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We consider the problem of resource provisioning for real-time cyber-physical applications in an open sys-
tem environment where there does not exist a global resource scheduler that has complete knowledge of the
real-time performance requirements of each individual application that shares the resources with the other
applications. Regularity-based Resource Partition (RRP) model is an effective strategy to hierarchically parti-
tion and assign various resource slices among such applications. However, previous work on RRP model only
discusses uniform resource environment, where resources are implicitly assumed to be synchronized and
clocked at the same frequency. The challenge is that a task utilizing multiple resources may experience unex-
pected delays in non-uniform environments, where resources are clocked at different frequencies. This paper
extends the RRP model to non-uniform multi-resource open system environments to tackle this problem. It
first introduces a novel composite resource partition abstraction and then proposes algorithms to construct
and reconfigure the composite resource partitions. Specifically, the Acyclic Regular Composite Resource Parti-
tion Scheduling (ARCRP-S) algorithm constructs regular composite resource partitions and the Acyclic Regular
Composite Resource Partition Dynamic Reconfiguration (ARCRP-DR) algorithm reconfigures the composite re-
source partitions in the run time upon requests of partition configuration changes. Our experimental results
show that compared with state-of-the-art methods, ARCRP-S can prevent unexpected resource supply short-
fall and improve the schedulability up to 50%. On the other hand, ARCRP-DR can guarantee the resource
supply during the reconfiguration with moderate computational overhead.
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1 INTRODUCTION

A cyber-physical system (CPS) may consist of multiple applications that share resources from
the same resource pool. In an open system environment [1, 2], there does not exist a global sched-
uler that has full knowledge of the real-time performance requirements of each individual applica-
tion. Each application tenders a request and is allocated a fraction of the shared resource to meet
its own need. It is up to the application-level scheduler in each application to schedule its tasks
to meet the task-level timing constraints. Many effective strategies have been proposed in the lit-
erature to allocate resources in such environment. Among those methods, the Regularity-based
Resource Partition (RRP) model is an abstraction of component-based hierarchical scheduling
systems where each component is an application with specified functional requirements and tim-
ing constraints [3-5]. In the RRP model, the resource supply is characterized in two dimensions
where the availability factor defines the resource supply rate and the supply regularity defines the
deviation of the allocated resource supply from the ideal resource supply. As a hierarchical schedul-
ing system, a component (or application) in the RRP model may consist of several sub-components.
A parent component distributes its resource share to its sub-components, each of which in turn
distributes it to its sub-components in a hierarchical fashion. Taking CPU resource as an exam-
ple, Figure 1 gives an overview of the hierarchical resource scheduling model. In this example,
individual applications utilize their resource partitions to request CPU resource shares. The allo-
cated resource shares for each application will then be distributed to its task group according to
self-defined policies. In this way, the task-level scheduler of each application can independently
schedule its own tasks based on the allocated resource.

Another popular approach in the literature to characterize the resource usage interface is the
Periodic Resource Model (PRM) [6] (or its variant the Explicit Deadline Periodic (EDP)
model [7]). These models characterize the resource interface as a periodic execution budget and
its period. The EDP model extends the PRM model by using a deadline to limit the delay of the
resource supply in each period. The main difference between RRP and EDP models is illustrated
in Figure 2. Given the resource demands of all the task groups, both RRP and EDP models will con-
struct resource interfaces accordingly. The figure shows a possible schedule of resource allocation
with a bandwidth assignment of 1/4 of the resource. The EDP model constructs a resource inter-
face which has zero resource supply in time interval (1, 6]. By contrast, the RRP model bounds
the length of such zero-supply interval by explicitly specifying the allowed resource supply jit-
ter. Ideally, from the application’s point of view, the resource should be supplied uniformly over
any time interval as if it is dedicated to the application, but at a slower rate (‘—11) as depicted in
Figure 2(c). By considering the resource supply jitter, the resource supply specified by the resource
interface under the RRP model can better approximate the ideal supply which is uniform over any
time interval. Hence, changes to the task group can be more easily accommodated by the appli-
cation’s own task scheduler by rescheduling tasks within its allocated resource partition. This is
possible as long as the application’s task utilization remains below the assigned availability fac-
tor, thus avoiding the need to change the resource interface [3, 8]. The jitter requirement how-
ever makes the designs of the scheduling algorithms under the RRP model more complex. The
existing scheduling algorithms often limit the form of resource supply rate of each resource parti-
tion and give polynomial-time solutions. For example, the Adjusted Availability Factor (AAF)
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Fig. 1. Overview of the hierarchical scheduling Fig. 2. (a) and (b): two possible schedules under the
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(c): ideal resource supply from the application’s point
of view.

algorithm allocates resource partitions with availability factors (supply rate) of power of % [3]. Li
and Cheng [5, 9] proposed the use of a combination of Magic7 and PFair algorithms [9, 10] to
improve the resource utilization overhead.

A notable limitation of previous work on the RRP model is that they implicitly assume that
resources are clocked at the same frequency for both single-resource [3, 11, 12] and multi-
resource environment [9], in which the minimal intervals (resource slices) assigned to each task for
execution on each physical resource are the same. In multi-resource environments, however, the
size of resource slices may be non-uniform across different types of physical resources. This dif-
ference in the clock frequencies may introduce unexpected delays for the end-to-end tasks, which
may access multiple physical resources in a sequential fashion (see Section 4.1 for the formal defi-
nition of an end-to-end task).

In this paper, we first present the challenges in solving the above resource misalignment problem,
and introduce a novel composite resource partition abstraction for non-uniform multi-resource envi-
ronments. Based on this resource interface, the Acyclic Regular Composite Resource Partition
Scheduling algorithm (ARCRP-S) and Acyclic Regular Composite Resource Partition Dy-
namic Reconfiguration (ARCRP-DR) algorithm are proposed to construct and reconfigure the
composite resource partitions, respectively. The key idea behind the ARCRP-S algorithm is to con-
sider the requesting time of each resource partition. The resource misalignment problem then can
be mitigated by scheduling resource partitions in a way that resource will not be requested in the
middle of any resource slice. The ARCRP-DR algorithm is built on top of the reconfigurable RRP
model that we introduced in our recent work [12] by taking both the resource requesting time and
the performance degradation into consideration during the reconfiguration of composite resource
partitions. Finally, we evaluate the model with a real-world multi-resource system. Extensive sim-
ulation results are also presented to give a thorough evaluation on the proposed algorithms under
more general settings.

2 RELATED WORK

The concept of regularity was first introduced by Shirero et al. [13] and was then extended to
the RRP model by Mok and Feng [11], aiming to distribute resource evenly on each resource
partition by specifying the regularity. Mok and Feng further introduced the irregular partition
and presented the Adjusted Availability Factor (AAF)-based scheduling algorithm to schedule
regularity-based resource partition in single-resource environments [3, 11]. Li and Cheng extended
the AAF-based scheduling algorithm to uniform multi-resource environment and developed an op-
timized partitioning algorithm [5, 9]. More recently, the RRP model was further extended to sup-
port online reconfiguration of resource partitions [12] in single resource environments. Besides the
RRP model, many other studies on hierarchical scheduling characterize resource interfaces using
different models [4, 6, 7]. The most popular model among them is the Explicit Deadline Periodic
(EDP) model [7] which introduces a relative deadline parameter based on the Periodic Resource
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Model (PRM) model [6]. Most aforementioned work only discusses the resource allocation in
uniform-resource environment (either single- or multi-resource). However, in multi-resource en-
vironments, the resource slice sizes may be non-uniform across different physical resources, and
new resource interface and scheduling methods have to be designed.

Several works on resource scheduling under the multi-resource models have been proposed in
recent years. Some of them apply resource reservation techniques based on processing capacity
to achieve performance isolation on multicore architectures by a set of virtual processors with dif-
ferent speeds [14, 15]. For example, Buttazzo et al. [16, 17] proposed a method for allocating a set
of parallel real-time tasks with time and precedence constraints on different multicore platforms
by abstracting the available computing power into interface specifications. However, these end-
to-end resource reservation approaches do not consider dynamic workload in open systems, and
thus cannot adapt to online resource request changes. Some other research efforts were devoted on
workload-partitioning techniques for heterogeneous computing systems which enable exploiting
both CPU and GPU to improve resource utilization and increase high-performance computation.
Two excellent review papers [18, 19] provided an overview and comparisons of the well-known
techniques for such systems. Among these techniques, some of them focus on scheduling work-
loads on the appropriate device on the same die (i.e., integrated CPU and GPU processors) which
shares a total power budget and have strong thermal interactions [20-23]. Some work proposed
device-contention-aware scheduling schemes that take the run-time conditions on CPU and GPU
processors into consideration [24, 25]. There are also some work that focuses on cache-related
research on multicore virtualization platforms [26, 27]. However, most aforementioned research
studies did not consider non-uniform environment which may result in resource misalignment
problem.

Chen et al. introduces the concept of composite resource partitions to address the resource
misalignment problem in non-uniform multi-resource environment [28]. However, composite re-
source partitions can not be reconfigured with the single-resource online reconfiguration algo-
rithm [12]. The resource misalignment problem will be severe if the resource partitions on differ-
ent physical resources are reconfigured without any coordination. In this paper, we propose the
online algorithm to reconfigure the composite resource partitions in non-uniform multi-resource
environments.

To adapt a system to schedule tasks with varying timing requirements, a range of works have
been developed. For example, Burns and Davis [29] presented a survey on mixed-criticality sys-
tems, in which the task specifications depend on the system state/criticality. Jiang et al. [30] pro-
posed a mixed-criticality system for timely handling of I/O. It provides temporal and spatial isola-
tion and prohibits fault propagation with small overhead based on hardware-assisted virtualisation
to offer good timing predictability. Many multi-mode system designs are proposed to ensure that
the mode switch is performed in a timely and safe manner in response to both internally and exter-
nally generated events [31-38]. The key challenge in these protocol designs is how to ensure the
schedulability of the system not only in each mode but also during the mode switch. For example,
Neukirchner et al. [31] introduced a packing solution and a scheduling algorithm based on both
mode changes and criticalities for each processor; the dynamic budget management schemes were
proposed to postpone criticality mode changes [34, 36]; the different execution-time servers under
the control of a hypervisor were employed to bound the overheads when mode changes [33, 35];
Chen and Phan [37] provided a system to analyze and evaluate the mode-change protocols. How-
ever, the existing solutions did not consider the reconfiguration of resource abstraction in non-
uniform multi-resource open system environment.

There are also some research works on the multi-mode resource interface and platform de-
sign [35, 39-42] where the resource interface may change in the run time for single-resource
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environment. For instance, Evripidou and Burns [35] used a two-level scheduler or a hypervisor
to handle the criticality mode change. Phan et al. [39] proposed a compositional analysis of the
multi-mode resource interface. Li et al. [40] used virtual machine (VM) to support multi-mode
virtualization where the VM parameters change with minimum transition latency. Paluri et al. [42]
proposed a VM scheduler prototype based on the RRP model and implemented it on Xen’s x-86
based hypervisor. In this paper, we focus on the scheduling and reconfiguration of resource inter-
faces in non-uniform multi-resource environment.

3 RRP MODEL IN UNIFORM ENVIRONMENT

This section revisits the RRP model in the uniform environment. We first define the time systems
used in this paper, and review the concepts of RRP model in the uniform environment [3, 11, 12, 28].

3.1 Time Systems

In this paper, we use two time systems in the RRP model. The first one is the wall clock time de-
fined as the physical time 7, which is synchronized among all physical resources (see Figure 3(a)).
For the physical resource IT, a minimum non-preemptible physical time interval (2 in the example
in Figure 3) is defined as a resource slice and allocated to an application exclusively. Physical re-
source is allocated to the application(s) in units of resource slices (see Figure 3(b)), where a resource
partition P is a set of resource slices. The second time system, physical resource time, is defined as
follows.

Definition 3.1. The physical resource time t of a physical resource IT is a function of the physical

time 7 such that t = é where Q is the resource slice size of II.

In this paper, the domain of physical time is assumed to have only non-negative integers and
each resource slice starts and ends at physical time integral boundaries. As shown in Figure 3, non-
negative integer t denotes a time at the boundaries of resource slices. The scheduling decisions
made by the resource-level scheduler are always at the integral domain of physical resource time
because resource slices are non-preemptible. In the following of the paper, we always refer the
time to be physical resource time unless we specify the time to be others. Moreover, we assume
that the resource slices have an equal size for the same physical resource. If all physical resources
to be scheduled have the same resource slice size, the resource environment is uniform. Otherwise,
the resource environment is non-uniform.

3.2 Regularity-based Resource Partition (RRP)

We now revisit the formal definition of a regularity-based resource partition in the uniform envi-
ronment [3].

Definition 3.2. A resource partition P on a physical resource II is a tuple (S, p), where S =
{S1,82,...,8p 1 0 < 51 < $3 < -+ < sy < p}isaset of n time points that denote the start time of
the resource slices (called the offsets) allocated to the partition, and p is the partition period with
the following semantics: the physical resource I is available to the application tasks to which the
partition P is allocated only during the time intervals s + x-p, sy + 1+ x-p), x e N,1 <k < n.

Definition 3.3. Supply function S(¢) of resource partition P is the number of allocated resource
slices in interval [0, t).

S(t) represents the amount of resource supply for the resource partition P in [0,t). As an ex-
ample, the resource partition P in Figure 3 is ({s; = 0,52 = 2,53 = 4}, 5). Its supply function has
S(1) =1,5(2) =1,5(3) = 2,5(4) = 2, and so on.
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The RRP model characterizes the resource supply in two dimensions: (1) the resource supply
rate and (2) the deviation of the resource supply from the ideal resource supply which allocates
the resource evenly to the application over any time interval (zero jitter). The resource supply rate
is defined as the availability factor a, and the concept of supply regularity is introduced to capture
the jitter in the resource supply.

Definition 3.4. The availability factor « of a resource partition P = (S, p) is defined as % where

|S| is the number of elements in S.

Definition 3.5. The instant regularity I(t) for a resource partition P at time ¢ is defined as I(t) =
S(t) —a-t.

Instant regularity I(t) quantifies the gap between the ideal supply and actual supply at time
t. The difference in instant regularity at two time instants represents the gap between the ideal
supply and actual supply for that time interval.

Definition 3.6. Let a, b, k be non-negative integers. The supply regularity R of resource partition
P is defined as the smallest k such that |I(b) — I(a)| < k,¥b > a.

The regularity defines the maximum supply deviation from the ideal resource supply. Regularity
of one means that the resource supply will never undersupply or oversupply more than one unit
of resource.

Figure 4(a) illustrates the ideal and actual resource supply of a resource partition P which has i
fraction of resource. Ideally, the resource supply should be uniformly distributed as shown using
the dash line which is equal to the availability factor times the duration as ; - . However, resource
can only be allocated to an application exclusively in units of resource slices. For this reason, the
actual resource supply will be a staircase function S(t) as shown using the solid line. Figure 4(b)
illustrates the actual resource supply for time interval [1, t) as S(t)—S(1), and I(¢)—I(1) is the supply
deviation in this time interval. For example, I(6) —I(1) is the supply deviation in time interval [1, 6).
The supply regularity defines the maximum supply deviation for all time intervals.

Definition 3.7. A regular partition is a resource partition with supply regularity of 1 and an
irregular partition is a resource partition with supply regularity larger than 1.

Recall that the actual resource supply function S(t) is a staircase function while the ideal re-
source supply is a linear function as illustrated in Figure 4(a). The supply regularity bounds the
supply deviation between the two functions and is thus not possible to be zero in a practical system.
Moreover, a regular partition, which has regularity of 1, has the following nice property. The utiliza-
tion bounds for both fixed-priority scheduling and dynamic-priority scheduling of tasks running
on a regular partition remain the same as if the task group were running on a dedicated resource
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Fig. 5. The relationship among important concepts in partition construction and reconfiguration under dif-
ferent environments.
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Fig. 6. Solid and dash lines represent two end-to-end wireless networked control applications A; and Az
sharing CPU and wireless network channels, respectively. A1 has an end-to-end task K; and Az has an end-
to-end task K».

whose supply rate is the same as that of the regular partition [3, 8]. Thus, a task group scheduled
on a regular partition with either scheduling policy cannot distinguish whether it is scheduled
on a resource partition or a dedicated resource with the same rate. This is, however, not true for
a task group scheduled on an irregular partition which has a regularity larger than 1. Irregular
partitions will introduce larger jitter although this might be acceptable for some applications. In
this paper, we focus on regular partitions. Table 1 summarizes the frequently used symbols in this
paper. Figure 5 illustrates the relationship among important definitions and categorizes them into
four quadrants. For example, the top-left quadrant denotes the definitions used for static partition
construction in the uniform environment.

As an example shown in Figure 3, the availability factor a of resource partition P is 2. The
instant regularity I(t) has I(1) = %, 1(2) = —%, I1(3) = % and so on. The supply regularity R is 1 and
thus P is a regular partition.

4 COMPOSITE RESOURCE PARTITION: CHALLENGES AND MODEL EXTENSION
4.1 Challenges in Non-uniform Multi-resource Environment

In uniform environments, tasks are assumed to only access resource at the resource slice bound-
aries. However, this assumption may not hold in a practical system, especially in multi-resource
environments where resources have different sizes of resource slices. In such environments, each
application may have tasks utilizing multiple resources in a periodic and sequential fashion. We
define such periodic end-to-end task as follows:

Definition 4.1. A periodic end-to-end task K is defined as (Z,X,p,d) where I =
{I1;;11,;- - - ;I1,} is a sequence of n physical resources that K will access in sequence, X =
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Table 1. Summary of Important Notations and Definitions

Notation Definition
7,11, t Physical time; physical resource; physical resource time
P,Q The resource partition; the resource slice size of II
(S, p) The start time of the resource slices (offsets) allocated to the partition; the partition period
S(t), a The supply function of P in interval [0, ¢); the availability factor
I(t), R The instant regularity; the supply regularity

K = (71, X, p,d) | Aperiodic end-to-end task K; a sequence of n physical resources I'; the corresponding requested
amount of resource slices X; the period of K; the relative deadline of K
0 =(0,p) O is a set of n” time points when the resource may be requested (called the request offsets);
P is their period
R The effective supply regularity
C = (P,1I°, E) | A composite resource partition C; a set of partitions #; a set of physical resource II¢;
a binary relation E on II¢ (the resource access order of C)
11, Oj,i, @j, i, A;i | Each physical resource I1;; the requested offset Oj,; of P; ;; the requested resource supply rate
aj, i; each application A;
po, pt, pn Resource Partition before reconfiguration; during RPT stage; after reconfiguration
A={C, F, R, T} | Reconfiguration request of regular composite resource partition A; the set of all regular composite
resource partitions C; each effective regular resource partition P; ; has the requested resource

aj,i € F;an associated effective reconfiguration supply regularity R; JER
the maximum complete time T for reconfiguration

R" The effective reconfiguration supply regularity R” of partition P
d(t) The maximum supply shortfall among all the time intervals ending at time ¢
s, 0, 7; The resource slice starting time and requesting time; the state of the partition system at time ¢
q. b, r,ed The time of reconfiguration request; the budget; release time; deadline time; the maximum supply
shortfall
{x1;x2;5...;xy,} is the corresponding requested amount of resource slices, p and d are the period

and the relative deadline of K, respectively, in units of physical time.

Figure 6 gives an example of two end-to-end wireless networked control applications in
multi-resource environment. Let physical resource CPU1, CPU2, CPU3 and Networks denoted as
I14, IT5, 15 and Il4, respectively. Application A; has an end-to-end task Ky with 73 = {II;;I14; 115}
Application A, has an end-to-end task K, with 7, = {II;I14;II3}. In this paper, we focus on the
resource-level scheduler and the resource supply of the constructed partitions instead of the task-
level scheduler. Thus, in the following, we will assume that there is only one task in each appli-
cation so there is no task-level scheduler. The response time of this single task running on the
resource partition can represent the actual resource supply it received. Given a regular resource
partition with availability factor «, we can derive the maximum response time ¢ for the task re-
questing x resource as follows. ¢ — 1 is the time that the task is about to receive the last one unit
of resource slice. Assuming this time interval is [a, b), we can have S(b) — S(a) = x — 1 by Def-
inition 3.3. Further by Definition 3.6, Definition 3.5, and the fact that the partition is regular, we
have |[(x — 1) — a(t — 1)] < 1. This leads to the conclusion that the maximum response time is
[x/c] because both x and ¢ are integers. In this paper, we use the upper bound of the response
time [x/a] of the single task running on the partition to measure whether the partitions can pro-
vide enough resource supply to highlight the resource misalignment problem. For a task utilizing
multiple resource, the response time is the sum of the time spent on each resource partition.

Figure 7 shows a partition schedule for application A; where its task K; experiences the resource
misalignment problem. The resource slice sizes Q;, Q4 and Qs for physical resources IT;, Iy and I3
are 2, 4 and 2, respectively. The black resource slices denote three regular resource partitions P; ; =
({6},8),Ps1 = ({3},4), Ps,1 = ({1}, 2) on physical resource IT;, IT4, IT5 assigned to A;, respectively.
Note that for ease of presentation, we use P;; to denote the partition on physical resource II;
assigned to A;. These three regular partitions have availability factor a1 = %, s = 4—11, asy = %
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Fig. 7. Thevertical and horizontal arrow denote the resource request time and the response time, respectively,
of a task instance running on each partition. This instance may miss the deadline because of the unexpected
delay for time interval [7.5, 8) on Il4.

respectively. Let’s consider an instance of task K; = ({II;; I14; IT5}, {x; = 1;x4 = 1;x3 = 1},36,36)
of A; where the task has a period and relative deadline of 36 in physical time. The vertical and
horizontal arrow denote the resource request time and the response time, respectively, of a task
instance running on each partition. Given the resource supply of these partitions, the theoretical
maximum response time of such task instance is 36 in physical time. However, this task instance
has to wait 2 extra time units during the physical time interval [30,32) on resource I14 because it
cannot execute in the middle of an resource slice of I14. This prolongs the expected finishing time
on I, from physical time 46 to 48 and prolongs the end-to-end response time to 38 in physical
time. This causes the instance to miss the deadline.

Compensating the loss of resource supply due to the resource misalignment problem with either
increasing the availability factor or setting a smaller deadline for the task is often not viable. For the
former approach, the system needs to schedule one more resource slice for each allocated resource
slice. In the worst case, the system needs to compensate a partition with « of % with another %
of the resource to make up for the resource misalignment problem. For the latter approach, the
deadline of each task needs to be decreased for each misaligned partition and this may cause the
system unschedulable. In this work, we mitigate the resource misalignment problem by judiciously
scheduling the resource partitions in a way that no task will request resource at the middle of a
resource slice of its resource partition.

4.2 RRP Model Extension

To deal with the above challenge, we introduce the concept of composite resource partition by ex-
tending the RRP model with the new concept of effective supply regularity to address the resource
misalignment problem. We first extend the definition of a resource partition with the request offsets
to take the resource requesting time into consideration.

Definition 4.2. A resource partition P on a physical resource IT in non-uniform environment is
a tuple (8,0, p), where S = {s1,82,...,8, : 0 < 51 <sp < --- <5, < p}isasetof ntime points
that denote the start time of the resource slices (called the slice offsets) allocated to the partition,
and O = (O = {01,02,...,017,: 0 < 01 < 02 < --- < 0y < p},p) denotes a set of n’ time points
when the resource may be requested (called the request offsets); p and p are the partition period
and offset period, respectively. The physical resource I1 is available to the application to which the
partition P is allocated only during the time intervals [si + x1-p, sg + 1+ x1-p), x1 e N,1 <k <n
and resource may only be requested at any requesting time o = oy + x3-p, x2 € N,1 < k < n’.
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In order to take the resource misalignment problem into consideration, the partition in non-
uniform environment now is defined with the consideration of the time points (request offsets)
at which the task group utilizing the partition can request resource. These request offsets will be
used to compute the supply regularity and will be defined in Definition 4.4. For example, consid-
ering the slice schedules of the physical resources accessed earlier, the three request offsets of the
resource partitions P; 1, Py 1, P31 in Figure 7 can be represented as O;,; = ({0, 1,2,3,4,5,6,7},38),
O41 = ({3.5},4),05.1 = ({0}, 2). The request offset extension above is compatible with the RRP
model in uniform environment where the request offsets include all the integer time points. In the
rest of the paper, we still assume that tasks can only have integer execution time but can request
resource in the middle of a resource slice such that the requesting time is non-integer. With this
extension, we further extend the definition of the supply function as follows.

Definition 4.3. For any non-negative time t, the supply function of the resource partition P at
time ¢ equals to S(|t]). That is, S(t) = S(Lt]).

Based on Definition 4.3, the resource supply in time interval [0, ) is equal to the resource supply
in time interval [0, [ ¢]) since there is no complete resource slice in time interval [|t], t).

LEMMA 4.1. The resource supply of resource partition P in time interval [a, D) is S(b) — S(a) — 1 if
a is a non-integer requesting time and there is a resource slice with a starting time of | a]. Otherwise,
it is S(b) — S(a).

Based on the above extensions, the effective supply regularity can be defined as follows.

Definition 4.4. Given a resource partition P = (S, O, p), where S = {s1,52,...,8, : 0 <51 <52 <

- <sp <pland O = (O = {01,02,...,0p,: 0 < 01 < 0p < -+ < 0y < p},p). Let e, x1, %7 be
non-negative integers. The effective supply regularity R of partition P is defined as the smallest
integer k such that for any slice starting time s = s; + x; - p, requesting time 0 = 0; + x, -pand e
where 0 <i<n0<j<n,ex;,x €N

[I(lo+e)—1I(o)—1] <k ifo¢ Nandds=|o]
[I(o+e)—I(0)| <k otherwise

Note that tasks in the non-uniform environment have their execution times and deadlines all in
integers as they are in the uniform environment. Hence, the resource supply deviation for a task
requesting resource at o should be computed for the time intervals [0, 0 + e) for all integer e. The
effective supply regularity defines the maximum supply deviation from the ideal resource supply
with regards to the application’s requesting time. Effective supply regularity of 1 indicates that
the resource supply will never undersupply or oversupply more than one unit of resource consid-
ering the application’s requesting time. This definition of effective supply regularity is backward
compatible with the original definition of supply regularity in Definition 3.6 where the requesting
times include every integer time point in uniform environment.

Definition 4.5. A resource partition is effective regular if and only if it has effective supply reg-
ularity of 1.

The following Lemma states that a regular partition may not be effective regular.

LEMMA 4.2. A regular resource partition P is not effective regular if there exists a non-integer re-
questing time 0 = 0j + x, - p and an integer slice starting time s = s; + xy - p such that s = [ o] where
0<i<nO<j<nex;,x €N
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Proor. If such starting time s and requesting time o exist for a regular partition P, by Defini-
tion 4.4 and 3.5, we have
[Sfo+p)—S(0) —a-p—1] <R (1)
for a time interval of the partition period p. Also, from Definition 3.4, P has |S] resource slices over
the time interval of p; and from Definition 4.2 and 4.3, we have

S(o+p)=S(0) =[Sl =a-p )
So, we have 1 < R and hence P is not effective regular. O
We now define composite resource partition and its regularity.

Definition 4.6. A composite resource partition C is defined as a tuple (#,II¢, E) where P is a set
of resource partitions, I1¢ is a set of physical resource and E is a binary relation on II¢ such that
the partition P; € ¥ is on physical resource II; € II° and E represents the resource access order
of C.

The composite resource partition can be considered as a collection of resource partitions on a set
of physical resources with a fixed resource access order. For example in Figure 6, let ITy, IT4 and I3
denote CPU1, Network and CPU3 resources respectively, and application A; has resource access
order E = {(IIy, I1y), (IT4, I13) }. The resource-level scheduler may construct a composite resource
partition C = ({Py,1, Py.1, P51}, 11 = {II4, 114,115}, E) for A; as illustrated in Figure 7.

Definition 4.7. A composite resource partition C is regular if and only if all of its resource parti-
tions are effective regular. If not, it is irregular.

5 COMPOSITE RESOURCE PARTITION: PROBLEM FORMULATION AND
ALGORITHM DESIGN

In this section, we study how to construct composite resource partitions in multi-resource envi-
ronment. We first formulate the ARCRP-S problem, and then present the necessary and sufficient
condition for constructing composite resource partition. Building upon this condition, we then
propose the ARCRP-S algorithm.

5.1 Problem Formulation and the Necessary and Sufficient Condition for Partition
Construction

PrROBLEM 5.1. Acyclic Regular Composite Resource Partition Scheduling (ARCRP-S)
Problem: Given the resource demands {a;; | Vi} and the resource access order E; from each ap-
plication A; where aj ; represents the requested resource supply rate on physical resource I1; from A;,
the ARCRP-S problem is to construct a regular composite resource partition C; = (P;,I1¢, E;) for each
A; with the assumption that the total resource access order E = {(I1,,,I1,,) | (IL,,, I1,,) € E;, Vi} does
not have cycles.

The ARCRP-S problem is proved to be NP-hard [28]. However, we can transform the availability
factor and request offsets of each partition into simpler forms which makes the problem easier. The
availability factor of each partition can be adjusted and transformed into the form of 1/m for some
integer m by allocating more resource. The request offsets can also be transformed into a periodic
pattern with a period of m = é which covers the original offsets. These transformations will lead to
a necessary and sufficient condition for constructing an effective regular partition, although more
resources will be allocated for each partition. In this paper, we make the following assumptions:
(1) the availability factor « is limited to be 1/m for some integer m; and (2) the period of request

offsets pism = L.
a
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Fig. 8. Examples of resource slice allocation for an effective regular partition P.

THEOREM 5.1. Let a resource partition P has resource slice offsets {s1,s2,...,s,}, period p and
request offsets O = ({01, 02,...,0n},p). P is effective regular if and only if Ik e N,0 < k < n’

op+(—-1p<si<opy+({(—-1p—1, for0<i<n

where 0g = 0,y — P, Opr+1 = 01 + p and no resource slice is scheduled on any non-integer requesting
time.

Theorem 5.1 gives the necessary and sufficient condition for the slice allocation for an effective
regular partition. The resource slices should be scheduled in a periodic time interval enclosed by
a pair of neighboring request offsets with a period of p. The time interval in each period should
be scheduled exactly one resource slice. Each pair of neighboring request offsets, ox and ok, is a
candidate for such periodic time interval and we denote each choice with a color in Figure 8. For
example, resource partition P has request offset O = ({o; = 1.5,0, = 3,03 = 5.5},p = 7). 01, 02,
03,03 and 03,07 are three candidates and denoted with black, gray and white, respectively. An
effective regular resource partition P should have all its resource slices scheduled in the periodic
time interval with the same color. For example, P = ({0, 6}, 14) is effective regular because all its
slices are scheduled in the white periodic interval.

Proor. We first prove the sufficient condition by showing that the effective supply regularity
is 1 if we have such schedule. We first construct intervals [b, a) as follows.

b=oj+x-p Vj,x e N
a=b+y-p+m VYymeNandO<m<p
where b represents a requesting time and a represents some time after b. If such k (o) exists, there

will be exactly one resource slice in each time interval [0y + z - D, 0k+1 + 2 - p), Yz € N and there
is no resource slice at | b] for all non-integer b. So we have

y<S(a)-Sb)<y+1 (3)
Also,a(a—b)=a-y-p+a-m=y+a-mbecause p = +. We then have
—a-m<Sa)-Sb)-—ala-b)<1-a-m (4)
From Definition 3.5,
—a-m<I(a)—1I(b) =S(a)—=S(b)—ala-b)<1—a-m (5)
Because m < p = %,
—1<I(a)—I(b) <1 (6)

Equation (6) holds for all time intervals [b, a) where b is the requesting time and a = b+e fore € N.
P is effective regular by Definition 4.4. Next, we prove the necessary condition by contradiction.
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Fig. 9. The result of running Algorithm 1 for application A; depicted in Figure 6. The slices scheduled for A;
are colored in black.

Assume such k does not exist then one of the following cases must be true

Case 1: sg = Lo, + x - p] for a non-integer oy
0g+x - p<sg<0g41+x-p—1
Case2: { ’ P =54 = Ogn _ P
Sd < Sg41 S04+ (x+1)p—1
0g+x - p<sg<o0g1+x-p—1
Case3: { ’ p d_ g+1 P
0g+1 + (x+1)p— 1 <441

where s; and sy, denote the starting time of two neighboring slices; d,¢,x € N. For Case 1, a
resource slice is scheduled on a non-integer requesting time and hence P is not effective regular
by Lemma 4.2. For Case 2 and Case 3, resource slices are not scheduled in each time interval
enclosed by the same pair of neighboring request offsets.

Case 2: Let a requesting time b = o4 + x - p and a time a = b + p. Because there are two resource

slices sy and sy, in time interval [b, a) anda—b =p = é, we have
S(a) = S(b) —a(a—b) =1

By Definition 3.5, |I(a) — I(b)| < R and thus R > 1 by Definition 4.4. P is not effective regular.
Case 3: Let a requesting time b = 04,1 + x - p and a time a = b + p. Because there is no resource
slice scheduled in time interval [b, a) anda—b =p = é we have

S(a) —S(b) —a(a-b)=0-1=-1

For the same reason as in Case 2, P is not effective regular. |

5.2 ARCRP-S Algorithm

We first give an overview of the ARCRP-S algorithm (Algorithm 1) and then describe each step in
detail. In the following, we use the applications depicted in Figure 6 to illustrate each step in the
ARCRP-S algorithm. The final schedules for application A; is illustrated in Figure 9. Application A;
and A, are sharing physical resource CPU1, CPU2, CPU3 and wireless network channels, which
are denoted as I1;, I, II5 and Il4, respectively. A; and A; will be assigned a regular composite
resource partition C; = ({P1,1, P41, P31}, E1) and Cy = ({Po,2, Py 2, P32}, Ez), respectively, and Pj ;
denotes A;’s partition on II;. The desired availability factors are a1 = a2 = %, Qu1 = Qup =
%1, 31 =033 = %, respectively.

ARCRP-S determines a linear order of all the physical resources and then constructs the resource
partition on each physical resource following this order (Line 1-3). Using the applications as an
example, the linear order {II;; IT,; I14; 15} is constructed by a topology sort on the total resource
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ALGORITHM 1: Overview of ARCRP-S Algorithm

ALGORITHM 2: Computation of the Request Offsets

-

Input: The requested @, ; of all application A; and the total access
order E = {(Iljp, I1y) | (I, I12) € Ej, i}

Output: The partition schedules {Sj,; | Vj, i}.

Enqueue all physical resource I1 into a queue Q following the

Input: The requested @, a set of resource partitions % and all the

resource slice sizes Qj and O.

Output: The request offset O = (O, p) of the partition P.

1 Procedure RequestOffset(a, P)

topological sorted order of E 2 0= p
2 while Q # 0 do 3 P=q
3 DQequEue 11 from Q 4 for P; /E P do
4 for each Pj ; onll; do 5 Pj:Pj'Qj/g
5 Oj,i = RequestOffset(aj, i, {Pm, i | (I, I1j) € 6 H= LCM(pj’.,p)

Ei}) 7 fors € Sj do
6 end 8 t/:(s‘*'l)‘Qj/Q
7 {Sj,i | Yi} = ConstructSchedule({(aj, i, O}, ;) | Vi}) 9 for x « 0 to H/p}. —1do
8 if {Sj,i | Vi} = NULL then 10 ‘ Insert(O, t’ + x - p; (mod p))
9 ‘ return NULL J
1 end

10 end 1 end
11 end 1 end
12 return (S, [ V), 1) 14 return O = (O, D)

access order E and the construction of schedule will follow this order. To compute the schedules
on each physical resource, the algorithm will compute the request offsets in the RequestOffset
subroutine (Algorithm 2) and construct the partitions in the ConstructSchedule subroutine (Al-
gorithm 3). Using the applications as an example, to compute the schedules of P, ; and P, ; on Iy,
the algorithm first computes the request offsets Oy 1, O4 » using subroutine RequestOffset based
on the schedules of Py ; and P, ;. In the second step, the schedules of P, ; and P4, are computed
based on Oy ; and Oy ; using subroutine ConstructSchedule. The same procedure will be repeated
for each physical resource.

As described above, ARCRP-S has the following two key steps: (1) the computation of the request
offsets and (2) the computation of the schedules given the request offsets of each partition. They
will be elaborated below.

5.2.1 Computation of the Request Offsets. Algorithm 2 shows the procedure to compute the
request offsets of each resource partition P on a physical resource I1. Assuming the resource slice
size Q; of resource II; is given, Algorithm 2 computes the request offsets based on the requested «
and a set of resource partitions #, that may be accessed right before accessing P according to the
access order of application A. For each such partition, the algorithm converts the end time s + 1
of each resource slice to the time system of P as t’ and add such requesting time to the request
offsets O as the loops in Line 4 and 7. The requesting time is assumed to be the end time of a
resource slice because tasks are assumed to have integer execution time and hence it is also the
time the next partition may request for resource. Using the applications as an example, the request
offsets can simply include all integer domain as O;; = O, = ({0,1,2,3,4,5,6,7}, 8) if there is
no partition accessed right before accessing P; » and Pz 2. Moreover, assuming the schedule of
P11 = ({6}, 04,1, 8) is computed in the previous phase, to compute the Oy 1, we need the schedule
of Py 1 because Py 1 is the partition accessed right before P, ;. Following the steps in Algorithm 2,
Oy, is computed as ({3.5}, 4) which can be seen in Figure 9.

5.2.2 Computation of the Partition Schedules. Given the request offset of each partition, the
problem to compute the schedule is NP-hard. This can be proved by reducing PMP; [43] to this
problem and setting the request offsets to be the set of all integer time. We present two algorithms
below. ARCRP-S (Algorithm 3) computes the schedules by exploring a large search space with
exponential time complexity, while ARCRP-S-Fast (Algorithm 4) computes the schedule by only
exploring an essential search space with polynomial-time complexity but it is only applicable to
some settings.
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ALGORITHM 3: ConstructSchedule for ARCRP-S ALGORITHM 4: ConstructSchedule for ARCRP-S-Fast
Input: The availability factor a;, ; and request offset Oj, ; of each Input: The availability factor aj, ;, request offset Oj ; of each partition
partition on physical resource IT;. on physical resource ITj and H is the hyperperiod of all the
Output: The schedules ({Sj,; | Vi}. Otherwise, reject. request offsets.

1 Procedure ConstructSchedule({(«j, i, Oj, i) | Vi}) Output: The schedules {Sj,; | Vi}. Otherwise, reject.

2 for Each combination of pairs of request offsets do X

3 Initialize m[¢] = 0, V¢ € [0, H) and Sj,; = {}, Vi 1 Procedure ConstructSchedule({(a;, i, Oj,i) | Vi})

4 for Each chosen request offset pair (u;., 0;.') do 2 Initialize m[¢#] = 0, Yt € [0, H)

5 rji = [0;1;dj ;i = Lo} ] " ) )

. 7 >d  then 3 Enqueue all partitions Pj, ; into a queue Q following the

; ‘ J» ld; ; +]; ‘Ej ) ascending order of period pj_ ;

8 end 4 while Q # 0 do

9 end 5 Dequeue Pj j from Q

10 Enqueue all partitions Pj ; into a new queue Q following

. r / "
the ascending order of deadline d, ; 6 for Each pair of request offset (0}, 07) of Pj, i do

11 while Q # 0 do 7 rji =0}

12 Dequeue Pj,; from Q ’ ¢

”
13 if (Next(Sj, 1, rj,i) < dj,i) or (dj,; > H and 8 dj,i = Lo} ]
Next(Sj,,-,_ 0) < (dj,; mod H)) then 9 t = EDE(rj ;, d;.;, m)

14 ‘ continue

15 end 10 if t # NULL then

16 t= EDF(rj‘,', dj’,', m) 1 ‘ break

17 if t = NULL then 12 end

18 | break 13 end

19 end

20 Insert(S;,;, t) 14 if t = NULL then

z rji+ =Ppjiidj it =pji 15 return NULL

22 Enqueue Pj ; into Q with deadline dj ; 16 end

23 end —

1 if O = 0 then 17 for x < 0toH/pj i —1do

25 | return {S;,; | Vi} 18 ‘ m[t+x-pj; mod H] =1

26 end 19 end

27 end 2 end

28 return NULL

21 return {S; ; | Vi}

Algorithm 3 shows the ConstructSchedule subroutine of the ARCRP-S algorithm. The algo-
rithm tries to construct cyclic schedules for every partition by testing each combination of pairs
of neighboring request offsets of each partition (see Line 2). Each partition has a release time r; ;
and a deadline e;; based on the chosen request offsets in Line 4-9. The algorithm ends when it
finds a cyclic schedule for each partition in Line 13-15 and Line 24-26. The algorithm uses an
EDF algorithm to compute the slice schedule in each periodic interval in Line 11, 12, and 16 where
the release time and deadline are updated in Line 21. The EDF subroutine takes a release time, a
deadline and marks the slot m[t] as occupied in Line 16. H is the hyperperiod of all the periods
of request offsets. The Next subroutine in Line 13 returns the first element in S; ; no less than r; ;.
The Insert subroutine in Line 20 inserts the slice offset ¢ to S; ;.

For example, to compute the schedule of Py ; and P4 2, we need the request offset Oy ; and Oy ;.
Assuming Oy 1 = ({3.5},4) and Oy, = ({2.5}, 4), there is only one possible combination of request
offset pairs which is (3.5,3.5 + 4) for Py; and (2.5,2.5 + 4) for Py . Py, is then picked from the
queue to be scheduled because of its smallest deadline. EDF subroutine will assign resource slice
at 3 to Py, because 2.5 < 3 < 6.5. The release time and deadline will be updated as (6.5, 10.5)
and Py is put back to the queue. P, ; is the next one to be scheduled based on its deadline. The
EDF subroutine will assign resource slice at 0 (4 mod 4) to Py ; because 3.5 < 4 < 7.5and H = 4
which can be seen in Figure 9. The release time and deadline will be updated as (7.5, 11.5) and P4 ;
is put back to the queue. In the next steps, P4 2 and P, ; will be dequeued and the algorithm will
halt because both of them have cyclic schedules as checked in Line 13-15.

The ARCRP-S algorithm can work for partitions with the availability factors and the periods of
the request offsets transformed into the form of % and m, respectively. However, it has exponential
time complexity. Assuming that the number of physical resources, the size of total resource access
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order, the periods of the slice offsets, the periods of the request offsets and the hyper-period of
all the periods are bounded by a constant C, the time complexity of the ARCRP-S algorithm is
O(N-CN) if the number of applications is N. To further reduce the time complexity and potentially
make it an online algorithm, we can further adjust and transform the availability factors into the
form of power of % and set the size of resource slice to be power of 2. In the following, we denote
such setting as geometric sequence with common ratio of 2 setting (called GS-2 setting). In this
way, we can employ a similar idea as the AAF algorithm where partitions are linearly scheduled by
following the ascending order of periods. Algorithm 4 summarizes the ARCRP-S-Fast algorithm.
The algorithm picks the first pair of neighboring request offsets that allows a resource slice to
be scheduled by EDF algorithm (Line 6-12). We then mark the resource slice assigned for each
interval in the hyperperiod H to avoid partition with larger period to conflict with partition with
smaller period (Line 17-19). Using the same example as mentioned above, Os; = ({3.5},4) and
O42 = ({2.5},4). Py, will be first assigned resource slice at 3 for having request offset pair of
(2.5,6.5). Py 1 will then be assigned resource slice at 0 for having request offset pair of (3.5,7.5).
With the above mentioned assumptions, the time complexity of the ARCRP-S-Fast algorithm is
O(C*- N +C- N - log N) if the number of applications is N.

6 DYNAMIC RECONFIGURATION OF RESOURCE PARTITION IN NON-UNIFORM
ENVIRONMENT

In open system environments under the RRP model, applications may request to reconfigure their
resource partitions on demand. This section first revisits the dynamic reconfiguration of resource
partitions in uniform environments and then extend the study to non-uniform environments.

6.1 Reconfigurable RRP Model in Uniform Environments

In uniform environments, an application can issue a Reconfiguration Request of Resource Partition
(R3P) to request new resource partitions or reconfigure the existing ones. The application can
request to reconfigure its resource supply curve by issuing an R®P (see Figure 10). The system then
enters the Resource Partition Transition (RPT) stage where resource partitions are reconfigured
and temporary resource undersupply or oversupply may happen as shown in Figure 10(a) and
(b), respectively. After the RPT stage is over, the reconfigured resource partitions will supply the
resource to applications according to the new availability factor and new supply regularity by
approximating the new ideal supply curve in a staircase function as depicted in Figure 10(a) (lower
dash supply curve) and (b) (upper dash supply curve).

Recall that a resource partition P in uniform environments is a tuple (S, p) which describes its
cyclic schedule and period. In each stage, the cyclic schedule of the resource partition can be de-
scribed using this tuple counting from time zero at the start of the stage. The resource partition P at
different stages can be described using different superscripts. The resource partition before, during
and after the reconfiguration is denoted as P°, P! and P", respectively. Based on these notations,
the reconfiguration request of resource partition (R*P) can be formally defined as follows.

Definition 6.1. Reconfiguration Request of Resource Partition (R*P) is defined as a tuple A =
{P,F,R, T} where P is the set of resource partitions;1 each resource partition P; € P will have
associated availability factor of a; € ¥ and P; will have reconfiguration supply regularity (see
Definition 6.3) of R} € R. T is the maximum time allowed for the reconfiguration to complete.

19 denotes the set of all the partitions. However, these partitions are neither specified with the resource slice offsets nor the
performance semantics. Their desired availability factors and reconfiguration supply are defined in # and R, respectively.
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R*P° RPT R’P" RPT
(a) undersupply (b) oversupply

Fig. 10. The dash line shows that the requested availability factor changes from ‘—1} and 1to 1 and ‘—11 in (a),
(b), at the time of R*P. The arrow shows the supply deviation during the reconfiguration. There is resource
undersupply in (a) but resource oversupply in (b).

The resource supply of a resource partition P after the R*P is guaranteed by enforcing the avail-
ability factor and regularity of each partition while the performance semantics of the reconfigura-
tion can be defined as the maximum deviation between the actual resource supply and the desired
supply during the reconfiguration. The concept of reconfiguration supply regularity is thus in-
troduced to formally define such performance semantics. For this aim, the definition of instant
regularity is extended to accommodate the change of availability factor. Following the similar no-
tation of a resource partition P, «° and " are used to denote the availability factor of P before
and after the reconfiguration, respectively. The definition of instant regularity is thus extended as
follows.

Definition 6.2. The instant regularity I(¢) of a resource partition P at time t > q is I(t) = S(t) —
(a° - g + a™(t — q)) where q is the time of an R*P;

Based on the above extension, the reconfiguration supply regularity for uniform environments
is defined as follows.

Definition 6.3. Let a, b, k be non-negative integers. The reconfiguration supply regularity of re-
source partition P is defined as R” which equals to the smallest k > 1 such that I(b) — I(a) >
—k,¥b > a.

Note that the reconfiguration supply regularity only defines the maximum undersupply while
the normal supply regularity restricts both the maximum undersupply and oversupply. This re-
laxation on the definition gives the scheduler flexibility to schedule the resource slices to earlier
time compared to the case where the maximum oversupply is also bounded. For example, without
this relaxation, a regular partition with an availability factor of % has a periodic schedule which
cannot be edited on the fly. With this relaxation, the partition schedule can be changed on the fly
by shifting the schedule one time slot earlier. This relaxation, however, is only applicable during
the partition reconfiguration.

6.2 Extending Partition Reconfiguration to Multi-resource Environments

We now extend dynamic reconfiguration of resource partitions to multi-resource environments.
We first extend the definitions of reconfiguration request and reconfiguration supply regularity as
follows.

Definition 6.4. Reconfiguration Request of Regular Composite Resource Partition (R*CRP) is
defined as A = {C, ¥, R, T} where C is the set of all regular composite resource partitions; each
effective regular resource partition P;; has the requested «;; € ¥ for the composite resource
partition C; with an associated effective reconfiguration supply regularity (see Definition 6.5) of
I? € R; T is the maximum time allowed for the reconfiguration to complete.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 84. Publication date: September 2023.



84:18 W.-J. Chen et al.

Definition 6.5. Let e, x1, x; be non-negative integers, S = {s1,s2,...,sn} be the slice offsets of
P, p be the period of P and O = ({01,02,...,0.},p) be the request offsets of P. The effective
reconfiguration supply regularity R" of partition P is defined as the smallest integer k such that
for any slice starting time s = s; + x1 - p, requesting time o0 = 0; + x; - p and e, where 0 < i < n,
0<j<n, ex;,x; €N,

I(o+e)—I(0)—1> -k ifo¢Nandds=|o]
I(o+e)—1I(o) > —k otherwise

Based on Definition 6.5, we can define the effective reconfiguration regular partition as follows.

Definition 6.6. A resource partition P is effective reconfiguration regular if and only if its ef-
fective reconfiguration supply regularity R” = 1 and it is effective regular before and after the
reconfiguration, respectively.

The problem of reconfiguring composite resource partitions can be reduced to the problem of
composite resource partition construction described in Section 5. The construction problem is
proved to be NP-hard [28]. In order to develop an online algorithm to reconfigure composite re-
source partitions, we have the following assumptions:

AS-1: time zero of each physical resource is synchronized;

AS-2: no concurrent reconfiguration request is allowed in the system;

AS-3: the availability factor of P and the resource slice size of each resource are adjusted and set
to be the power of % and 2, respectively. Also, the sum of the availability factors on each physical
resource is no larger than 1;

AS-4: the composite resource partitions are acyclic and regular.

AS-1 assumes time synchronization among the physical resources. This allows us to study the
resource misalignment problem only caused by the non-uniform sizes of resource slices but not the
time drifts among the physical resources. AS-2 assumes that only one reconfiguration request can
happen at any time in the system to simplify the performance semantics during the reconfiguration.
By limiting the form of availability factor and slice size, AS-3 allows us to adopt the ARCRP-S-Fast
algorithm to achieve a good balance between schedulability and polynomial-time complexity. AS-
4 is a consistent assumption as made for composite resource partition construction (see Section 5)
to construct/reconfigure regular composite partitions with acyclic resource access order. We now
define the ARCRP-DR problem as follows.

ProBLEM 6.1. Acyclic Regular Composite Resource Partition Dynamic Reconfigura-
tion (ARCRP-DR) Problem: Given a composite resource partition reconfiguration request A =
{C.#.R,T} and the state of all the resource partitions before the request ({P}}), the problem is

aps . . t .
to compute the partition schedules during the reconfiguration P; ; and after the reconfiguration P},
on each physical resource m; for each composite resource partition C; such that the following three
conditions are satisfied:
C-1: ijfi is effective regular with availability factor a; ; € F ;

C-2: the effective reconfiguration regularity of Pj,; is R ; € R;
C-3: the length of the RPT stage is no longer than T.

Please note the composite resource partition may be irregular during reconfiguration as some
resource partitions may be effective irregular but each resource partition will be effective regular
after the reconfiguration is completed.
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6.3 ARCRP-DR Algorithm

The ARCRP-DR problem can be solved by breaking the reconfiguration request down to a set
of independent R®Ps and each R®P can be handled by the DPR algorithm independently on each
physical resource as if reconfiguring only a single resource [12]. However, the effective supply
regularity and effective reconfiguration supply regularity will increase if there is the resource
misalignment problem. To further improve the schedulability and mitigate the problem, we present
the ARCRP-DR algorithm by first introducing the important concepts and presenting a running
example of a simplified algorithm, and then describing the ARCRP-DR algorithm details.

6.3.1 Dynamic RRP Scheduler. In the following, we revisit the concept of Dynamic RRP Sched-
uler by introducing the maximum supply shortfall, give an example of a dynamic RRP scheduler
[44] in uniform environments, and then extend the concept to non-uniform environments.
Maximum Supply Shortfall: The concept of maximum supply shortfall was introduced in [44].
We extend this concept below by taking the request offsets into consideration.

Definition 6.7. Let & = {s1,s2,...,8,} be the slice offsets, p be the period, O =
({01,002, . .., 0.}, p) be the request offsets of a resource partition P and ¢ be the time when there
exists at least one request offset o; s.t. t > o;. Given that no resource slice is scheduled on any
requesting time, the maximum supply shortfall of P at time ¢ is defined as d(¢) such that for any
requesting time o = 0; + x5 - p, where 0 < j < n’and x; € N

d(t) = min(I(t) ~ I(0))

d(t) denotes the maximum supply shortfall among all the time intervals ending at time ¢ and
it takes request offsets into consideration. Based on Definition 6.5, the effective reconfiguration
regularity will be the smallest positive integer k such that d(t) > —k Vt.

Dynamic RRP Scheduler: Traditional RRP schedulers are mostly static schedulers [3, 5]. The con-
cept of maximum supply shortfall enables dynamic RRP scheduler by tracking the supply short-
fall of each resource partition. This makes it possible to progressively compute the schedule by
limiting the supply shortfall. Given the C-1 and C-2 requirements in Problem 6.1 and the maxi-
mum supply shortfall of a partition at time ¢, we can compute the deadline to schedule the next
slice based on Definition 6.7 and Definition 4.4 in order to preserve the regularity of the partition
[12].

In the following, we give a simplified example of the dynamic partition reconfiguration algo-
rithm scheduling a single partition in Figure 11. The problem of scheduling resource partitions
is akin to schedule a set of tasks such that each partition is considered as a task and each task
instance indicates a deadline for the partition to schedule the next slice. The following require-
ments need to be satisfied: (1) a task instance is immediately released upon the completion of its
previous instance; (2) the deadline of the new instance depends on the maximum supply shortfall,
availability factor and regularity of its associated partition; and (3) each partition follows a cyclic
schedule after the RPT stage. To simplify the model, we omit the computation of the maximum
supply shortfall, assume that the relative deadline computed is always derived as 5 and the desired
regular partition shall have period of 4 after the reconfiguration. As illustrated in Figure 11, time
0 is the time of the reconfiguration request and time 0-4 is the RPT stage. Starting from time 4,
which is the end of the reconfiguration, the partition shall have a cyclic schedule with period of 4.
The first instance has release time ry, = 0 and relative deadline e, = 5. If this instance is scheduled
at time 2, it will release the second instance with release time r| = 3 and deadline e; = 3 +5 = 8.
This instance can also be scheduled at time 3. In this case, it will be released at time r!” = 4 with

1
its deadline e;” = 4 + 5 = 9. After the RPT stage is over, the task should be scheduled by following
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Fig. 11. An example of a dynamic RRP-based partition scheduler where resource slices in black and gray
color are two possible schedules. The release time and deadline of the next instance will be based on the
previous instance.

a cyclic schedule with a period of 4. The partition with either resource slice offset s = 6 or s; = 7
with a period of 4 has a valid cyclic schedule.

Fast Deadline Computation in Non-Uniform Environment: In the example, we use a sim-
plified example to illustrate the algorithm by omitting the computation of the deadline. Naively
computing the resource supply shortfall and deadline of each partition for all time ¢ will impose
significant complexity. In the following, we present the Theorem to update the deadline of each
partition P; in constant time for dynamic reconfiguration by only tracking (1) the maximum sup-
ply shortfall d;(t) at each scheduling decision time t and (2) the nearest future requesting time
o' > 1.

THEOREM 6.1. A resource partition P has effective reconfiguration regularity of R” < k if no re-
source slice is scheduled on any requesting time and for any time t,

s’ < min(t +d(t)/a", o) + k/a" -1

where s* and o' are the smallest resource slice starting time and requesting time which are no less
than t, respectively.

Proor. We prove this theorem by showing that for Vt,d(¢t) > —k by Mathematical Induction.
This leads to I(o + e) — I(0) > —k for any requesting time o and e € N by Definition 6.7. P is
effective reconfiguration regular by Definition 6.5.

For t < 0°, both the regularity and d(t) are undefined. Without loss of generality, we assume
s% > 0" and start with t € [0°,5°] and s < 0° + k/a"™ — 1 by the theorem. By Definition 6.2,
Definition 6.7 and the fact that there is no slice scheduled between 0° and s°, we have d(t) >
I(s°) = I(0°) > =k + a" > —k for t € [0°,s° + 1].

Assume that d(t') > —k for any time t’ < s’ + 1,t < t’ is true where s’ is the first resource
slice no less than t. Let s* > s’ be the next resource slice after the one at s?, 0¥ > s’ be the first
requesting time after s’ and t”” < s* + 1. We proceed to prove that that d(t"") > —k for any time
"< s+ 1.

Case 1: If I(0*) < maxy,<o~(I(0)), by Definition 6.7 and the fact that there is no resource slice
scheduled between [s’ + 1,s*), we have

t1+d(t1)/a" =X (7)

and

d(t) > d(s¥) for t; € [s" +1,5"] (8)
where X is a fixed value. By Definition 6.7, Definition 6.2 and the fact that there is no resource
slice scheduled between [s’ + 1, s*), we have

ds¥) =d(s" +1) —a"(s* = (s" + 1))
By the theorem that s* < s’ + 1+ d(s" + 1)/a" + k/a™ — 1, Equation (7) and d(s* + 1) > —k, we
have d(s¥) >= —k + a". Further by Equation (8), we have d(t;) > —k for t; € [s’ + 1,s¥ + 1].
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Case 2: If I(0*) = maxy,<ox (1(0)), for t; € [s* + 1,0%], it is the same as Case 1. For t; € (0¥, s*],
d(t1) = I(t;)—I(0*). By Definition 6.2 and the fact that there is no resource slice scheduled between
[0*,s¥), we have

d(t;) > d(s¥) for t; € (0%, s¥] 9)

From the theorem, we have s* < 0* + k/a" — 1 and thus d(s*) = —k + a". By Equation (9), we
have d(t;) > —k for t; in [0¥, s¥ + 1].

Combining both cases and Equation (7), we have d(t”’) > —k for any time t”” < s’ + 1 for any
t < t”. Please notice that, if d(s¥) > —k and there is a resource at s*, d(s* + 1) must be greater
than —k by Definition 6.7 and Definition 6.2.

By Mathematical Induction, for any ¢t we have d(t') > —k for t’ < s’ + 1. s' is the next resource
slice after t. O

Intuitively, we can consider the term k/a" to be the budget that can be used to delay the next
resource slice and the term d(t)/a" to be the already consumed budget. This theorem states a suf-
ficient deadline for each resource slice such that the resource partition P is guaranteed to have
effective reconfiguration supply regularity less than or equal to k. Based on this theorem, we can
progressively construct the schedule by (1) scheduling slices by the deadline and not on any re-
questing time; (2) updating the maximum supply shortfall and deadline; and (3) repeating the above
two steps until a cyclic schedule for each partition is found for the RPT stages.

6.3.2 ARCRP-DR Algorithm. In the following, we use 77 to denote the state of the partition
system at time ¢, which includes the time r; of the last scheduling decision, the maximum sup-
ply shortfall d; at r;, and the deadline e; to schedule the next slice for each partition P;. We first
give an overview of the ARCRP-DR algorithm and then present the detailed steps to compute the
schedules.

In Algorithm 5, we first perform a topology sort based on the total resource access order E of
all the composite resource partitions to generate a linear order {II;II;--- ;II;} of all the phys-
ical resources. The algorithm then computes the schedules on each physical resource following
this linear order. The algorithm adopts the same budget b for all physical resources and tests for
schedulability. For each physical resource, the algorithm has three stages to compute the partition
schedules. In stage-1, the Initialization procedure will compute 7, which includes the maximum
supply shortfall and the deadline of each partition. In stage-2, the TransitionSchedule procedure
will compute the transition schedule based on 7; and then compute the 75, for the next stage. In
stage-3, the CyclicSchedule procedure for each partition will compute its cyclic schedule based
on 74.p. We now explain each stage of the algorithm as follows:

Initialization. Algorithm 6 aims to compute the maximum supply shortfall d;(gq) and the dead-
line of each partition based on Theorem 6.1. It first computes the request offset of each partition as
0j,i (Line 4) by computing the request offsets O7 ;, O]ﬁ i» O] ; of Pj ; for the time before, during and
after the reconfiguration based on Algorithm 2. O;; denotes the union of 07, O;’ i
sidering the present time of each symbol. The procedure Next(O; ;, q) computes the next nearest
requesting time n; ; no less than g based on the request offsets of P; ; (Line 5). The ComputeMSS
procedure computes the maximum supply shortfall based on Definition 6.7. Please note that the
procedure can be improved to be computed in constant time [12]. In Line 6-12, we compute the
maximum supply shortfall d;(q) based on two conditions and update the deadline e;; based on
Theorem 6.1 (Line 8 and 11).

Transition Schedule Computation. Algorithm 7 computes the transition schedule Pjt, ; for each
partition given a partition system computed in Stage-1 by following three heuristic principles:

(1) we avoid scheduling resource slices on any requesting time; (2) we employ the deferrable

O]’.’l. while con-
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ALGORITHM 5: Overview of ARCRP-DR

Input: Reconfiguration request A, request time g and resource access
order E = {(Ilyn, In) | (I, ) € Ej, Vi)
Output: Transition schedule S? ; and cyclic schedule S;Ii for all

ALGORITHM 6: Partition System Initialization

Input: Physical resource I1; and the requesting time q.
Output: 74, the state of the partition system.

Procedure Initialization(Hj ,q)

1
Pj, i. Reject if no feasible schedule. 9 for Each Pj ; on1l; do
1 Enqueue all physical resources I into a queue Q by the topological 3 rji=4q
sorted order of E 4 0j, i = ComputeAllOffsets(Pj, ;)
2 forb « 0toT do 5 nj,i = Next(Oj, i, q)
3 Or=0 6 if Pj.i is a new partition then
" while Q; # 0 do 7 dji = o0
5 Dequeue I fom Q¢ ’ er.i =y 4 T,
6 Tq :tImtlarllzatlon(Hj, q) // Stage-1 R else
7 ((Sj,,‘ [ Vi), Tgrp) = 10 dj, i = ComputeMSS(P;, ;, q, Oj, ;)
TransitionSchedule(7g, g, g + b) // Stage-2 1 ej,i = min(q + dj,i/a;]l-s i)+ R; i/a]ni
8 if 744+p = Null then 12 end
9 | break
13 end
10 end 14 return 7
11 (S}:l. | Vi} = CyclicSchedule(']:I+b) // Stage-3 q
12 if [S;‘l. | Vi} = Null then
13 | break 15 Procedure ComputeMSS(P;, i, q, Oj, i)
14 end 16 dj =00
15 end 17 for Each o € Oj, j ando < q do
16 if Q7 = 0 then 18 dj,i = min(dj,i, Sj,1(q) = Sj,i(0) = a7 ;(¢ = 0))
17 ‘ return ({S;i | V), i}, {S;Ii | Vi, i}) 19 end
18 end ' 20 return dj ;
19 end

20 return NULL

scheduling (DS)-EDF algorithm [45] where partitions are scheduled according to their earliest
deadlines but each partition is scheduled as late as possible to make room for other partitions
during the RPT stage; and (3) if the deadline of a partition calculated through DS-EDF is larger
than the time budget b, the algorithm will try to schedule it in an idle slice before b so that its
next deadline can be further deferred when entering Stage-3. This will significantly increase the
schedulability of the cyclic schedule construction in Stage-3.

Algorithm 7 selects the partition with the earliest deadline and schedules it as late as possible
using the DS-EDF procedure (Line 6). If a partition is not able to be scheduled before the deadline,
the algorithm will reject (Line 8-10). Any time when a partition is scheduled a slice, the algorithm
will update its d; ;, e;,;, rj,; using the UpdateStates procedure.

In the DS-EDF procedure in Algorithm 8, the resource slice is not only scheduled as late as

possible as shown in Line 6 but also prohibited from being scheduled on any requesting time based
on O. This will avoid the resource misalignment problem. The UpdateStates procedure is based
on Theorem 6.1. It first updates d; ; from d;(r; ;) to d;(r) in Line 14-17. Based on Definition 6.7 and
Definition 6.2, if there is no requesting time betweenr;,; and r, d;,i(r) = d;,i(rj,i) + 1 -} ,(r —rj:)
as in Line 14. If there exists a request time between r;; and r, we only need to consider if n; ;
would give a lower supply shortfall as in Line 16. In Line 18-20, we update the states based on
Theorem 6.1.
Cyclic Schedule Computation. Algorithm 9 computes the cyclic schedule of each partition. This
algorithm combines the idea from the AAF algorithm where partitions are scheduled according
to their periods; the idea of supply shortfalls and requesting time. Line 6 in Algorithm 9 finds an
available slot for each partition and marks the slots as used for the cyclic schedule in Line 11-13.
Pmax 18 the largest period among all the partitions.

In the following, we check whether the problem requirements are satisfied.

Problemé6.1 C-1: Each partition P},li is effective regular by scheduling resource slices in periodic
time intervals based on a pair of neighboring request offsets by Theorem 5.1.
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ALGORITHM 7: Transition Schedule Computation

ALGORITHM 8: DS-EDF and UpdateStates

Input: The time of reconfiguration g, the budget b, and the state of

the partition system 7. ; Proce(:u_reLIZ?-EDF(r, e, m, b, 0)
Output: Trarvlsltlon schedule {S;.i | Vi}and 7:1”). Reject if no s ife >— b then
feasible schedule. 1 ‘ e=b

1 Procedure TransitionSchedule(7", g, b) 5 end
2 Initialize m[¢] = 0, V¢ € [0, b) 6 fort «— e—1tordo
3 Enqueue all partitions Pj, ; into a queue Q in the ascending 7 if m[t] = 0 and t is not on any requesting time then

order of (1) deadline ej, ; and (2) period pj, ; for tie-breaker 8 m[t] =1
4 while Q # 0 do 9 return ¢
5 Dequeue Pj j from Q 10 end
6 t = DS-EDF(rj,; — q, ej,i — g, m, b, O} ;) 11 end
7 if t = NULL then 12 return NULL
8 ifej i < q+bthen
9 return NULL // Deadline will miss 13 Procedure UpdateStates(7, r, Pj, ;)
10 end 14 dj,i:dj'i-%-l—a;fi(r—rj’i)
1 continue // We are done with this partition 15 if r > nj ; then
12 end 16 | dj.i=min(dj i 1-af;(r=nji))
13 Addt - qto Sjt,i 17 end
14 UpdateStates(7, g + ¢ + 1, Pj ;) 18 nj,i = Next(Oj i, r) L
15 Enqueue Pj ; to Q 19 eji :min(r+djvi/a;"i, "jvi)*'R;,i/“fi
16 end 20 rji=r
17 return ({S;,i | Vi), T) 21 return

Problem6.1 C-2: The effective reconfiguration supply regularity of each partition P; ; is guaran-
teed based on Theorem 6.1 by scheduling source slices by the deadline and the fact that P; ; has a
cyclic schedule with exact one slice offset. Note that, this algorithm can only be used to compute
the schedules when the availability factors and the resource slice sizes are the power of 3 and 2,
respectively.

Problem6.1 C-3: The reconfiguration is done by the end of the RPT stage which is no longer than
T as in Algorithm 7.

Assuming that the number of physical resources, the size of total resource access order, the
periods of the slice offsets, the periods of the request offsets, the hyper-period of all the periods
and the budget are bounded by a constant C, the time complexity of ARCRP-DR algorithms is
O(C% - N + C? - N -log N) if the number of applications is N.

7 PERFORMANCE EVALUATION

In this section, we first compare the application response times in a real system with and without
considering the resource misalignment problem. In the second set of experiments, we compare the
performance of the ARCRP-S and AAF algorithms [3] in both uniform and non-uniform environ-
ments. In the final set of experiments, we evaluate the performance of the ARCRP-DR algorithm
in a non-uniform environment.

7.1 Real System Evaluation

To demonstrate the applicability of the concept of regular composite resource partition in practice,
we implemented a multi-resource scheduling system including both CPU and network resources.
It is based on a Linux kernel 3.18.12 without multi-core support and combined with a modified
version of RT-WiFi [46]. Figure 12 illustrates the system architecture. There is one master CPU
resource and multiple slave CPU resources. For the network resource, it consists of a single RT-
WiFi access point (AP) and a cluster of RT-WiFi stations operating on the same channel.

CPU Resource: We add a layer of resource-level scheduler on top of the original scheduler to
schedule each partition. A table driven scheduler in the task-level scheduler hierarchy is added to
provide the capability of recursive resource partitioning [28]. The new hierarchy is illustrated in
the master CPU resource diagram in Figure 12.
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) P P,
ALGORITHM 9: Cyclic Schedule Computation 2 | Pon | | 22 | | 23 |
Input: 7, the state of the partition system after the RPT. f Table Driven
Output: Cyclic schedule {S]Vi | Vi}. Otherwise, reject. 5 Resource-Level Scheduler
. = Beacon Syne | RT-WiFi (Sta)
1 Procedure CyclicSchedule(7) Z| [ RT-wiFi (AP)
2 Enqueue all P; ; into a queue Q in the ascending order of (1) i - - RI-WiFi (Sta)
period pj ; and (2) deadline ej ; for tie-breaker = Clock Sync —
3 Initialize m[¢] = 0, V¢ € [0, pmax) & -
2 IEEE1588 Sync
4 while Q # 0 do CPU (master) st
s De_queue Py.i Resource-Level Scheduler
N t = DSEDF(0, ¢j,i = = b, m. pj.i> 0j.1) [Table Driven | [ EDF |
7 if t = NULL then g
8 ‘ return NULL E
9 end o?:: Py Pis Pis
10 Add t to S]!li I e N =ELLLLLLy
11 for x < 0 topmax/pj,i —1do & | Table Driven |—>| EDF |
12 m[l+x-pji]=1
14 end Task-Level Scheduler
15 return (S;'i | Vi}

Fig. 12. Overview of the multi-resource scheduling
framework.

Network Resource: We use RT-WiFi [46] to schedule the network resource. RT-WiFi is a real-
time high-speed wireless data link layer protocol that can provide deterministic packet delivery
with adjustable sampling rates up to 6kHz.

Synchronization: To schedule regular composite resource partitions, we need to synchronize the
clocks and schedules on different physical resources (see Figure 12). In our system, every slave CPU
synchronizes its clock with the master CPU’s clock using IEEE 1588 software implementation [47].
For the network resources, the RT-WiFi AP synchronizes its clock with the master CPU and each
RT-WiFi station synchronizes its clock with the AP via RT-WiFi beacon frame.

The testbed has two machines connected with RT-WiFi, providing CPU1, CPU2 and RT-WiFi
resources. Machine 1 has an Intel Core i7-4790 CPU and an AR9XX series WiFi card configured
as an RT-WiFi AP. Machine 2 has an Intel Core i5-3337U CPU and an AR9XX series WiFi card
configured as a station. We emulate a periodic end-to-end task T for an application A; and measure
its end-to-end response time as our evaluation metric. A; has resource accessing order as CPU1,
RT-WiFi and CPU2 resources. The task T periodically processes the sensor data on CPU1, passes
the data to CPU2 and finally processes the data and passes the decision to the actuator on machine
2. The task execution time taken on CPU1, RT-WiFi and CPU2 is calibrated such that it takes
slightly less than one resource slice on each resource.

Figure 13 shows the cumulative distribution function of the response time for task T in each set-
ting. The line denoted as Misaligned shows the results with AAF and the resources are not aligned.
The resource slice sizes of CPU1 and CPU2 are set to 1ms and the resource slice size of the RT-
WiFi is set to 1024us. On the other hand, the line denoted as Synchronized shows the results with
ARCRP-S and resource slices are all synchronized with the size of 1ms. The constructed regular
resource partitions for A; are P 1, Py 1, P31 on CPU1, RT-WiFi and CPU2 with availability factors
of 0.25,0.25 and 1, respectively. The theoretical maximum response time of each task instance
would be 1ms on CPU1 as it starts on CPU1, 1ms/0.25 (or 1024ps/0.25 for the Misaligned run) on
RT-WiFi for the queuing and processing time; and 1ms/1 on CPU2 with a total of 6ms. In Figure 13,
the Misaligned case shows that 30% task instances have response times larger than 6ms while the
Synchronized case shows only 5%. This shows that the resource misalignment problem may cause
serious deadline miss, while synchronizing the resource slice size and the time can mitigate it.

We next demonstrate a case how ARCRP-S Algorithm can be applied to real-world systems in
a non-uniform environment. With the same testbed, the resource slice sizes of CPU1 and CPU2
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Fig. 13. The cumulative distribution function of Fig. 14. Schedulability of ARCRP-S, ARCRP-S-Fast
the response time for task T under three different and AAF algorithm in non-uniform environment with
settings. the GS-2 setting.

are 1ms while the resource slice size of RT-WiFi is 2ms. Two regular composite resource partitions
Cy, C, are constructed. Cy, assigned to A;, has effective regular resource partitions P; 1, Py, 1, P31
all with availability factor of 0.25. C, has effective regular resource partitions P; 3, P, 2, P35 2 with
availability factor of 0.25, %, 0.25, respectively. The theoretical max response time of each task
instance would be 1ms on CPUI1, (1 - 2ms)/0.25 on RT-WiFi and 1ms/0.25 on CPU2 with a total
of 13ms. The results denoted as Framework in Figure 13 show that 95% of the task instances have
response times less than 13 ms.

7.2 Performance Comparison Among ARCRP-S, ARCRP-S-Fast and AAF

In the following, we present the simulation results to compare three algorithms, ARCRP-S, ARCRP-
S-Fast and AAF [3], under different settings. In uniform environments, the resource slice size of
each physical resource is set to be 1. In non-uniform environments, the resource slice size is set to
2" (0 < i < 7) in the GS-2 (geometric sequence with common ratio of 2) setting and i (2 < i < 7) in
the linear setting. The requested availability factor of each partition is restricted to 2% (1<i<7)
in the GS-2 setting and % (2 <1 <£7) in the linear setting. Furthermore, all the composite resource
partitions requested by the applications are regular. To compute the schedulability, 1,000 samples
are generated for each combined setting and the three algorithms are used to construct composite
resource partitions. Each sample is marked as schedulable by each algorithm if a schedule can
be constructed except for the AAF algorithm. The schedule constructed by the AAF algorithm
is further validated by checking the effective supply regularity of each partition because of the
resource misalignment problem.

Our simulation results in different settings generally show similar trends that more physical
resources and composite resource partitions lead to lower schedulability. This is because the prob-
ability that a task requesting resources at some non-integer time point will increase and this leads
to resource misalignment problem. For example, Figure 14 shows the schedulability trend of the
three algorithms in non-uniform environment under the GS-2 setting. AAF performs the worst
because it doesn’t consider the resource misalignment problem. ARCRP-S-Fast and ARCRP-S al-
gorithms perform similarly under the GS-2 setting. The ARCRP-S-Fast algorithm employs a similar
strategy as the AAF algorithm which schedules partitions following the ascending order of their
periods. This strategy searches a small but large enough search space under the GS-2 setting with
polynomial time complexity. On the other hand, the ARCRP-S algorithm searches a much larger
search space for general settings with exponential time complexity. Thus, ARCRP-S algorithm per-
forms similar to the ARCRP-S-Fast algorithm. To make the figures easy to read, in the following, we
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Fig. 15. Performance comparison among ARCRP-S, ARCRP-S-Fast and AAF algorithms.

only present the results where the number of physical resources is 10 and the number of resource
partitions varies between 2 and 20.

7.2.1  Uniform Environment. Figure 15(a) shows the schedulability results of the three algo-
rithms in uniform environment under GS-2 and linear settings. ARCRP-S-Fast is equivalent to
AAF in terms of schedulability under both settings because there is no resource misalignment
problem. In fact, AAF is optimal under the GS-2 setting where it can construct a feasible schedule
if there exists one [3]. ARCRP-S-Fast is also optimal under the GS-2 setting because it is exactly
the same as AAF if there is no resource misalignment problem. On the other hand, ARCRP-S per-
forms slightly worse (1%) than ARCRP-S-Fast under the GS-2 setting but it performs significantly
better than the other two algorithms under the linear setting. This is because ARCRP-S explores
a very large decision space which results in much better schedulability with settings other than
GS-2 setting.

7.2.2  Non-Uniform Environment. Figure 15(b) shows the schedulability of the three algorithms
in non-uniform environments. With linear setting, they all perform poorly when the number of
composite resource partitions is large. This is because it is almost impossible to avoid scheduling
resource slices on any of the requesting times when there is no restriction on the resource slice sizes
and availability factors. However, under the GS-2 setting, ARCRP-S-Fast and ARCRP-S perform
closely and much better than AAF, which doesn’t consider the resource misalignment problem.

Figure 15(c) shows the schedulability comparison of the AAF algorithm in the GS-2 setting with
and without the regularity check. Without the regularity check, the AAF algorithm will schedule
the partitions as if they are in the uniform environment under the GS-2 setting and the schedula-
bility will be incorrectly considered as 100%. However, when the resource misalignment problem
is taken into consideration by checking the regularity, the actual schedulability may drop more
than 70% because of the existence of non-integer request offsets.

7.3 Performance Evaluation on the ARCRP-DR Algorithm

We now compare the results of reconfiguring composite resource partitions using ARCRP-DR and
DPR in non-uniform environments. The experiment is conducted by generating 1,000 samples for
each combined setting and using the two algorithms to construct the schedules. For each sample, if
a schedule can be computed by ARCRP-DR, this sample is schedulable. For DPR, a schedule needs
to be computed and the regularity of all the partitions need to be checked to have the required
regularity. For the parameters, the numbers of partitions and physical resources are both set to 10.
The resource slice size is restricted to be 2/ (0 < i < 7). The availability factors of each partition
before and after reconfiguration are randomly sampled in the set of 2—11 (1 <i<7) and each phys-
ical resource will have the same resource utilization at 80%. The effective reconfiguration supply
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Fig. 16. Schedulability comparison: ARCRP-DR vs. DPR-based algorithm.

regularity R_: of each resource partition is sampled from [1, 5] and 60% of partitions have effective
reconfiguration regularity over 1. The transition time budget T is randomly sampled from [5, 20].
To focus on evaluating the reconfiguration algorithm, the requested composite resource partitions
are assumed to be able to be constructed by ARCRP-S-Fast (Algorithm 4) without considering the
reconfiguration regularity.

Figure 16(a) and 16(b) show how the number of partitions and physical resources affects the
schedulability. Increasing the number of resource partitions lowers the schedulability as shown
in Figure 16(a). This is because there are more resource partitions on each physical resource and
this will result in lower schedulability. Note that, we set the resource utilization of each phys-
ical resource to be the product of 4.5% and the number of composite resource partitions. On
the other hand, increasing the number of physical resources also decreases the schedulability as
shown in Figure 16(b). With an increasing number of physical resources, the reconfiguration pro-
cess needs to construct more resource partitions for each composite resource partition, leading
to lower schedulability. Figure 16(c) shows that increasing the reconfiguration budget improves
the schedulability. However, the improvement stops when the budget is larger than 4. This indi-
cates that setting a higher budget may only waste computation time. Figure 16(d) shows that the
schedulability increases when the percentage of partitions with effective reconfiguration regu-
larity over 1 increases. Intuitively, the effective reconfiguration regularity denotes the tolerance
of performance degradation during reconfiguration. Note that when all the partitions have effec-
tive reconfiguration regularity larger than 1, the schedulability will reach 100%. This is due to
the assumption that the partitions can be constructed by ARCRP-S-Fast independently without
considering the reconfiguration.

8 CONCLUSION

In this paper, we study the resource misalignment problem where a resource partition may under-
supply when resource partitions are not aligned in non-uniform environments. We first introduce
the the concept of composite resource partition, and then propose ARCRP-S and ARCRP-DR al-
gorithms to construct and reconfigure the composite resource partitions to mitigate the problem.
The key ideas of the algorithms are to avoid scheduling resource slice on any requesting time and
to progressively construct or reconfigure the partition schedules on each physical resource. Exten-
sive experiments are conducted to demonstrate the applicability of our proposed multi-resource
scheduling framework through both real-world system implementation and simulation studies.
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