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Abstract—Resource virtualization is a promising technique
that has been increasingly deployed in industrial automation
systems to support multiple time-critical applications sharing the
same physical resources. Extensive studies have been reported on
how to perform real-time virtualization on computing resources.
However, when applying virtualization techniques on network
resources (especially for real-time wireless networks), node de-
pendency among applications, wireless channel contention and
stringent end-to-end timing requirements of the real-time flows in
the network pose severe challenges. To address this problem, this
paper formulates the network virtualization problem for multi-
hop multi-channel real-time wireless networks (RTWNs). We
first present a Satisfiability Modulo Theory (SMT)-based exact
solution to capture the constraints posted by each application’s
resource interfaces and node dependency graphs. A novel supply
graph (SG)-based partitioning framework, SGP, is then proposed
to determine the resource partitions for individual applications.
SGP uses supply graph to maintain compliance with the regular-
ity constraints while efficiently allocating resources. Experimental
results from both a real-world testbed and extensive simulations
show that SGP can achieve comparable success ratio with the
SMT-based exact solution but reduce the computational overhead
significantly.

I. INTRODUCTION

Real-time wireless network (RTWN) technologies (e.g.,
WirelessHART [1], ISA100.11a [2], 6TiSCH [3], RT-WiFi [4],
and other industrial solutions [5]–[8]) are becoming mature
in recent years and have been widely deployed in indus-
trial automation systems to support time-critical sensing and
control applications. Traditional RTWNs are designed and
deployed in a “vertical” way, where both network hardware
and resource management mechanisms are highly customized
to support specific application(s) [9]–[11]. However, with
the ever-growing capability of hardware and complexity of
applications, now it is possible and desirable to design a
“one-fits-all” RTWN solution via resource virtualization, by
deploying virtual networks for individual applications to share
the same physical network resources but operate in an isolated
fashion [12]–[14].

For example, a sensor-controller-actuator control loop (with
stringent delay but low-bandwidth requirement) and a camera
surveillance system (with high-bandwidth requirement but can
tolerate larger delay) can be deployed on the same RTWN
as long as their virtual networks are properly constructed.
Such resource virtualization on RTWNs can greatly increase

∗The first two authors have equal contribution to this work.

Fig. 1. Architecture of two-level real-time resource partitioning framework.

the utilization of the hardware, ease the resource management
among multiple applications and improve system resilience.
One application’s fault(s) cannot propagate to other applica-
tions and thus avoid potential cascading failures in the system.

A key challenge in resource virtualization for RTWNs
is how to achieve end-to-end timing guarantees for all the
real-time flows in each application. This requires appropriate
resource partitioning among individual applications to meet
the timing requirements of their flows. Extensive studies have
been reported in the literature on how to perform real-time
virtualization on computing resources (e.g., CPU and GPU) us-
ing time and spatial partitioning, such as the Regularity-based
Resource Partition (RRP) model [15], the Periodic model [16]
and the Explicit Deadline Periodic (EDP) [17] model. Fig. 1
shows the typical architecture of the two-level real-time parti-
tioning framework employed in these models. At the resource
level, a resource manager divides the physical resources into a
set of resource partitions in the time domain according to each
application’s timing requirements, and distributes the partitions
to each application. At the task level, applications utilize their
own scheduling policies to schedule the tasks on the received
resource partitions. These models define resource interfaces to
abstract the requirements (e.g., amount of resources, deadline,
tolerable jitters) from each application’s task set. As long as
the allocated resource partitions satisfy the resource interfaces,
the application can construct a feasible local schedule for its
task set on its allocated resource partition(s).

Network resource virtualization in RTWNs bears some
similarity with the aforementioned computing resource virtual-
ization, but poses a unique challenge owing to the unavoidable
sharing of network nodes by different applications. When
constructing the communication schedule for an application in
RTWN, each flow must access certain nodes in certain time
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slots according to its routing paths and timing requirements.
Partitioning the network resources while ignoring the node
access control may cause node collision, where different
applications require the same node to transmit packets at the
same time. This node collision breaks the resource isolation
among applications, which makes the allocated resource in
some partitions unusable and thus may violate the timing
guarantees for some flows. Some existing work on comput-
ing resource virtualization has considered sharing computing
resources among inter-dependent applications. For instance,
[18], [19] studies the time partitioning problem with access
collisions on a multi-core and hardware accelerator platform,
where tasks may compete for the shared GPUs. However, the
focus of that work is on how to enforce time isolation on GPUs
after the resource partitions are given. Its collision model is
also much simpler than that of RTWNs, where tasks only re-
quest for some but not specific GPU resources. [20] improves
the schedulability test of the RRP model considering intra-
application dependent tasks. However, it does not consider
inter-application task dependency, which is a key challenge
in RTWN resource virtualization. [14] proposes an adaptive
partition-based scheduling framework for 6TiSCH networks,
and [21] proposes a hierarchical resource partitioning frame-
work for dynamic resource management in industrial wireless
networks. However, real-time requirements in these studies are
not well considered. To the best of our knowledge, no existing
work has studied the network resource virtualization problem
in RTWNs with complex resource sharing patterns.

In this paper, we propose a network channel-node co-
partitioning framework designed to address the unique chal-
lenges associated with RTWN resource virtualization. In addi-
tion to network channel resources, we also treat network nodes
as a type of shared resource among applications and carefully
partition application’s access to them. By considering both
inter- and intra-application node dependencies, the constructed
network resource partitions are guaranteed to fulfill the end-
to-end timing requirements of all applications. Specifically, we
make the following contributions in this work.
• We formulate the network resource partitioning problem
for multi-hop multi-channel RTWNs considering its unique
constraints on both node and channel resources.
• We present a Satisfiability Modulo Theory (SMT)-based
exact solution and a supply graph-based network virtualization
framework to determine the network resource partitions.
• We implement the proposed network resource virtualization
framework and evaluate the proposed algorithms through ex-
tensive experiments, including on a real-world 49-node 5-hop
6TiSCH testbed and a high-fidelity RTWN emulator.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model. Section III gives an
overview of the proposed network resource virtualization
framework. We formally define the resource partitions, in-
terfaces and node dependencies and formulate the network
resource partitioning problem in Section IV. The SMT-based
exact solution and supply graph-based partitioning framework
are presented in Section V and Section VI, respectively.

Section VII summarizes the performance evaluation results
through both testbed implementation and simulation studies.
Section VIII concludes the paper and discusses the future
work.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first present the RTWN system and
application models employed in this work, and then define
the network resource virtualization problem.

A. Network Model

We adopt a typical multi-hop multi-channel model used
in many RTWNs (e.g., WirelessHART [1], ISA100.11a [2]
and 6TiSCH [3]). A set of sensors, actuators and relay nodes
are wirelessly connected to form a mesh topology, with a
gateway sitting at the root of the network. The network is
denoted as G = (V,E), where V = {v1, v2, ...} corresponds
to the nodes and a link ei,j ∈ E represents a directed
wireless communication from node vi to node vj . Each node
is equipped with a single omnidirectional antenna operating
in the half-duplex mode, where a node can only transmit
or receive at most one transmission in each time slot. In
the network, a centralized network manager is deployed on
the gateway to manage and control the network, ensuring
that all devices are operating properly. The network manager
manages the network resources, including the access to each
physical node and the transmission on each radio channel. It
also performs resource allocation for individual applications
according to their specific requirements.

In the network, a periodic end-to-end flow is represented
as a task. Each task is defined by τ = (d, p, ψ), where d
is the end-to-end deadline, p is the period of the task and
ψ = [v1, v2, ..., vh] is the routing path consisting of h nodes.
Each task releases an infinite sequence of instances, referred
to as packets. In this paper, we assume a reliable RTWN 1

where the transmission of each hop requires only one time
slot to complete. Thus, each packet requires h− 1 time slots
to be transmitted from the source to the destination.

We utilize a multi-channel Time-Division Multiple Access
(TDMA) based data link layer, in which time is divided into
time slots, and consecutive slots are grouped into slotframes
that repeat over time. We use T to denote the slotframe length.
In each time slot, a total of C channels are available for
packet transmissions. A schedule specifies the pair of nodes
transmitting a packet on each channel in each time slot within
the slotframe. The schedule is constructed by the network
manager and installed on individual nodes. Fig. 2(a) shows
an example 13-node mesh topology with one gateway and
Fig. 2(c) shows a feasible schedule on a 10-slot 2-channel
slotframe constructed for the three tasks shown in Fig. 2(b).

1Our solution can also be extended to support lossy links by taking
redundant slots into consideration in the resource interfaces.
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Fig. 2. (a) A RTWN mesh topology with 13 nodes and one gateway. (b) A
task set with 3 tasks. (c) A schedule on a 10-slot 2-channel slotframe, where
ei,j = τkm indicates that link ei,j is used to transmit a packet of the k-th
instance of task τm.

B. Application Model

We assume that N time-critical applications Ai (1 ≤ i ≤
N ) are deployed on the RTWN. Each application Ai runs
a periodic task set Γi = {τi,1, τi,2, , ..., τi,Mi

}, where each
task τi,k|k ∈ [1,Mi] is associated with a period pi,k, a
deadline di,k, and a fixed routing path ψi,k as described in
the network model. Each application Ai applies a specific
scheduling policy, denoted as SPi, to schedule all the tasks
in Γi. Each application requests a dedicated virtual ‘sub-
network’ consisting of Ci ≤ C channels and a set of physical
nodes in V . The resource associated with such sub-network
must guarantee that the real-time requirements of all the tasks
τi,k ∈ Γi are satisfied under the scheduling policy SPi.

C. Problem Statement

Based on the above models, the objective of this work
is to design a network resource virtualization framework for
RTWNs to allow multiple time-critical applications to share
the same physical network, and allow each application to use
their own scheduling policy to schedule tasks on the allocated
sub-network.

In the virtualization-enabled RTWNs, each application un-
dertakes the network resource management for its own tasks
by requesting a virtual sub-network and deploying a spe-
cific scheduling policy. The manager partitions the physical
network into N sub-networks based on the request of each
application Ai. It must guarantee that Ai can satisfy the timing
requirements of all its tasks in the allocated sub-network. This
network virtualization problem can be defined as follows.

Problem 1 (Network Virtualization (NV)). Given an RTWN
with C channels and a set of applications Ai(1 ≤ i ≤ N),
each of which employs a scheduling policy SPi to schedule a
set of periodic real-time tasks Γi, design a network virtualiza-
tion framework to allow each application Ai to schedule its
tasks using SPi in a virtual sub-network while guaranteeing
the timing requirements of all the tasks.

To solve the NV problem, an intuitive idea is to let each
application submit all the task specifications to the network

manager. Then, the manager generates a global schedule for all
the applications and comprises the resource allocated to each
application in the global schedule as the virtual sub-network.
Such a method, however, cannot be applied to solve the NV
problem due to the following three reasons.

First, a time-critical application deployed in a RTWN may
not be willing to release all the task specification information
for security and privacy considerations. Instead, it desires to
use a resource interface to effectively abstract the required sub-
network resources to satisfy the tasks’ real-time requirements.
Second, each application employs an individual scheduling
policy which prevents the network manager to directly apply
any existing global scheduling algorithms (e.g., [22], [23])
where a common scheduling policy is deployed to schedule
all the tasks running in the network. Third, the NV problem
requires the network manager to allocate resource at the ap-
plication level (i.e., generating a sub-network), while guaran-
teeing the timing requirements at the task level (i.e., satisfying
the task deadlines using the sub-network). Therefore, a global
scheduling framework which requires all the task specification
information and performs resource allocation at the task level
cannot solve the NV problem.

III. NETWORK VIRTUALIZATION FRAMEWORK OVERVIEW

A. The NV Problem Challenges

The NV problem can be decomposed into two sub-
problems: i) how to determine the sub-network request (i.e.,
designing the resource interface) at each application, and ii)
how to create the sub-networks for individual applications
(i.e., performing resource partitioning) at the network manager
to satisfy the functional and timing requirements of all the
applications. The sub-network requested (allocated) by each
application (the network manager) can be captured by the
network resources in each hyperperiod. The network resources
can be classified into i) channel resources consisting of C
communication channels, and ii) node resources consisting
of all the nodes in the network. These two types of resources
in a RTWN are subject to the following two constraints that
pose the key challenges for solving the NV problem.

Constraint 1 (Channel capacity). In any time slot, the number
of channels allocated to all the applications cannot be larger
than C.

Constraint 2 (Node access). Any half-duplex node cannot
transmit/receive more than one packet in any time slot. That
is, node collision occurs if two applications access the same
node for transmission in the same time slot.

The channel capacity constraint implies that we can paral-
lelize the execution of multiple applications to improve the
channel efficiency as long as

∑
i Ci ≤ C. However, the node

access constraint indicates that parallel applications may cause
failed transmissions due to node collision and degrade the
channel efficiency. These two opposite observations pose the
first challenge of the NV problem.
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Fig. 3. An overview of the execution model for the proposed network resource virtualization framework in RTWNs.

Challenge 1. How to avoid node collision among the transmis-
sions from different applications while accommodating more
parallel applications to improve the channel efficiency.

To tackle Challenge 1, at the highest level, we aim to
perform resource request and partitioning in terms of channel
resources and node resources independently. In this way, we
can avoid node collision by preventing each node from being
used by two applications with concurrent channel access.
Since node collision only occurs when a node is requested
by multiple applications, we define such node as critical node,
and perform resource request/partitioning for all critical nodes.

Definition 1 (Critical Node). A critical node v∗j is a node on
the routing paths of tasks from more than one application.

Specifically, we aim to determine the channel resources
(i.e., the time slots within each of which application Ai can
access Ci channels) and the node resources for each critical
node v∗j (i.e., the time slots that Ai can access vj). Since
one transmission can be transmitted in a time slot only if
both the channel resource and the corresponding critical node
resource (if needed) are available2, we must guarantee that the
overlap of these two types of resources (i.e., the common set
of time slots) can meet the timing requirements of individual
applications, i.e., the deadlines of each task in the application.

Furthermore, given that the transmission of each task needs
to follow the pre-determined routing path, the node resource
allocated to each application must be compliant with the tasks’
routing paths. That is, the access to the critical nodes in each
application must follow a specific sequence. Otherwise, some
allocated critical node resources can be wasted and the timing
requirement of the corresponding task can not be met. Thus,
this particular node dependency requirement poses another
challenge for the NV problem.
Challenge 2. How to guarantee that the critical node resources
allocated to each application satisfy the node dependency
requirements of all the tasks running in the application.

To tackle Challenge 2, we employ a dependency graph
to capture the relationship between the critical nodes in
each application. The dependency graph can be generated by

2Since the other non-critical nodes are not shared by any applications,
each application can access any non-critical node in a time slot if the channel
resource is available.

TABLE I
SUMMARY OF IMPORTANT SYMBOLS AND NOTATIONS.

Symbol Description

G = (V,E) Network topology, V : nodes set, E: links set
T Slotframe length
C Total number of available channels in the network
Ai The i-th application deployed on the network
Γi Task set of Ai

Ci Number of required channels of Ai

PR
i Resource partition of Ai for resource R

α(P ) Availability factor of partition P
r(P ) Supply regularity of partition P
IRi = (α, r) Resource interface of Ai for resource R
S(P, t) Supply function of partition P
ir(P, t) Instant regularity of partition P at time t
GP
i Node precedence dependency graph of Ai

GC
i Node transmission conflict graph of Ai

each application and submitted to the network manager as a
part of the sub-network request. The network manager then
partition node resources for each application according both
the resource interfaces and the node dependency graph.

B. Execution Model

The high-level execution model of the network resource
partitioning framework is shown in Fig. 3. Each application Ai

initializes a sub-network request with channel/node resource
interfaces and a node dependency graph, to abstract the re-
source requirements according to its tasks’ specification. After
receiving the sub-network requests from all the applications,
the network manager determines the sub-networks, in terms
of channel and critical node partitions, allocated to each
application, and send them back to the requesting applications.
Upon receiving the channel and critical node partitions, each
application Ai follows its own scheduling policy to generate
a local schedule for the task set Γi and deploys the schedule
on the corresponding nodes in the physical network.

Based on this network resource virtualization framework,
we need to design i) the channel/node resource interfaces
and ii) the node dependency graph at individual applications,
and iii) the channel/node partitions at the network manager to
meet the timing requirements of all the tasks running in each
application. The details of each component are described in
the following sections.
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IV. RESOURCE INTERFACE DESIGN

We first discuss how to design the channel/node resource
interfaces and construct the node dependency graph to be
submitted by each application to the network manager.

A. Preliminaries

A resource interface captures the network resources re-
quested by an application. A feasible resource interface must
guarantee that the resources allocated by the network manager
according to the resource interface can satisfy the real-time
requirements of the tasks running in the application.

The Regularity-based Resource Partitioning (RRP) model
proposes to use a combination of availability factor and
regularity to define the resource interface to capture the
temporal resource (processor) requirement of each application
[24], [25]. The RRP-based resource interface provides schedu-
lability guarantees under various scheduling policies. Thus in
this paper, we develop channel/node resource interfaces based
on the RRP model to capture application’s timing requirements
on individual channel and critical nodes. We first introduce
some definitions used in the RRP model.

Definition 2 (Resource Partition). A resource partition (or
partition for short) PR

i = {s1, s2, ..., sn} consists of a set of
time slots within the slotframe, and application Ai can access
resource R in those time slots in PR

i .

Since we manage the channel resources and node resources
independently, the resource R can be Ci network channels or
a critical node used by application Ai.

Definition 3 (Availability Factor). The availability factor of
a partition P , denoted as α(P ) = |P |/T ∈ [0, 1], represents
the fraction of the time slots allocated to P in each slotframe.

Definition 4 (Supply Function). Supply function S(P, t) of a
partition P represents the number of allocated time slots in
interval [0, t], i.e ., S(P, t) = |{s ∈ P |s ≤ t}|.
Definition 5 (Instant Regularity). The instant regularity of a
partition P at time t is defined as ir(P, t) = S(t)− α(P ) · t,
which captures the difference between the number of supplied
slots by t and the expected number of slots to be uniformly
allocated by t according to the availability factor α(P ).

Definition 6 (Supply Regularity). The supply regularity SR
of a partition P is defined as the maximum value of r(P ) =
|ir(P, t1)− ir(P, t2)|, for all t1, t2 ∈ [1, T ].

The supply regularity serves as an upper bound on the
deviation between the actual resource supply during any time
interval and the expected resource supply that the partition is
intended to receive. It plays a crucial role in determining the
slot allocations for the partitions in our supply graph based
partitioning framework to be elaborated in Section VI.

Fig. 4 shows an example of the supply function and instant
regularity of partition P = {4, 7, 9} in a 10-slot slotframe. The
availability factor of this partition is α(P ) = 3/10 = 0.3. The
maximum instant regularity is ir(P, 9) = 3−9×0.3 = 0.3, and

Fig. 4. The supply function of an example partition P = {4, 7, 9} with
slotframe length T = 10. We have α(P ) = 0.3 and r(P ) = 1.2.

the minimum instant regularity is ir(P, 3) = 0 − 3 × 0.3 =
−0.9. Thus, the supply regularity of partition P is r(P ) =
|ir(P, 9)− ir(P, 3)| = 1.2.

Definition 7 (Resource Interface). The resource interface of
application Ai is defined as IRi = (α, r), where α and r
are the availability factor and the regularity of the requested
partition on resource R, respectively.

According to [24], [26], the timing requirements of all the
tasks can be guaranteed if the resource partition PR

i allocated
to application Ai satisfies the resource requirements specified
by its resource interface IRi , i.e., α(P ) ≥ α and r(P ) < r.

Given a task set Γi and a scheduling policy SPi, the RRP
model [24], [26] provides the schedulability test for Γi running
on a single processor partition specified by α and r under
SPi. We denote ICi and Iv

∗
i as the channel interface and node

interface for critical node v∗, respectively. Below we describe
how to determine the channel/node resource interfaces, i.e., α
and r of ICi and Iv

∗
i , for task set Γi running in Ai.

B. Resource Interface

1) Node Resource Interface: Since each critical node is
equivalent to a single processor, we can directly rely on the
schedulability test provided in the RRP model to determine
each critical node interface Iv

∗
i . Below, we introduce the

schedulability test for the EDF policy as an example. Readers
can refer to [24], [26] for more details and the schedulability
tests for other commonly used scheduling policies.

Theorem 1. Task set Γ = {τi = (ci, pi)|i = 1..n} is
schedulable on a partition P by EDF if

∑n
i=1 ci/(pi − �(r−

1)/α�) ≤ α, where c is the execution time of the task [26].

Since we are only concerned with the resource demand for
critical node v∗ rather than for all the nodes, task set Γ should
be the subset of Γi that only contains the transmissions passing
through v∗. That is, two notable modifications are needed
when we apply Theorem 1 to determine the node interface
Iv

∗
i for critical node v∗. First, task set Γ only consists of the

tasks having critical node v∗ on their routing paths. Second,
the execution time of each task in Γ is either 1 or 2, if v∗

is the source/destination node or a relay node on the routing
path of the original task in Γi.

Based on the above discussion, we can first determine the
availability factor of task set Γ according to the number of
required slots in each slotframe. That is, α =

∑
τi∈Γ ci/pi.
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Then based on Theorem 1, the largest r satisfying the in-
equation is picked as the regularity since a larger regularity
provides higher flexibility to the partitioning.

2) Channel Resource Interface: Determining the channel
resource interface ICi for each task set Γi is more chal-
lenging since each application Ai requires Ci channels and
the extension of the schedulability test (e.g., Theorem 1) to
multi-processor platforms is non-trivial, especially the multi-
hop transmission turn the tasks into DAG tasks [27], [28].
As an alternative, we propose a schedule-based approach to
determine the regularity and availability factor of the channel
resource interface for Γi.

Specifically, we let application Ai generate a schedule for
task set Γi by running scheduling policy SPi on a network
with Ci channels. Suppose the number of slots within the
slotframe in the generated schedule is a. An intuition to
set the availability factor for Γi is α = a/T , which is the
same setting for the node interface described above. However,
setting α = a/T cannot satisfy the timing requirement of Γi

since a is generated assuming that Ai is the only application
running in the network without any critical node sharing
with other applications. Therefore, we let each application
require an additional set of redundant slots to accommodate
the potential unavailability of certain slots due to critical node
contention with other applications. Since each application has
no knowledge of the critical node requirement from other
applications, the setting of such redundancy is empirical that
an additional time slot is added to the channel resource
interface3.

After the availability factor α is determined, we set regular-
ity r = 1 for the channel resource interface of each application
since r = 1 is a safe regularity lower bound to guarantee the
schedulability of the task set according to the RRP model. The
example below demonstrates the channel and node resource
interfaces determined for the application in Fig. 2.

Example 1. Consider application Ai in Fig. 2(b). Suppose
node v6 is a critical node shared by other applications. To
determine Iv6i , we identify the tasks passing through v6 (i.e.,
τ1 and τ3) and determine the execution time of each task (i.e.,
c1 = 1 and c3 = 2). Thus, the availability factor of node
resource interface for v6 equals to 1

10 + 2
10 = 0.3. Then,

according to Theorem 1, the largest feasible regularity is 1.6.
To determine the channel resource interface, Ai generates a
schedule as shown in Fig. 2(c) using EDF. Interface ICi

i is
then set to (α = 7+1

10 = 0.8, r = 1) where an additional
redundant slot is considered.

C. Intra-Application Node Dependency

As described in Challenge 2 in Section III-A, the critical
node resources allocated to each application must satisfy the
node dependency requirements of all the tasks running in the

3Although the network manager has the information of critical nodes’
requirements from all the applications, it is unaware of the specific timing
requirement of each application, thus cannot determine a proper redundancy
setting for each application.

Fig. 5. An example showing the node dependency. (a) v1 and v4 are the
critical nodes shared by A1 and A2. (b) Channel partitions for A1 and A2. (c)
Critical node partitions. (d) Refined critical node partitions with less resources.

application. In this section, we describe how to handle the node
dependency by using the proposed node dependency graph.

Example 2. The example in Fig. 5 illustrates how the node
dependency impacts the resource partitions. Consider two ap-
plications in Fig. 5(a) and the channel partitions allocated to
the applications according to their channel resource interfaces
are shown in Fig. 5(b). Specifically, Application A1 is allo-
cated with channels {1, 2} and slots {1, 2, 4, 7}. Application
A2 is allocated with channel 3 and slots {2, 3, 4}. To avoid
potential critical node collision among the applications, a
node partition for each critical node is allocated to each
application as shown in Fig. 5(c).

However, the critical node partition without considering the
node dependency requirements can cause resource waste. For
example, v1 and v4 transmit to the same node v2 in application
A1, thus these two nodes cannot transmit simultaneously since
v2 can receive packets from at most one sender in one time
slot. Then, one of the node resources allocated to A1 in slot 1
will be wasted. Therefore, v1 and v4 should not be allocated
to A1 in the same slot and Fig. 5(d) shows the refined critical
node partition where less resources are used in the critical
node partitions allocated to the two applications.

We define two types of node dependency graphs to represent
the relationship among critical nodes. The first type, named
node precedence graph, captures the precedence of critical
nodes in the tasks’ routing paths. The second type, named node
conflict graph, captures the constraint that two critical nodes
cannot transmit to (receive from) the same receiver (sender)
simultaneously, as shown in Example 2.

Definition 8 (Node Precedence Graph). Node precedence
graph GP

i is a set of disconnected Directed Acyclic Graphs
(DAGs) for application Ai, denoted as {Di,j|j=1,2,....}. Each
DAG Di,j = (Xj , Ej , p) captures the precedence imposed by
a task τ ∈ Γi passing through at least two critical nodes.
Each vertex x = (vj , vk) ∈ Xj represents a transmission from
sender vj to receiver vk in τ where at least one of vj and vk
is a critical node. Each directed edge e = (xp, xd) ∈ Ej

represents a precedence between two vertices xp and xd. p is
the period of Di,j and equals to the period of τ .
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Fig. 6. Node dependency graph example for the task set in Fig. 2(b) supposing
that v2, v4, v5, v12 are critical nodes. (a) Node precedence graph. (b) Node
conflict graph.

Since we are only interested in the critical nodes, we use
vnc to denote any non-critical node in each vertex in the
node precedence graph. Node precedence graph introduces the
following two constraints.

Constraint 3. If two critical nodes are in the same vertex of
a DAG D, they should be allocated in the same time slot.

That is, for each vertex x = (vj , vk) in node precedence graph
GP
i , partition P

vj
i must have a common slot with partition P vk

i

in every p slots, where p is the period of D.

Constraint 4. Nodes in predecessor vertices of a DAG D must
be allocated earlier than the nodes in descendant vertices.

That is, for each edge e = ((vj , vk), (vl, vm)) in the node
precedence graph GP

i , partitions P vj
i and P vk

i must have a slot
earlier than partitions P vm

i and P vn
i in every p slots, where p

is the period of D.

Definition 9 (Node Conflict Graph). In node conflict graph
GC
i = (V,E), each vertex v ∈ V is a critical node used by

application Ai and each edge e = (vj , vk), e ∈ E indicates
that nodes vj and vk conflict.

An edge e = (vj , vk) in the node conflict graph GC
i

represents that vj and vk cannot be allocated in the same
slot since they have a same sender or receiver node. That is,
partition P

vj

i cannot have a common slot with partition P vk
i .

The node precedence graph and node conflict graph can be
readily derived according to the task set specification of each
application. Fig. 6 shows the node precedence graph and node
conflict graph derived from the task set in Fig. 2(b). Suppose
v2, v4, v5, and v12 are the critical nodes. Since two tasks τ1
and τ3 pass through the critical nodes, the node precedence
graph GP

i consists of two DAGs. Since node v6 is a common
peer node, i.e., the receiver of v4 and the sender of v5, we
connect nodes v4 and v5 in the node conflict graph to avoid
them from transmitting/receiving to/from v6 simultaneously.

D. Network Resource Partitioning Problem

Given the resource interfaces and node dependency graphs
of all the applications, the network manager needs to generate
the partition for each application, satisfying the resource
requirements specified by the resource interfaces. We give the
network resource partitioning problem formulation below.

Problem 2 (Network Resource Partitioning (NRP)). Given a
RTWN with C channels and a set of applications Ai(1 ≤
i ≤ N), each with a channel resource interface ICi

i and a
set of critical node interfaces Ivi (v ∈ V C), node precedence
graph GP

i and node conflict graph GC
i , determine the channel

partition PCi
i and the critical node partitions P v

i (v ∈ V C) for
each application while satisfying the following constraints:

Constraint 5. Each channel and each node can only be
allocated to at most one partition in any time slot.

Constraint 6. Each resource partition PR
i satisfies the re-

source requirements specified by resource interface IRi , i.e.,
α(P ) ≥ α and r(P ) < r.

Constraint 7. Node partitions of application Ai satisfy the
constraints specified by the node precedence graph GP

i and
node conflict graph GC

i .

Constraint 8. The number of channels allocated to all the
applications in each time slot cannot be larger than the total
number of channels in the network.

V. SMT-BASED EXACT SOLUTION

To solve the NRP problem, we formally present a set of
constraints in this section on constructing feasible resource
partitions for all the applications while satisfying their re-
source interfaces and node dependency graphs. A Satisfiability
Modulo Theory (SMT) solver can be applied to find an exact
solution if exists.
Variables: We use three inter-convertible variables to represent
the partition allocation of each application.

i) xR
i (t) is a Boolean variable indicating whether resource

R is allocated to application Ai in time slot t.
ii) sRi,j ∈ [1, T ] denotes the index of the j-th time slot (j ∈

[1, α · T ]) in partition PR
i .

iii) S(PR
i , t) denotes the number of allocated time slots in

partition PR
i within the time interval [0, t].

These three variables are inter-convertible as below.

S(PR
i , t) =

{
S(PR

i , t− 1) + 1, if xR
i (t) is True,

S(PR
i , t− 1), otherwise.

(1)

sRi,j = t if S(PR
i , t) = j and S(PR

i , t− 1) = j − 1. (2)

Mutually exclusive constraint: In each time slot, any resource
R can be allocated to at most one application’s partition to
avoid access collision among applications.

∀t ∈ [1, T ], ∀R :
∑

i∈[1,N ]

xR
i (t) ≤ 1. (3)

Partition supply constraint: The number of slots in each
resource partition PR

i in a slotframe must be larger than or
equal to the number of slots specified by the availability factor
of the corresponding resource interface IRi = (α, r).

∀i ∈ [1, N ], ∀R : S(PR
i , T ) ≥ α · T. (4)

Partition regularity constraint: The regularity of resource
partition PR

i must satisfy the regularity requirement specified
by the corresponding resource interface IRi = (α, r).

∀i ∈ [1, N ], ∀R, ∀t1, t2 ∈ [1, T ], t1 �= t2 :

| (S(PR
i , t1)− α · t1

)− (
S(PR

i , t2)− α · t2
) | < r. (5)
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Resource availability constraint: A transmission involving
any critical node can be transmitted only if a channel resource
is available in the same time slot.

∀i ∈ [1, N ], ∀v ∈ V i ∩ VC , ∀j1, ∃j2 : svi,j1 = sCi
i,j2

. (6)

Channel capacity constraint: The total number of channels
allocated to all the applications cannot be larger than C.

∀t ∈ [1, T ] :
∑

i∈[1,N ]

Ci · xCi
i (t) ≤ C. (7)

Node precedence constraint: Let oi,j = {x|x ∈ Xj}
denote the topological ordering of precedence DAG Di,j =
(Xj , Ej , p). We denote di,j,k(h) as the time slot allocated
to the h-th transmission vertex in oi,j during its k-th (k ∈
[1, T/p]) repetition within the slotframe. We have:

∀i ∈ [1, N ], ∀Di,j = (Xj , Ej , p) ∈ GP
i ,

∀k ∈ [1, T/p], ∀h ∈ [1, |Xj |], ∀v ∈ oi,j [h] :∑
m∈[1,Pi,j ]

svi,m = di,j,k(h) = 1. (8)

1 + (k − 1) · p ≤ di,j,k(h) ≤ k · p. (9)
di,j,k(h) < di,j,k(h+ 1). (10)

Eq. (8) maps the variable di,j,k(h) to the allocated time slots
in each resource partition. Eq. (9) specifies the time duration
for the DAG. Eq. (10) formulates the precedence according to
the topological ordering of the DAG. In addition, we need to
ensure that each allocated slot in a partition is used to satisfy
at most one vertex in the DAG. That is,

∀i ∈ [1, N ], ∀j1, j2, ∀k1, k2, ∀h1, h2, ∀v ∈ V :

¬(v ∈ oi,j1(h1) ∩ oi,j2(h2)) ∧ (di,j1,k1
(h1) �= di,j2,k2

(h2)))
(11)

Node conflict constraint: Conflicting nodes in node conflict
graph GC

i = (V,E) must not be accessed by application Ai

in the same time slot. That is,

∀i ∈ [1, N ], ∀v1, v2 ∈ V, ∀t ∈ [1, H] :

¬(xv1
i (t) ∧ xv2

i (t)) ∧ (e(v1, v2) ∈ E)) (12)

Based on the above constraints, an SMT formulation can
be derived to find an exact solution to the NRP problem, i.e.,
a partition allocation PR

i for each application Ai on resource
R. Then, each application can generate a feasible schedule
using the allocated partition to satisfy the timing requirements
of all the tasks.

VI. SUPPLY GRAPH BASED PARTITIONING

Since the SMT-based exact solution does not scale with the
network and application size, in this section we propose an
efficient supply graph based partitioning framework, SGP, to
solve the NRP problem.

Note that, [24] proposes a resource partitioning algorithm
AAF which can be used to solve the NRP problem. However,
AAF suffers from the limitation that the regularity of resource

interface must be an integer value. This limitation signifi-
cantly degrades the performance of AAF which is revealed
in our experimental results in Section VII. Furthermore, the
partitioning algorithms proposed for the RRP model do not
consider the unique challenge posed by the node dependency
in RTWNs. Therefore, the proposed supply graph based parti-
tioning framework SGP aims to break the regularity limitation
to support any non-integer regularity values, and handle node
dependency among different applications, to improve the re-
source partitioning performance.

A. Overview

The high-level idea of SGP is to determine the resource
partition for all the applications in a slot-by-slot fashion
within [1, T ], i.e., the slotframe length, in two rounds. In
the first round, we perform channel resource partitioning for
all the applications to satisfy their channel resource interface
requirements. In the second round, based on the channel par-
tition allocated to each application, we perform critical node
resource partitioning to satisfy the node resource interfaces
and the node dependency requirement for each application.

The resource partitioning in each time slot is performed
according to the weight of each application on the requirement
of a particular resource. A higher weight indicates that the
application urges the allocation of the resource, otherwise the
corresponding resource interface may not be satisfied. Then,
in each time slot, the network manager allocates each resource
(either channel or a critical node) to the application with the
highest weight on the request of this resource.

Then, the question is how to determine the weight of each
application to capture the resource requirement urgency. Ac-
cording to the discussions in Section IV-B and Section IV-C,
the requirement urgency of each application in a time slot is
determined from two aspects: i) the resource interface (i.e.,
the availability factor α and regularity r), and ii) the node
dependency if the resource is a critical node (i.e., satisfying
the node precedence graph GP

i and node conflict graph GC
i ).

To derive the weight of each application Ai on a particular
resource R in each time slot t, denoted as w

R(t)
i , from the

above two aspects, we i) leverage a supply graph to assess
how urgently application Ai requires resource R in slot t,
and ii) develop a set of rules to decide the weight according
to the node dependency graphs. Algorithm 1 presents the main
functions of SGP. Below, we describe how to determine weight
w

R(t)
i from each aspect.

B. Supply Graph

In this section, we describe how to use the supply graph to
determine the weight of each application Ai on resource R
in slot t according to Ai’s resource interface IRi . Essentially,
the resource interface IRi captures i) the amount of resource
R required by Ai in each slotframe (specified by availability
factor α), and ii) the distribution of R in each slotframe
(specified by regularity r).

Therefore, we leverage a supply graph to describe i) the
amount of resource R that is already allocated to Ai, and ii)
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Algorithm 1 Supply Graph based Partitioning
1: for t = 1 to T do
2: W ← all applications’ weight wCi(t)

i on Ci channels;
3: Sort W in the descending order;
4: for wCi

i (t) ∈ W do
5: if Number of remaining channels ≥ Ci then

6: Append t to partition PCi
i ;

7: for t = 1 to T do
8: for v∗ ∈ critical nodes set do
9: Collect all applications’ weight wv∗(t)

i on v∗;
10: Allocate v∗ to the application Ai with highest weight;
11: Append t to partition P v∗

i ;
12: return partitions

Fig. 7. Example supply graph of a partition in time slot 9.

the requirement of R specified by the resource interface. Based
on these two information, we are able to determine whether
R is required by Ai in the current slot and how urgent is the
requirement, i.e., the weight value w

R(t)
i . The supply graph

of Ai consists of three functions.
Supply function S(P, t) denotes the number of slots allocated
to P during the time interval [0, t].
Supply upper bound function Su(P, t) = ir−(P, t) +
U(P, t) + r, where ir−(P, t) ≤ 0 is the minimum instant
regularity within [0, t].
Supply lower bound function Sl(P, t) = ir+(P, t) +
U(P, t) − r, where ir+(P, t) ≥ 0 is the maximum instant
regularity within [0, t].

If the supply function falls within the range of the upper and
lower bound functions, i.e., Sl(P, t) < S(P, t) < Su(P, t), the
partition satisfies the regularity constraint. Thus, the supply
upper and lower bound functions tell us whether resource
R can be allocated to application Ai in the current slot t
to satisfy the regularity requirement. Below, we introduce a
lemma which tells us if resource R can be allocated to Ai in
slot t, whether R should be allocated to Ai.

Lemma 1. If the instant regularity generated by allocating R
to Ai in the current slot t is larger than ir+(P, t − 1) (less
than ir−(P, t− 1)), the supply lower (upper) bound function
is increased (reduced).

The proof of Lemma 1 is straightforward according to
the definitions of supply upper and lower bound functions,
and thus is omitted here due to the page limit. Lemma 1
indicates that keeping the instant regularity within a small
range will not shrink the feasible range of S(P, t) specified
by (Sl(P, t), Su(P, t)). That is, the number of feasible time

slots for the next allocation of resource R to application Ai

is not reduced. This is important since the network manager
needs to accommodate multiple applications to satisfy their
individual resource interfaces. If the feasible solution space
for the resource allocation of each application is reduced, it
is more difficult for the network manager to find a feasible
solution for the resource allocation of all the applications.

Based on the above discussions, weight w
R(t)
i of each

application Ai on resource R in slot t can be determined
based on the following three cases.
Case 1. If allocating R to Ai in the current slot t causes
S(P, t) to exceed the range of (Sl(P, t), Su(P, t)), we set
w

R(t)
i = 0. That is, R cannot be allocated to Ai, otherwise

the regularity requirement specified in the resource interface
requirement cannot be met.
Case 2. In this case, allocating R to Ai in the cur-
rent slot t does not cause S(P, t) to exceed the range of
(Sl(P, t), Su(P, t)), but the instant regularity exceeds the
range of (ir−(P, t− 1), ir+(P, t− 1)). Then, we set wR(t)

i =
1/max(te − t, 1), where te is the latest time slot that R must
be allocated to Ai to satisfy the regularity requirement. That
is, te is the deadline to allocate R to Ai and is used as the
metric to capture the urgency on the requirement of R.
Case 3. If allocating R to Ai in the current slot
t does not cause the instant regularity to exceed the
range of (ir−(P, t− 1), ir+(P, t− 1)), we set w

R(t)
i =

1/max(te − t, 1) + 1. That is, according to Lemma 1, an
additional weight value is added in this case that the instant
regularity is within a small range.

Fig .7 shows an example of a supply graph of an application
in time slot 9, where the blue curve represents supply function
S(P, t) and the red curves represent the supply upper and
lower bound functions. Then, if the resource is allocated to
the application in slot 9, we have S(P, 9) < Su but the instant
regularity ir(P, 9) > ir+ (i.e., Case 2). Thus, the weight of
the application in slot 9 is 1

max(12−9,1) = 1/3 since te = 12.

C. Satisfying Node Dependency

If resource R is a critical node, in addition to the resource
interface requirement captured by the supply graph, we need to
consider the node dependency constraints when we determine
the weight wR(t)

i for each application.
According to Section IV-C, intra-application node depen-

dency is captured by the node precedence graph and node
conflict graph. Thus, based on the weight generated according
to the resource interface of each critical node, we develop a
set of rules to refine the weight, according to the constraints
posed by each dependency graph.

1) Rules for the precedence graph: The constraints speci-
fied by the node precedence graph restrict the access order of
the critical nodes on the routing path of a same task. Thus, we
develop the following two rules to refine the weight of each
critical node.
Rule 1. For any critical node vj , If any node in the predecessor
vertices of vj in the node precedence graph GP

i does not
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Fig. 8. 6TiSCH testbed experiments. (a) Hardware for the gateway (RPi4B and CC2652) and device nodes (SensorTag); (b) deployment in the building; (c)
network topology on google map; (d) applications deployed on the testbed; (e) channel and node partitions; (f) end-to-end latency result of each source node.

receive the required number of slots, the weight for node vj
is set to 0.
Rule 2. For two nodes vj , vk in the same vertex in GP

i , their
weight is set to the greater of their original weights, i.e., w =
max(w

vj
i , wvk

i ), to ensure the application can access these two
nodes simultaneously.

2) Rules for the conflict graph: The constraints specified by
the node conflict graph avoid the simultaneous transmissions
from any two nodes with a same sender/receiver. Thus, we
develop the following
Rule 3. For any two nodes connected in the node conflict
graph, the weight of one node is set to 0.

Note that, since each node may be connected to multiple
nodes, we follow a greedy manner to determine which nodes’
weights are set to 0 in a conflict graph. Specifically, we select
the node with the largest weight and set the weight(s) of the
connected node(s) to 0. This process repeats until the weights
of all the nodes in the conflict graph are refined.

3) Other rules: Since one transmission can be transmit-
ted only if both channel resource and corresponding node
resources are available. Thus, we have the following rule.
Rule 4. If the application is not allocated with channel
resource in the current slot, the weights of all the critical nodes
are set to 0.

VII. PERFORMANCE EVALUATION

In this section, we present the experimental results of the
proposed network resource partitioning framework through i)
testbed validation, ii) MAC layer emulator, and iii) synthetic
data set.

A. 6TiSCH Testbed Validation

We implement the network resource partitioning framework
on a 5-hop 8-channel 6TiSCH network testbed with 49 devices.
6TiSCH is a representative multi-hop multi-channel RTWN
technology. It integrates the IEEE 802.15.4e TSCH data link

layer with an IP-enabled upper stack (using 6LoWPAN). to
achieve both deterministic real-time performance with ultra-
low power consumption and seamless integration with Internet
services. The network layer of 6TiSCH uses RPL routing
protocol [29] to form tree topology. We use TI CC2650
SensorTag as the device nodes and a RaspberryPi 4B device
attached with a TI CC2652 board to serve as the gateway
running the network manager. Each SensorTag is equipped
with multiple sensors, e.g., temperature, pressure, humidity,
gyro and accelerators. The 6TiSCH full stack is implemented
on TI-RTOS [30] and deployed on both device nodes and the
gateway. Fig. 8(a) and Fig. 8(b) show the hardware used in the
testbed and their deployment in the labs and hallway. Fig. 8(c)
shows the network topology and GPS location of the devices.
The duration of each time slot is 10 ms and the slotframe
length is set to T = 100 (1 second) in the experiments. 8 of
the IEEE 802.15.4e channels are enabled for communications,
i.e., C = 8.

We deploy three applications on the 6TiSCH testbed and the
task specifications are shown in Fig. 8(d). Fig. 8(e) shows the
channel and node partitions allocated to each application for
local schedule generation under EDF scheduling for its tasks.
We run the network for 30 minutes and collect the end-to-end
latency results from each source node (Fig. 8(f)). The results
show that with the schedule constructed on the allocated
partitions, almost all packets meet their deadlines. However,
due to the high interference from other wireless devices in the
building, packet loss occurs and causes retransmissions, which
increase the end-to-end latency.

B. RTWN Emulator

In this set of experiments, we develop an RTWN emulator
to emulate large-scale mesh networks (see Fig. 9 with a
screenshot) and generate realistic network task sets to compare
the schedulability of SGP to that of other methods. We
implement the RTWN virtualization framework which consists
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Fig. 9. A screenshot of the high-fidelity RTWN emulator. Key components
including nodes, application, manager and network statistics visualization.

of the network nodes, applications and network manager. In
each experiment, we first randomly distribute |V | network
nodes on a grid with a fixed size (32 × 24). Nodes within
each other’s transmission range (setting to 6) can establish a
wireless link and eventually all the nodes form a multi-hop
mesh network. We then generate N applications, each with
a scheduling policy randomly selected from multi-channel
EDF and RM policies and a randomly selected number of
available channels Ci. For each application, we generate a
task set with up to M tasks. Each application submits the
channel/node resource interfaces to the network manager, and
constructs local schedule for its tasks upon receiving the
resource partitions from the network manager.

In this set of experiments, the metric used is Task Success

Ratio (TSR), which is defined as the ratio of application
sets satisfying tasks’ timing requirements to all the generated
application sets. Fig. 10(a-c) illustrate the TSR comparisons
among different algorithms and partitioning models, including
SGP and SMT approach, as well as the RRP partition model,
EDP partition model [17], and a Round-Robin (RR)-based
partition allocation approach. Each data point represents the
average value obtained from 500 trials.

As the number of applications N or tasks M increases, there
is a higher degree of resource competition within the network,
resulting in a decrease in the TSR for all the methods. On
the other hand, a higher value of |V | indicates an increased
network capacity, leading to a higher TSR. The results demon-
strate that SGP significantly outperforms other algorithms and
achieves a TSR comparable to that of the SMT approach. The
classic RRP model, however, is unable to handle node de-
pendency and exhibits a much lower TSR. The EDP partition
model primarily focuses on meeting throughput requirements
by allocating a certain amount of resources within a specified
period. However, when a task set comprises tasks with diverse
periods and deadlines, its compositional approach fails to
ensure the task set schedulability. RR achieves near-uniform
resource allocation and can satisfy the timing requirements, but
it only performs well under light network workload settings.

Fig. 10. (a-c) TSR comparison results on RTWN emulator: (a) set |V | =
120,M = 3 and vary N ; (b) set N = 10,M = 3 and vary |V |; (c) set
N = 4, |V | = 120 and vary M . (d) PSR comparison results on synthetic
data set.

C. Synthetic Data Set

We compare the partition allocation performance of SGP
with SMT solution and the RRP partitioning algorithms:
AAF [24], Magic7 [25], MulZ [31] with synthetic resource
interfaces for one single resource. Two variations of SGP are
included: SGP A that only considers Case 1 and Case 2 in
determining the weight, and SGP B uses Lemma 1 and Case
3. The performance metric used is Partition Success Ratio

(PSR), which is defined as the ratio of application sets received
feasible partitions satisfying interfaces to all the generated
applications sets.

We generate 20 applications, each of which has a resource
interface. The slotframe length is set to 112. The total utiliza-
tion (sum of availability factors of each interface) ranges from
0 to 1 and the regularity of each partition ranges from 1 to 2.
For each utilization setting, we repeat 2000 trials and collect
the average result. Fig. 10(d) shows the PSR of all the methods
decrease with the increasing of utilization, and SMT dominates
others as an exact solution. The PSR gap between SMT and
SGP B is small and validates the effectiveness of SGP. On
the other hand, RRP-based algorithms degrade significantly
due to their large approximation overhead and lack of support
for non-integer regularity values.

VIII. CONCLUSION AND FUTURE WORK

This paper formulates the network resource partitioning
problem for RTWNs to support multiple applications with end-
to-end timing requirements. We present a SMT-based exact so-
lution and a supply graph based resource allocation framework
to further reduce the computation overhead. The effectiveness
of the proposed solutions are demonstrated through extensive
testbed experiments and performance evaluation.

As for the future work, we will extend the proposed supply
graph based partitioning framework to support lossy links .
Another important direction is to explore how to reconfigure
the resource allocations at run time with minimum overhead
in the presence of unexpected network dynamics.
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