
84

Regular Composite Resource Partitioning and
Reconfiguration in Open Systems

WEI-JU CHEN, The University of Texas at Austin, USA

PENG WU, University of Connecticut, USA

PEI-CHI HUANG, The University of Nebraska at Omaha, USA

ALOYSIUS K. MOK, The University of Texas at Austin, USA

SONG HAN, University of Connecticut, USA

We consider the problem of resource provisioning for real-time cyber-physical applications in an open sys-

tem environment where there does not exist a global resource scheduler that has complete knowledge of the

real-time performance requirements of each individual application that shares the resources with the other

applications. Regularity-based Resource Partition (RRP) model is an effective strategy to hierarchically parti-

tion and assign various resource slices among such applications. However, previous work on RRP model only

discusses uniform resource environment, where resources are implicitly assumed to be synchronized and

clocked at the same frequency. The challenge is that a task utilizing multiple resources may experience unex-

pected delays in non-uniform environments, where resources are clocked at different frequencies. This paper

extends the RRP model to non-uniform multi-resource open system environments to tackle this problem. It

first introduces a novel composite resource partition abstraction and then proposes algorithms to construct

and reconfigure the composite resource partitions. Specifically, the Acyclic Regular Composite Resource Parti-

tion Scheduling (ARCRP-S) algorithm constructs regular composite resource partitions and theAcyclic Regular

Composite Resource Partition Dynamic Reconfiguration (ARCRP-DR) algorithm reconfigures the composite re-

source partitions in the run time upon requests of partition configuration changes. Our experimental results

show that compared with state-of-the-art methods, ARCRP-S can prevent unexpected resource supply short-

fall and improve the schedulability up to 50%. On the other hand, ARCRP-DR can guarantee the resource

supply during the reconfiguration with moderate computational overhead.

CCS Concepts: • Computer systems organization → Real-time systems; Embedded and cyber-

physical systems;

Additional Key Words and Phrases: Regularity-based resource partition, composite resource, dynamic recon-

figuration, open systems

The work is supported in part by the National Science Foundation Grant CNS-1932480, CNS-2008463, CCF-2028875, Ne-

braska Research Initiative Grant NRI-4103080440, and Office of Naval Research under ONR Award N00014-17-1-2216.

Authors’ addresses: W.-J. Chen (corresponding author) and A. K. Mok, The University of Texas at Austin, 2317 Speedway,

Austin, TX 78712, USA; emails: {albertwj, mok}@cs.utexas.edu; P. Wu and S. Han, University of Connecticut, 371 Fairfield

Way, Unit 4155, Storrs, CT 06269, USA; emails: {peng.wu, song.han}@uconn.edu; P.-C. Huang, The University of Nebraska

at Omaha, 172 Peter Kiewit Institute, 1110 South 67th Street Omaha, NE 68182, USA; email: phuang@unomaha.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/09-ART84 $15.00

https://doi.org/10.1145/3609424

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

https://orcid.org/0000-0001-5978-9235
https://orcid.org/0000-0002-7175-6679
https://orcid.org/0000-0002-7163-2772
https://orcid.org/0000-0003-1309-8425
https://orcid.org/0000-0002-1491-7675
mailto:permissions@acm.org
https://doi.org/10.1145/3609424
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609424&domain=pdf&date_stamp=2023-09-26

84:2 W.-J. Chen et al.

ACM Reference format:

Wei-Ju Chen, Peng Wu, Pei-Chi Huang, Aloysius K. Mok, and Song Han. 2023. Regular Composite Resource

Partitioning and Reconfiguration in Open Systems. ACM Trans. Embedd. Comput. Syst. 22, 5, Article 84 (Sep-

tember 2023), 29 pages.

https://doi.org/10.1145/3609424

1 INTRODUCTION

A cyber-physical system (CPS) may consist of multiple applications that share resources from

the same resource pool. In an open system environment [1, 2], there does not exist a global sched-

uler that has full knowledge of the real-time performance requirements of each individual applica-

tion. Each application tenders a request and is allocated a fraction of the shared resource to meet

its own need. It is up to the application-level scheduler in each application to schedule its tasks

to meet the task-level timing constraints. Many effective strategies have been proposed in the lit-

erature to allocate resources in such environment. Among those methods, the Regularity-based

Resource Partition (RRP) model is an abstraction of component-based hierarchical scheduling

systems where each component is an application with specified functional requirements and tim-

ing constraints [3–5]. In the RRP model, the resource supply is characterized in two dimensions

where the availability factor defines the resource supply rate and the supply regularity defines the

deviation of the allocated resource supply from the ideal resource supply. As a hierarchical schedul-

ing system, a component (or application) in the RRPmodel may consist of several sub-components.

A parent component distributes its resource share to its sub-components, each of which in turn

distributes it to its sub-components in a hierarchical fashion. Taking CPU resource as an exam-

ple, Figure 1 gives an overview of the hierarchical resource scheduling model. In this example,

individual applications utilize their resource partitions to request CPU resource shares. The allo-

cated resource shares for each application will then be distributed to its task group according to

self-defined policies. In this way, the task-level scheduler of each application can independently

schedule its own tasks based on the allocated resource.

Another popular approach in the literature to characterize the resource usage interface is the

Periodic Resource Model (PRM) [6] (or its variant the Explicit Deadline Periodic (EDP)

model [7]). These models characterize the resource interface as a periodic execution budget and

its period. The EDP model extends the PRM model by using a deadline to limit the delay of the

resource supply in each period. The main difference between RRP and EDP models is illustrated

in Figure 2. Given the resource demands of all the task groups, both RRP and EDP models will con-

struct resource interfaces accordingly. The figure shows a possible schedule of resource allocation

with a bandwidth assignment of 1/4 of the resource. The EDP model constructs a resource inter-

face which has zero resource supply in time interval (1, 6]. By contrast, the RRP model bounds

the length of such zero-supply interval by explicitly specifying the allowed resource supply jit-

ter. Ideally, from the application’s point of view, the resource should be supplied uniformly over

any time interval as if it is dedicated to the application, but at a slower rate (14) as depicted in

Figure 2(c). By considering the resource supply jitter, the resource supply specified by the resource

interface under the RRP model can better approximate the ideal supply which is uniform over any

time interval. Hence, changes to the task group can be more easily accommodated by the appli-

cation’s own task scheduler by rescheduling tasks within its allocated resource partition. This is

possible as long as the application’s task utilization remains below the assigned availability fac-

tor, thus avoiding the need to change the resource interface [3, 8]. The jitter requirement how-

ever makes the designs of the scheduling algorithms under the RRP model more complex. The

existing scheduling algorithms often limit the form of resource supply rate of each resource parti-

tion and give polynomial-time solutions. For example, the Adjusted Availability Factor (AAF)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

https://doi.org/10.1145/3609424

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:3

Fig. 1. Overview of the hierarchical scheduling

model.

Fig. 2. (a) and (b): two possible schedules under the

EDP and RRP models with a required bandwidth of 1
4 .

(c): ideal resource supply from the application’s point

of view.

algorithm allocates resource partitions with availability factors (supply rate) of power of 1
2 [3]. Li

and Cheng [5, 9] proposed the use of a combination of Magic7 and PFair algorithms [9, 10] to

improve the resource utilization overhead.

A notable limitation of previous work on the RRP model is that they implicitly assume that

resources are clocked at the same frequency for both single-resource [3, 11, 12] and multi-

resource environment [9], in which the minimal intervals (resource slices) assigned to each task for

execution on each physical resource are the same. In multi-resource environments, however, the

size of resource slices may be non-uniform across different types of physical resources. This dif-

ference in the clock frequencies may introduce unexpected delays for the end-to-end tasks, which

may access multiple physical resources in a sequential fashion (see Section 4.1 for the formal defi-

nition of an end-to-end task).

In this paper, we first present the challenges in solving the above resource misalignment problem,

and introduce a novel composite resource partition abstraction for non-uniformmulti-resource envi-

ronments. Based on this resource interface, theAcyclic Regular Composite Resource Partition

Scheduling algorithm (ARCRP-S) and Acyclic Regular Composite Resource Partition Dy-

namic Reconfiguration (ARCRP-DR) algorithm are proposed to construct and reconfigure the

composite resource partitions, respectively. The key idea behind the ARCRP-S algorithm is to con-

sider the requesting time of each resource partition. The resource misalignment problem then can

be mitigated by scheduling resource partitions in a way that resource will not be requested in the

middle of any resource slice. The ARCRP-DR algorithm is built on top of the reconfigurable RRP

model that we introduced in our recent work [12] by taking both the resource requesting time and

the performance degradation into consideration during the reconfiguration of composite resource

partitions. Finally, we evaluate the model with a real-world multi-resource system. Extensive sim-

ulation results are also presented to give a thorough evaluation on the proposed algorithms under

more general settings.

2 RELATEDWORK

The concept of regularity was first introduced by Shirero et al. [13] and was then extended to

the RRP model by Mok and Feng [11], aiming to distribute resource evenly on each resource

partition by specifying the regularity. Mok and Feng further introduced the irregular partition

and presented the Adjusted Availability Factor (AAF)-based scheduling algorithm to schedule

regularity-based resource partition in single-resource environments [3, 11]. Li and Cheng extended

the AAF-based scheduling algorithm to uniformmulti-resource environment and developed an op-

timized partitioning algorithm [5, 9]. More recently, the RRP model was further extended to sup-

port online reconfiguration of resource partitions [12] in single resource environments. Besides the

RRP model, many other studies on hierarchical scheduling characterize resource interfaces using

different models [4, 6, 7]. The most popular model among them is the Explicit Deadline Periodic

(EDP)model [7] which introduces a relative deadline parameter based on the Periodic Resource

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:4 W.-J. Chen et al.

Model (PRM) model [6]. Most aforementioned work only discusses the resource allocation in

uniform-resource environment (either single- or multi-resource). However, in multi-resource en-

vironments, the resource slice sizes may be non-uniform across different physical resources, and

new resource interface and scheduling methods have to be designed.

Several works on resource scheduling under the multi-resource models have been proposed in

recent years. Some of them apply resource reservation techniques based on processing capacity

to achieve performance isolation on multicore architectures by a set of virtual processors with dif-

ferent speeds [14, 15]. For example, Buttazzo et al. [16, 17] proposed a method for allocating a set

of parallel real-time tasks with time and precedence constraints on different multicore platforms

by abstracting the available computing power into interface specifications. However, these end-

to-end resource reservation approaches do not consider dynamic workload in open systems, and

thus cannot adapt to online resource request changes. Some other research efforts were devoted on

workload-partitioning techniques for heterogeneous computing systems which enable exploiting

both CPU and GPU to improve resource utilization and increase high-performance computation.

Two excellent review papers [18, 19] provided an overview and comparisons of the well-known

techniques for such systems. Among these techniques, some of them focus on scheduling work-

loads on the appropriate device on the same die (i .e ., integrated CPU and GPU processors) which

shares a total power budget and have strong thermal interactions [20–23]. Some work proposed

device-contention-aware scheduling schemes that take the run-time conditions on CPU and GPU

processors into consideration [24, 25]. There are also some work that focuses on cache-related

research on multicore virtualization platforms [26, 27]. However, most aforementioned research

studies did not consider non-uniform environment which may result in resource misalignment

problem.

Chen et al. introduces the concept of composite resource partitions to address the resource

misalignment problem in non-uniform multi-resource environment [28]. However, composite re-

source partitions can not be reconfigured with the single-resource online reconfiguration algo-

rithm [12]. The resource misalignment problem will be severe if the resource partitions on differ-

ent physical resources are reconfigured without any coordination. In this paper, we propose the

online algorithm to reconfigure the composite resource partitions in non-uniform multi-resource

environments.

To adapt a system to schedule tasks with varying timing requirements, a range of works have

been developed. For example, Burns and Davis [29] presented a survey on mixed-criticality sys-

tems, in which the task specifications depend on the system state/criticality. Jiang et al. [30] pro-

posed a mixed-criticality system for timely handling of I/O. It provides temporal and spatial isola-

tion and prohibits fault propagationwith small overhead based on hardware-assisted virtualisation

to offer good timing predictability. Many multi-mode system designs are proposed to ensure that

the mode switch is performed in a timely and safe manner in response to both internally and exter-

nally generated events [31–38]. The key challenge in these protocol designs is how to ensure the

schedulability of the system not only in each mode but also during the mode switch. For example,

Neukirchner et al. [31] introduced a packing solution and a scheduling algorithm based on both

mode changes and criticalities for each processor; the dynamic budget management schemes were

proposed to postpone criticality mode changes [34, 36]; the different execution-time servers under

the control of a hypervisor were employed to bound the overheads when mode changes [33, 35];

Chen and Phan [37] provided a system to analyze and evaluate the mode-change protocols. How-

ever, the existing solutions did not consider the reconfiguration of resource abstraction in non-

uniform multi-resource open system environment.

There are also some research works on the multi-mode resource interface and platform de-

sign [35, 39–42] where the resource interface may change in the run time for single-resource

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:5

environment. For instance, Evripidou and Burns [35] used a two-level scheduler or a hypervisor

to handle the criticality mode change. Phan et al. [39] proposed a compositional analysis of the

multi-mode resource interface. Li et al. [40] used virtual machine (VM) to support multi-mode

virtualization where the VM parameters change with minimum transition latency. Paluri et al. [42]

proposed a VM scheduler prototype based on the RRP model and implemented it on Xen’s x-86

based hypervisor. In this paper, we focus on the scheduling and reconfiguration of resource inter-

faces in non-uniform multi-resource environment.

3 RRP MODEL IN UNIFORM ENVIRONMENT

This section revisits the RRP model in the uniform environment. We first define the time systems

used in this paper, and review the concepts of RRPmodel in the uniform environment [3, 11, 12, 28].

3.1 Time Systems

In this paper, we use two time systems in the RRP model. The first one is the wall clock time de-

fined as the physical time τ , which is synchronized among all physical resources (see Figure 3(a)).

For the physical resource Π, a minimum non-preemptible physical time interval (2 in the example

in Figure 3) is defined as a resource slice and allocated to an application exclusively. Physical re-

source is allocated to the application(s) in units of resource slices (see Figure 3(b)), where a resource

partition P is a set of resource slices. The second time system, physical resource time, is defined as

follows.

Definition 3.1. The physical resource time t of a physical resource Π is a function of the physical

time τ such that t = τ
Q
where Q is the resource slice size of Π.

In this paper, the domain of physical time is assumed to have only non-negative integers and

each resource slice starts and ends at physical time integral boundaries. As shown in Figure 3, non-

negative integer t denotes a time at the boundaries of resource slices. The scheduling decisions

made by the resource-level scheduler are always at the integral domain of physical resource time

because resource slices are non-preemptible. In the following of the paper, we always refer the

time to be physical resource time unless we specify the time to be others. Moreover, we assume

that the resource slices have an equal size for the same physical resource. If all physical resources

to be scheduled have the same resource slice size, the resource environment is uniform. Otherwise,

the resource environment is non-uniform.

3.2 Regularity-based Resource Partition (RRP)

We now revisit the formal definition of a regularity-based resource partition in the uniform envi-

ronment [3].

Definition 3.2. A resource partition P on a physical resource Π is a tuple (S,p), where S =
{s1, s2, . . . , sn : 0 ≤ s1 < s2 < · · · < sn < p} is a set of n time points that denote the start time of

the resource slices (called the offsets) allocated to the partition, and p is the partition period with

the following semantics: the physical resource Π is available to the application tasks to which the

partition P is allocated only during the time intervals [sk + x ·p, sk + 1 + x ·p), x ∈ N, 1 ≤ k ≤ n.

Definition 3.3. Supply function S (t) of resource partition P is the number of allocated resource

slices in interval [0, t).

S (t) represents the amount of resource supply for the resource partition P in [0, t). As an ex-

ample, the resource partition P in Figure 3 is ({s1 = 0, s2 = 2, s3 = 4}, 5). Its supply function has

S (1) = 1, S (2) = 1, S (3) = 2, S (4) = 2, and so on.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:6 W.-J. Chen et al.

Fig. 3. (a) Physical resourceΠ is divided into units

of resource slices with a minimum physical time

interval of 2. Resource partition P is a set of re-

source slices allocated to an application. (b) Phys-

ical resource Π with physical resource time.

Fig. 4. Illustration of the concepts of availability factor,

instant regularity and supply regularity in RRP model.

The RRP model characterizes the resource supply in two dimensions: (1) the resource supply

rate and (2) the deviation of the resource supply from the ideal resource supply which allocates

the resource evenly to the application over any time interval (zero jitter). The resource supply rate

is defined as the availability factor α , and the concept of supply regularity is introduced to capture

the jitter in the resource supply.

Definition 3.4. The availability factor α of a resource partition P = (S,p) is defined as |S |
p

where

|S| is the number of elements in S.

Definition 3.5. The instant regularity I (t) for a resource partition P at time t is defined as I (t) =
S (t) − α · t .

Instant regularity I (t) quantifies the gap between the ideal supply and actual supply at time

t . The difference in instant regularity at two time instants represents the gap between the ideal

supply and actual supply for that time interval.

Definition 3.6. Let a,b,k be non-negative integers. The supply regularity R of resource partition

P is defined as the smallest k such that |I (b) − I (a) | < k,∀b ≥ a.

The regularity defines the maximum supply deviation from the ideal resource supply. Regularity

of one means that the resource supply will never undersupply or oversupply more than one unit

of resource.

Figure 4(a) illustrates the ideal and actual resource supply of a resource partition P which has 1
4

fraction of resource. Ideally, the resource supply should be uniformly distributed as shown using

the dash line which is equal to the availability factor times the duration as 1
4 · t . However, resource

can only be allocated to an application exclusively in units of resource slices. For this reason, the

actual resource supply will be a staircase function S (t) as shown using the solid line. Figure 4(b)

illustrates the actual resource supply for time interval [1, t) as S (t)−S (1), and I (t)−I (1) is the supply
deviation in this time interval. For example, I (6)−I (1) is the supply deviation in time interval [1, 6).
The supply regularity defines the maximum supply deviation for all time intervals.

Definition 3.7. A regular partition is a resource partition with supply regularity of 1 and an

irregular partition is a resource partition with supply regularity larger than 1.

Recall that the actual resource supply function S (t) is a staircase function while the ideal re-

source supply is a linear function as illustrated in Figure 4(a). The supply regularity bounds the

supply deviation between the two functions and is thus not possible to be zero in a practical system.

Moreover, a regular partition, which has regularity of 1, has the following nice property. The utiliza-

tion bounds for both fixed-priority scheduling and dynamic-priority scheduling of tasks running

on a regular partition remain the same as if the task group were running on a dedicated resource

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:7

Fig. 5. The relationship among important concepts in partition construction and reconfiguration under dif-

ferent environments.

Fig. 6. Solid and dash lines represent two end-to-end wireless networked control applications A1 and A2

sharing CPU and wireless network channels, respectively. A1 has an end-to-end task K1 and A2 has an end-

to-end task K2.

whose supply rate is the same as that of the regular partition [3, 8]. Thus, a task group scheduled

on a regular partition with either scheduling policy cannot distinguish whether it is scheduled

on a resource partition or a dedicated resource with the same rate. This is, however, not true for

a task group scheduled on an irregular partition which has a regularity larger than 1. Irregular

partitions will introduce larger jitter although this might be acceptable for some applications. In

this paper, we focus on regular partitions. Table 1 summarizes the frequently used symbols in this

paper. Figure 5 illustrates the relationship among important definitions and categorizes them into

four quadrants. For example, the top-left quadrant denotes the definitions used for static partition

construction in the uniform environment.

As an example shown in Figure 3, the availability factor α of resource partition P is 3
5 . The

instant regularity I (t) has I (1) = 2
5 , I (2) = −

1
5 , I (3) =

1
5 and so on. The supply regularity R is 1 and

thus P is a regular partition.

4 COMPOSITE RESOURCE PARTITION: CHALLENGES AND MODEL EXTENSION

4.1 Challenges in Non-uniform Multi-resource Environment

In uniform environments, tasks are assumed to only access resource at the resource slice bound-

aries. However, this assumption may not hold in a practical system, especially in multi-resource

environments where resources have different sizes of resource slices. In such environments, each

application may have tasks utilizing multiple resources in a periodic and sequential fashion. We

define such periodic end-to-end task as follows:

Definition 4.1. A periodic end-to-end task K is defined as (I,X,p,d) where I =

{Π1;Π2; · · · ;Πn } is a sequence of n physical resources that K will access in sequence, X =

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:8 W.-J. Chen et al.

Table 1. Summary of Important Notations and Definitions

Notation Definition

τ , Π, t Physical time; physical resource; physical resource time
P, Q The resource partition; the resource slice size of Π
(S, p) The start time of the resource slices (offsets) allocated to the partition; the partition period
S (t), α The supply function of P in interval [0, t); the availability factor
I (t), R The instant regularity; the supply regularity

K = (I, X, p, d) A periodic end-to-end task K ; a sequence of n physical resources I; the corresponding requested
amount of resource slices X; the period of K ; the relative deadline of K

O = (O, p) O is a set of n′ time points when the resource may be requested (called the request offsets);
p is their period

R The effective supply regularity
C = (P, Πc , E) A composite resource partition C ; a set of partitions P; a set of physical resource Πc ;

a binary relation E on Πc (the resource access order of C)
Πj , O j,i , α j,i , Ai Each physical resource Πj ; the requested offset O j,i of Pj,i ; the requested resource supply rate

α j,i ; each application Ai
Po, P t , Pn Resource Partition before reconfiguration; during RPT stage; after reconfiguration

λ = {C, F , R, T } Reconfiguration request of regular composite resource partition λ; the set of all regular composite
resource partitions C; each effective regular resource partition Pj,i has the requested resource

α j,i ∈ F ; an associated effective reconfiguration supply regularity Rrj,i ∈ R;
the maximum complete time T for reconfiguration

Rr The effective reconfiguration supply regularity Rr of partition P
d (t) The maximum supply shortfall among all the time intervals ending at time t

s, o, Tt The resource slice starting time and requesting time; the state of the partition system at time t
q, b, r, e, d The time of reconfiguration request; the budget; release time; deadline time; the maximum supply

shortfall

{x1;x2; . . . ;xn } is the corresponding requested amount of resource slices, p and d are the period

and the relative deadline of K , respectively, in units of physical time.

Figure 6 gives an example of two end-to-end wireless networked control applications in

multi-resource environment. Let physical resource CPU1, CPU2, CPU3 and Networks denoted as

Π1,Π2,Π3 and Π4, respectively. Application A1 has an end-to-end task K1 with I1 = {Π1;Π4;Π3}.
Application A2 has an end-to-end task K2 with I2 = {Π2;Π4;Π3}. In this paper, we focus on the

resource-level scheduler and the resource supply of the constructed partitions instead of the task-

level scheduler. Thus, in the following, we will assume that there is only one task in each appli-

cation so there is no task-level scheduler. The response time of this single task running on the

resource partition can represent the actual resource supply it received. Given a regular resource

partition with availability factor α , we can derive the maximum response time t for the task re-

questing x resource as follows. t − 1 is the time that the task is about to receive the last one unit

of resource slice. Assuming this time interval is [a,b), we can have S (b) − S (a) = x − 1 by Def-

inition 3.3. Further by Definition 3.6, Definition 3.5, and the fact that the partition is regular, we

have |(x − 1) − α (t − 1) | < 1. This leads to the conclusion that the maximum response time is

�x/α	 because both x and t are integers. In this paper, we use the upper bound of the response

time �x/α	 of the single task running on the partition to measure whether the partitions can pro-

vide enough resource supply to highlight the resource misalignment problem. For a task utilizing

multiple resource, the response time is the sum of the time spent on each resource partition.

Figure 7 shows a partition schedule for applicationA1 where its taskK1 experiences the resource

misalignment problem. The resource slice sizesQ1,Q4 andQ3 for physical resources Π1,Π4 and Π3

are 2, 4 and 2, respectively. The black resource slices denote three regular resource partitions P1,1 =
({6}, 8), P4,1 = ({3}, 4), P3,1 = ({1}, 2) on physical resource Π1,Π4,Π3 assigned to A1, respectively.

Note that for ease of presentation, we use Pj,i to denote the partition on physical resource Πj

assigned to Ai . These three regular partitions have availability factor α1,1 =
1
8 ,α4,1 =

1
4 ,α3,1 =

1
2 ,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:9

Fig. 7. The vertical and horizontal arrow denote the resource request time and the response time, respectively,

of a task instance running on each partition. This instance may miss the deadline because of the unexpected

delay for time interval [7.5, 8) on Π4.

respectively. Let’s consider an instance of task K1 = ({Π1;Π4;Π3}, {x1 = 1;x4 = 1;x3 = 1}, 36, 36)
of A1 where the task has a period and relative deadline of 36 in physical time. The vertical and

horizontal arrow denote the resource request time and the response time, respectively, of a task

instance running on each partition. Given the resource supply of these partitions, the theoretical

maximum response time of such task instance is 36 in physical time. However, this task instance

has to wait 2 extra time units during the physical time interval [30, 32) on resource Π4 because it

cannot execute in the middle of an resource slice of Π4. This prolongs the expected finishing time

on Π4 from physical time 46 to 48 and prolongs the end-to-end response time to 38 in physical

time. This causes the instance to miss the deadline.

Compensating the loss of resource supply due to the resource misalignment problemwith either

increasing the availability factor or setting a smaller deadline for the task is often not viable. For the

former approach, the system needs to schedule one more resource slice for each allocated resource

slice. In the worst case, the system needs to compensate a partition with α of 1
2 with another 1

2
of the resource to make up for the resource misalignment problem. For the latter approach, the

deadline of each task needs to be decreased for each misaligned partition and this may cause the

system unschedulable. In this work, wemitigate the resource misalignment problem by judiciously

scheduling the resource partitions in a way that no task will request resource at the middle of a

resource slice of its resource partition.

4.2 RRP Model Extension

To deal with the above challenge, we introduce the concept of composite resource partition by ex-

tending the RRP model with the new concept of effective supply regularity to address the resource

misalignment problem.We first extend the definition of a resource partition with the request offsets

to take the resource requesting time into consideration.

Definition 4.2. A resource partition P on a physical resource Π in non-uniform environment is

a tuple (S,O,p), where S = {s1, s2, . . . , sn : 0 ≤ s1 < s2 < · · · < sn < p} is a set of n time points

that denote the start time of the resource slices (called the slice offsets) allocated to the partition,

and O = (O = {o1,o2, . . . ,on′, : 0 ≤ o1 < o2 < · · · < on′ < p},p) denotes a set of n′ time points

when the resource may be requested (called the request offsets); p and p are the partition period

and offset period, respectively. The physical resource Π is available to the application to which the

partition P is allocated only during the time intervals [sk + x1·p, sk + 1+ x1·p), x1 ∈ N, 1 ≤ k ≤ n
and resource may only be requested at any requesting time o = ok + x2·p, x2 ∈ N, 1 ≤ k ≤ n′.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:10 W.-J. Chen et al.

In order to take the resource misalignment problem into consideration, the partition in non-

uniform environment now is defined with the consideration of the time points (request offsets)

at which the task group utilizing the partition can request resource. These request offsets will be

used to compute the supply regularity and will be defined in Definition 4.4. For example, consid-

ering the slice schedules of the physical resources accessed earlier, the three request offsets of the

resource partitions P1,1, P4,1, P3,1 in Figure 7 can be represented as O1,1 = ({0, 1, 2, 3, 4, 5, 6, 7}, 8),
O4,1 = ({3.5}, 4),O3,1 = ({0}, 2). The request offset extension above is compatible with the RRP

model in uniform environment where the request offsets include all the integer time points. In the

rest of the paper, we still assume that tasks can only have integer execution time but can request

resource in the middle of a resource slice such that the requesting time is non-integer. With this

extension, we further extend the definition of the supply function as follows.

Definition 4.3. For any non-negative time t , the supply function of the resource partition P at

time t equals to S (
t�). That is, S (t) = S (
t�).

Based on Definition 4.3, the resource supply in time interval [0, t) is equal to the resource supply
in time interval [0,
t�) since there is no complete resource slice in time interval [
t�, t).

Lemma 4.1. The resource supply of resource partition P in time interval [a,b) is S (b) − S (a) − 1 if
a is a non-integer requesting time and there is a resource slice with a starting time of
a�. Otherwise,
it is S (b) − S (a).

Based on the above extensions, the effective supply regularity can be defined as follows.

Definition 4.4. Given a resource partition P = (S,O,p), where S = {s1, s2, . . . , sn : 0 ≤ s1 < s2 <
· · · < sn < p} and O = (O = {o1,o2, . . . ,on′, : 0 ≤ o1 < o2 < · · · < on′ < p},p). Let e,x1,x2 be
non-negative integers. The effective supply regularity R of partition P is defined as the smallest

integer k such that for any slice starting time s = si + x1 · p, requesting time o = oj + x2 · p and e
where 0 < i < n, 0 < j < n′, e,x1,x2 ∈ N

⎧⎪⎨
⎪
⎩

|I (o + e) − I (o) − 1| < k if o � N and ∃s =
o�
|I (o + e) − I (o) | < k otherwise

Note that tasks in the non-uniform environment have their execution times and deadlines all in

integers as they are in the uniform environment. Hence, the resource supply deviation for a task

requesting resource at o should be computed for the time intervals [o,o + e) for all integer e . The
effective supply regularity defines the maximum supply deviation from the ideal resource supply

with regards to the application’s requesting time. Effective supply regularity of 1 indicates that

the resource supply will never undersupply or oversupply more than one unit of resource consid-

ering the application’s requesting time. This definition of effective supply regularity is backward

compatible with the original definition of supply regularity in Definition 3.6 where the requesting

times include every integer time point in uniform environment.

Definition 4.5. A resource partition is effective regular if and only if it has effective supply reg-

ularity of 1.

The following Lemma states that a regular partition may not be effective regular.

Lemma 4.2. A regular resource partition P is not effective regular if there exists a non-integer re-

questing time o = oj + x2 · p and an integer slice starting time s = si + x1 · p such that s =
o� where
0 < i < n, 0 < j < n′, e,x1,x2 ∈ N.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:11

Proof. If such starting time s and requesting time o exist for a regular partition P , by Defini-

tion 4.4 and 3.5, we have

|S (o + p) − S (o) − α · p − 1| < R (1)

for a time interval of the partition period p. Also, from Definition 3.4, P has |S| resource slices over
the time interval of p; and from Definition 4.2 and 4.3, we have

S (o + p) − S (o) = |S| = α · p (2)

So, we have 1 < R and hence P is not effective regular. �

We now define composite resource partition and its regularity.

Definition 4.6. A composite resource partitionC is defined as a tuple (P,Πc ,E) where P is a set

of resource partitions, Πc is a set of physical resource and E is a binary relation on Πc such that

the partition Pj ∈ P is on physical resource Πj ∈ Πc and E represents the resource access order

of C .

The composite resource partition can be considered as a collection of resource partitions on a set

of physical resources with a fixed resource access order. For example in Figure 6, let Π1,Π4 and Π3

denote CPU1, Network and CPU3 resources respectively, and application A1 has resource access

order E = {(Π1,Π4), (Π4,Π3)}. The resource-level scheduler may construct a composite resource

partition C = ({P1,1, P4,1, P3,1},Πc = {Π1,Π4,Π3},E) for A1 as illustrated in Figure 7.

Definition 4.7. A composite resource partitionC is regular if and only if all of its resource parti-

tions are effective regular. If not, it is irregular.

5 COMPOSITE RESOURCE PARTITION: PROBLEM FORMULATION AND

ALGORITHM DESIGN

In this section, we study how to construct composite resource partitions in multi-resource envi-

ronment. We first formulate the ARCRP-S problem, and then present the necessary and sufficient

condition for constructing composite resource partition. Building upon this condition, we then

propose the ARCRP-S algorithm.

5.1 Problem Formulation and the Necessary and Sufficient Condition for Partition

Construction

Problem 5.1. Acyclic Regular Composite Resource Partition Scheduling (ARCRP-S)

Problem: Given the resource demands {α j,i | ∀i} and the resource access order Ei from each ap-

plication Ai where α j,i represents the requested resource supply rate on physical resource Πj from Ai ,

the ARCRP-S problem is to construct a regular composite resource partitionCi = (Pi ,Πc
i ,Ei) for each

Ai with the assumption that the total resource access order E = {(Πm ,Πn) | (Πm ,Πn) ∈ Ei ,∀i} does
not have cycles.

The ARCRP-S problem is proved to be NP-hard [28]. However, we can transform the availability

factor and request offsets of each partition into simpler forms whichmakes the problem easier. The

availability factor of each partition can be adjusted and transformed into the form of 1/m for some

integerm by allocating more resource. The request offsets can also be transformed into a periodic

patternwith a period ofm = 1
α
which covers the original offsets. These transformations will lead to

a necessary and sufficient condition for constructing an effective regular partition, although more

resources will be allocated for each partition. In this paper, we make the following assumptions:

(1) the availability factor α is limited to be 1/m for some integerm; and (2) the period of request

offsets p ism = 1
α
.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:12 W.-J. Chen et al.

Fig. 8. Examples of resource slice allocation for an effective regular partition P .

Theorem 5.1. Let a resource partition P has resource slice offsets {s1, s2, . . . , sn }, period p and

request offsets O = ({o1,o2, . . . ,on′ },p). P is effective regular if and only if ∃k ∈ N, 0 ≤ k ≤ n′

ok + (i − 1)p ≤ si ≤ ok+1 + (i − 1)p − 1, for 0 < i ≤ n

where o0 = on′ − p, on′+1 = o1 + p and no resource slice is scheduled on any non-integer requesting

time.

Theorem 5.1 gives the necessary and sufficient condition for the slice allocation for an effective

regular partition. The resource slices should be scheduled in a periodic time interval enclosed by

a pair of neighboring request offsets with a period of p. The time interval in each period should

be scheduled exactly one resource slice. Each pair of neighboring request offsets, ok and ok+1, is a
candidate for such periodic time interval and we denote each choice with a color in Figure 8. For

example, resource partition P has request offset O = ({o1 = 1.5,o2 = 3,o3 = 5.5},p = 7). o1,o2,
o2,o3 and o3,o1 are three candidates and denoted with black, gray and white, respectively. An

effective regular resource partition P should have all its resource slices scheduled in the periodic

time interval with the same color. For example, P = ({0, 6}, 14) is effective regular because all its
slices are scheduled in the white periodic interval.

Proof. We first prove the sufficient condition by showing that the effective supply regularity

is 1 if we have such schedule. We first construct intervals [b,a) as follows.

⎧⎪⎨
⎪
⎩

b = o j + x · p ∀j,x ∈ N
a = b + y · p +m ∀y,m ∈ N and 0 ≤ m < p

where b represents a requesting time and a represents some time after b. If such k (ok) exists, there
will be exactly one resource slice in each time interval [ok + z · p, ok+1 + z · p), ∀z ∈ N and there

is no resource slice at
b� for all non-integer b. So we have

y ≤ S (a) − S (b) ≤ y + 1 (3)

Also, α (a − b) = α · y · p + α ·m = y + α ·m because p = 1
α
. We then have

−α ·m ≤ S (a) − S (b) − α (a − b) ≤ 1 − α ·m (4)

From Definition 3.5,

−α ·m ≤ I (a) − I (b) = S (a) − S (b) − α (a − b) ≤ 1 − α ·m (5)

Becausem < p = 1
α
,

−1 < I (a) − I (b) < 1 (6)

Equation (6) holds for all time intervals [b,a) where b is the requesting time and a = b+e for e ∈ N.
P is effective regular by Definition 4.4. Next, we prove the necessary condition by contradiction.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:13

Fig. 9. The result of running Algorithm 1 for application A1 depicted in Figure 6. The slices scheduled for A1

are colored in black.

Assume such k does not exist then one of the following cases must be true

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

Case 1: sd =
oд + x · p� for a non-integer oд

Case 2:
⎧⎪⎨
⎪
⎩

oд + x · p ≤ sd ≤ oд+1 + x · p − 1
sd < sd+1 ≤ oд + (x + 1)p − 1

Case 3:
⎧⎪⎨
⎪
⎩

oд + x · p ≤ sd ≤ oд+1 + x · p − 1
oд+1 + (x + 1)p − 1 < sd+1

where sd and sd+1 denote the starting time of two neighboring slices; d,д,x ∈ N. For Case 1, a

resource slice is scheduled on a non-integer requesting time and hence P is not effective regular

by Lemma 4.2. For Case 2 and Case 3, resource slices are not scheduled in each time interval

enclosed by the same pair of neighboring request offsets.

Case 2: Let a requesting time b = oд + x · p and a time a = b + p. Because there are two resource

slices sd and sd+1 in time interval [b, a) and a − b = p = 1
α
, we have

S (a) − S (b) − α (a − b) = 1

By Definition 3.5, |I (a) − I (b) | < R and thus R > 1 by Definition 4.4. P is not effective regular.

Case 3: Let a requesting time b = oд+1 + x · p and a time a = b + p. Because there is no resource

slice scheduled in time interval [b, a) and a − b = p = 1
α
, we have

S (a) − S (b) − α (a − b) = 0 − 1 = −1
For the same reason as in Case 2, P is not effective regular. �

5.2 ARCRP-S Algorithm

We first give an overview of the ARCRP-S algorithm (Algorithm 1) and then describe each step in

detail. In the following, we use the applications depicted in Figure 6 to illustrate each step in the

ARCRP-S algorithm. The final schedules for applicationA1 is illustrated in Figure 9. ApplicationA1

and A2 are sharing physical resource CPU1, CPU2, CPU3 and wireless network channels, which

are denoted as Π1,Π2,Π3 and Π4, respectively. A1 and A2 will be assigned a regular composite

resource partition C1 = ({P1,1, P4,1, P3,1},E1) and C2 = ({P2,2, P4,2, P3,2},E2), respectively, and Pj,i
denotes Ai ’s partition on Πj . The desired availability factors are α1,1 = α2,2 =

1
8 ,α4,1 = α4,2 =

1
4 ,α3,1 = α3,2 =

1
2 , respectively.

ARCRP-S determines a linear order of all the physical resources and then constructs the resource

partition on each physical resource following this order (Line 1–3). Using the applications as an

example, the linear order {Π1;Π2;Π4;Π3} is constructed by a topology sort on the total resource

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:14 W.-J. Chen et al.

ALGORITHM 1: Overview of ARCRP-S Algorithm

Input: The requested αj,i of all application Ai and the total access

order E = {(Πm, Πn) | (Πm, Πn) ∈ Ei , ∀i }
Output: The partition schedules {Sj,i | ∀j, i }.

1 Enqueue all physical resource Πj into a queueQ following the

topological sorted order of E

2 whileQ � ∅ do
3 Dequeue Πj fromQ

4 for each Pj,i on Πj do
5 Oj,i = RequestOffset(αj,i , {Pm,i | (Πm, Πj) ∈

Ei })
6 end

7 {Sj,i | ∀i } = ConstructSchedule({(αj,i , Oj,i) | ∀i })
8 if {Sj,i | ∀i } = NULL then
9 return NULL

10 end

11 end

12 return {Sj,i | ∀j, i }

ALGORITHM 2: Computation of the Request Offsets

Input: The requested α , a set of resource partitions P and all the
resource slice sizesQj andO .

Output: The request offsetO = (O, p) of the partition P .
1 Procedure RequestOffset(α, P)
2 O = { }
3 p = 1

α
4 for Pj ∈ P do
5 p′j = pj ·Qj /Q

6 H = LCM(p′j , p)
7 for s ∈ Sj do
8 t ′ = (s + 1) ·Qj /Q

9 for x ← 0 to H /p′j − 1 do
10 Insert(O, t ′ + x · p′j (mod p))

11 end

12 end

13 end

14 returnO = (O, p)

access order E and the construction of schedule will follow this order. To compute the schedules

on each physical resource, the algorithm will compute the request offsets in the RequestOffset

subroutine (Algorithm 2) and construct the partitions in the ConstructSchedule subroutine (Al-

gorithm 3). Using the applications as an example, to compute the schedules of P4,1 and P4,2 on Π4,

the algorithm first computes the request offsets O4,1,O4,2 using subroutine RequestOffset based

on the schedules of P1,1 and P2,2. In the second step, the schedules of P4,1 and P4,2 are computed

based onO4,1 andO4,2 using subroutineConstructSchedule. The same procedurewill be repeated

for each physical resource.

As described above, ARCRP-S has the following two key steps: (1) the computation of the request

offsets and (2) the computation of the schedules given the request offsets of each partition. They

will be elaborated below.

5.2.1 Computation of the Request Offsets. Algorithm 2 shows the procedure to compute the

request offsets of each resource partition P on a physical resource Π. Assuming the resource slice

sizeQ j of resource Πj is given, Algorithm 2 computes the request offsets based on the requested α
and a set of resource partitions P, that may be accessed right before accessing P according to the

access order of application A. For each such partition, the algorithm converts the end time s + 1

of each resource slice to the time system of P as t ′ and add such requesting time to the request

offsets O as the loops in Line 4 and 7. The requesting time is assumed to be the end time of a

resource slice because tasks are assumed to have integer execution time and hence it is also the

time the next partition may request for resource. Using the applications as an example, the request

offsets can simply include all integer domain as O1,1 = O2,2 = ({0, 1, 2, 3, 4, 5, 6, 7}, 8) if there is

no partition accessed right before accessing P1,2 and P2,2. Moreover, assuming the schedule of

P1,1 = ({6},O1,1, 8) is computed in the previous phase, to compute the O4,1, we need the schedule

of P1,1 because P1,1 is the partition accessed right before P4,1. Following the steps in Algorithm 2,

O4,1 is computed as ({3.5}, 4) which can be seen in Figure 9.

5.2.2 Computation of the Partition Schedules. Given the request offset of each partition, the

problem to compute the schedule is NP-hard. This can be proved by reducing PMP1 [43] to this

problem and setting the request offsets to be the set of all integer time. We present two algorithms

below. ARCRP-S (Algorithm 3) computes the schedules by exploring a large search space with

exponential time complexity, while ARCRP-S-Fast (Algorithm 4) computes the schedule by only

exploring an essential search space with polynomial-time complexity but it is only applicable to

some settings.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:15

ALGORITHM 3: ConstructSchedule for ARCRP-S

Input: The availability factor αj,i and request offsetOj,i of each

partition on physical resource Πj .
Output: The schedules ({Sj,i | ∀i }. Otherwise, reject.

1 Procedure ConstructSchedule({(αj,i , Oj,i) | ∀i })
2 for Each combination of pairs of request offsets do
3 Initializem[t] = 0, ∀t ∈ [0, H) and Sj,i = { }, ∀i
4 for Each chosen request offset pair (o′i , o

′′
i) do

5 rj,i = �o′i 	;dj,i =
o
′′
i �

6 if rj,i ≥ dj,i then
7 dj,i+ = p j,i
8 end

9 end

10 Enqueue all partitions Pj,i into a new queueQ following

the ascending order of deadline dj,i
11 whileQ � ∅ do
12 Dequeue Pj,i from Q

13 if (Next(Sj,i , rj,i) < dj,i) or (dj,i > H and

Next(Sj,i , 0) < (dj,i mod H)) then
14 continue

15 end

16 t = EDF(rj,i , dj,i ,m)
17 if t = NULL then
18 break

19 end

20 Insert(Sj,i , t)
21 rj,i+ = pj,i ;dj,i+ = pj,i
22 Enqueue Pj,i intoQ with deadline dj,i
23 end

24 if Q = ∅ then
25 return {Sj,i | ∀i }
26 end

27 end

28 return NULL

ALGORITHM 4: ConstructSchedule for ARCRP-S-Fast

Input: The availability factor αj,i , request offsetOj,i of each partition

on physical resource Πj and H is the hyperperiod of all the

request offsets.

Output: The schedules {Sj,i | ∀i }. Otherwise, reject.

1 Procedure ConstructSchedule({(αj,i , Oj,i) | ∀i })
2 Initializem[t] = 0, ∀t ∈ [0, H)

3 Enqueue all partitions Pj,i into a queueQ following the

ascending order of period pj,i

4 whileQ � ∅ do
5 Dequeue Pj,i from Q

6 for Each pair of request offset (o′i , o
′′
i) of Pj,i do

7 rj,i = �o′i 	

8 dj,i =
o′′i �

9 t = EDF(rj,i , dj,i ,m)

10 if t � NULL then
11 break

12 end

13 end

14 if t = NULL then

15 return NULL

16 end

17 for x ← 0 to H /pj,i − 1 do
18 m[t + x · pj,i mod H] = 1

19 end

20 end

21 return {Sj,i | ∀i }

Algorithm 3 shows the ConstructSchedule subroutine of the ARCRP-S algorithm. The algo-

rithm tries to construct cyclic schedules for every partition by testing each combination of pairs

of neighboring request offsets of each partition (see Line 2). Each partition has a release time r j,i
and a deadline ej,i based on the chosen request offsets in Line 4–9. The algorithm ends when it

finds a cyclic schedule for each partition in Line 13–15 and Line 24–26. The algorithm uses an

EDF algorithm to compute the slice schedule in each periodic interval in Line 11, 12, and 16 where

the release time and deadline are updated in Line 21. The EDF subroutine takes a release time, a

deadline and marks the slot m[t] as occupied in Line 16. H is the hyperperiod of all the periods

of request offsets. The Next subroutine in Line 13 returns the first element in S j,i no less than r j,i .
The Insert subroutine in Line 20 inserts the slice offset t to S j,i .

For example, to compute the schedule of P4,1 and P4,2, we need the request offset O4,1 and O4,2.

AssumingO4,1 = ({3.5}, 4) and O4,2 = ({2.5}, 4), there is only one possible combination of request

offset pairs which is (3.5, 3.5 + 4) for P4,1 and (2.5, 2.5 + 4) for P4,2. P4,2 is then picked from the

queue to be scheduled because of its smallest deadline. EDF subroutine will assign resource slice

at 3 to P4,2 because 2.5 ≤ 3 ≤ 6.5. The release time and deadline will be updated as (6.5, 10.5)
and P4,2 is put back to the queue. P4,1 is the next one to be scheduled based on its deadline. The

EDF subroutine will assign resource slice at 0 (4 mod 4) to P4,1 because 3.5 ≤ 4 ≤ 7.5 and H = 4

which can be seen in Figure 9. The release time and deadline will be updated as (7.5, 11.5) and P4,1
is put back to the queue. In the next steps, P4,2 and P4,1 will be dequeued and the algorithm will

halt because both of them have cyclic schedules as checked in Line 13–15.

The ARCRP-S algorithm can work for partitions with the availability factors and the periods of

the request offsets transformed into the form of 1
m
andm, respectively. However, it has exponential

time complexity. Assuming that the number of physical resources, the size of total resource access

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:16 W.-J. Chen et al.

order, the periods of the slice offsets, the periods of the request offsets and the hyper-period of

all the periods are bounded by a constant C , the time complexity of the ARCRP-S algorithm is

O (N ·CN) if the number of applications isN . To further reduce the time complexity and potentially

make it an online algorithm, we can further adjust and transform the availability factors into the

form of power of 1
2 and set the size of resource slice to be power of 2. In the following, we denote

such setting as geometric sequence with common ratio of 2 setting (called GS-2 setting). In this

way, we can employ a similar idea as the AAF algorithmwhere partitions are linearly scheduled by

following the ascending order of periods. Algorithm 4 summarizes the ARCRP-S-Fast algorithm.

The algorithm picks the first pair of neighboring request offsets that allows a resource slice to

be scheduled by EDF algorithm (Line 6–12). We then mark the resource slice assigned for each

interval in the hyperperiod H to avoid partition with larger period to conflict with partition with

smaller period (Line 17–19). Using the same example as mentioned above, O4,1 = ({3.5}, 4) and
O4,2 = ({2.5}, 4). P4,2 will be first assigned resource slice at 3 for having request offset pair of

(2.5, 6.5). P4,1 will then be assigned resource slice at 0 for having request offset pair of (3.5, 7.5).
With the above mentioned assumptions, the time complexity of the ARCRP-S-Fast algorithm is

O (C4 · N +C · N · logN) if the number of applications is N .

6 DYNAMIC RECONFIGURATION OF RESOURCE PARTITION IN NON-UNIFORM

ENVIRONMENT

In open system environments under the RRP model, applications may request to reconfigure their

resource partitions on demand. This section first revisits the dynamic reconfiguration of resource

partitions in uniform environments and then extend the study to non-uniform environments.

6.1 Reconfigurable RRP Model in Uniform Environments

In uniform environments, an application can issue a Reconfiguration Request of Resource Partition

(R3P) to request new resource partitions or reconfigure the existing ones. The application can

request to reconfigure its resource supply curve by issuing an R3P (see Figure 10). The system then

enters theResource Partition Transition (RPT) stagewhere resource partitions are reconfigured

and temporary resource undersupply or oversupply may happen as shown in Figure 10(a) and

(b), respectively. After the RPT stage is over, the reconfigured resource partitions will supply the

resource to applications according to the new availability factor and new supply regularity by

approximating the new ideal supply curve in a staircase function as depicted in Figure 10(a) (lower

dash supply curve) and (b) (upper dash supply curve).

Recall that a resource partition P in uniform environments is a tuple (S,p) which describes its

cyclic schedule and period. In each stage, the cyclic schedule of the resource partition can be de-

scribed using this tuple counting from time zero at the start of the stage. The resource partition P at

different stages can be described using different superscripts. The resource partition before, during

and after the reconfiguration is denoted as Po , P t and Pn , respectively. Based on these notations,

the reconfiguration request of resource partition (R3P) can be formally defined as follows.

Definition 6.1. Reconfiguration Request of Resource Partition (R3P) is defined as a tuple λ =
{P,F ,R,T } where P is the set of resource partitions;1 each resource partition Pi ∈ P will have

associated availability factor of αi ∈ F and Pi will have reconfiguration supply regularity (see

Definition 6.3) of Rri ∈ R. T is the maximum time allowed for the reconfiguration to complete.

1P denotes the set of all the partitions. However, these partitions are neither specified with the resource slice offsets nor the

performance semantics. Their desired availability factors and reconfiguration supply are defined in F and R, respectively.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:17

Fig. 10. The dash line shows that the requested availability factor changes from 1
4 and 1 to 1 and 1

4 in (a),

(b), at the time of R3P. The arrow shows the supply deviation during the reconfiguration. There is resource

undersupply in (a) but resource oversupply in (b).

The resource supply of a resource partition P after the R3P is guaranteed by enforcing the avail-

ability factor and regularity of each partition while the performance semantics of the reconfigura-

tion can be defined as the maximum deviation between the actual resource supply and the desired

supply during the reconfiguration. The concept of reconfiguration supply regularity is thus in-

troduced to formally define such performance semantics. For this aim, the definition of instant

regularity is extended to accommodate the change of availability factor. Following the similar no-

tation of a resource partition P , αo and αn are used to denote the availability factor of P before

and after the reconfiguration, respectively. The definition of instant regularity is thus extended as

follows.

Definition 6.2. The instant regularity I (t) of a resource partition P at time t ≥ q is I (t) = S (t) −
(αo · q + αn (t − q)) where q is the time of an R3P ;

Based on the above extension, the reconfiguration supply regularity for uniform environments

is defined as follows.

Definition 6.3. Let a,b,k be non-negative integers. The reconfiguration supply regularity of re-

source partition P is defined as Rr which equals to the smallest k ≥ 1 such that I (b) − I (a) >
−k,∀b ≥ a.

Note that the reconfiguration supply regularity only defines the maximum undersupply while

the normal supply regularity restricts both the maximum undersupply and oversupply. This re-

laxation on the definition gives the scheduler flexibility to schedule the resource slices to earlier

time compared to the case where the maximum oversupply is also bounded. For example, without

this relaxation, a regular partition with an availability factor of 1
2 has a periodic schedule which

cannot be edited on the fly. With this relaxation, the partition schedule can be changed on the fly

by shifting the schedule one time slot earlier. This relaxation, however, is only applicable during

the partition reconfiguration.

6.2 Extending Partition Reconfiguration to Multi-resource Environments

We now extend dynamic reconfiguration of resource partitions to multi-resource environments.

We first extend the definitions of reconfiguration request and reconfiguration supply regularity as

follows.

Definition 6.4. Reconfiguration Request of Regular Composite Resource Partition (R3CRP) is

defined as λ = {C,F ,R,T } where C is the set of all regular composite resource partitions; each

effective regular resource partition Pj,i has the requested α j,i ∈ F for the composite resource

partition Ci with an associated effective reconfiguration supply regularity (see Definition 6.5) of

Rrj,i ∈ R; T is the maximum time allowed for the reconfiguration to complete.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:18 W.-J. Chen et al.

Definition 6.5. Let e,x1,x2 be non-negative integers, S = {s1, s2, . . . , sn } be the slice offsets of

P , p be the period of P and O = ({o1,o2, . . . ,on′ },p) be the request offsets of P . The effective

reconfiguration supply regularity Rr of partition P is defined as the smallest integer k such that

for any slice starting time s = si + x1 · p, requesting time o = oj + x2 · p and e , where 0 < i ≤ n,
0 < j ≤ n′, e,x1,x2 ∈ N,

⎧⎪⎨
⎪
⎩

I (o + e) − I (o) − 1 > −k if o � N and ∃s =
o�
I (o + e) − I (o) > −k otherwise

Based on Definition 6.5, we can define the effective reconfiguration regular partition as follows.

Definition 6.6. A resource partition P is effective reconfiguration regular if and only if its ef-

fective reconfiguration supply regularity Rr = 1 and it is effective regular before and after the

reconfiguration, respectively.

The problem of reconfiguring composite resource partitions can be reduced to the problem of

composite resource partition construction described in Section 5. The construction problem is

proved to be NP-hard [28]. In order to develop an online algorithm to reconfigure composite re-

source partitions, we have the following assumptions:

AS-1: time zero of each physical resource is synchronized;

AS-2: no concurrent reconfiguration request is allowed in the system;

AS-3: the availability factor of P and the resource slice size of each resource are adjusted and set

to be the power of 1
2 and 2, respectively. Also, the sum of the availability factors on each physical

resource is no larger than 1;

AS-4: the composite resource partitions are acyclic and regular.

AS-1 assumes time synchronization among the physical resources. This allows us to study the

resource misalignment problem only caused by the non-uniform sizes of resource slices but not the

time drifts among the physical resources. AS-2 assumes that only one reconfiguration request can

happen at any time in the system to simplify the performance semantics during the reconfiguration.

By limiting the form of availability factor and slice size, AS-3 allows us to adopt the ARCRP-S-Fast

algorithm to achieve a good balance between schedulability and polynomial-time complexity. AS-

4 is a consistent assumption as made for composite resource partition construction (see Section 5)

to construct/reconfigure regular composite partitions with acyclic resource access order. We now

define the ARCRP-DR problem as follows.

Problem 6.1. Acyclic Regular Composite Resource Partition Dynamic Reconfigura-

tion (ARCRP-DR) Problem: Given a composite resource partition reconfiguration request λ =
{C,F ,R,T } and the state of all the resource partitions before the request ({Poj,i }), the problem is

to compute the partition schedules during the reconfiguration P tj,i and after the reconfiguration Pnj,i
on each physical resource πj for each composite resource partition Ci such that the following three

conditions are satisfied:

C-1: Pnj,i is effective regular with availability factor α j,i ∈ F ;

C-2: the effective reconfiguration regularity of Pj,i is R
r
j,i ∈ R;

C-3: the length of the RPT stage is no longer than T .

Please note the composite resource partition may be irregular during reconfiguration as some

resource partitions may be effective irregular but each resource partition will be effective regular

after the reconfiguration is completed.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:19

6.3 ARCRP-DR Algorithm

The ARCRP-DR problem can be solved by breaking the reconfiguration request down to a set

of independent R3Ps and each R3P can be handled by the DPR algorithm independently on each

physical resource as if reconfiguring only a single resource [12]. However, the effective supply

regularity and effective reconfiguration supply regularity will increase if there is the resource

misalignment problem. To further improve the schedulability andmitigate the problem, we present

the ARCRP-DR algorithm by first introducing the important concepts and presenting a running

example of a simplified algorithm, and then describing the ARCRP-DR algorithm details.

6.3.1 Dynamic RRP Scheduler. In the following, we revisit the concept of Dynamic RRP Sched-

uler by introducing the maximum supply shortfall, give an example of a dynamic RRP scheduler

[44] in uniform environments, and then extend the concept to non-uniform environments.

Maximum Supply Shortfall: The concept of maximum supply shortfall was introduced in [44].

We extend this concept below by taking the request offsets into consideration.

Definition 6.7. Let S = {s1, s2, . . . , sn } be the slice offsets, p be the period, O =

({o1,o2, . . . ,on′ },p) be the request offsets of a resource partition P and t be the time when there

exists at least one request offset oj s.t. t ≥ oj . Given that no resource slice is scheduled on any

requesting time, the maximum supply shortfall of P at time t is defined as d (t) such that for any

requesting time o = oj + x2 · p, where 0 < j ≤ n′ and x2 ∈ N
d (t) = min

∀o≤t
(I (t) − I (o))

d (t) denotes the maximum supply shortfall among all the time intervals ending at time t and
it takes request offsets into consideration. Based on Definition 6.5, the effective reconfiguration

regularity will be the smallest positive integer k such that d (t) > −k ∀t .
DynamicRRP Scheduler: Traditional RRP schedulers aremostly static schedulers [3, 5]. The con-

cept of maximum supply shortfall enables dynamic RRP scheduler by tracking the supply short-

fall of each resource partition. This makes it possible to progressively compute the schedule by

limiting the supply shortfall. Given the C-1 and C-2 requirements in Problem 6.1 and the maxi-

mum supply shortfall of a partition at time t , we can compute the deadline to schedule the next

slice based on Definition 6.7 and Definition 4.4 in order to preserve the regularity of the partition

[12].

In the following, we give a simplified example of the dynamic partition reconfiguration algo-

rithm scheduling a single partition in Figure 11. The problem of scheduling resource partitions

is akin to schedule a set of tasks such that each partition is considered as a task and each task

instance indicates a deadline for the partition to schedule the next slice. The following require-

ments need to be satisfied: (1) a task instance is immediately released upon the completion of its

previous instance; (2) the deadline of the new instance depends on the maximum supply shortfall,

availability factor and regularity of its associated partition; and (3) each partition follows a cyclic

schedule after the RPT stage. To simplify the model, we omit the computation of the maximum

supply shortfall, assume that the relative deadline computed is always derived as 5 and the desired

regular partition shall have period of 4 after the reconfiguration. As illustrated in Figure 11, time

0 is the time of the reconfiguration request and time 0-4 is the RPT stage. Starting from time 4,

which is the end of the reconfiguration, the partition shall have a cyclic schedule with period of 4.

The first instance has release time r0 = 0 and relative deadline e0 = 5. If this instance is scheduled

at time 2, it will release the second instance with release time r ′1 = 3 and deadline e ′1 = 3 + 5 = 8.

This instance can also be scheduled at time 3. In this case, it will be released at time r ′′1 = 4 with

its deadline e ′′1 = 4 + 5 = 9. After the RPT stage is over, the task should be scheduled by following

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:20 W.-J. Chen et al.

Fig. 11. An example of a dynamic RRP-based partition scheduler where resource slices in black and gray

color are two possible schedules. The release time and deadline of the next instance will be based on the

previous instance.

a cyclic schedule with a period of 4. The partition with either resource slice offset s0 = 6 or s ′0 = 7

with a period of 4 has a valid cyclic schedule.

Fast Deadline Computation in Non-Uniform Environment: In the example, we use a sim-

plified example to illustrate the algorithm by omitting the computation of the deadline. Naïvely

computing the resource supply shortfall and deadline of each partition for all time t will impose

significant complexity. In the following, we present the Theorem to update the deadline of each

partition Pi in constant time for dynamic reconfiguration by only tracking (1) the maximum sup-

ply shortfall di (t) at each scheduling decision time t and (2) the nearest future requesting time

ot > t .

Theorem 6.1. A resource partition P has effective reconfiguration regularity of Rr ≤ k if no re-

source slice is scheduled on any requesting time and for any time t ,

st ≤ min(t + d (t)/αn ,ot) + k/αn − 1
where st and ot are the smallest resource slice starting time and requesting time which are no less

than t , respectively.

Proof. We prove this theorem by showing that for ∀t ,d (t) > −k by Mathematical Induction.

This leads to I (o + e) − I (o) > −k for any requesting time o and e ∈ N by Definition 6.7. P is

effective reconfiguration regular by Definition 6.5.

For t < o0, both the regularity and d (t) are undefined. Without loss of generality, we assume

s0 ≥ o0 and start with t ∈ [o0, s0] and s0 ≤ o0 + k/αn − 1 by the theorem. By Definition 6.2,

Definition 6.7 and the fact that there is no slice scheduled between o0 and s0, we have d (t) ≥
I (s0) − I (o0) ≥ −k + αn > −k for t ∈ [o0, s0 + 1].

Assume that d (t ′) > −k for any time t ′ ≤ st + 1, t < t ′ is true where st is the first resource

slice no less than t . Let sx > st be the next resource slice after the one at st , ox > st be the first
requesting time after st and t ′′ ≤ sx + 1. We proceed to prove that that d (t ′′) > −k for any time

t ′′ ≤ sx + 1.
Case 1: If I (ox) < max∀o≤ox (I (o)), by Definition 6.7 and the fact that there is no resource slice

scheduled between [st + 1, sx), we have

t1 + d (t1)/α
n = X (7)

and

d (t1) ≥ d (sx) for t1 ∈ [st + 1, sx] (8)

where X is a fixed value. By Definition 6.7, Definition 6.2 and the fact that there is no resource

slice scheduled between [st + 1, sx), we have

d (sx) = d (st + 1) − αn (sx − (st + 1))

By the theorem that sx ≤ st + 1 + d (st + 1)/αn + k/αn − 1, Equation (7) and d (st + 1) > −k , we
have d (sx) >= −k + αn . Further by Equation (8), we have d (t1) > −k for t1 ∈ [st + 1, sx + 1].

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:21

Case 2: If I (ox) = max∀o≤ox (I (o)), for t1 ∈ [st + 1,ox], it is the same as Case 1. For t1 ∈ (ox , sx],
d (t1) = I (t1)−I (ox). By Definition 6.2 and the fact that there is no resource slice scheduled between
[ox , sx), we have

d (t1) ≥ d (sx) for t1 ∈ (ox , sx] (9)

From the theorem, we have sx ≤ ox + k/αn − 1 and thus d (sx) = −k + αn . By Equation (9), we

have d (t1) > −k for t1 in [ox , sx + 1].
Combining both cases and Equation (7), we have d (t ′′) > −k for any time t ′′ ≤ st + 1 for any

t < t ′′. Please notice that, if d (sx) > −k and there is a resource at sx , d (sx + 1) must be greater

than −k by Definition 6.7 and Definition 6.2.

By Mathematical Induction, for any t we have d (t ′) > −k for t ′ ≤ st + 1. st is the next resource
slice after t . �

Intuitively, we can consider the term k/αn to be the budget that can be used to delay the next

resource slice and the term d (t)/αn to be the already consumed budget. This theorem states a suf-

ficient deadline for each resource slice such that the resource partition P is guaranteed to have

effective reconfiguration supply regularity less than or equal to k . Based on this theorem, we can

progressively construct the schedule by (1) scheduling slices by the deadline and not on any re-

questing time; (2) updating themaximum supply shortfall and deadline; and (3) repeating the above

two steps until a cyclic schedule for each partition is found for the RPT stages.

6.3.2 ARCRP-DR Algorithm. In the following, we use Tt to denote the state of the partition

system at time t , which includes the time ri of the last scheduling decision, the maximum sup-

ply shortfall di at ri , and the deadline ei to schedule the next slice for each partition Pi . We first

give an overview of the ARCRP-DR algorithm and then present the detailed steps to compute the

schedules.

In Algorithm 5, we first perform a topology sort based on the total resource access order E of

all the composite resource partitions to generate a linear order {Π′1;Π′2; · · · ;Π′n } of all the phys-

ical resources. The algorithm then computes the schedules on each physical resource following

this linear order. The algorithm adopts the same budget b for all physical resources and tests for

schedulability. For each physical resource, the algorithm has three stages to compute the partition

schedules. In stage-1, the Initialization procedure will compute Tq , which includes the maximum

supply shortfall and the deadline of each partition. In stage-2, the TransitionSchedule procedure

will compute the transition schedule based on Tq and then compute the Tq+b for the next stage. In

stage-3, the CyclicSchedule procedure for each partition will compute its cyclic schedule based

on Tq+b . We now explain each stage of the algorithm as follows:

Initialization. Algorithm 6 aims to compute the maximum supply shortfall di (q) and the dead-

line of each partition based on Theorem 6.1. It first computes the request offset of each partition as

O j,i (Line 4) by computing the request offsets Oo
j,i ,O

t
j,i ,O

n
j,i of Pj,i for the time before, during and

after the reconfiguration based on Algorithm 2.O j,i denotes the union ofOo
j,i ,O

t
j,i ,O

n
j,i while con-

sidering the present time of each symbol. The procedure Next(O j,i ,q) computes the next nearest

requesting time nj,i no less than q based on the request offsets of Pj,i (Line 5). The ComputeMSS

procedure computes the maximum supply shortfall based on Definition 6.7. Please note that the

procedure can be improved to be computed in constant time [12]. In Line 6–12, we compute the

maximum supply shortfall di (q) based on two conditions and update the deadline ej,i based on

Theorem 6.1 (Line 8 and 11).

Transition Schedule Computation. Algorithm 7 computes the transition schedule P tj,i for each
partition given a partition system computed in Stage-1 by following three heuristic principles:

(1) we avoid scheduling resource slices on any requesting time; (2) we employ the deferrable

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:22 W.-J. Chen et al.

ALGORITHM 5: Overview of ARCRP-DR

Input: Reconfiguration request λ, request time q and resource access

order E = {(Πm, Πn) | (Πm, Πn) ∈ Ei , ∀i }.
Output: Transition schedule Stj,i and cyclic schedule Snj,i for all

Pj,i . Reject if no feasible schedule.

1 Enqueue all physical resources Πj into a queueQ by the topological

sorted order of E

2 for b ← 0 to T do
3 Qt = Q

4 whileQt � ∅ do
5 Dequeue Πj fromQt
6 Tq = Initialization(Πj , q) // Stage-1

7 ({Stj,i | ∀i }, Tq+b) =
TransitionSchedule(Tq, q, q + b) // Stage-2

8 if Tq+b = Null then

9 break

10 end

11 {Snj,i | ∀i } = CyclicSchedule(Tq+b) // Stage-3

12 if {Snj,i | ∀i } = Null then

13 break

14 end

15 end

16 if Qt = ∅ then
17 return ({Stj,i | ∀j, i }, {S

n
j,i | ∀j, i })

18 end

19 end

20 return NULL

ALGORITHM 6: Partition System Initialization

Input: Physical resource Πj and the requesting time q .

Output: Tq , the state of the partition system.

1 Procedure Initialization(Πj , q)
2 for Each Pj,i on Πj do
3 rj,i = q

4 Oj,i = ComputeAllOffsets(Pj,i)
5 nj,i = Next(Oj,i , q)
6 if Pj,i is a new partition then
7 dj,i = ∞
8 ej,i = nj,i + R

r
j,i /α

n
j,i

9 else
10 dj,i = ComputeMSS(Pj,i , q, Oj,i)

11 ej,i = min(q + dj,i /α
n
j,i , nj,i) + R

r
j,i /α

n
j,i

12 end

13 end

14 return Tq

15 Procedure ComputeMSS(Pj,i , q, Oj,i)
16 dj,i = ∞
17 for Each o ∈ Oj,i and o ≤ q do
18 dj,i = min(dj,i , Sj,i (q) − Sj,i (o) − αoj,i (q − o))
19 end

20 return dj,i

scheduling (DS)-EDF algorithm [45] where partitions are scheduled according to their earliest

deadlines but each partition is scheduled as late as possible to make room for other partitions

during the RPT stage; and (3) if the deadline of a partition calculated through DS-EDF is larger

than the time budget b, the algorithm will try to schedule it in an idle slice before b so that its

next deadline can be further deferred when entering Stage-3. This will significantly increase the

schedulability of the cyclic schedule construction in Stage-3.

Algorithm 7 selects the partition with the earliest deadline and schedules it as late as possible

using the DS-EDF procedure (Line 6). If a partition is not able to be scheduled before the deadline,

the algorithm will reject (Line 8–10). Any time when a partition is scheduled a slice, the algorithm

will update its dj,i , ej,i , r j,i using the UpdateStates procedure.
In the DS-EDF procedure in Algorithm 8, the resource slice is not only scheduled as late as

possible as shown in Line 6 but also prohibited from being scheduled on any requesting time based

on O . This will avoid the resource misalignment problem. The UpdateStates procedure is based

on Theorem 6.1. It first updates dj,i from di (r j,i) to di (r) in Line 14–17. Based on Definition 6.7 and
Definition 6.2, if there is no requesting time between r j,i and r , dj,i (r) = dj,i (r j,i) + 1−αnj,i (r −r j,i)
as in Line 14. If there exists a request time between r j,i and r , we only need to consider if nj,i
would give a lower supply shortfall as in Line 16. In Line 18–20, we update the states based on

Theorem 6.1.

Cyclic Schedule Computation.Algorithm 9 computes the cyclic schedule of each partition. This

algorithm combines the idea from the AAF algorithm where partitions are scheduled according

to their periods; the idea of supply shortfalls and requesting time. Line 6 in Algorithm 9 finds an

available slot for each partition and marks the slots as used for the cyclic schedule in Line 11–13.

pmax is the largest period among all the partitions.

In the following, we check whether the problem requirements are satisfied.

Problem6.1 C-1: Each partition Pnj,i is effective regular by scheduling resource slices in periodic

time intervals based on a pair of neighboring request offsets by Theorem 5.1.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:23

ALGORITHM 7: Transition Schedule Computation

Input: The time of reconfiguration q , the budget b , and the state of
the partition system T .

Output: Transition schedule {Stj,i | ∀i } and Tq+b . Reject if no
feasible schedule.

1 Procedure TransitionSchedule(T , q, b)
2 Initializem[t] = 0, ∀t ∈ [0, b)
3 Enqueue all partitions Pj,i into a queueQ in the ascending

order of (1) deadline ej,i and (2) period pj,i for tie-breaker

4 whileQ � ∅ do
5 Dequeue Pj,i fromQ

6 t = DS-EDF(rj,i − q, ej,i − q,m, b, Oj,i)
7 if t = NULL then
8 if ej,i ≤ q + b then
9 return NULL // Deadline will miss

10 end

11 continue // We are done with this partition

12 end

13 Add t − q to Stj,i
14 UpdateStates(T , q + t + 1, Pj,i)
15 Enqueue Pj,i toQ

16 end

17 return ({Stj,i | ∀i }, T)

ALGORITHM 8: DS-EDF and UpdateStates

1 Procedure DS-EDF(r, e,m, b, O)
2 e =
e �
3 if e >= b then
4 e = b

5 end

6 for t ← e − 1 to r do
7 ifm[t] = 0 and t is not on any requesting time then
8 m[t] = 1

9 return t

10 end

11 end

12 return NULL

13 Procedure UpdateStates(T , r, Pj,i)
14 dj,i = dj,i + 1 − αnj,i (r − rj,i)
15 if r ≥ nj,i then
16 dj,i = min(dj,i , 1 − αnj,i (r − nj,i))
17 end

18 nj,i = Next(Oj,i , r)

19 ej,i = min(r + dj,i /α
n
j,i , nj,i) + R

r
j,i /α

n
j,i

20 rj,i = r

21 return

Problem6.1 C-2: The effective reconfiguration supply regularity of each partition Pj,i is guaran-
teed based on Theorem 6.1 by scheduling source slices by the deadline and the fact that Pj,i has a
cyclic schedule with exact one slice offset. Note that, this algorithm can only be used to compute

the schedules when the availability factors and the resource slice sizes are the power of 1
2 and 2,

respectively.

Problem6.1 C-3: The reconfiguration is done by the end of the RPT stage which is no longer than

T as in Algorithm 7.

Assuming that the number of physical resources, the size of total resource access order, the

periods of the slice offsets, the periods of the request offsets, the hyper-period of all the periods

and the budget are bounded by a constant C , the time complexity of ARCRP-DR algorithms is

O (C5 · N +C2 · N · logN) if the number of applications is N .

7 PERFORMANCE EVALUATION

In this section, we first compare the application response times in a real system with and without

considering the resource misalignment problem. In the second set of experiments, we compare the

performance of the ARCRP-S and AAF algorithms [3] in both uniform and non-uniform environ-

ments. In the final set of experiments, we evaluate the performance of the ARCRP-DR algorithm

in a non-uniform environment.

7.1 Real System Evaluation

To demonstrate the applicability of the concept of regular composite resource partition in practice,

we implemented a multi-resource scheduling system including both CPU and network resources.

It is based on a Linux kernel 3.18.12 without multi-core support and combined with a modified

version of RT-WiFi [46]. Figure 12 illustrates the system architecture. There is one master CPU

resource and multiple slave CPU resources. For the network resource, it consists of a single RT-

WiFi access point (AP) and a cluster of RT-WiFi stations operating on the same channel.

CPU Resource: We add a layer of resource-level scheduler on top of the original scheduler to

schedule each partition. A table driven scheduler in the task-level scheduler hierarchy is added to

provide the capability of recursive resource partitioning [28]. The new hierarchy is illustrated in

the master CPU resource diagram in Figure 12.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:24 W.-J. Chen et al.

ALGORITHM 9: Cyclic Schedule Computation

Input: Tb , the state of the partition system after the RPT.

Output: Cyclic schedule {Snj,i | ∀i }. Otherwise, reject.

1 Procedure CyclicSchedule(Tb)
2 Enqueue all Pj,i into a queueQ in the ascending order of (1)

period pj,i and (2) deadline ej,i for tie-breaker

3 Initializem[t] = 0, ∀t ∈ [0, pmax)
4 whileQ � ∅ do
5 Dequeue Pj,i
6 t = DS-EDF(0, ej,i − q − b,m, pj,i , Oj,i)
7 if t = NU LL then
8 return NULL

9 end

10 Add t to Snj,i
11 for x ← 0 to pmax /pj,i − 1 do
12 m[l + x · pj,i] = 1

13 end

14 end

15 return {Snj,i | ∀i }

Fig. 12. Overview of the multi-resource scheduling

framework.

Network Resource: We use RT-WiFi [46] to schedule the network resource. RT-WiFi is a real-

time high-speed wireless data link layer protocol that can provide deterministic packet delivery

with adjustable sampling rates up to 6kHz.

Synchronization: To schedule regular composite resource partitions, we need to synchronize the

clocks and schedules on different physical resources (see Figure 12). In our system, every slave CPU

synchronizes its clock with the master CPU’s clock using IEEE 1588 software implementation [47].

For the network resources, the RT-WiFi AP synchronizes its clock with the master CPU and each

RT-WiFi station synchronizes its clock with the AP via RT-WiFi beacon frame.

The testbed has two machines connected with RT-WiFi, providing CPU1, CPU2 and RT-WiFi

resources. Machine 1 has an Intel Core i7-4790 CPU and an AR9XX series WiFi card configured

as an RT-WiFi AP. Machine 2 has an Intel Core i5-3337U CPU and an AR9XX series WiFi card

configured as a station.We emulate a periodic end-to-end taskT for an applicationA1 andmeasure

its end-to-end response time as our evaluation metric. A1 has resource accessing order as CPU1,

RT-WiFi and CPU2 resources. The task T periodically processes the sensor data on CPU1, passes

the data to CPU2 and finally processes the data and passes the decision to the actuator on machine

2. The task execution time taken on CPU1, RT-WiFi and CPU2 is calibrated such that it takes

slightly less than one resource slice on each resource.

Figure 13 shows the cumulative distribution function of the response time for taskT in each set-

ting. The line denoted as Misaligned shows the results with AAF and the resources are not aligned.

The resource slice sizes of CPU1 and CPU2 are set to 1ms and the resource slice size of the RT-

WiFi is set to 1024μs . On the other hand, the line denoted as Synchronized shows the results with

ARCRP-S and resource slices are all synchronized with the size of 1ms . The constructed regular

resource partitions for A1 are P1,1, P2,1, P3,1 on CPU1, RT-WiFi and CPU2 with availability factors

of 0.25, 0.25 and 1, respectively. The theoretical maximum response time of each task instance

would be 1ms on CPU1 as it starts on CPU1, 1ms/0.25 (or 1024μs/0.25 for the Misaligned run) on

RT-WiFi for the queuing and processing time; and 1ms/1 on CPU2 with a total of 6ms . In Figure 13,

the Misaligned case shows that 30% task instances have response times larger than 6ms while the
Synchronized case shows only 5%. This shows that the resource misalignment problem may cause

serious deadline miss, while synchronizing the resource slice size and the time can mitigate it.

We next demonstrate a case how ARCRP-S Algorithm can be applied to real-world systems in

a non-uniform environment. With the same testbed, the resource slice sizes of CPU1 and CPU2

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:25

Fig. 13. The cumulative distribution function of

the response time for taskT under three different

settings.

Fig. 14. Schedulability of ARCRP-S, ARCRP-S-Fast

and AAF algorithm in non-uniform environment with

the GS-2 setting.

are 1ms while the resource slice size of RT-WiFi is 2ms . Two regular composite resource partitions

C1,C2 are constructed. C1, assigned to A1, has effective regular resource partitions P1,1, P2,1, P3,1
all with availability factor of 0.25. C2 has effective regular resource partitions P1,2, P2,2, P3,2 with
availability factor of 0.25, 13 , 0.25, respectively. The theoretical max response time of each task

instance would be 1ms on CPU1, (1 · 2ms)/0.25 on RT-WiFi and 1ms/0.25 on CPU2 with a total

of 13ms . The results denoted as Framework in Figure 13 show that 95% of the task instances have

response times less than 13 ms.

7.2 Performance Comparison Among ARCRP-S, ARCRP-S-Fast and AAF

In the following, we present the simulation results to compare three algorithms, ARCRP-S, ARCRP-

S-Fast and AAF [3], under different settings. In uniform environments, the resource slice size of

each physical resource is set to be 1. In non-uniform environments, the resource slice size is set to

2i (0 ≤ i ≤ 7) in the GS-2 (geometric sequence with common ratio of 2) setting and i (2 ≤ i ≤ 7) in
the linear setting. The requested availability factor of each partition is restricted to 1

2i
(1 ≤ i ≤ 7)

in the GS-2 setting and 1
i
(2 ≤ i ≤ 7) in the linear setting. Furthermore, all the composite resource

partitions requested by the applications are regular. To compute the schedulability, 1,000 samples

are generated for each combined setting and the three algorithms are used to construct composite

resource partitions. Each sample is marked as schedulable by each algorithm if a schedule can

be constructed except for the AAF algorithm. The schedule constructed by the AAF algorithm

is further validated by checking the effective supply regularity of each partition because of the

resource misalignment problem.

Our simulation results in different settings generally show similar trends that more physical

resources and composite resource partitions lead to lower schedulability. This is because the prob-

ability that a task requesting resources at some non-integer time point will increase and this leads

to resource misalignment problem. For example, Figure 14 shows the schedulability trend of the

three algorithms in non-uniform environment under the GS-2 setting. AAF performs the worst

because it doesn’t consider the resource misalignment problem. ARCRP-S-Fast and ARCRP-S al-

gorithms perform similarly under the GS-2 setting. The ARCRP-S-Fast algorithm employs a similar

strategy as the AAF algorithm which schedules partitions following the ascending order of their

periods. This strategy searches a small but large enough search space under the GS-2 setting with

polynomial time complexity. On the other hand, the ARCRP-S algorithm searches a much larger

search space for general settings with exponential time complexity. Thus, ARCRP-S algorithm per-

forms similar to the ARCRP-S-Fast algorithm. Tomake the figures easy to read, in the following, we

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:26 W.-J. Chen et al.

Fig. 15. Performance comparison among ARCRP-S, ARCRP-S-Fast and AAF algorithms.

only present the results where the number of physical resources is 10 and the number of resource

partitions varies between 2 and 20.

7.2.1 Uniform Environment. Figure 15(a) shows the schedulability results of the three algo-

rithms in uniform environment under GS-2 and linear settings. ARCRP-S-Fast is equivalent to

AAF in terms of schedulability under both settings because there is no resource misalignment

problem. In fact, AAF is optimal under the GS-2 setting where it can construct a feasible schedule

if there exists one [3]. ARCRP-S-Fast is also optimal under the GS-2 setting because it is exactly

the same as AAF if there is no resource misalignment problem. On the other hand, ARCRP-S per-

forms slightly worse (1%) than ARCRP-S-Fast under the GS-2 setting but it performs significantly

better than the other two algorithms under the linear setting. This is because ARCRP-S explores

a very large decision space which results in much better schedulability with settings other than

GS-2 setting.

7.2.2 Non-Uniform Environment. Figure 15(b) shows the schedulability of the three algorithms

in non-uniform environments. With linear setting, they all perform poorly when the number of

composite resource partitions is large. This is because it is almost impossible to avoid scheduling

resource slices on any of the requesting timeswhen there is no restriction on the resource slice sizes

and availability factors. However, under the GS-2 setting, ARCRP-S-Fast and ARCRP-S perform

closely and much better than AAF, which doesn’t consider the resource misalignment problem.

Figure 15(c) shows the schedulability comparison of the AAF algorithm in the GS-2 setting with

and without the regularity check. Without the regularity check, the AAF algorithm will schedule

the partitions as if they are in the uniform environment under the GS-2 setting and the schedula-

bility will be incorrectly considered as 100%. However, when the resource misalignment problem

is taken into consideration by checking the regularity, the actual schedulability may drop more

than 70% because of the existence of non-integer request offsets.

7.3 Performance Evaluation on the ARCRP-DR Algorithm

We now compare the results of reconfiguring composite resource partitions using ARCRP-DR and

DPR in non-uniform environments. The experiment is conducted by generating 1,000 samples for

each combined setting and using the two algorithms to construct the schedules. For each sample, if

a schedule can be computed by ARCRP-DR, this sample is schedulable. For DPR, a schedule needs

to be computed and the regularity of all the partitions need to be checked to have the required

regularity. For the parameters, the numbers of partitions and physical resources are both set to 10.

The resource slice size is restricted to be 2i (0 ≤ i ≤ 7). The availability factors of each partition

before and after reconfiguration are randomly sampled in the set of 1
2i

(1 ≤ i ≤ 7) and each phys-

ical resource will have the same resource utilization at 80%. The effective reconfiguration supply

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:27

Fig. 16. Schedulability comparison: ARCRP-DR vs. DPR-based algorithm.

regularity Rri of each resource partition is sampled from [1, 5] and 60% of partitions have effective

reconfiguration regularity over 1. The transition time budget T is randomly sampled from [5, 20].
To focus on evaluating the reconfiguration algorithm, the requested composite resource partitions

are assumed to be able to be constructed by ARCRP-S-Fast (Algorithm 4) without considering the

reconfiguration regularity.

Figure 16(a) and 16(b) show how the number of partitions and physical resources affects the

schedulability. Increasing the number of resource partitions lowers the schedulability as shown

in Figure 16(a). This is because there are more resource partitions on each physical resource and

this will result in lower schedulability. Note that, we set the resource utilization of each phys-

ical resource to be the product of 4.5% and the number of composite resource partitions. On

the other hand, increasing the number of physical resources also decreases the schedulability as

shown in Figure 16(b). With an increasing number of physical resources, the reconfiguration pro-

cess needs to construct more resource partitions for each composite resource partition, leading

to lower schedulability. Figure 16(c) shows that increasing the reconfiguration budget improves

the schedulability. However, the improvement stops when the budget is larger than 4. This indi-

cates that setting a higher budget may only waste computation time. Figure 16(d) shows that the

schedulability increases when the percentage of partitions with effective reconfiguration regu-

larity over 1 increases. Intuitively, the effective reconfiguration regularity denotes the tolerance

of performance degradation during reconfiguration. Note that when all the partitions have effec-

tive reconfiguration regularity larger than 1, the schedulability will reach 100%. This is due to

the assumption that the partitions can be constructed by ARCRP-S-Fast independently without

considering the reconfiguration.

8 CONCLUSION

In this paper, we study the resource misalignment problem where a resource partition may under-

supply when resource partitions are not aligned in non-uniform environments. We first introduce

the the concept of composite resource partition, and then propose ARCRP-S and ARCRP-DR al-

gorithms to construct and reconfigure the composite resource partitions to mitigate the problem.

The key ideas of the algorithms are to avoid scheduling resource slice on any requesting time and

to progressively construct or reconfigure the partition schedules on each physical resource. Exten-

sive experiments are conducted to demonstrate the applicability of our proposed multi-resource

scheduling framework through both real-world system implementation and simulation studies.

REFERENCES

[1] Zhong Deng and J. W.-S. Liu. 1997. Scheduling real-time applications in an open environment. In 18th IEEE Real-Time

Systems Symposium (RTSS). IEEE, 308–319.

[2] MatthiasM. Herterich, Falk Uebernickel, andWalter Brenner. 2015. The impact of cyber-physical systems on industrial

services in manufacturing. Procedia Cirp 30 (2015), 323–328.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

84:28 W.-J. Chen et al.

[3] Alex Xiang Feng. 2004. Design of Real-time Virtual Resource Architecture for Largescale Embedded Systems. Ph.D. Dis-

sertation. Department of Computer Science, The University of Texas at Austin.

[4] Jalil Boudjadar, Jin Hyun Kim, Linh Thi Xuan Phan, Insup Lee, Kim G. Larsen, and Ulrik Nyman. 2018. Generic formal

framework for compositional analysis of hierarchical scheduling systems. In 21st IEEE International Symposium on

Real-Time Distributed Computing (ISORC). IEEE, 51–58.

[5] Yu Li and Albert M. K. Cheng. 2017. Toward a practical regularity-based model: The impact of evenly distributed

temporal resource partitions. ACM Transactions on Embedded Computing Systems (TECS) 16, 4 (2017), 111.

[6] Insik Shin and Insup Lee. 2003. Periodic resourcemodel for compositional real-time guarantees. In 24th IEEE Real-Time

Systems Symposium (RTSS). IEEE, 2–13.

[7] Arvind Easwaran, Madhukar Anand, and Insup Lee. 2007. Compositional analysis framework using EDP resource

models. In 28th IEEE Real-Time Systems Symposium (RTSS). IEEE, 129–138.

[8] Yu Li and Albert Mo Kim Cheng. 2015. Transparent real-time task scheduling on temporal resource partitions. IEEE

Trans. Comput. 65, 5 (2015), 1646–1655.

[9] Yu Li and Albert M. K. Cheng. 2012. Static approximation algorithms for regularity-based resource partitioning. In

33rd IEEE Real-Time Systems Symposium (RTSS). IEEE, 137–148.

[10] Sanjoy K. Baruah, Neil K. Cohen, C. Greg Plaxton, and Donald A. Varvel. 1996. Proportionate progress: A notion of

fairness in resource allocation. Algorithmica 15, 6 (1996), 600–625.

[11] Aloysius K. Mok and Xiang Feng. 2001. Towards compositionality in real-time resource partitioning based on regu-

larity bounds. In 22nd IEEE Real-Time Systems Symposium (RTSS). IEEE, 129–138.

[12] Wei-Ju Chen, Peng Wu, Pei-Chi Huang, Aloysius K. Mok, and Song Han. 2021. Online reconfiguration of regularity-

based resource partitions in cyber-physical systems. Real-Time Systems (2021), 1–44.

[13] S. Shirero, Matsumoto Takashi, and Hiraki Kei. 1999. On the schedulability conditions on partial time slots. In Inter-

national Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA).

[14] Luca Abeni and Giorgio Buttazzo. 2004. Resource reservation in dynamic real-time systems. Real-Time Systems 27,

2 (2004), 123–167.

[15] Luca Abeni, Luigi Palopoli, Claudio Scordino, and Giuseppe Lipari. 2009. Resource reservations for general purpose

applications. IEEE Transactions on Industrial Informatics 5, 1 (2009), 12–21.

[16] Giorgio Buttazzo, Enrico Bini, and Yifan Wu. 2010. Partitioning parallel applications on multiprocessor reservations.

In 22nd Euromicro Conference on Real-Time Systems (ECRTS).

[17] Giorgio Buttazzo, Enrico Bini, and Yifan Wu. 2011. Partitioning real-time applications over multicore reservations.

IEEE Trans. on Industrial Informatics 7, 2 (2011), 302–315.

[18] SparshMittal and Jeffrey S. Vetter. 2015. A survey of CPU-GPU heterogeneous computing techniques.Comput. Surveys

47, 4 (2015), 1–35.

[19] Cristinel Ababei and Milad Ghorbani Moghaddam. 2018. A survey of prediction and classification techniques in mul-

ticore processor systems. IEEE Trans. on Parallel and Distributed Systems 30, 5 (2018), 1184–1200.

[20] Gregory F. Diamos and Sudhakar Yalamanchili. 2008. Harmony: An execution model and runtime for heterogeneous

many core systems. In Proceedings of the 17th International Symposium on High Performance Distributed Computing.

197–200.

[21] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. 2011. StarPU: A unified platform

for task scheduling on heterogeneous multicore architectures. Concurrency and Computation: Practice and Experience

23, 2 (2011), 187–198.

[22] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. 2015. SKMD: Single kernel on multiple devices for

transparent CPU-GPU collaboration. ACM Transactions on Computer Systems (TOCS) 33, 3 (2015), 1–27.

[23] Yasir Noman Khalid, Muhammad Aleem, Usman Ahmed, Muhammad Arshad Islam, and Muhammad Azhar Iqbal.

2019. Troodon: A machine-learning based load-balancing application scheduler for CPU–GPU system. J. Parallel and

Distrib. Comput. 132 (2019), 79–94.

[24] Yuan Wen, Zheng Wang, and Michael F. P. O’Boyle. 2014. Smart multi-task scheduling for OpenCL programs on

CPU/GPU heterogeneous platforms. In 2014 21st International Conference on High Performance Computing (HiPC).

IEEE, 1–10.

[25] Kapil Dev and Sherief Reda. 2016. Scheduling challenges and opportunities in integrated CPU+ GPU processors. In

the 14th ACM/IEEE Symposium on Embedded Systems for Real-Time Multimedia. 78–83.

[26] Meng Xu, Linh Thi Xuan Phan, Oleg Sokolsky, Sisu Xi, Chenyang Lu, Christopher Gill, and Insup Lee. 2015. Cache-

aware compositional analysis of real-time multicore virtualization platforms. Real-Time Systems 51, 6 (2015), 675–723.

[27] Meng Xu, Linh Thi, Xuan Phan, Hyon-Young Choi, and Insup Lee. 2017. vCAT: Dynamic cache management using

CAT virtualization. In 2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 211–

222.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

Regular Composite Resource Partitioning and Reconfiguration in Open Systems 84:29

[28] Wei-Ju Chen, Pei-Chi Huang, Quan Leng, Aloysius K. Mok, and Song Han. 2017. Regular composite resource partition

in open systems. In 38th IEEE Real-Time Systems Symposium (RTSS). IEEE, 34–44.

[29] Alan Burns and Robert I. Davis. 2018. A survey of research into mixed criticality systems. Comput. Surveys 50, 6 (2018),

82.

[30] Zhe Jiang, Neil Audsley, Pan Dong, Nan Guan, Xiaotian Dai, and Lifeng Wei. 2019. MCS-IOV: Real-time i/o virtual-

ization for mixed-criticality systems. In 2019 IEEE Real-Time Systems Symposium (RTSS). IEEE, 326–338.

[31] Moritz Neukirchner, Kai Lampka, Sophie Quinton, and Rolf Ernst. 2013. Multi-mode monitoring for mixed-criticality

real-time systems. In 2013 International Conference on Hardware/Software Codesign and System Synthesis (CODES+

ISSS). IEEE, 1–10.

[32] Dionisio de Niz and Linh T. X. Phan. 2014. Partitioned scheduling of multi-modal mixed-criticality real-time systems

on multiprocessor platforms. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium

(RTAS). IEEE, 111–122.

[33] Alan Burns. 2014. System mode changes-general and criticality-based. In Proc. of 2nd Workshop on Mixed Criticality

Systems (WMC). 3–8.

[34] Xiaozhe Gu and Arvind Easwaran. 2016. Dynamic budget management with service guarantees for mixed-criticality

systems. In 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE, 47–56.

[35] Chiristos Evripidou andA. Burns. 2016. Scheduling formixed-criticality hypervisor systems in the automotive domain.

In WMC 2016 4th International Workshop on Mixed Criticality Systems.

[36] Biao Hu, Lothar Thiele, Pengcheng Huang, Kai Huang, Christoph Griesbeck, and Alois Knoll. 2018. FFOB: Efficient

online mode-switch procrastination in mixed-criticality systems. Real-Time Systems (2018), 1–43.

[37] Tianyang Chen and Linh Thi Xuan Phan. 2018. SafeMC: A system for the design and evaluation of mode-change

protocols. In 25th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 105–116.

[38] Hao Xu and Alan Burns. 2019. A semi-partitioned model for mixed criticality systems. Journal of Systems and Software

150 (2019), 51–63.

[39] Linh T. X. Phan, Insup Lee, and Oleg Sokolsky. 2010. Compositional analysis of multi-mode systems. In 22nd Euromicro

Conference on Real-Time Systems (ECRTS). IEEE, 197–206.

[40] Haoran Li, Meng Xu, Chong Li, Chenyang Lu, Christopher Gill, Linh Phan, Insup Lee, and Oleg Sokolsky. 2018. Multi-

mode virtualization for soft real-time systems. In 24th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS). IEEE, 117–128.

[41] Vladimir Nikolov, Stefan Wesner, Eugen Frasch, and Franz J. Hauck. 2017. A hierarchical scheduling model for dy-

namic soft-realtime system. In 29th Euromicro Conference on Real-Time Systems (ECRTS).

[42] Pavan Kumar Paluri, Guangli Dai, and Albert Mo KimCheng. 2021. ARINC 653-inspired regularity-based resource par-

titioning on Xen. In Proceedings of the 22nd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,

and Tools for Embedded Systems. 134–145.

[43] A. K. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. 1989. Algorithms and complexity of the periodic maintenance

problem. Microprocessing and Microprogramming 27, 1 (1989), 657–664.

[44] Wei-Ju Chen, Peng Wu, Pei-Chi Huang, Aloysius K. Mok, and Song Han. 2019. Online reconfiguration of regularity-

based resource partitions in cyber-physical systems. In 2019 IEEE Real-Time Systems Symposium (RTSS). IEEE, 495–507.

[45] Song Han, Deji Chen, Ming Xiong, Kam-Yiu Lam, Aloysius K. Mok, and Krithi Ramamritham. 2012. Schedulability

analysis of deferrable scheduling algorithms for maintaining real-time data freshness. IEEE Trans. Comput. 63, 4 (2012),

979–994.

[46] Yi-Hung Wei, Quan Leng, Song Han, Aloysius K. Mok, Wenlong Zhang, and Masayoshi Tomizuka. 2013. RT-WiFi:

Real-time high-speed communication protocol for wireless cyber-physical control applications. In Real-Time Systems

Symposium. IEEE, 140–149.

[47] J. C. Eidson. 2010. Measurement, Control, and Communication using IEEE 1588. Springer.

Received 30 August 2022; revised 18 May 2023; accepted 14 June 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.

