies that network
morphology depends on substrate stiffness.

While cells routinely communicate using chemical signals, they also sense each other
through mechanical forces that they exert on each other, either through direct cell–cell
contacts or indirectly, throughmutual deformations of a compliant, extracellular substrate
(19, 20). Large and measurable substrate deformations (21) are produced by many types
of adherent cells. These use mechanical forces actively generated by myosin motors
in their actin cytoskeleton to change shape, move, and sense their surroundings (22).
Adherent cells ubiquitously induce contractile mechanical deformations in elastic media.
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Fig. 1. Cell network formation is optimized by substrate stiffness. (A) Human umbilical vascular endothelial cells (HUVECs) cultured on polyacrylamide hydrogel
substrates of varying stiffness that were coated with Matrigel. At high stiffness (5 kPa and glass), the cells did not form networks but did so on softer substrates
(0.5 and 1 kPa) (Scale bar, 100 μm). Images reprinted with permission from ref. 43. (B) Cartoon of a simulation snapshot where green arrows indicate the cell’s
force dipole, the large purple dashed ring denotes the elastic interaction range, the blue squiggle indicates a repulsive spring to prevent overlap, bold gold
arrows represent force vectors due to elastic interactions, the bold red arrows represent the net force vector on the central cell, the bold blue arrow represents
torque on central cell due to elastic interaction with neighbors. (C) Cartoon cell deforming the surrounding elastic substrate by applying forces along amain axis.
(D) uxx component of the strain field caused by a contractile force dipole centered at the origin pinching along the x-axis for � = 0.5(Left) and � = 0.1(Right) with
coordinate axes labeled. (E) Simulation snapshots of 300 cells modeled as contractile force dipoles that move and reorient according to substrate-mediated
cell–cell elastic interaction forces. Cells form percolating networks only for a range of substrate stiffness values centered around an optimal stiffness, E∗, above
which cells exert maximal traction force. For substrates around optimal stiffness (E/E∗ ∼ 1), the substrate-mediated cell–cell elastic interactions are maximal
and can be much larger than the noise in cell movements, whereas for very soft (E/E∗ � 1) or very stiff (E/E∗ � 1) substrates, the elastic interactions are likely
to be overwhelmed by noise, resulting in a lack of ordered structures.

The resulting intercellular communication is longer ranged,
faster, and more general than chemical signaling which typically
requires diffusive transport and specific chemical interactions.
Elastic substrate–mediated intercellular mechanical communica-
tion has been demonstrated for several contractile cell types. For
example, endothelial cells modulate their intercellular contact
frequency according to substrate stiffness (23), cardiomyocytes
synchronize their beating with substrate mechanical oscillations
induced by a distant probe (24, 25), and fibroblasts interact
at long range through their structural remodeling of fibrous
extracellular media (26, 27).
Cells sense substrate mechanical deformations through mec-

hanotransduction occurring at the biomolecular scale (28). Such
cellular signaling is carried out by proteins associated with
the cell–substrate adhesions, that are in turn connected to the
cell’s cytoskeletal force-generating machinery (21). At a coarse-
grained level, the contractile apparatus of cells adhered to an
extracellular substrate can be modeled as active elastic inclusions
(29), which adapts the theory of material inclusions developed
by Eshelby (30), to describe cellular contractility as force
dipoles embedded in an elastic medium. This general theoretical
approach predicts how multicellular and subcellular cytoskeletal
organization depends on substrate stiffness (18, 31). It has
been applied successfully to explain experimental observations
of substrate stiffness–dependent structural order in a variety of
cell types in a unified manner (32–36). While these previous
works focused on the stationary configurations of elastic dipoles
in the context of adherent cells (37, 38), we now consider
cell self-assembly when the cellular dipoles are free to translate
and rotate in response to mechanical forces, thereby serving
as minimal models for contractile cells that adhere to, spread,
and crawl on soft media. We show that cell–cell mechanical

interactions mediated by a compliant elastic substrate can drive
network formation and that the resulting network morphology
is inherently sensitive to substrate stiffness.
Coarse-grained material properties of the cellular microenvi-

ronment, such as its stiffness and viscosity, are known to play
crucial roles in determining cell structure and function (39–41),
including for bacterial colonies (42). Recently, it was shown that
human umbilical vascular endothelial cells (HUVECs) assemble
into networks on softer substrates (E ∼ 1 kPa) but fail to do
so on stiffer substrates (Fig. 1A), independently of the type
of hydrogel used (43). In contrast, it was shown in ref. 44
that, under certain conditions, bovine endothelial cells formed
networks preferentially on stiffer substrates (E ∼ 10 kPa). Both
these experiments show that EC network formation is sensitive
to substrate stiffness and therefore suggest that cell mechanical
interactions mediated by the substrate are involved.

Model and Results

Substrate Stiffness–Dependent Endothelial Cell Network

Organization Motivates Model for Cell Mechanical Inter-

actions. To model cell network formation, we incorporate
substrate-mediated cell mechanical interactions into an agent-
based model for cell motility (45). This captures the dynamic
rearrangements of cells into favorable configurations. In our
agent-based approach (46, 47), summarized in Fig. 1B, we
consider a system of N particles, each a disk of diameter d .
Depending on the context, each disk could model a cell or its
constituent parts, and their motion represents both cell migration
as well as cell spreading or shape change dynamics. Details of the
cell shape are not included in this minimal model. These model
cells self-organize according to substrate friction–dominated
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overdamped dynamics that depend on intercell interactions as
well as individual cell stochastic movements described by an
effective diffusion. The model incorporates both short-range,
steric and long-range, substrate-mediated elastic interactions
between cells and is detailed in the Materials and Methods.

The ubiquitous traction force pattern generated by a single
polarized cell with a long axis a and exerting a typical force F
at its adhesions can be modeled as a force dipole, Pij = Fiaj
(Fig. 1C ). Note that the cell traction forces are generated by
actomyosin units within the cell, each of which acts as a force
dipole. Therefore, the disks in our model simulations could
represent parts of a cell, and their motion represents the dynamics
of cell protrusions. The resulting deformation induced by a
force dipole in the elastic substrate is given by the strain, uij,
which is determined by a force balance in linear elastic theory (SI
Appendix, section A), and depends on the material properties of
the elastic medium, specifically, the stiffness or Young’s modulus
E , and the compressibility, given by the Poisson’s ratio � (48).
The substrate deformation (uxx component of strain) generated
by a dipole (oriented along the laboratory x-axis) embedded on
the surface of a linear elastic medium is shown in Fig. 1D for
two representative values of �. Here, the blue (red) coloring
represents expanded (compressed) regions of the substrate. We
note that the extracellular matrix in biological tissue is typically
viscoelastic, and over long times, the cell-generated strains may
relax. However, our model still applies at short time scales and
for linearly elastic synthetic substrates such as polyacrylamide that
are routinely used in cell culture experiments (19).

A second contractile force dipole will tend to position itself in
and align its axis along the local principal stretch in the medium
to reduce the substrate deformation. The resulting interaction
potential arises from theminimal coupling of one dipole (denoted
by �) with the medium strain induced by the other (denoted

by �) and is given byW �� = P
�
iju

�
ij (17). The interaction energy

between two dipoles then decays with their separation distance

as W �� ∼ (P2/E) · r−3
��

. We denote the characteristic elastic

interaction energy when the dipoles are separated by only one
cell length as, Ec = P2/(16Ed3), where the detailed expression is
derived in SI Appendix, section A. This coarse-grained description
abstracts out the biophysical details of mechanotransduction
but provides a simple physical model for the cell response to
deformations in their elastic medium (18).
Representative simulation snapshots (Fig. 1E) of final con-

figurations show that elastic dipolar interactions induce network
formation in a stiffness-dependentmanner. TheCentral snapshot
corresponds to an optimal substrate stiffness E∗ at which
elastic interactions are maximal, while those to the Left (Right)
correspond to substrates that are too soft (stiff) for connected
network formation. The origin of this optimal stiffness lies in the
adaptation of cell contractile forces to their substrate stiffness, as
we discuss later.

Elastic Dipolar Interactions between Model Cells Induce Net-

work Formation.We expect the multicellular structures resulting
from the dipolar cell–cell interactions to depend on three crucial
nondimensional combinations of model parameters: the ratio
of a characteristic elastic interaction energy Ec , to noise –
denoted by A = Ec/kBTeff – the effective elastic interaction
parameter; the number of cellsN , equivalently expressed as a cell

density or packing fraction, � = �Nd2

4L2
; and Poisson’s ratio, �,

which determines the favorable configurations (both position and
orientation) of a pair of dipoles. To show the types ofmulticellular

structures that result from our model elastic interactions, we
perform Brownian dynamics simulations (detailed in Materials
and Methods) to generate representative snapshots at slices of this
A−� parameter space for two values of �: 0.5 and 0.1, shown in
Fig. 2 and SI Appendix, Fig. S4, respectively. As packing fraction
is increased, networks form more readily. As the effective elastic
interaction is increased, cells form into networks characterized
by chains, junctions, and rings. This can be thought of naturally
as a competition between entropy and energy. At low packing
fractions or effective elastic interaction, cells are either in a gas-
like state or form local chain segments with many open ends
which have high entropy. As packing fraction or effective elastic
interaction increases, cells relinquish translational and rotational
freedom for more energetically favorable states such as longer
chains, junctions, or rings. This is consistentwith the cell density–
dependent morphologies seen in images from in vitro hydrogel
experiments (reproduced from ref. 43) and shown in Fig. 2.
We choose two representative values of � in our model

simulations because their corresponding strain plots are quali-
tatively different (37) as seen in Fig. 1D. Briefly, since contractile
dipoles prefer to be on stretched regions of the substrate, the
low (high) � deformation patterns are expected to favor two
(four) nearest neighbors. The different values of the Poisson ratio
could correspond to synthetic hydrogel substrates and the fibrous
extracellular matrix, respectively. While hydrogel substrates are
nearly incompressible (� = 0.5), the ECMcomprises of networks
of fibers which permit remodeling and poroelastic flows leading
to reduced material compressibility (e.g., � = 0.1) at long time
scales (49).

Substrate Deformation–Mediated Interactions Strongly

Enhance Percolation in Model Networks. To characterize the
extent of multicellular network formation, we consider the
percolation order parameter which quantifies the ability of a
connected network to span the available space. Percolation is
defined as the probability that, for a steady state realization
of the network, there exists a continuous path through it that
spans the length of the simulation box. To compute percolation
probability, we first identify connected clusters of cells, a
process detailed in SI Appendix, section E. A specific network
configuration is considered to be percolating if any two cells
within the same cluster are separated by a Euclidean distance
greater than or equal to the simulation box size. The average
values and corresponding errors are then plotted against varying
packing fraction � in Fig. 3A and varying effective elastic
interaction parameter A in Fig. 3B. Multiple such simulations
are then combined into a phase diagram in A − � parameter
space in Fig 3C. The results show that percolation requires
both density and interaction strength to be above corresponding
threshold values.
To contrast with the dipoles that mutually align through long-

range and anisotropic interactions, we consider a control system
of “diffusing sticky disks.” These agents just diffuse without any
long-range interactions and cease movement upon contact with
another agent. We find percolating networks for both interacting
elastic dipoles and diffusing sticky disks. However, Fig. 3A
shows that model cells which interact as dipoles at long-
range require far fewer cells to percolate than their sticky
disk counterparts given that the elastic interaction strength is
sufficiently greater than noise as shown in Fig. 3B (A ' 1 in
the case shown where N = 300). This is because the anisotropic
nature of the dipolar interactions promotes end-to-end alignment
of cells, creating elongated structures like chains, which can self-

PNAS 2023 Vol. 120 No. 45 e2301555120 https://doi.org/10.1073/pnas.2301555120 3 of 12

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 C

A
L

IF
O

R
N

IA
 D

IG
IT

A
L

 L
IB

R
A

R
Y

 o
n
 D

ec
em

b
er

 1
5
, 
2
0
2
3
 f

ro
m

 I
P

 a
d
d
re

ss
 1

6
9
.2

3
6
.7

8
.2

2
.



Fig. 2. Simulation snapshots showing representative final configurations of model cell dipoles. We explore the parameter space of number of cells and

A ≡
Ec
kBTeff

, the ratio of the characteristic elastic interaction strength and noise, for Poisson’s ratio, � = 0.5. At lower packing fractions, cells form disconnected

linear clusters. At lower (A) values, cells remain isolated, but at moderate values of A and sufficient packing fraction, cells form space-spanning network
configurations characterized by rings, branches, and junctions. At higher packing fractions, clumpy structures such as what previous literature calls “4-rings”
occur frequently (38). The tendency for cells to form only local connections at low packing fraction and form space-spanning structures at higher packing
fraction is consistent with experimental images of endothelial cells cultured on hydrogel substrates (Right column; images reprinted with permission from
ref. 43) (Scale bars, 100 μm).

assemble into space-spanning networks. We therefore show that
network formation requires fewer cells when cells can sense,
move, and align in response to the substrate deformations created
by other cells. Thus, networks guided by mechanical interactions
are more cost efficient than when cells move or spread randomly,
forming adhesive contacts upon finding their neighbors.
Much work has been done on characterizing the connectivity

percolation transition on various lattice configurations (50). The
critical packing fraction can be widely different depending on
the lattice geometry and whether the space-spanning clusters
comprise sites or bonds (51, 52). The critical packing fraction
for site percolation is known to be �C = 0.5 for an infinitely
large triangular lattice (53). In approximate agreement with this,
we find that the critical packing fraction for diffusive sticky disks
for the current finite system size L is �C ≈ 0.6. For the dipolar
particles, anisotropic interactions shift the percolation transition
to �C ≈ 0.2, similar to those seen in dipolar colloidal assemblies
at low reduced temperature (54).
Our observed packing fractions for transition to percolation

are specific to the simulation system size, L, and differ from the
actual critical packing fraction due to finite size effects. How
prominent these effects will be depends on the fractal dimension,
which provides a measure of how these structures scale with size.

Since area scales like L2, but number of particles scales like Ldf ,

where df is the fractal dimension, �C ∝ Ldf −2. Therefore, there
exists a regime in which �C will decrease with increasing L, as
shown by simulations with bigger box sizes (SI Appendix, section
F). We present an analysis of the fractal dimension of these
networks and corresponding experiments in the next section.

Analysis of Experimental Cell Cultures Confirms Predicted

Substrate Stiffness Dependence of Cell Network Formation.

We showed in the previous section that the cells’ ability to
form networks is expected to depend on the strength of elastic

interactions arising from their mutual deformations of the
substrate. To compare with experiments, we now consider how
this elastic interaction strength A depends on the substrate
stiffness. Experiments show that cells spread and polarizemore on
substrates of increasing stiffness, such that their traction force sat-
urates to a maximal value P0 at a characteristic substrate stiffness,
E∗, that depends on cell type and matrix mechanochemistry.
The effective elastic interaction parameter, A, can be mapped
to substrate stiffness, E , by using a model relation predicting
the dependence of cell traction force on substrate stiffness (55):
P = P0E/(E + E∗). The resulting elastic interaction parameter,
A, is weak on softer substrates where cell forces are low and
also on stiffer substrates, where the deformations are low. It
reaches a maximum at the characteristic stiffness E∗ as detailed
in SI Appendix, section G. This mapping from effective elastic
interaction to substrate stiffness (SI Appendix, Fig. S6) results in
a peak in the percolation curves (SI Appendix, Figs. S8 A and
C ) over an interval of substrate stiffness centered around the
optimal stiffness E∗. This interval depends on both cell density
and effective temperature representing noisy cell movements.
Higher effective temperature and lower cell density reduce both
peak height and width. This result is consistent with experiments
on EC cultures (Fig. 1A) which show that percolating networks
form only in a certain range of substrate stiffness, but these
previous works do not demonstrate that network formation is
optimal at intermediate substrate stiffness (43, 44).
To test this prediction of our model, we performed 2D

cell culture experiments on elastic substrates over a wide range
of stiffness values. Human umbilical vascular endothelial cells
(HUVECs) were cultured at three different seeding densities
(8×103/cm2, 14×103/cm2, and 20×103/cm2) on fibronectin-
coated polyacrylamide substrates of varying stiffness: (200 Pa,
480 Pa, 1 kPa, 2 kPa, 4.5 kPa, and 10 kPa). The substrate
preparation protocol, described in Materials and Methods, and
stiffness characterization of these substrates follow standard

4 of 12 https://doi.org/10.1073/pnas.2301555120 pnas.org
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B

CA

Fig. 3. Analysis of connectivity percolation of simulated cell clusters predicts dependence on cell density and strength of substrate-mediated elastic
interactions. (A) Percolation probability for elastic dipoles—blue and orange—and diffusing sticky disks—green—as a function of area packing fraction, �. Elastic
dipoles undergo the percolation transition at lower packing fractions than purely diffusive, sticky disks. The insets show characteristic final configurations for
both elastic dipoles and sticky disks at a packing fraction of 0.33(N = 300), with an example percolating path shown in red. (B) The percolation probability
for given packing fraction also exhibits a sharp transition in effective elastic interaction, (A). (C) Percolation phase diagram in packing fraction and effective
elastic interaction space. Generally, network assembly is more likely for higher cell density and elastic interactions. Each data point and error bar represents
the average and SEM, respectively, of forty simulations with the exception of sticky disks in (A) at the three largest packing fractions which represent nine
simulations each, and A = 0.25, 0.625, 0.75, 0.875, and 2.5 in (B) which represent twenty simulations each.

precedents (56). Cells were fluorescently labeled and imaged at
regular intervals over the course of 19 h post-seeding. While for
the lower seeding density, network formation could be observed
at these longer time scales (Fig. 4 A, Middle), the higher seeding
density led to denser, isotropic clusters, and a resulting loss of
network morphology (Fig. 4 A, Right). We then considered the
images of these denser cultures at 9 h instead of 19 h, where
networkmorphologywas still apparent.We also observed that the
dense isotropic clusters were more prevalent at higher substrate
stiffness due to enhanced cell spreading and possibly proliferation
at later times.
To quantitatively obtain the percolation probability for the

observed cell clusters, we process the experimental images
(Fig. 4A) by emphasizing intercellular connections as described
inMaterials andMethods under Image Analysis. We then parse the
resulting binary images (Fig. 4B) intoNB = 312 subboxes each so
as to obtain sufficient statistics from a single experimental image.
We next computed the mean percolation probability over all

subboxes, p = 1
NB

∑NB
i=1 pi and the corresponding standard error

of mean. Here, we set pi = 1 if the ith subbox is “percolating,”
i.e., it contains a cluster that spans the subbox, and set pi = 0
otherwise. To compare the sparser, heterogeneous experimental
configurations with our simulated networks, we normalized these
values by the maximum mean percolation probability across
all experimental seeding densities and stiffnesses. For practical
convenience, we henceforth denote the normalized percolation
probability value as p.

We find that for both the lowest seeding density sampled
at long times (Fig. 4 C, Left) and for the highest seeding
density sampled at short times (Fig. 4 C, Right), the normalized
experimental percolation probability exhibits a peak at a stiffness
of about 4.5 kPa. Unlike simulations where packing fraction and
elastic interaction are independent parameters, the area covered
by cells in experiments depends on stiffness because cells spread

more on stiffer substrates. This is why we need a range of packing
fraction values from simulation to comparewith experiment. Like
the experimental images, the simulation images were skeletonized
to emphasize inter-particle connections (Materials and Methods
and Image Analysis). We denote the corresponding packing

fraction of skeletonized images by �̃ to distinguish from the
packing fraction of simulated disks, �. We then plot a family of
interpolated simulation curves as a function of substrate stiffness

over a range of packing fraction values, �̃, chosen to fit the
experimental data in Fig. 4C. These values are close to the range
of packing fraction values in experimental images (0.05 to 0.15

for 8k
cm2 and 0.1 to 0.2 for

20k
cm2 ). The quantitative agreement of the

experimental data with simulation values lends credence to our
model that network formation is driven by substrate-mediated
elastic interactions and that these are stronger within a range of
substrate stiffness values centered around an optimal value, E∗.

We note an important distinction between the predictions
of the cell dipole model and the observed cell clusters in
experiments. These latter tend to exhibit isotropic dense clusters
on stiffer substrates at higher seeding density. We expect this is
because cells spread more on stiffer substrates and form direct
adhesive contacts with neighbors. Cell spreading and direct
cell–cell contact-based interactions are not implemented in our
minimal model since we focus on the long-range substrate-
mediated dipolar interactions expected to dominate in dilute
cultures. At higher densities, endothelial cells are known to form
confluent monolayers (57). At intermediate densities, some of
these dense isotropic clusters occur alongside networks and elon-
gated structures. Modeling these would require a combination
of cell–cell and cell–substrate forces. Although dense isotropic
clusters are not seen in our dipole simulations (Fig. 1E), their
occurrence in experiment supports our model expectation that
the dipolar elastic interaction strength (A) becomes smaller on
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Fig. 4. Analysis of connected clusters of endothelial cells cultured on elastic substrates reveals optimal stiffness for cell network formation (A) Experimental
images of human umbilical vascular endothelial cells (HUVECs) at 8 × 103/cm2 seeding density 19 h post seeding on polyacrylamide substrates of varying
stiffness: 200 kPa (Left), 4.5 kPa (Middle), and 10 kPa (Right). Insets show 10× magnified images of the full field of view. Cells on substrates of lower stiffness
tend to remain largely isotropic and isolated (shown by a red arrow on the Left) and do not form intercellular connections. Cells on substrates of higher
stiffness tend to spread and aggregate into dense isotropic clusters (shown by the red arrow on the Right). Both these tendencies counteract efficient network
assembly. (B) Processed binary skeletons of the raw images in (A). Qualitatively, the intermediate substrate stiffness exhibits the most prominent networks.
(C) Quantitative measurement of the percolation probability from experimental images such as shown in (B) supports the model prediction that network
formation is optimal on substrates of intermediate stiffness. Left and Right plots show normalized percolation probability values measured for two different
initial cell seeding densities, 8 × 103/cm2 and 20 × 103/cm2, respectively. The higher density cell culture data (Right) are selected at an earlier time (9 h post
seeding) because these cells form dense isotropic clusters at later times. The continuous curves represent model predictions for percolation probability as
a function of substrate stiffness at three different representative values of the packing fraction from skeletonized simulation images, �̃. These are chosen
to approximately correspond to the experimental packing fraction, which however varies with substrate stiffness due to cell spreading. Percolation curves
from simulation in (C) were interpolated from average values obtained for forty simulations. Experimental data points and error bars are average and SEM,
respectively, of subboxes as described in Materials and Methods.

stiffer substrates in relation to the isotropic, cell–cell contact
interactions.

While the percolation analysis shown in Fig. 4 validated
our model predictions for the substrate stiffness–dependence
of network formation, we now seek to predict characteristic
morphological traits of the cell clusters. A careful examination of
experimental images in Figs. 4 and 5 reveals distinctmorphologies
of cell clusters, ranging from isolated cells and isotropic clusters
to networks and elongated clusters. To obtain a measure of how
elongated each cell cluster is, we calculate a “shape parameter,”

defined as s ≡
R2g
Area = 1

N 2

∑N
k=1(rk − rCM )2, for each

unique cluster as described in Materials and Methods under
Image Analysis. Here, Rg represents the radius of gyration of
the cluster, which is defined about its center-of-mass rCM ,
and N is the number of occupied pixels in each cluster. The
normalization by cluster area ensures that we control for cluster
size variations between different experiments. Lower values of this

shape parameter correspond to isotropic shapes, the theoretical

lower bound being 1
2� for a solid circular disk. Conversely, a

higher shape parameter corresponds to more elongated clusters.
To compare with simulation, we scale the shape parameter of
each cluster by their global mean across all identified clusters at
the different seeding densities and stiffnesses. Henceforth, the
scaled values of the shape parameter are denoted by s.
To classify the dominant morphological feature in each image,

we constructed a composite order parameter combining the
global information of connectivity percolation with the local
cluster-scale morphological characteristics captured by the shape
factor. The order parameter is defined such that clusters with
normalized percolation probability above a threshold value (pT =
0.7) are considered “networks.” We choose this value of pT to
pick out experimental images where a few of the largest clusters
contain more than 20% of the total filled area (SI Appendix, Fig.
S20). If p < pT , implying that there are no dominant space-
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Fig. 5. Experiments validate predicted classification of cell cluster morphology into distinct phases. (Center) “Phase diagram” of the distinct morphology of cell
clusters, based on cell density and substrate stiffness. The color map represents a composite order parameter (OP, detailed definition in the text) designed to
capture both the cluster percolation probability p and the cluster shape parameter s as a single value. Ranges of the order parameter values OP > 0.7, 0.25 to
0.7, and< 0.25 correspond to percolating “networks,” elongated but disconnected “chains,” and isotropic “isolated” clusters, respectively. The background color
map is created by interpolating over a set of order parameter values obtained from simulations of varying cell number (plotted as �̃ - the postskeletonized
filling fraction) and elastic interaction strength. The experimental data points, corresponding to different cell densities (measured as fractional area covered
by cells in microscopy images) and substrate stiffness, are classified according to the measured value of the order parameter and overlaid on the simulated
phase diagram. They demonstrate good agreement with the predicted phase boundaries (dashed lines). At the Left Bottom is the phase diagram showing
the experimental order parameter values using the same color map as the simulation results in the central phase diagram. This reveals the nonmonotonic
behavior of the order parameter vs. substrate stiffness for the percolating networks, confirming the results of Fig. 4C. Left-Top, Right-Top, and Right-Bottom,
Representative images from the cell culture experiments (at highest seeding density) and corresponding skeletonized images, to illustrate the occurrence
of isolated cells, elongated chains, and percolating networks for substrates of stiffness, 200 Pa, 480 Pa, and 4.5 kPa, respectively. Simulation values used to
construct the colormap in the center panel are averaged over forty simulations for percolation and three simulations for shape factor for each data point.

spanning clusters, we classify clusters into “isolated” or “chains,”
depending on whether s is less or greater than a threshold
value sT = 0.95. This value of sT is chosen to correspond
to simulations with two aligned dipoles, giving an elongated
morphology that this parameter is designed to capture. The order
parameter which accomplishes the above classification is given by
OP ≡ Θ(p − pT )p + Θ(pT − p)(0.25 + 0.5(s − sT )), where
Θ(x) is the Heaviside step function and the numerical factors
give an 0 < OP < 1 for the specific values of sT and pT , justified
above. The differences are captured by ranges of values of the
order parameter:OP > 0.7, 0.25 to 0.7, and < 0.25 correspond
to percolating “networks,” elongated but disconnected “chains,”
and isotropic “isolated” clusters, respectively.
We compute this order parameter for interpolated simulation

data and for experimental data 9 h post seeding, so that cell
proliferation effects are minimal. Experimental data once again
reveal a nonmonotonicity in network formation at the high
densities in Fig. 5, Bottom Left. We construct a phase diagram

of this order parameter in �̃ − E space (Fig. 5, Center), where
the color map corresponds to simulation data. Overlaid on this
phase diagram are discrete markers representing experimental
data, which have been classified into the three distinct regimes
according to their measured order parameter values. The data
comprise three initial seeding densities and six stiffness values
giving a total of eighteen data points. Their distribution clearly
shows a correlation between cell area coverage and substrate
stiffness. This is due to cells spreading more on stiffer substrates,
readily seen through the lack of low packing fraction data at
higher stiffness.
Phase boundaries are drawn as dashed lines that delineate the

distinct regions of the simulation order parameter values. Of
the eighteen experimental data points, only two lie outside of
the corresponding predicted regions. Both of these are at low
substrate stiffness and intermediate packing fraction. These are

classified as “chains,” but lie in the “isolated” part of the predicted
phase diagram. We expect that at these intermediate densities,
cells can spread and touch each other to form elongated structures
even if the elastic dipolar interactions are small. Since our model
does not include such spreading effects, this discrepancy is not
surprising. Overall, the model phase diagram closely predicts the
experimentally observed multicellular structures.
We now further evaluate the morphological similarity of the

networks from our simulated dipoles and our experimental cell
culture by calculating the fractal dimension. For the “sticky
disks,” we find a fractal dimension of df = 1.81, whereas for the
dipoles, we find fractal dimensions of df = 1.698 ± 0.004 and
df = 1.711 ± 0.003 for � = 0.1 and � = 0.5, respectively. We
find a similar fractal dimension for our experimental HUVEC
culture in the network regime on a substrate of stiffness E =
4.5 kPa, df = 1.722. Interestingly, simulated networks on
substrates of � = 0.1 and � = 0.5 are statistically distinguishable,
with the experimental fractal dimension showing reasonable
agreement with the � = 0.5 simulated dipole case. This is
in accordance with the approximately incompressible nature of
hydrogel substrates. The proximity of the fractal dimensions of
the simulated dipoles to that of experimental cell networks, in
relation to the sticky disks, indicates that cells utilize a more
complex strategy to self-assemble than simply randommovement
followed by cell–cell adhesion. The elastic dipolar interactions are
thus a plausible strategy allowing the self-assembly of biologically
desirable, space-spanning, and cost-effective networks.

Diverse Poisson-Ratio Dependent Morphological Features

Offer Distinct Advantages in Network Assembly and Transport

Function.We now focus on simulated networks (such as in
Fig. 3) to thoroughly characterize their two predominant network
morphological constituents—branches and rings. We relate the
resulting structural metrics to the transport function of biological

PNAS 2023 Vol. 120 No. 45 e2301555120 https://doi.org/10.1073/pnas.2301555120 7 of 12

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 C

A
L

IF
O

R
N

IA
 D

IG
IT

A
L

 L
IB

R
A

R
Y

 o
n
 D

ec
em

b
er

 1
5
, 
2
0
2
3
 f

ro
m

 I
P

 a
d
d
re

ss
 1

6
9
.2

3
6
.7

8
.2

2
.



networks. We highlight qualitative differences in morphology of
simulated networks between elastic substrates with high and low
Poisson’s ratio values, which may motivate future experimental
investigation. Fig. 6A shows average branch length for N = 300
(� = 0.33) cells as a function of effective elastic interaction
(A). The average branch length for the higher � case remains
roughly constant and low at about two cell lengths. The lower �
case exhibits a peak in average branch length at the percolation
threshold (A = 1) before decreasing and saturating at high A
values. The distribution of branch lengths (Fig. 6B) shows that
while � = 0.5 is sharply peaked at d , � = 0.1 exhibits branches
greater than 18 d and shows a greater relative count in the 3 to
10 d range.

These results suggest that at higher values of �, network mor-
phology is more resilient to noise, and the branch lengths are not
as easily tunable, The greater variability in branch lengths leads
to longer branches in the lower � = 0.1 case, which then requires
(for A ≥ 5) fewer cells to percolate than at � = 0.5. This is seen

by the difference of the curves at the shoulder of the percolation
transition in Fig. 3A and SI Appendix, Fig. S10. The greater re-
silience of the network at higher substrate � leads to percolation at
smallerA than its low � counterpart (Fig. 3B and SI Appendix, Fig.
S10). In SI Appendix, section I, we construct a detailedmap of the
percolation transition in the A−� parameter space, to show how
� = 0.1 requires fewer cells to percolate for a range of A values,
while � = 0.5 can percolate at lower values of A. This suggests
that the two regimes of substrate compressibility optimize two
different measures of cost of network building: one, the number
of cells, and the other, the strength of cell contractility.
Fig. 6C shows a cumulative distribution of ring area for

our networks at two crucial regions in our parameter space—
those at which the networks are well above the percolation
transition (solid lines), or just above it (dashed lines). Similar
to the branch length distribution, the networks at higher � form
many small rings and few large rings, while the lower � case
shows a broader distribution of ring sizes. The tendency of the

A B

C D

Fig. 6. Substrate compressibility and rigidity affect efficiency and resilience of model networks. (A) Average branch length as a function of the effective elastic
interaction for N = 300(� ≈ 0.33) cells. The lower � case shows a greater sensitivity to A indicating a greater aptitude for tunability than the high � counterpart.
The inset shows average branch length as a function of packing fraction when A = 10. Both values of � show similar behavior except at the highest point of
packing fraction. At this packing fraction, the curves diverge as global configurations begin to become prevalent. For the low � case, this will be long parallel
strings, whereas the high � case will form a single cluster of 4-rings. (B) Normalized branch length histogram for A = 1 and � = 0.33. The networks on substrates
of high � are sharply peaked around the smallest branch lengths while the networks at low � exhibit a broader, longer-tailed distribution. (C) Cumulative
distribution of ring area for N = 300(� ≈ 0.33) cells shown both for networks at the shoulder of the percolation transition and networks well beyond the
transition. Networks at high � contain smaller rings than the networks at low �. Irreversible networks show more smaller rings as noise is not great enough
to jostle these compact structures apart to favor more stringy morphologies. (D) Largest cluster size as a function of the fraction of network branch segments
removed—ameasure of a network’s ability to to maintain functionality after being damaged (49). Networks at the shoulder of the percolation transition exhibit
less robustness than those well above the percolation transition for the � = 0.1 case. In the � = 0.5 case, however, networks retain their robustness even at the
shoulder of the percolation transition. As this robustness metric saturates at a value of A dependent on the compressibility of the substrate, we hypothesize
cells interacting in the way that we have estimated will tend to exert only a certain amount of force, enough to build a resilient network and no more. Each data
point and error bar in (A and B) represent the average and SEM, respectively, of three representative simulations. Data points in (C) are for a representative
dipole configuration per parameter value. Data points in (D) are averages of 20 trials per percentage of bonds.
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� = 0.5 configurations to form numerous smaller rings leads
to a marginally less efficient area coverage than the low � case,
which forms longer branches and fewer small rings (SI Appendix,
Fig. S11). These results are also consistent with the fractal
dimensions we obtained earlier, with df being slightly higher
for the � = 0.5 than the 0.1 cases, indicating more compact
structures for the former. These topological features also give
rise to distinct coordination numbers for the two compressibility
regimes (SI Appendix, Fig. S18). Interestingly, the coordination
number on the lower Poisson ratio substrate resembles those
near the rigidity percolation of elastic fiber networks (58, 59)—
indicating connectivity percolation as a precursor to mechanical
rigidity which is relevant to both tissue development and disease
(60).

To examine the robustness of our model networks to dam-
age, a biologically significant property, we measure the largest
remaining cluster size as a function of the fraction of network
bonds removed (61) (Fig. 6D). We find that whether well above
or just at the percolation threshold, the networks at higher �
retain cluster size well as bonds are removed. Networks at lower
� well above the percolation transition lose largest cluster size
at the same rate as their higher � counterpart. At the shoulder
of percolation, however, networks at low � lose largest cluster
size and fall apart much more rapidly than any of the other
networks. This is the same parameter regime at which networks
at low � exhibit a peak in branch length. By forming long
branches, ring structure formation is sacrificed. Thus, we find
that the prime factor for robust networks is the tendency to
form rings which provide degeneracy to paths between any two
nodes in the network—a result consistent with network structure
optimization models (62). In summary, at lower �, networks
tend to form longer and more broadly distributed branches
which promote efficiency with respect to the filling and spanning
of space at the cost of being susceptible to damage, while at
higher �, networks are predominantly composed of small rings,
which provide robustness to the networks at the cost of transport
efficiency.

Discussion

Our model generates testable predictions for the dependence
of cell network morphology on substrate mechanical properties.
By performing and analyzing experiments on ECs cultured on
hydrogels of varying stiffness, we show that network formation is
indeed optimized at an intermediate stiffness. Although many
experiments show that EC network formation or capillary
sprouting requires softer matrices (ref. 63 and references therein),
these findings can show different trends at different stiffness
regimes (64, 65). We suggest that this may be because cells
adapt their traction forces to substrate stiffness, and therefore, the
expected optimal stiffness for network formation should be where
cells attain their maximal contractility. This optimal stiffness may
be dependent on cell type and matrix mechanochemistry (44).

Our modeling thus relates network structure to cell contractil-
ity, and the predictions can be further checked in cell culture
experiments on substrates of varying stiffness and Poisson’s
ratio (49), that combine traction force measurement with
quantification of network morphology. The presence of sub-
strate deformation–mediated interactions can also be directly
investigated in a two-cell setup on a micropatterned substrate
which allows one to observe reorientations of one cell in
response to the other, similar to strategies used to examine
pairwise interactions during cell motility (66) and cardiomyocyte
synchronization (25).

Further, cells may persistently migrate, in addition to the
stochastic movements assumed in the present model. Our prior
work suggests that cells form stable network structures rapidly at
lower migration speeds (47). At high persistent migration speeds,
the networks dissolve and the dipoles self-organize instead into
motile chains. This suggests that an optimum cell migration
speed is favorable for network formation, which cells may achieve
through self-regulation of their motility through interaction with
their neighbors, such as contact inhibition of locomotion.
A crucial modeling challenge for vasculogenesis, and other

instances of cell network formation in biology, is that multiple
factors ranging from cell differentiation to chemotactic cues could
be involved in vivo. Modeling approaches based on different
hypotheses can all lead to network pattern formation (67). Here,
by combining experiments on hydrogels of varying stiffness and
a physical model based on mechanical interactions alone, we
aim to isolate the different factors involved. While we focus
on endothelial cell networks as a model system, our predictions
are generally applicable to other contractile cell types that self-
organize into networks such as fibroblasts (68), neurons, or
smooth muscle cells (SI Appendix, Table S1), as well as to
synthetic particles with electric or magnetic dipolar interactions,
that are of interest in materials science. In summary, our
work provides proof-of-concept that substrate-mediated elastic
interactions are a physical strategy that biological cells may
employ to direct their self-organization into efficiently space-
spanning, multicellular networks.

Materials and Methods

A.Model Details. Wemodel the ubiquitous traction force pattern of a polarized
cell as a single, anisotropic force dipole. The dipole magnitude is the cell force
times the distance along the long axis of the cell, P = Fa. Since the contractile
cytoskeletal machinery (e.g., actomyosin stress fibers) of the cell is typically
aligned along this axis, this is also usually the principal direction of stress
exerted by the cell and is henceforth called the “dipole axis.” Such a force dipole
induces a strain in the substrate, which is modeled as an infinitely thick, linear,
isotropic elastic medium.

By considering twodipolesP� andP� , we show in SI Appendix, section A that
the work done by a dipole � in deforming the elastic medium in the presence

of the strain created by the other dipole � is given by (37):W�� = P
�

il
u�
il
(r�),

where the strain can be written in terms of P� and second derivatives of
an elastic Green’s function as u�

il
(r�) = ∂l∂kGij(r

� − r�)P�
jk
. This minimal

coupling between dipolar stress and medium strain represents the mechanical
interactionenergybetweendipoles.TypicalsubstratestrainsareshowninFig.1D,
where the blue (red) coloring represents expanded (compressed) regions.
A secondor test dipolepresent in these regionswould tend to align its contractile
axis along the principal stretch direction of the substrate. In the expanded (blue)
regions, the test dipole is aligned with and attracted toward the central dipole,
whereas in the compressed (red) regions, a test dipole is aligned orthogonal
to and repelled away from the central dipole. The orientational dependence
of the strain field is changed by the Poisson’s ratio or compressibility of the
substrate (18).

Our computational “many-cell” model considers cells as discrete agents
(N agents in a L × L box with periodic boundary conditions) which move and
orient randomly, but that also interact with one another through long-range
elastic interactions via a force dipole strain field coupling and a short-range
repulsive spring. Fig. 1E shows our simulation setup and the main ingredients
of themodel.We ignoredetails of the cell shapeand subcellular structures in this
minimal model and instead consider the cells as disk-shaped agents endowed
with contractile, elastic dipoles. This simplifying assumption implies that we do
not consider changes in the shape and size of individual cells that occur as a
result of cell–substrate feedback when substrate stiffness is varied but instead
focus on the multicellular structures at longer length scales.
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Wenowconsiderthetranslationalandorientationaldynamicsofacollectionof
model cells. These interact with each other through short-range, steric and long-
range, substrate-mediated, elastic interactions, and undergo diffusive motion.
The overdamped Langevin dynamics governing the position of a cell labeled� is

dr�
dt

= −�T

∑

�

∂W��

∂ r�
+

√

2DT ��,T(t) [1]

where DT is the effective translational diffusivity quantifying the random
motion of an isolated moving cell, with �T as a random white noise term
whose components satisfy 〈�i,T(t)�j,T(t

′)〉 = �(t − t′)�ij. Typical adherent

cells do not move very persistently, and at time scales much longer than
their persistence time, their motion is random and has been shown to
be well characterized by a diffusion constant (69). We thus neglect the
directed self-propulsion term typically included for active particles from the
dynamics. The mobility �T in Eq. 1 is inversely related to the effective friction
from the medium that the moving cell experiences at its adhesive contacts with
the substrate. Similarly, the orientational dynamics of the cell denoted by � is
given by

dn̂�
dt

= −�R

∑

�

n̂� ×
∂W��

∂ n̂�
+

√

2DR ��,R(t), [2]

where n̂� is the unit vector along the dipole axis of the cell � and DR is
the effective rotational diffusivity quantifying the random reorientations of an
isolated moving cell. Cells encounter various forms of internal stochastic effects
including internal cytoskeletal rearrangements producing membrane morpho-
logical fluctuations, substrate surface binding fluctuations, and fluctuations in
myosin motor forces, which are all absorbed into a coarse-grained effective
temperature, Teff, in our model. Single cell and cell cluster experiments have

shown this effective temperature to be on the order of 10−15 to 10−14 J (70).
Though the rotational and translational diffusion are in principle independent,
we will here assume them to correspond to the same underlying processes and
therefore the same effective temperature, kBTeff = DT/�T = DR/�R. We also
show some exceptions to this assumption in SI Appendix, section L, which all
robustly form networks.

The pairwise cell–cell interaction potentialW�� between cells labeled � and
� consists of the long-range elastic interaction arising through their mutual
deformation of the substrate (SI Appendix, section A), and a short-range steric
interaction between two cells in contact, and is given by,

W�� =
1

2
k(d − r��)

2, when 0 ≤ r�� ≤ d

=
P2

E

f(�, �� , ��)

r3
��

, when r�� > d, [3]

where f is a function of Poisson’s ratio—shown in SI Appendix, section A, �� ,
and �� where cos �� = n̂� · r̂�� and cos �� = n̂� · r̂�� are the orientations
of cell � and cell � with respect to their separation vector, r�� = r� − r�

connecting the centers of the two model cell dipoles, respectively. Note that

while the elastic potential is in principle long range, it decays strongly as a 1/r3

power law; we cut this pairwise interaction off at r�� > 3d in our simulations,
since the substrate strain induced by one cell is unlikely to be detected by a cell
few cell lengths away (24).

The above equations are nondimensionalized by a suitable choice of length,
time, and energy scales. By choosing the length scale to be the cell diameter

d, the time scale to be an elastic time, tc = 16Ed5

P2�T
, and a characteristic elastic

interaction as the energy scale, Ec = P2

16Ed3
, the dynamical equations reduce

to (Appendix B),

dr∗�
dt∗

= −
∑

�

∂W∗
��

∂ r∗�
+

√

2

A
�
∗
�,T(t

∗), [4]

for the translational motion, while the rotational equation of motion can be
written as

dn̂�
dt∗

= −
∑

�

n̂� ×
∂W∗

��

∂ n̂�
+

√

2

A
�
∗
�,R(t

∗), [5]

where the starred variables indicate nondimensionalized quantities and we

have assumed �Rd
2 = �T and DRd

2 = DT, although the latter is not
required for a system that is out of equilibrium. The nondimensionalized

pairwise interaction potential in Eq. 3 is here given by W∗
��

= 1
2
k∗(1 −

r∗)2Θ(1 − r∗) − 16f
r∗3

Θ(r∗ − 1), where k∗ = kd2/Ec . We introduce an

effectiveelastic interactionparameterquantifying theelastic interactionstrength
relative to that of intrinsic noise in the cell motion,

A =
P2�T

16Ed3DT
=

Ec

kBTeff
, [6]

where the noisy cell movements correspond to an effective temperature,
kBTeff ≡ DT/�T . This explicitly shows that A is a measure of the characteristic
elastic interaction energy scale relative to the magnitude of cell stochasticity
described by an effective temperature.

B. Physiological Estimates of Parameter Values. In experiments, the value
of the effective interaction parameter A will depend on cell contractility,
the stiffness of the elastic substrate, and the diffusivity that originates from
the motility of single cells. Importantly, cells adapt their contractile forces to the
stiffness of the underlying substrate.Measurements (71) andmodels (55) of the
dependence of cell force on substrate stiffness suggest that themagnitudeof the
force dipole can be written as P(E) = P0/(1+ E/E∗), where the characteristic
substrate stiffness for a given cell at which the cell traction forces saturate to
their maximal value is denoted by E∗. This dependence when inserted into the
definitionof theeffectiveelastic interactionparameter,A, inEq.6, leadstoAbeing
a peaked function of E. Since stiffer substrates are harder to deform and cells on
softer substrates do not generate enough traction, substrate deformations and
therefore elastic interactions are maximal at an intermediate optimal stiffness
value (E = E∗) (Table 1).

To identify a plausible range for the values of A consistent with cell culture
experiments, we note that the typical values for the force dipole for contractile

cells adhered to elastic substrates is P0 = Fd ∼ 10−12 to 10−11 J (31, 38).
This corresponds to measured traction forces of F ∼ 10 to 100 nN with a
distance of∼50 μm separating the adhesion sites at which the forces act on the
substrate (29, 69), which is also the typical size of the cell along its long axis. For
a typical substrate stiffness of E ∼ 1 kPa characteristic of EC network formation

(43, 44), we therefore estimate an elastic dipole energy of Ec = P2

16Ed3
=

F2

16Ed
∼ 10−15 J, similar to measured values for cell contractile energy stored

in the elastic substrate (72). Since adherent cells crawl by exerting forces at
the focal adhesions at which forces are transmitted to the substrate, the net
mobility that determines cell translation, �T , can be estimated from the friction
force at these adhesion sites. From the observation that the focal adhesions with
surface area of 10 μm2 reorient with speeds of μm/min in the direction of an
external, applied stress of kPa (73), we can estimate the mobility coefficient

(inverse of friction coefficient) to be �T ∼ 0.1 μm/min pN−1. The effective
diffusivity characterizing single endothelial cellmovements wasmeasured to be

∼10 μm2/min (23, 43, 74). Together, these give an estimate for the effective

temperature: kBTeff = DT/�T ∼ 10−16 J ∼ 104 kBT . For substrate stiffness

Table 1. Simulation parameters and their meaning

Parameter Interpretation Simulation values

A Elastic interaction : Noise 0.1 to 100

k∗ Steric interaction 1.6× 103

� Cell packing fraction 0.05 to 0.5
d Cell diameter 1
L Box size 26.66
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E ∼ E∗ 1 kPa, we thus estimate the ratio of elastic energy to noise to be
A = Ec/kBTeff ∼ 10.

In experiments, the substrate stiffness can be tuned over a wide range. In
particular, Califano et al. tested the formation of EC networks on substrates
whose rigidity was varied from 100 Pa to 10 kPa (44). This, in our estimate,
corresponds to an interaction parameter A ∼ 1 − 100, with A = 0.1
corresponding to high noise or nonoptimal values of substrate stiffness (too
soft or too stiff). Similarly, we can estimate the characteristic timescale as

tc = d2

Ec�T
∼ 102 min. This timescale of hours is consistent with that required

for the formation of cellular structures in experiments (44).

C. Experimental Methods.

Cell culture. Green florescent protein (GFP)–expressing human umbilical vein
endothelial cells (HUVECs) (Angio-Proteomie) were expanded on 10 mg/mL
fibronectin-coated plates in Endothelial Cell Growth Medium-2 with BulletKit
(EGM-2, Lonza). Cells used were between passages 3 to 12. Medium changes
were performed every other day, and cells were split upon reaching 80%
confluency.
Polyacrylamide (PAA) fabrication. PAA hydrogels were fabricated similarly

topreviously publishedprotocols (56). Briefly, hydrogelswith relative stiffnesses
(Young’s Modulus or elastic modulus, E) at 200 Pa, 480 Pa, 1 kPa, 2 kPa,
4.5 kPa, and 10 kPa were fabricated by mixing acrylamide from 40% stock
solution (Sigma, A4058) with bis-acrylamide from 2% stock solution (Sigma,
M1533) in phosphate buffer saline (PBS). Air bubbles introduced during
mixing were removed by vacuum gas-purge desiccation for 30 min. The
mixture was then mixed with 10% ammonium persulfate (Sigma, A3426)
and tetramethylethylenediamine (Sigma, T7024) at a 1:100 and 1:1000
ratios, respectively, initiating PAA polymerization. The PAA mixture was then
sandwiched between an 18-mm glass coverslip (Fisher) and a hydrophobically
treated and dichlorodimethylsilane (Sigma, 440272)-coated glass slide. After
30 min of PAA polymerization, the 18-mm glass slide with the PAA hydrogel
attached was carefully removed from the hydrophobic slide. Last, PAA
hydrogels were functionalized with 0.2 mg/mL sulfosuccinimidyl-6-(4’-azido-
2’-nitrophenylamino)-hexanoate (Pierce Biotechnology) followed by 10 mg/mL
fibronectin.
Vascular patterning. GFP-HUVECs were seeded on fibronectin-coated PAA

hydrogels at densities of 8× 103 cells/cm2, 1.4× 104 cells/cm2, and 2× 104

cells/cm2 and imaged on a Nikon Eclipse TE2000-U fluorescent microscope.
The images were all processed using a custom-built image processing macro in
FIJI2.

D. ImageAnalysis. Thefollowingprocessingisdoneinorder todirectlycompare
simulation predictions to experimental results (Figs. 4 and 5) and to obtain
network metrics for simulations (Fig. 6 and SI Appendix, Figs. S9, S11, S12, and
S17). All image analysis used in this work was carried out using the open-source
software ImageJ (75). Raw grayscale experimental images are imported into
ImageJ. “Enhance Contrast” command is run with “saturated pixels” widget

set to 2. We then “Despeckle” the image and “Enhance Contrast” once more
before running “Subtract Background” with a rolling ball radius of 50 pixels. We
“GaussianBlur”with a sigmaof10pixels.We then threshold, keeping intensities
20 and above. This is then converted into a mask, skeletonized, and dilated four
times so as to preserve the raw filling fraction (Fig. 4B).

For simulated networks like those shown in Fig. 2, we replace the isotropic
disk markers with “pill-box” shaped markers (as seen in SI Appendix, Fig. S11)
which are elongated along the dipole axis of each cell to guide the subsequent
skeletonization. Using ImageJ, we first apply “Gaussian Blur” with a sigma
of 2 pixels; then, we threshold keeping intensities 150 and above and then
convert into a mask and skeletonize. Finally, we dilate the skeleton four times
so that small-scale features of assembly like compact rings are preserved, while
washing out the shape of the individual disks. At this point, both experimental
and simulated images are dilated skeletons. The packing fraction of the dilated

skeleton representations of simulations (�̃) are smaller than their respective

nonoverlapping disk packing fraction (�) by a factor, �̃ ≈ 0.75�. To compute
fractal dimensions, we follow the aforementioned image processing with the
additional step of dilating experimental skeletons so as to have roughly the
same packing fraction as simulations We then use ImageJ’s “Fractal box count”
tool with the default pixel array.

To identify unique clusters in both experimental and simulation images,
dilated skeleton images are imported into a custom python program. This
program assigns a cluster label to the first nonzero pixel and then does recurrent
loops assigning neighboring pixels to the same cluster label until a pixel is
identified that does not neighbor any of the pixels with this cluster label. The
cluster label is incremented and the process repeats until every nonzero pixel is
assigned a cluster label.

Data,Materials, and Software Availability. All studydata are included in the
article and/or supporting information. The raw data has been deposited in the
Dryad repository and can be found at https://doi.org/10.5061/dryad.kd51c5bcv
(76).
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