
Real-Time Scheduling for 802.1Qbv Time-Sensitive Networking

(TSN): A Systematic Review and Experimental Study

Chuanyu Xue∗, Tianyu Zhang∗, Yuanbin Zhou†, Mark Nixon‡, Andrew Loveless§, Song Han∗
∗School of Computing, University of Connecticut
†Singapore University of Technology and Design

‡Emerson Automation Solutions, §NASA Johnson Space Center

Abstract—Time-Sensitive Networking (TSN) has been recog-
nized as one of the key enabling technologies for Industry 4.0
and has been deployed in many mission- and safety-critical
applications e.g., automotive and aerospace systems. Given the
stringent real-time requirements of these applications, the Time-
Aware Shaper (TAS) draws special attention among TSN’s many
traffic shapers due to its ability to achieve deterministic timing
guarantees. Many scheduling methods for TAS shapers have been
recently developed that claim to improve system schedulability.
However, these scheduling methods have yet to be thoroughly
evaluated, especially through experimental comparisons, to pro-
vide a systematical understanding of their performance in diverse
application scenarios. In this paper, we fill this gap by presenting
a systematic review and experimental study on existing TAS-
based scheduling methods for TSN. We first categorize the system
models employed in these works along with the specific problems
they aim to solve, and outline the fundamental considerations in
the designs of TAS-based scheduling methods. We then perform
an extensive evaluation on 17 representative solutions using
both high-fidelity simulations and a real-life TSN testbed, and
compare their performance under both synthetic scenarios and
real-life industrial use cases. Through these studies, we identify
the limitations of individual scheduling methods and highlight
several important findings. We expect this work will provide
foundational knowledge and performance benchmarks needed
for future studies on real-time TSN scheduling.

I. INTRODUCTION

Time-Sensitive Networking (TSN), as an enhancement of

Ethernet, has quickly become the local area network (LAN)

technology of choice to enable the co-existence of information

technology (IT) and operation technology (OT) in the indus-

trial Internet-of-Things (IIoT) paradigm. TSN aims to pro-

vide deterministic Layer-2 communications which are highly

desirable for many real-time industrial applications, such as

process automation and factory automation [1]–[3]. To enable

such communication capabilities, the TSN Task Group (TG)

has developed a suite of traffic shapers in the TSN standards,

including the Credit-Based Shaper (CBS) [4], Asynchronous

Traffic Shaper (ATS) [5], and Time-Aware Shaper (TAS) [6],

to handle different traffic types and satisfy communication re-

quirements at different levels. In terms of providing strict real-

time performance guarantees, TAS stands out by leveraging

network-wide synchronization and time-triggered scheduling

mechanisms [7], making it a critical technology to support

deterministic traffic in industrial applications.

TAS operates in a time-triggered scheduling fashion. It

achieves deterministic communications by buffering and re-

Ingress
Port A

Ingress
Port B

SW
Engine

Priority
Filter

(PCP to queue
mapping)

Queue 1

Queue 2

Queue 3

Queue n

Egress
Port C

00000100

00000010

00000000

GCL

Fig. 1. An illustration of the Time-Aware Shaper (TAS) mechanism
in a Time-Sensitive Networking (TSN) bridge.

leasing traffic at specific time instances following a predeter-

mined schedule. Specifically, as shown in Fig. 1, each egress

port in a TSN switch (also called bridge) is equipped with

a set of time-gated queues to buffer frames from each traffic

flow. A scheduled gate mechanism is utilized to open or close

the queues and control the transmission of frames according

to a predefined Gate Control List (GCL). Each GCL includes

a limited number of entries. Each entry provides the status of

associated queues over a particular duration. The GCL repeats

itself periodically, and the network-wide schedule is generated

by the Centralized Network Configuration (CNC) and de-

ployed on individual bridges. In addition to the scheduled gate,

the priority filter utilizes a 3-bit Priority Code Point (PCP) field

in the packet header to identify the stream priority, and directs

incoming traffic to the appropriate egress queue(s) [6].

Although the scheduling mechanism of TAS is clearly

defined in the IEEE 802.1Qbv standard, the configuration of

TAS, e.g., what to put in the GCL and how to assign queues

for individual traffic at each hop, has no clear-cut best practice.

Specifically, the fundamental question for TAS-based real-time

scheduling in TSN is how to generate a network-wide schedule

to guarantee the timing requirements of all time-triggered (TT)

traffic [8]. Given that applications that employ TSN as the

communication fabric can be diverse from different perspec-

tives (e.g., traffic patterns, topology, deployment environments,

and QoS requirements), the specific scheduling problems to be

studied may vary significantly. This results in a large amount

of efforts from both researchers and practitioners to study

various system models and develop corresponding algorithms.

These studies considerably enrich the literature, paving the

way to improve TSN network performance.

108

2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)

2642-7346/24/$31.00 ©2024 IEEE
DOI 10.1109/RTAS61025.2024.00017

20
24

 IE
EE

 3
0t

h
Re

al
-T

im
e

an
d

Em
be

dd
ed

 T
ec

hn
ol

og
y

an
d

Ap
pl

ic
at

io
ns

 S
ym

po
siu

m
 (R

TA
S)

 |
 9

79
-8

-3
50

3-
58

41
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

RT
AS

61
02

5.
20

24
.0

00
17

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

There have been several recent survey works on real-time

scheduling in TSN networks (e.g., [8]–[14]). These studies

provided a broad overview of the TSN standards, identified the

limitations of existing TSN scheduling methods, and outlined

future research directions. In addition, [8], [15] provided com-

parisons among various TSN scheduling approaches, with [8]

primarily focusing on TAS-based studies and [15] extending

the comparisons to all TSN shapers. However, all the afore-

mentioned works suffer from the following two significant

limitations. First, they don’t provide a thorough model-based

categorization for the TSN scheduling methods considering the

used network models, traffic models, and scheduling models.

Second, for the few existing works conducting comparisons of

TSN scheduling methods, their comparisons are all conceptual

in nature, which are far from sufficient for determining the

effectiveness of individual methods under diverse scenarios.

To address the above limitations, this paper summarizes the

network models, traffic models, and scheduling models used

in the literature for real-time scheduling in TSN. Based on

the summarized models, we categorize 17 representative TAS-

based scheduling methods proposed since 2016 (i.e., [16]–

[31]). To perform realistic experimental comparisons among

these methods, we establish an 8-bridge TSN testbed to obtain

quantitative measurement results of several key parameters

commonly used in TSN models (e.g., propagation delay,

processing delay, and synchronization error). Relying on the

TSN testbed, we further conduct performance validation for

all the scheduling methods to ensure the consistency between

testbed results and analytic results derived from simulations.

Based on all these preliminary outcomes, we perform extensive

experimental studies for the 17 TSN scheduling methods under

various stream sets and network settings covering a broad

range of industrial application scenarios. Benefiting from our

model-based categorization, we are able to perform exper-

imental comparisons not only among individual scheduling

methods but also across different system models.

Based on the comprehensive experimental results, we are

able to highlight a set of interesting observations and findings.

In general, our study shows that there is no one-size-fits-

all solution that can achieve dominating performance in all

scenarios; individual scheduling method/model may demon-

strate superiority under certain setting(s). Furthermore, we

demonstrate that diverse experimental settings complicate the

fair evaluation of scheduling methods without introducing bias,

which can make conclusions from previous studies only valid

under specific settings. We expect that our findings will help

the community understand better the benefits and drawbacks

of existing TSN scheduling methods and provide valuable in-

sights for the development of future TSN scheduling methods.1

In summary, this work makes the following contributions:

1) We provide a comprehensive review of various TSN system

models and categorize 17 representative TAS-based scheduling

methods accordingly.

1For detailed experimental results and open source code, please refer to our
technical report [32] and Github repository [33], respectively.

2) We establish a real-world TSN testbed and perform quanti-

tative parameter measurement and performance validation for

the studied TSN scheduling methods.

3) We perform extensive experimental evaluations on the 17

scheduling methods under comprehensive industrial scenarios.

4) We summarize the findings obtained from the evaluation

and provide takeaway lessons for future research and devel-

opment on TSN real-time scheduling methods.

II. TSN SYSTEM MODELING

This section presents an overview of the network models,

traffic models, and scheduling models for real-time scheduling

in TSN. It provides the foundation for the categorization of

TAS-based scheduling methods in Section III.

A. Network Models

A TSN network consists of two types of devices: bridges

and end stations (ES). A bridge can forward Ethernet frames

for one or multiple TSN streams according to a schedule

constructed based on the IEEE 802.1Q standard [34]. Each

ES can be a talker, acting as the source of TSN stream(s), a

listener, acting as the destination of TSN stream(s), or both.

Each full-duplex physical link connecting two TSN devices

(either bridge or ES) is modeled as two directed logical

links. Each logical link is associated with the following five

attributes:

• Propagation delay refers to the time duration of a signal

transmitting on the physical link. It is solely dependent on the

length of the cable and the type of the physical media used.

• Processing delay refers to the time duration from a frame

reaches the ingress port until it is fully stored in the egress

queue. The delay is determined by the processing capability

of the bridge or ES implementation. It is typically modeled as

a constant or a bounded value in the literature.

• Number of egress queues refers to the available egress

queues dedicated to TT traffic. The IEEE 802.1Q standard sets

a max of eight queues per egress port for a TSN bridge [34].

• Maximum GCL length indicates the maximum allowed

number of entries in the GCL of a logical link, and this is

determined by the specific bridge implementation (typically

between 8 and 1024 [17]).

• Synchronization error is typically defined as the maximum

time offset between any two non-faulty logical clocks in the

network, and is shared across all nodes and links. However,

the recently released IEEE 802.1AS-rev standard introduces

a more precise synchronization error model, enabling the

modeling of individual error for each node based on specific

network configurations, roles of nodes, and hop distance to

the grandmaster [35].

B. Traffic Models

In TSN, a traffic stream refers to a flow of data transmitted

from a talker to one or multiple listeners, passing through

one or multiple bridges. TSN can accommodate both real-time

time-triggered (TT) traffic and lower-criticality asynchronous

109

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

traffic (e.g., audio and video (AVB) traffic). The focus of this

paper is on TT traffic in real-time industrial applications.

Each TSN stream can be characterized by five parameters:

release time, period, transmission delay, deadline, and jitter.

Each parameter can be modeled individually to capture the

specific characteristics of the targeted traffic pattern.

• Release time: The release time of a stream is defined as the

time when its first frame is dispatched on the physical link by

the talker. Depending on whether the talker can determine the

release time of its stream(s), the traffic model can be classified

into fully schedulable traffic and partially schedulable traffic.

The former allows the scheduler to configure the release time

of each stream, while the latter assumes that the release time

of each stream is given by the application.

• Period: The period of a stream defines the inter-arrival

pattern of its frames. It can be classified into strictly periodic
model and non-strictly periodic model based on the determin-

ism of their arrival times. In a strictly periodic model, each

frame must follow the same release offset, resulting in a fixed

time interval between any two consecutive frames.

• Transmission delay: The transmission delay is the time

required for a frame to be serialized on the wire following

egress queuing. The transmission delay is determined by the

stream’s payload size and the link’s line rate.

• Deadline: The deadline of a stream defines the time by

which the released frame(s) must be received at the listener.

The stream deadline can be modeled as implicit (equal to the

period), constrained (less than the period), or arbitrary.

• Jitter: The jitter of a stream captures the variation of

end-to-end (e2e) stream delay (i.e., the difference between

the minimum and maximum delays of all the frames of a

stream) [36]. Based on the stream jitter, the traffic models can

be classified into zero-jitter model and jitter-allowed model.

C. Scheduling Models

The TAS-based real-time scheduling problem in TSN aims

to construct a feasible schedule specifying the assignment of

transmission times for each stream on individual bridges to

satisfy the timing constraints of all the streams. Based on

the network models and traffic models described above, a

range of scheduling models have been proposed to define

specific constraints on the TSN systems under study. Below,

we summarize these scheduling models and categorize them

according to their unique features.

• Queuing delay: Compared with other delay components,

the queuing delay (i.e., the amount of time that a frame spends

waiting in the egress queue) is decided by the schedule and

has the most impact on the e2e delay of a stream. Based on the

assumptions on queuing delay, the scheduling models can be

classified into no-wait model and wait-allowed model. The no-

wait model requires consecutive frame transmissions along the

path, i.e., frames should be forwarded without queuing delay.

While the wait-allowed model is more general as it allows

frames to be stored in the queue with queuing delays.

• Scheduling entity: Depending on the objects used for the

allocation of GCL entry [10], the scheduling models can be

classified into frame-based model and window-based model.

In the frame-based model, each GCL entry specifies the

transmission time of a specific frame. In the window-based

model, each GCL entry specifies a transmission time window

that can be shared by a set of frames to be transmitted. In

general, the window-based model can be further classified as

assigned, partially assigned or non-assigned based on different

frame-to-window allocations [37].

• Queue isolation (QI): Proper queue assignment isolates

streams into different queues to avoid schedule inconsis-

tency [16], [38], i.e., difference between the designed schedule

and actual transmissions, which is mainly caused by the

FIFO property of TSN egress queues. Queue isolation can be

realized in the frame level and stream level. The goal of both

frame-based QI and stream-based QI is to prevent changes in

the forwarding order of frames that are in the same queue.

• Routing and scheduling co-design: Depending on

whether the routing path of each stream is given or needs to

be determined, the scheduling models can be categorized as

fixed routing (FR) model and joint routing and scheduling
(JRS) model. Compared to the FR model, the JRS model

provides more flexibility while incurring high computational

overhead.

• Fragmentation: In the network layer, fragmentation oc-

curs when a packet is split into smaller fragments to fit

the maximum transmission unit (MTU) size of the network.

However, default fragmentation policy may result in high

latency due to the large fragment size. To address this issue,

the fragmentation (FRAG) model is proposed, which allows

the determination of the number and size of fragments.

• Preemption: The IEEE 802.1Qbu standard defines frame

preemption as the capacity of an express frame to interrupt the

transmission of a preemptable frame, and subsequently resume

the preempted frame at the earliest available opportunity [39].

In the preemption (PRE) model, frames may be assigned

with varied preemption classes at different hops, with only

express frames being able to interrupt preemptable frames.

The preemptable frame can thus be broken into two or more

fragments.

III. REAL-TIME TSN SCHEDULING METHODS

Based on the TSN system models discussed above, we

now delve into a detailed review of 17 TAS-based real-time

scheduling methods published since 2016. Following the stan-

dard protocol of systematic review outlined in [40], we select

these methods based on two main criteria. 1) Breadth: to give

a comprehensive review and experimental study, we aim to

include as diverse a set of models and algorithms as possible;

2) Relevance: to concentrate on real-time scheduling of time-

triggered traffic in TSN, approaches centered on enhancing

AVB or BE traffics in mixed-criticality scenarios or improving

reliability are not included. We also exclude learning-based

methods that cannot provide deterministic schedules.

110

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

JRS-WA JRS-MCLS I-ILPSMT-WA AT CP-WA SMT-PRE I-OMT LS-TBSMT-NW SMT-FRAG DT LS-PL CG

Wait-allowed

Exact

No-wait

HeuristicExact

Wait-allowed

HeuristicExact

No-wait

HeuristicExact

Joint Routing and SchedulingFixed Routing and Scheduling
TSN Real-Time Scheduling

JRS-NWJRS-NW-L

Fig. 2. Classification of the TSN real-time scheduling methods based on the employed system models.

In the following, we categorize the 17 scheduling methods

and highlight their specific optimization objectives in addi-

tion to generating feasible schedules. We first classify all

the methods into two categories, FR-based methods or JRS-

based methods, depending on whether the routing path of

each stream is given or to be determined. The methods in

each category are further divided into no-wait-based methods

and wait-allowed-based methods according to their employed

delay models. Finally, each method is classified as either

an exact solution or a heuristic solution based on whether

the method can yield an optimal schedule or not2. Fig. 2

summarizes the categorization.

A. Fixed Routing (FR) Methods

FR-based methods assume that the routing paths of indi-

vidual streams are pre-determined as input and focus on the

generation of a feasible schedule.

1) No-wait: The no-wait model requires that all frames are

forwarded along their routing paths without any queuing delay.

Among the 17 studied methods, the following methods employ

a combination of the FR model and no-wait model, which tend

to minimize the e2e latency.

• SMT-NW: Durr et al. [22] addressed the problem of reduc-

ing the e2e latency of TT traffic. The key idea is to adapt this

problem to the no-wait job-shop scheduling problem [41].

• SMT-FRAG: Jin et al. [25] proposed a no-wait-based ap-

proach allowing fragmentation to improve the schedulability.

The key idea is to jointly determine the traffic schedule along

with the number/size of fragments for individual streams.

• DT: Zhang et al. [42] studied the high computational over-

head issue induced by the constraint of non-overlap transmis-

sions among any traffic in the no-wait model. It proposed

a stream-aware model conversion algorithm to accelerate the

feasible schedule search based on divisibility theory [43].

2) Wait-allowed: In the wait-allowed model, frames can

be stored in the egress queue and forwarded at a later time.

Thus, it introduces a larger solution space compared to the no-

wait model. The following seven scheduling methods employ

a combination of the FR model and wait-allowed model.

• SMT-WA: Craciunas et al. [16] focused on the system

modeling of wait-allowed-based scheduling. It provided the

SMT formulation for the scheduling constraints associated

with the wait-allowed model and first introduced the queuing

isolation model in the scheduling solution.

2Some selected works proposed both exact and heuristic solutions. In this
paper, we only evaluate one of them based on their key contributions to make
the review and performance comparison more concise and informative.

• AT: Oliver et al. [17] considered the GCL length limita-

tion and introduced a window-based scheduling method that

applied array theory to an SMT solver.

• I-OMT: Jin et al. [28] also studied the GCL length lim-

itation. Instead of setting the GCL length as a constraint,

it aimed to minimize the number of used GCL entries by

proposing an iterative-Optimization Modulo Theories (OMT)-

based approach to scheduling streams in groups.

• CP-WA: Vlk et al. [27] modeled the deterministic TT traffic

using constraint programming (CP). It claimed that CP is more

efficient compared to other formalization methods, e.g., SMT

and ILP, and a decomposition optimization was also proposed

to enhance the scalability of the solution.

• SMT-PRE: Zhou et al. [29] aimed to increase the system

schedulability by enabling preemption among frames. An

SMT-based approach was proposed to assign streams into two

classes: express class and preemptable class.

• LS-TB: Vlk et al. [23] focused on addressing the scalability

issue (i.e., low efficiency) in scheduling large-scale TSN traffic

sets by removing reliance on third-party solvers. The proposed

algorithm reverts to a previous search stage and modifies the

timing and queue assignments if the current frame conflicts

with any other scheduled frames.

• LS-PL: Bujosa et al. [31] also focused on improving the

scalability of TSN networks. They proposed a heuristic algo-

rithm that groups links into phases based on their scheduling

dependency and schedules these links parallelly phase by

phase.

B. Joint Routing and Scheduling (JRS) Methods

Under the FR model, a feasible schedule may not be found

when the routing paths of the streams are pre-determined.

By contrast, the JRS-based methods allow the scheduler to

jointly determine the routes and schedules for the streams,

thus offering a better chance to find a feasible schedule.

1) No-wait: The following five methods employ a combi-

nation of the JRS model and no-wait model.

• JRS-NW-L: Falk et al. [20] proposed an ILP-based ap-

proach to determining the routing path of each stream and the

schedule. Different from other ILP-based methods (e.g., [18],

[21], [22]) that employ the Big-M formulation, this work used

the indicator constraints to address the logical constraints.

• JRS-NW: Hellmanns et al. [19] addressed the high compu-

tational overhead in solving the JRS-based scheduling prob-

lem. It evaluated the impact of stream set scale and network

scale on the schedulability and provided an optimization

framework including three components: input optimization,

model generation optimization, and solver parameter tuning.

111

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

TABLE I
A SUMMARY OF THE SYSTEM MODELS AND SCHEDULING APPROACHES EMPLOYED IN THE STUDIED TSN SCHEDULING METHODS.

Article Year Fully
schedulable

Strictly
periodic No-wait Window

-based Queueing Routing Multicast Heuristic Exact Algorithms Enhancements

Dürr et al. (SMT-NW) [22] 2016 � � � (�) � ILP (Tabu)

Schweissguth et al. (JRS-WA) [18] 2017 � � � � ILP Paths reduce

Oliver et al. (AT) [17] 2018 � � � � SMT Array-theory
Falk et al. (JRS-NW-L) [20] 2018 � � � � � ILP Logic indicator

Pahlevan et al. (LS) [24] 2019 � � � � � List scheduler

Schweissguth et al. (JRS-MC) [21] 2020 � � � � � ILP Paths reduce

Atallah et al. (I-ILP) [26] 2020 � � � � � � Iterative-ILP

Jin et al. (I-OMT) [28] 2020 � � � (�) Iterative-OMT

Falk et al. (CG) [30] 2020 � � � � � (�) Conflict-graph
Hellmanns et al. (JRS-NW) [19] 2021 � � � � � ILP Path cut-off

Jin et al. (SMT-FRAG) [25] 2021 � � � (�) � SMT (WCRT) Fragmentation
Vlk et al. (CP-WA) [27] 2021 � � � (�) � CP (Decompose)

Vlk et al. (LS-TB) [23] 2022 � � � (�) List scheduler Traceback

Bujosa et al. (LS-PL) [31] 2022 � � � List scheduler Per-link search

Zhou et al. (SMT-PRE) [29] 2022 � � SMT Preemption
Zhang et al. (DT) [42] 2022 � � � � (�) Divisibility

• LS: Pahlevan et al. [24] proposed a heuristic-based list

scheduling algorithm to improve the efficiency of solving

the JRS-based scheduling problem. The algorithm schedules

streams one by one without backtracking, which stops and

returns infeasible if any stream cannot be scheduled.

• I-ILP: Atallah et al. [26] considered multicast routing and

proposed a heuristic solution based on three key techniques:

iterative ILP-based scheduling for enhanced scalability, Degree

of Conflict (DoC)-aware partitioning for stream grouping, and

DoC-aware multicast routing (DAMR).

• CG: Falk et al. [30] aimed to reduce the high computational

overhead in existing JRS-based methods. The key idea is to

gradually construct a conflict graph by capturing the collision

between individual stream’s transmission time, and identify an

independent set to obtain a feasible schedule.

2) Wait-allowed: The following two works employ a com-

bination of the JRS model and wait-allowed model.

• JRS-WA: Schweißguth et al. [18] first proposed the JRS

framework and addressed the issue that FR-based methods

may exclude feasible solutions without considering routing

in the design space. It proposed an ILP-based approach and

improved the searching efficiency by excluding infeasible

routing paths during pre-processing.

• JRS-MC: Schweißguth et al. [21] further extended JRS-

WA to support multicast traffic streams by adding additional

scheduling constraints to prevent loops and negative latency.

Table I summarizes the 17 scheduling methods in a chrono-

logical order. A (�) symbol indicates that the method was

presented in the original paper but we do not implement it.

It is worth noting that besides the fundamental feasibility

requirement, we also reviewed TSN scheduling methods in

the literature with other optimization objectives, e.g., delay

and jitter minimization [44], [45], co-existence with non-TT

traffic [46]–[48], and reliability [49]–[52]. Due to the page

limit, we cannot include them in this paper, but summarize

them in our technical report [32] for the completeness of the

review.

IV. TESTBED VALIDATION

To validate the correctness and effectiveness of the studied

TSN scheduling methods on COTS hardware, we set up a

TSN testbed and implemented all the scheduling algorithms

on it. The testbed consists of 8 bridges and 8 ESs as shown

in Fig. 3(a). Each bridge is an FPGA hardware-based TTTech

TSN evaluation board [53], and each ES is implemented using

the Linux Ethernet stack with an external Network Interface

Controller (NIC) Intel i210 as shown in Fig. 3(b). The network

is set up following the ring topology as shown in Fig. 3(c)

which is commonly applied in industrial scenarios [54]. We

use the Linux PTP stack [55] with the gPTP profile for

synchronization on end-stations, and the bridge implements

its own synchronization stack. The synchronization traffic is

set with a priority higher than the best-effort traffic and lower

than the critical traffic.

This testbed serves two main objectives: i) to calibrate key

parameters assumed in the TSN system model, and ii) to

validate the correctness of the scheduling methods through

the comparison between the testbed results and simulation

results. Given the limited scale of our testbed (8 bridges and

8 end stations only), and the difficulty to configure extensive

scenarios on the testbed, we focus on functional validation

rather than performance comparison using the testbed.

A. Measurements of Delays and Synchronization Error

As mentioned in Section II, most TAS-based scheduling

methods assume that the processing delay, propagation delay,

synchronization error, and clock offset on ES are constant or

bounded numbers. To the best of our knowledge, however,
there is no existing study validating these assumptions
through experimental measurements in real-world TSN
testbeds. We argue that such validation is critical as it pro-

vides the foundation for both existing and future TAS-based

scheduling method design and analysis.

1) Propagation Delay: To measure the propagation delay,

we directly connect a talker and a listener with a CAT7 cable,

while measuring the round-trip time (RTT) of a stream using

the hardware timestamping function supported by the NIC.

As shown in Fig. 3(d), the propagation delay in this one-hop

setting is bounded between 2 ns and 6 ns, with a 4 ns jitter

due to the measurement inaccuracy.

2) Processing Delay: Since we cannot measure the pro-

cessing delay on the TTTech evaluation board directly, we

112

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

SW_2 SW_3

SW_7 SW_6 SW_5 SW_4

SW_1SW_0

ES_0

1

0 0 0 0

2222

1 3 1 3 1 3

3133 1

ES_1

000

ES_2

000

ES_3

ES_7 ES_6 ES_5 ES_4

0000

22

0000

CNC1

000

CUC

c

h

ES-host: RPi Compute Module 4 ES-NIC: Intel i210

Bridge: TTTech TSN Evaluation Board CNC: RPi 4B

gfd e

b

a

Fig. 3. (a) Overview of the 8-bridge TSN testbed; (b) Hardware components for TSN bridge and end-station; (c) The logical topology of
the testbed; (d) – (g) Measurement results of the propagation delay, processing delay, synchronization error, and physical clock to system
clock offset; (h) Measurement results of the e2e delay for three representative methods out of the 17 scheduling methods.

infer its upper bound by observing the e2e delay of a stream.

Specifically, we gradually increase the potential upper bound

of the processing delay in the TAS configuration until all

frames’ e2e delay can be statistically bounded within the test

duration. Fig. 3(e) shows that the one-hop processing delay

can be bounded within 1.9 μs in our testbed.

3) Synchronization Error: Fig. 3(f) shows the synchroniza-

tion error measured on the testbed, which is reported by the

logs of the Linux PTP stack. It can be observed that the

synchronization error becomes stable after 5 seconds. The

large values observed in the first 5 seconds are mainly due

to the grand master clock election process [35]. After that, the

synchronization error can be bounded within 10 ns.

4) Clock Offset on System: Fig. 3(g) shows the clock offset

from the system clock in the application to the physical clock

in the network card, which is also reported by the Linux PTP

stack. Similar to the synchronization error, the clock offset is

also large at the beginning, then it is bounded within 50 ns.

The above measurement results provide the calibration

values of the propagation delay, processing delay, and syn-

chronization errors from the real-world testbed. Thus, in our

subsequent simulation-based evaluation experiments, we set

the propagation delay, processing delay, synchronization error,

and clock offset as 6 ns, 1.9 μs, 10 ns, and 50 ns, respectively.

B. Performance Validation

Before conducting extensive simulation-based experiments,

we need to validate if the performance of the TSN scheduling

methods is consistent on both the real-world testbed and

through simulations. Such validation not only confirms the

theoretical performance of each method but also ensures the

correctness of our implementations. We implement 16 out of

the 17 scheduling methods on the testbed where SMT-FRAG

is not implemented because its required fragmentation size

for each stream is even smaller than the lower bound of the

window size on the hardware device.

We conduct the performance validation using a small-scale

stream set consisting of 8 streams to simplify the hardware

configuration. The stream set includes four streams with a

payload size of 100 bytes, two streams of 200 bytes, and

two streams of 400 bytes. Each stream has a common period

and deadline of 1 ms. Each stream has a unique talker but

may have shared listeners. The streams are routed on the

same ring topology, with their routing paths determined by the

evaluated methods. After deploying the release times, queue

assignments, and GCL configurations that are generated from

each of the 16 methods on the testbed, and we record the e2e

delay of 10000 frames for each stream.

Fig. 3(h) compares the measured e2e delays of three out

of the 17 methods (other results can be found in [32]) on the

testbed (yellow line) and the analyzed worst-case delay from

the simulation (red line). Overall, our testbed results validate
the correctness of all the methods since the analyzed worst-

case e2e delays of each method are always bounded by the

corresponding measurement results. Beyond that, we have two

important observations. First, most of the streams experience

a relatively stable delay (<100 ns variation), but some streams

are observed to have delay fluctuations under certain methods.

For example, in Fig. 3(h), the delay of Stream S0 under

LS-PL gradually increases to around 12 μs, then it drops

to 9.8 μs suddenly. We believe that these drifts are mainly

caused by the collisions between synchronization traffic and

TT traffic, which increases the clock drift between the talker

and listener over time. Subsequent synchronization recovery

procedures eliminate such clock drift, restoring the delay to its

normal state. Secondly, a large gap can be observed between

the testbed measurements and the simulation results across

different methods, with a maximum gap of about 5 μs recorded

from S2 with I-ILP (see Fig. 3(h)). This gap primarily stems

from two factors: 1) an enforced error margin of up to 3.2 μs

by the TTTech evaluation board to accommodate timing errors

on the bridge; and 2) an up to 1.9 μs processing delay on the

113

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PARAMETER SETTINGS FOR SIMULATION-BASED EVALUATION.

Parameter Type Value
Number of streams - {10, 40, 70, . . . , 190, 220}

Sparse single {2}
Dense single {0.4}
Sparse harmonic {0.5, 1, 2, 4}
Dense harmonic {0.1, 0.2, 0.4, 0.8}
Sparse inharmonic {0.25, 0.5, 1.25, 2.5, 4}

Stream period (ms)

Dense inharmonic {0.05, 0.1, 0.25, 0.5, 0.8}
Number of frames - {8, 16, 32, . . . , 2048, 4096}

Tiny size 50
Small size 50 – 500
Medium size 200 – 1500
Large size 500 – 4500

Stream payload (bytes)

Extra size 1500 – 4500
Implicit deadline Equal to period
Relaxed deadline NW + {0.1, 0.2, 0.4, 0.8, 1.6}
Normal deadline NW + {0.01, 0.025, 0.05, 0.1, 0.2, 0.4}
Strict deadline NW + {0, 0.01, 0.02, 0.025, 0.05}

S
tr

ea
m

se
t

Stream deadline (ms)

No-wait deadline NW
Topology Linear, Ring, Tree, Mesh
Number of bridges - {8, 18, 28, . . . , 78}
Number of links - {30, 32, 36, . . . , 386}

N
et

w
o

rk

Number of queues - {8}

bridge identified during our measurements.

V. SIMULATION-BASED EXPERIMENTAL SETUP

We now present the details of our simulation-based experi-

mental setup to evaluate the 17 scheduling methods.

A. Parameter Settings

To ensure a fair evaluation among the selected TSN schedul-

ing methods, we follow the parameter settings below in the

experiments, which are summarized in Table II.

1) Stream Set Settings: We control the randomly generated

TSN stream set by tuning the following parameters:

Number of streams. In each randomly generated stream set,

the number of streams follows a uniform distribution within

the range of [10, 220] with a step size of 30. The maximum

number of streams is set to 220 to encompass the typical

settings employed in both simulation-based studies and real-

world applications. In our experiments, when the number of

streams reaches 220, the average system utilization surpasses

the recommended upper bound for industrial applications’

critical traffic [56], resulting in a very low schedulability ratio

and impractical runtime for most of the evaluated methods.

Stream period. Following the TSN profile for industrial

automation use cases in IEC/IEEE 60802 [36], we set the

range of the stream periods as [50μs, 4ms]. However, ran-

domly generated stream periods are less meaningful as the

stream periods in real-world TSN applications typically follow

specific patterns in corresponding industrial sectors [57]. Thus,

we define 6 stream period types, as shown in Table II, to

include all the commonly employed periodicity settings.

Number of frames. Within a network cycle (i.e., the period

that GCL repeats itself), the number of frames is determined

by the combination of the number of streams and their periods.

In our experiments, considering the network cycle as the least

common multiple of stream periods, the number of frames can

range from 10 to 7842. Given its exponential and continuous

distribution, we sort these values into bins ≥8, ≥16, . . . ,

≥4096 to facilitate point plotting as shown in Table II.

Stream payload. The stream payload size is the amount of

data payload (in bytes) carried by one instance of the stream.

According to the IEEE 802.1Q standard [34], if the payload

size exceeds the MTU size (typically 1500 bytes), the stream

instance can be fragmented into multiple fragments, each of

which is transported by one frame. In the experiments, we

define 5 payload size types (see Table II) based on the typical

configurations in industrial applications.

Stream deadline. Theoretically, the minimum e2e delay ex-

perienced by a stream equals to the sum of propagation delay,

processing delay, and transmission delay along the shortest

routing path (i.e., the e2e delay under both FR and no-wait

model). Thus, we set the minimum deadline of each stream to

its delay under the no-wait model (denoted as NW) which can

be calculated according to our hardware-based measurement

results in Section IV. We define 5 stream deadline types (see

Table II) to aid the generation of random stream sets in our

experiments.

2) Network Settings: The generation of a TSN network in

our experiments is controlled by the following parameters:

Network topology. In the experiments, we employ four com-

monly used topologies: linear, ring, tree and mesh.

Number of bridges and links. The number of bridges in the

network ranges from 8 to 78 (with a step size of 10) where

the network diameter reaches the synchronization accuracy

limitation in IEEE 802.1AS [35] under our topology settings.

The number of links is determined accordingly under different

network topologies, as detailed in Table II.

Link rate and number of queues. In our experiments, unless

specified otherwise, we employ gigabit bridges with a line rate

of 1 Gbps, which is offered by most vendors [58]. The number

of queues on each egress port is fixed to 8 which is a common

setting in TSN bridges. We also assume that all eight queues

are exclusively dedicated to handling critical TT traffic.

B. Algorithm Implementation

We implement all the 17 TAS-based scheduling methods in

Python3, as some works rely on third-party software which all

provide an interface in Python3. Specifically, for SMT/OMT-

based methods, we use the Z3 solver to support the required

theories and logical formulas such as array and arithmetic the-

ory [59]. For ILP-based methods, we use the Gurobi optimizer,

one of the most advanced ILP solvers [60]3. For methods

without relying on third-party software, we implement them

from scratch using native Python. The specific implementation

of each work is described below.

SMT-WA. This work studied both the frame-based model and

stream-based isolation model, showing that the frame-based

approach can enhance schedulability with only a marginal

runtime overhead (up to 13%). Thus, we only implement the

proposed frame-based approach in our study.

3Following the original papers, we use the CPLEX ILP solver for JRS-
NW-L for the logical indicator [61], and the IBM CP Optimizer for CP-WA,
and the Sklearn library [62] to implement the spectral clustering based stream
set partition algorithm for I-ILP.

114

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

JRS-NW-L/JRS-MC. Since the model generation optimiza-

tion techniques proposed in JRS-NW-L and JRS-MC were

found to be counter-effective in a recent study [19], we omit

such optimizations to reduce the execution time.

SMT-NW. The exact solution in SMT-NW is selected and

implemented as it shows better overall performance in our

evaluation compared with the proposed heuristic solution.

LS-TB. We omit the “global conflict set” data structure used

in the paper as it is rarely called (only 0.96%) in the problem-

solving process.

LS. The FINDIT function used in LS is not described in detail,

and thus we implement it using a binary search-based strategy.

SMT-FRAG. We only implement the exact solution in SMT-

FRAG, as the proposed heuristic-based fixed-priority schedul-

ing method involves complex worst-case delay analysis, which

is challenging to implement and verify for correctness.

CP-WA/LS-TB. We omit the “presence” decision variable

used to select streams in CP-WA and LS-TB to optimize the

number of scheduled streams. We consider a set of streams to

be schedulable only when all streams are scheduled.

I-OMT. In OMT-based methods, we introduce an indicator

variable to make sure each frame is mapped to only one

window. This is to simplify the time validity constraint to

make the original formulation practical without sacrificing

schedulability.

For methods that require additional parameters (e.g., max

number of windows for AT, max fragment count for SMT-

FRAG/SMT-PRE), we follow their default settings in the orig-

inal papers. In addition, as suggested in the IEEE 802.1Qcc

standard [63], we apply the shortest path routing algorithm to

construct the routing path in FR-based methods.

C. Evaluation Environment
Our experiments are conducted on Chameleon Cloud, an

NSF-sponsored public cloud computing platform [64]. We

utilize 8 nodes equipped with 2 AMD EPYC® CPUs, 64 cores

per CPU with a clock speed of 2.45 GHz, and 256 GB DDR4

memory. To make the benchmark robust and representative,

we ran a total of 38400 problem instances covering all

combinations of our parameter settings in Table II, with 64

experiments running simultaneously on a single node at any

given time. To avoid any interference among experiments and

enable concurrency, a single process with a maximum of 4

GB RAM and 4 threads is dedicated to each experiment. We

set a 2-hour runtime limit for all the methods where most of

them took less than 2 hours according to our evaluation. If

any thread of the algorithm exceeds the time threshold, the

algorithm is terminated and returned ‘unknown’.

VI. EXPERIMENTAL EVALUATION

We perform comprehensive simulation-based evaluation for

the 17 TAS-based scheduling methods by comparing their

schedulability and scalability. We have also conducted experi-

ments using other performance metrics to evaluate the quality

of schedule, e.g., GCL length, link utilizations, and queue

utilization. These results are available in [32].

A. Schedulability

1) Setup: As discussed in Section V-C, we set a 2-hour

timeout and 4 GB RAM limit for each method. Therefore, each

method in our evaluation outputs one of the three results for

each randomly generated stream set: schedulable, unschedu-

lable and unknown. Due to the presence of the unknown

results, we are unable to precisely quantify the schedulability

performance of each method. To overcome this issue, we

devise two evaluation scenarios to ensure a fair comparison.

Evaluation Scenario 1 (ES1). In ES1, we conduct a com-

prehensive cross-evaluation of all 17 methods by employing a

conservative statistical strategy to calculate schedulable ratio
(SR). Specifically, the SR of each method is defined as the

ratio of schedulable stream sets to all the generated stream

sets. Such SR plays as the schedulability lower bound because

all the unknown results are deemed as unschedulable.

Although SR can to some extent reflect the schedulability

of the studied methods, it can be unfair to those methods

requiring higher resource consumption where a considerable

portion of the stream sets with unknown results might be

schedulable. To mitigate the influence of unknown results on

the performance comparison, a straightforward solution is to

only consider the experimental settings where all methods

produce known results, i.e., schedulable or unschedulable.

However, the experimental settings that yield known results

for all methods could be very small, making the performance

comparison statistically insignificant.

Evaluation Scenario 2 (ES2). To tackle this issue, in ES2, we

conduct a pairwise performance comparison between any two

methods by developing a novel metric, called schedulability
advantage (SA), which is calculated only based on the known

results for both methods. SA of A to B, denoted as Φ(A,B),
quantifies the degree to which method A outperforms method

B. Specifically, Φ(A,B) represents the ratio of the number of

stream sets where method A returns schedulable while method

B returns unschedulable to the number of stream sets where

both methods A and B return known results. Therefore, if

Φ(A,B) > Φ(B,A) = 0, we say that method A dominates

method B as there does not exist any stream set where method

B can find a schedulable solution but method A cannot.

Calculated from the known results for both methods, SA can

effectively reduce the impact posed by unknown outcomes

while ensuring a sufficient number of compared instances.

2) Results: Based on the two evaluation scenarios, we con-

duct extensive experiments under various stream and network

settings as described in Section V-A.

The first set of experiments evaluates the SRs of all the

methods by varying the parameter settings summarized in

Table II. Specifically, Fig. 4 shows the SR as functions of the

number of streams, frames, bridges and links, respectively. In

each subfigure, only one parameter is varied with all other

parameters fixed. We use dashed lines to denote data points

comprising over 90% unknown results. Fig. 5 shows the SR of

each method under different topologies, periodicity patterns,

payload sizes, and deadlines.

115

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. SR comparison under different stream set and network settings by
varying the parameter values.

The second set of experiments performs the pairwise com-

parison using the SA metric and the results are shown in

a heatmap in Fig. 6. Specifically, each cell represents the

Φ(A,B) value, where the row-index represents method A and

the column-index represents method B. Darker cells signify

higher SA values, while light yellow represents a zero SA

value. We use � to indicate that the method in a given row

dominates the method in the corresponding column. Moreover,

on the vertical axis, methods are sorted from high to low based

on their average SA values.

3) Discussion: We discuss the experimental results across

two dimensions of granularity. We first perform comparisons

among different scheduling models discussed in Section II to

show their pros and cons. We then compare the performance

of each method to discuss their advantages and limitations.

Model comparisons. We discuss the results of model com-

parison by categorizing two types of models: models with

varied or stable performance between ES1 and ES2. This

classification is based on their observed trends of results in

the experiments. The first comparison includes: 1) JRS and

FR models, 2) FRAG/PRE and non-FRAG/non-PRE models,

and 3) no-wait and wait-allowed models. The second compar-

isons includes: 1) fully and partially schedulable models, and

2) frame-based model and window-based scheduling model.

a) Models with inconsistent performance on SR and SA.
The experimental results show that a complex model can

achieve higher SA. However, it also incurs higher computation

overhead, which may significantly limit its performance on SR.

Specifically, JRS model dominates FR model on SA, but it

may cause lower performance on SR. For example, comparing

in Fig. 6, JRS-WA and JRS-MC dominate their counterparts

under the FR model (SMT-WA and CP-WA), and JRS-NW,

JRS-NW-L dominates its counterpart SMT-NW. However,

the JRS model usually leads to lower SR compared to the

FR model due to their incurred computation overhead. For

example, as shown in Fig. 4(c)–(d), along with the increase

of the network scale, the methods with exact solutions under

the JRS model (JRS-NW, JRS-NW-L, JRS-WA, JRS-MC)

suffer larger performance degradation by 41.8% on average

compared to that of the methods under FR model (SMT-WA,

SMT-NW, CP-WA) by 10.9%. The side effects of JRS model

on SR can also be validated by comparing its performance

under different topologies as shown in Fig. 5(a). All JRS-

based methods with exact solutions (JRS-WA, JRS-MC, JRS-

NW, and JRS-NW-L) show significantly degraded SR under

ring and mesh topologies than line and tree topologies, while

most FR-based methods have improved SR on mesh topology.

We also find similar patterns when comparing FRAG/PRE

vs. non-FRAG/non-PRE models and no-wait vs. wait-allowed

models. For example, in Fig. 6, SMT-FRAG and SMT-PRE

show the average SA values of 14.7% (Top-1) and 14.0% (Top-

6), respectively, outperforming the average of others. However,

both methods experience significantly reduced schedulability

due to their larger computational overhead as shown in Fig. 4.

Similarly, wait-allowed-based methods (SMT-WA and JRS-

WA) dominate their counterpart no-wait-based methods (SMT-

NW and JRS-NW) on SA as expected, but their difference in

SR is negligible (see Fig. 4 and Fig. 6).

b) Models with consistent performance on SR and SA. We

find that for some methods, the schedulability improvement

introduced by applying a complex model outweighs the cor-

respondingly increased computational overhead, which leads

to consistent performance improvement on both SA and SR.

Such a trend can be found in the comparisons among fully

schedulable model vs. partially schedulable model, and frame-

based model vs. window-based model.

As shown in Fig. 6, LS shows higher average SA (7.24%)

than LS-PL (2.8%) and LS-TB (4.29%), where the former

method follows the fully schedulable model and the latter two

methods follow the partially schedulable model. The compar-

ison results are retained when evaluating the SR performance.

As shown in Fig. 4, LS consistently outperforms LS-PL and

LS-TB under varied workloads and network scales.

Similarly, as shown in Fig. 6, the frame-based methods

SMT-NW and SMT-WA dominate the window-based method

AT on SA. Consistently, as shown in Fig. 4, both SMT-NW

and SMT-WA also consistently outperform AT in terms of SR

by increasing either the stream set or network scale. These

results imply that the constraints applied on GCL length may

significantly limit the schedulability.

Based on the above results and discussions on different

scheduling models, we conclude with the following finding.

Finding 1. Although complex TSN scheduling models (e.g.,
JRS, FRAG, PRE, and wait-allowed) can enhance the
schedulability in theory, their incurred high computational
overhead reduces the performance improvement in practice.
They may even have counterproductive effects in resource-
constrained systems.

Algorithm comparisons. We now present the comparison

of schedulability performance among individual scheduling

methods. According to the classification in Table I, each

116

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

a

b

c

d

Fig. 5. SR comparison under different stream set and network settings by varying the parameter types: (a) Network topology. (b) Periodicity pattern. (c) Payload
size. (d) Deadline.

Fig. 6. Pairwise SA comparison among the studied scheduling methods.

method is either a heuristic or exact solution. Thus, we first

perform comparisons between heuristic approaches and exact

solutions. We then delve into details of heuristic approaches to

examine the properties derived by individual heuristic designs.

a) Heuristic vs. exact solutions. Apparently, although heuris-

tic approaches may not match the performance of exact

solutions, they show higher efficiency, especially under heavy

workloads and restricted computational resources. Our results

align with this expectation. For example in Fig. 4, the exact

solution SMT-WA outperforms heuristic LS-TB in SR when

the number of streams is less than 100. However, when the

number of streams keeps increasing, LS-TB remains stable,

but the SR of SMT-WA rapidly declines to zero. Both methods

are under the FR model and wait-allowed model as shown in

Fig. 2. Similar trends can also be observed by comparing other

pairs of heuristic and exact solutions, such as JRS-NW vs. DT.

Due to their inherent efficiency, heuristic approaches also

benefit more from complex models compared to exact so-

lutions. For example, in Fig. 4(a), heuristic CG and exact

solution JRS-NW exhibit similar SR when the number of

streams is less than 80. However, when the number of streams

increases, CG outperforms JRS-NW with a widening gap.

Both methods are under JRS model and no-wait model. Similar

trends can also be observed in Fig. 4 that the heuristic method

I-OMT outperforms the exact method I-ILP consistently.

b) Comparison among heuristic algorithms. Our results

show that the performance of four heuristic algorithms signifi-

cantly degrades under certain scenarios. 1) I-ILP demonstrates

lower schedulability on routable topologies because of its

inefficient DAMR routing algorithm. For example, as shown

in Fig. 5(a), SRs of I-ILP drop from 41.6% (line) and 54.6%

(tree) to 9.6% (ring) and 7.4% (mesh). 2) Fig. 5(a) shows that

LS-PL suffers from a notably low SR (7.0%) in networks with

ring topology. This is due to the cyclic dependencies, causing

frequent failures in its phase division algorithm. 3) Under

strict deadline settings, both LS-TB and LS-PL show low

schedulability in Fig. 5(d) due to their partially schedulable

traffic model. This deficiency results in a drop in SR from

implicit deadline setting (51.9%) to no-wait deadline setting

(1.0%). 4) As shown in Fig. 5(b), in the presence of inhar-

monic periodicity, I-OMT exhibits a reduced SR (10.4%), a

consequence of its restricted number of GCL entries compared

to the single sparse method (66.4%). This decrease is mainly

due to scheduling conflicts, where a high volume of frames

rapidly exhausts the limited GCL entries.

Based on the above results and discussions, we have the

following finding on schedulability optimization.

Finding 2. Schedulability optimization is highly context-
dependent. There doesn’t exist a globally optimal scheduling
algorithm (neither exact nor heuristic algorithm). In general,
◦ Heuristic algorithms demonstrate higher efficiency in

large-scale systems (e.g., with more than 100 streams), es-

pecially under complex models (e.g., with JRS and window-

based model); exact solutions show better schedulability in

small-scale systems.

117

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

◦ Heuristic algorithms may suffer from low schedulability

under certain scenarios, e.g., with tight deadline (LS-TB and

LS-PL), inharmonic periodicity (I-OMT), and traffic with

cyclic dependencies (LS-PL).

Fig. 7. Runtime and memory consumption comparisons under varied
stream set and network settings.

B. Scalability

In this section, we compare the scalability of the scheduling

methods in terms of runtime and memory consumption, which

are critical performance metrics to evaluate how well the

scheduling algorithm will scale in practice [65].

1) Setup: In our experiments, the runtime of a scheduling

method consists of the pre-processing time (filtering invalid

solution space), the constraint adding time, and the problem

solving time. If a method follows an objective function, we

only measure its runtime of determining a feasible solution,

rather than the optimal one to avoid any unfair comparison. For

the memory consumption, we set a 4GB threshold to allocate

enough RAM while avoiding swap space use, and track the

peak memory usage in each experiment.

2) Results: Fig. 7 shows the runtime and memory consump-

tion performance with varied number of streams and bridges.

Overall trend. In Fig. 7(a)(b), when the number of streams

increases, we observe a significant rise in both the runtime

and memory consumption for most methods. Specifically, the

average runtime of all methods increases from 9.3 minutes

with 10 streams to 48.6 minutes with 220 streams. Likewise,

the average memory consumption increases from 476 MB with

10 streams to 1800 MB with 220 streams.

Interestingly, adding more bridges to the network has lim-

ited effect on the runtime. Overall, as shown in Fig. 7(c), the

runtime of most methods slightly increases from 23.6 minutes

with 8 bridges to 34.1 minutes with 78 bridges. Among these

methods, FR-based methods only show a modest increase from

25.4 to 29.2 minutes, while the JRS-based methods show

a more substantial rise from 19.2 minutes to 41.8 minutes.

As shown in Fig. 7(d), the memory consumption remains

relatively steady for FR-based methods with an average in-

crease of 183 MB when the number of bridges is increased

from 8 to 78. As an exception, JRS-based methods peak at

an average of 2070 MB with 48 bridges before dropping.

This observation may be due to several factors. For example,

a larger network may lead to longer routing paths, thereby

requiring more scheduling effort. While at the same time, this

may reduce traffic density and lower the chance of collisions.

These observations suggest that a larger network size does not

necessarily result in a proportionally increased problem size,

such as an increase in the number of decision variables or

constraints.

Finding 3. The increased workload poses a significant
challenge to TSN scheduling, whereas the increased network
scale does not show proportional impact on the scalability.

VII. TAKEAWAY LESSONS

We now summarize takeaways from this study, on both fair

performance evaluation and TSN scheduling algorithm design.

A. Fair Performance Evaluation

Parameter settings. Research studies may make unfair com-

parisons under specific settings and result in biased conclu-

sions. To mitigate this issue, we propose two ways to avoid

bias. 1) We include a broader range of parameter settings to

better understand the overall performance of the individual

methods and improve the fidelity and applicability of the

evaluation. 2) We select experimental settings based on real-

world scenarios or from standards and profiles if the com-

puting resource is limited to perform extensive experiments.

For instance, [36], [56] offer realistic use cases that can serve

as common evaluation scenarios. However, it is worth noting

that given the early stage of TSN research, the availability of

real-world scenarios and standardized profiles is still limited.

Evaluation metrics. Another key takeaway is that evaluation

metrics can introduce bias. For example, we observed inconsis-

tencies between the Schedulable Ratio (SR) and Schedulability

Advantage (SA) metrics in our experiments. To reduce bias,

we provide the following two suggestions. 1) Use multi-

dimensional metrics to assess the algorithm performance, and

ensure that these metrics are based on statistically significant

data rather than limited or skewed datasets. 2) Since different

methods may not produce the same known results (i.e., either

schedulable or unschedulable) for the given problem instances,

it is important to design metrics that are robust to these

unknowns, leading to more accurate evaluation results (e.g.,

using pairwise or rank-based comparisons metrics).

B. Algorithm Design

We provide the following insights and recommendations for

future TAS-based real-time scheduling algorithm design.

Real-world constraints. In our testbed validation, we identify

several issues that prevent existing methods from ensuring

e2e delay due to the ignorance of some practice constraints.

118

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

1) Co-scheduling of TT traffic and synchronization traffic.

Collisions between the two traffic types can occur and cause

synchronization error out of bound, resulting in network failure

or deadline miss of TT traffic. This is due to the fact that a

max sync error is included in most TSN network modeling.

However, if synchronization cannot be achieved in the pre-

defined period due to collisions, a sync error will become

larger than the max error during runtime. 2) ES may impose

stricter constraints than bridges due to their limited network

processing capability. For instance, we need to insert an inter-

frame distance (around 50 μs) between TT frames to maintain

the packet order on the ESs, which is much larger than

that on the bridges. This requirement on ES is overlooked

by most existing methods. 3) TSN bridge may be subject

to a specific window size bound in GCL; however, only a

few methods consider this constraint by adding a granularity

variable to their models. If these factors are overlooked during

the schedule generation, it may lead to errors when directly

deploying them to a real-world testbed. Hence, we suggest

including these real-world constraints in future studies to

improve the practicality of the proposed scheduling methods.

Performance optimization for specific scenarios. As we

point out in the findings described in Section VI, it is important

to select the right model and scheduling methods for perfor-

mance optimization under specific scenarios. Below, we pro-

vide suggestions based on the pros and cons of the models and

algorithms observed from our experiments. First of all, using

simple models (e.g., no-wait model) or heuristic approaches

(e.g., the list scheduler) can achieve better performance with

large stream set under resource limitation. Secondly, using

JRS model can be counter-effective in large-scale network

compared with the FR model due to its low efficiency. Thirdly,

enlarging the search space on ES side (fully/partially schedula-

ble) might be more effective on improving schedulability than

search space on the bridge side (no-wait/wait-allowed).

VIII. THREATS TO VALIDITY

It is worth noting that although our findings and conclusions

are based on thorough evaluation of representative algorithms

in the literature, they may not be applicable to all comparison

scenarios. We thus summarize the following limitations of

our experimental studies to make the readers be aware of the

potential threats to their general applicability and validity.

A. Model and Algorithm Comparison

The primary goal of this study is to evaluate the performance

of 17 representative TAS-based scheduling methods under

various scenarios. The discussions on the model and algorithm

comparisons are based on the observations from the evaluation

results of individual methods under practical experimental set-

tings. Providing a thorough and independent model/algorithm

comparison requires a completely different experiment design

to isolate model, algorithm, and implementation, which is out

of the scope of this study.

In addition, since TSN research in recent years has been

explosive, we cannot include all methods in the experimental

comparison. For example, only 2 window-based methods [17],

[28] are considered in the performance comparison, and this

is not sufficient to conclude the performance of window-based

model in the general case. Furthermore, the evaluation on

some individual methods may not be sufficient to represent

the performance of the model and algorithm they employ. For

example, AT and SMT-PREP are only designed as proofs of

concept without performance optimization. Similarly, the effi-

ciency of some exact solutions may be further improved using

incremental scheduling or decomposition approaches [66].

B. Individual Method Comparison

Although many well-designed experimental setups are em-

ployed in our study to ensure fairness, potential issues may
exist to result in inconsistent conclusions.

Additional parameter settings. For the methods that re-

quire additional parameters (e.g., max number of windows

for AT), we set those parameters in our experiments the

same as their settings in the original papers. However, the

performance of individual methods may be further improved

by fine-tuning the parameters, especially for those methods

that are sensitive to certain parameter settings, e.g., win-

dows/fragmentations/preemptions setup in [17], [25], [29].

Implementation. For the implementation of each method, we

employ the same tools (e.g., selected solver) and follow the

settings (e.g., constraints) in the original papers for fairness.

However, there may exist some issues that could potentially

limit the performance of certain methods: 1) the selected solver

and corresponding problem formulation may significantly af-

fect results. For example, the observed low performance of

JRS-NW-L may be due to the low efficiency of Cplex ILP

solver on addressing logical constraints. Furthermore, our

analysis indicates that ILP formulations are generally more

efficient than SMT if multiple CPU cores are employed.

2) Some JRS methods (e.g., JRS-WA and I-ILP) spend more

time on adding constraints on variables rather than searching

for solutions, especially with large problem instances.

IX. CONCLUSION AND FUTURE WORK

This paper examines 17 representative TAS-based real-time

scheduling methods in Time-Sensitive Networking (TSN) and

establishes a benchmark for performance comparison among

individual methods and across different system models. Com-

prehensive experiments are designed and conducted using both

high-fidelity simulation and real-world testbed to help evaluate

the performance of the state-of-the-art methods and identify

open problems in TSN scheduling design and implementation.

For future work, we will include realistic problem instances

from avionic and automobile industries, as well as incorpo-

rating fault tolerance scenarios and various traffic shapers

into the evaluation. To further evaluate the correctness and

practicability of the existing methods, more comprehensive

empirical experiments will be conducted on our TSN testbed.

Finally, we will encourage the community to utilize our open-

source toolkit to evaluate their scheduling methods to boost

the development of TSN-related R&D projects.

119

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

X. ACKNOWLEDGEMENT

The work is supported in part by the National Sci-

ence Foundation Grant CNS-1932480, CNS-2008463, CCF-

2028875, CNS-1925706, and the NASA STRI Resilient Ex-

traterrestrial Habitats Institute (RETHi) under grant number

80NSSC19K1076.

REFERENCES

[1] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial internet of things: Challenges, opportunities, and directions,” IEEE
transactions on industrial informatics, vol. 14, no. 11, pp. 4724–4734,
2018.

[2] W. Z. Khan, M. Rehman, H. M. Zangoti, M. K. Afzal, N. Armi,
and K. Salah, “Industrial internet of things: Recent advances, enabling
technologies and open challenges,” Computers & Electrical Engineering,
vol. 81, p. 106522, 2020.

[3] J. Wang, T. Zhang, D. Shen, X. S. Hu, and S. Han, “Harp: Hierarchical
resource partitioning in dynamic industrial wireless networks,” in 2022
IEEE 42nd International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2022, pp. 1029–1039.

[4] “IEEE standard for local and metropolitan area networks– virtual
bridged local area networks amendment 12: Forwarding and queuing
enhancements for time-sensitive streams,” IEEE Std 802.1Qav-2009, pp.
1–72, 2010.

[5] “IEEE standard for local and metropolitan area networks–bridges and
bridged networks - amendment 34:asynchronous traffic shaping,” IEEE
Std 802.1Qcr-2020, pp. 1–151, 2020.

[6] “IEEE standard for local and metropolitan area networks – bridges and
bridged networks - amendment 25: Enhancements for scheduled traffic,”
IEEE Std 802.1Qbv-2015, pp. 1–57, 2016.

[7] L. Zhao, P. Pop, and S. Steinhorst, “Quantitative performance com-
parison of various traffic shapers in time-sensitive networking,” IEEE
Transactions on Network and Service Management, vol. 19, no. 3, pp.
2899–2928, 2022.

[8] T. Stüber, L. Osswald, S. Lindner, and M. Menth, “A survey of schedul-
ing algorithms for the time-aware shaper in time-sensitive networking
(tsn),” IEEE Access, 2023.

[9] G. Wang, T. Zhang, C. Xue, J. Wang, M. Nixon, and S. Han, “Time-
sensitive networking for industrial automation: Challenges, opportuni-
ties, and directions,” arXiv preprint arXiv:2306.03691, 2023.

[10] D. Hellmanns, J. Falk, A. Glavackij, R. Hummen, S. Kehrer, and F. Dürr,
“On the performance of stream-based, class-based time-aware shaping
and frame preemption in TSN,” in 2020 IEEE International Conference
on Industrial Technology (ICIT). IEEE, 2020, pp. 298–303.

[11] A. Minaeva and Z. Hanzálek, “Survey on periodic scheduling for time-
triggered hard real-time systems,” ACM Computing Surveys (CSUR),
vol. 54, no. 1, pp. 1–32, 2021.

[12] L. Deng, G. Xie, H. Liu, Y. Han, R. Li, and K. Li, “A survey of real-
time ethernet modeling and design methodologies: From AVB to TSN,”
ACM Computing Surveys (CSUR), vol. 55, no. 2, pp. 1–36, 2022.

[13] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ULL) networks:
The IEEE TSN and IETF DetNet standards and related 5G ULL
research,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1,
pp. 88–145, 2018.

[14] Y. Seol, D. Hyeon, J. Min, M. Kim, and J. Paek, “Timely survey of time-
sensitive networking: Past and future directions,” IEEE Access, vol. 9,
pp. 142 506–142 527, 2021.

[15] A. Nasrallah, V. Balasubramanian, A. Thyagaturu, M. Reisslein, and
H. ElBakoury, “TSN algorithms for large scale networks: A survey and
conceptual comparison,” arXiv preprint arXiv:1905.08478, 2019.

[16] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1 Qbv time sensitive networks,”
in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, 2016, pp. 183–192.

[17] R. S. Oliver, S. S. Craciunas, and W. Steiner, “IEEE 802.1 Qbv gate
control list synthesis using array theory encoding,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2018, pp. 13–24.

[18] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and
G. Mühl, “ILP-based joint routing and scheduling for time-triggered
networks,” in Proceedings of the 25th International Conference on Real-
Time Networks and Systems, 2017, pp. 8–17.

[19] D. Hellmanns, L. Haug, M. Hildebrand, F. Dürr, S. Kehrer, and R. Hum-
men, “How to optimize joint routing and scheduling models for TSN
using integer linear programming,” in 29th International Conference on
Real-Time Networks and Systems, 2021, pp. 100–111.

[20] J. Falk, F. Dürr, and K. Rothermel, “Exploring practical limitations
of joint routing and scheduling for TSN with ILP,” in 2018 IEEE
24th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, 2018, pp. 136–146.

[21] E. Schweissguth, D. Timmermann, H. Parzyjegla, P. Danielis, and
G. Mühl, “ILP-based routing and scheduling of multicast realtime traffic
in time-sensitive networks,” in 2020 IEEE 26th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA). IEEE, 2020, pp. 1–11.

[22] F. Dürr and N. G. Nayak, “No-wait packet scheduling for IEEE time-
sensitive networks (TSN),” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems, 2016, pp. 203–212.

[23] M. Vlk, K. Brejchová, Z. Hanzálek, and S. Tang, “Large-scale peri-
odic scheduling in time-sensitive networks,” Computers & Operations
Research, vol. 137, p. 105512, 2022.

[24] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic list scheduler
for time triggered traffic in time sensitive networks,” ACM Sigbed
Review, vol. 16, no. 1, pp. 15–20, 2019.

[25] X. Jin, C. Xia, N. Guan, and P. Zeng, “Joint algorithm of message
fragmentation and no-wait scheduling for time-sensitive networks,”
IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2, pp. 478–490,
2021.

[26] A. A. Atallah, G. B. Hamad, and O. A. Mohamed, “Routing and
scheduling of time-triggered traffic in time-sensitive networks,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4525–4534,
2019.

[27] M. Vlk, Z. Hanzálek, and S. Tang, “Constraint programming approaches
to joint routing and scheduling in time-sensitive networks,” Computers
& Industrial Engineering, vol. 157, p. 107317, 2021.

[28] X. Jin, C. Xia, N. Guan, C. Xu, D. Li, Y. Yin, and P. Zeng, “Real-time
scheduling of massive data in time sensitive networks with a limited
number of schedule entries,” IEEE Access, vol. 8, pp. 6751–6767, 2020.

[29] Y. Zhou, S. Samii, P. Eles, and Z. Peng, “Time-triggered scheduling
for time-sensitive networking with preemption,” in 2022 27th Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE, 2022,
pp. 262–267.

[30] J. Falk, F. Dürr, and K. Rothermel, “Time-triggered traffic planning
for data networks with conflict graphs,” in 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2020, pp. 124–136.

[31] D. Bujosa, M. Ashjaei, A. V. Papadopoulos, T. Nolte, and J. Proenza,
“HERMES: Heuristic multi-queue scheduler for TSN time-triggered
traffic with zero reception jitter capabilities,” in Proceedings of the 30th
International Conference on Real-Time Networks and Systems, 2022, pp.
70–80.

[32] C. Xue, T. Zhang, Y. Zhou, M. Nixon, A. Loveless, and
S. Han, “Real-time scheduling for 802.1Qbv time-sensitive networking
(TSN): A systematic review and experimental study,” arXiv preprint
arXiv:2305.16772, 2023.

[33] C. Xue, “Open-source toolkit for TSN scheduling algorithm design
and evaluation,” Feb 2024. [Online]. Available: https://github.com/
ChuanyuXue/tsnkit

[34] IEEE Standards Association and others, “IEEE standard for local and
metropolitan area network–bridges and bridged networks,” IEEE Std
802.1 Q-2018 (Revision of IEEE Std 802.1 Q-2014), pp. 1–1993, 2018.

[35] “IEEE standard for local and metropolitan area networks–timing and
synchronization for time-sensitive applications,” IEEE Std 802.1AS-
2020, pp. 1–421, 2020.

[36] J. Dorr, K. Weber, and S. Zuponcic, Use Cases IEC/IEEE 60802.
[Online]. Available: https://www.ieee802.org/1/files/public/docs2018/
60802-industrial-use-cases-0918-v13.pdf

[37] M. Barzegaran, N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop,
“Real-time traffic guarantees in heterogeneous time-sensitive networks,”
in Proceedings of the 30th International Conference on Real-Time
Networks and Systems, 2022, pp. 46–57.

120

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

[38] Y. Lin, X. Jin, T. Zhang, M. Han, N. Guan, and Q. Deng, “Queue
assignment for fixed-priority real-time flows in time-sensitive networks:
Hardness and algorithm,” Journal of Systems Architecture, vol. 116, p.
102141, 2021.

[39] IEEE, “IEEE standard for local and metropolitan area networks—bridges
and bridged networks—amendment 26: frame preemption: 802.1 qbu-
2016,” 2016.

[40] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[41] A. Mascis and D. Pacciarelli, “Job-shop scheduling with blocking and
no-wait constraints,” European Journal of Operational Research, vol.
143, no. 3, pp. 498–517, 2002.

[42] Y. Zhang, Q. Xu, S. Wang, Y. Chen, L. Xu, and C. Chen, “Scalable no-
wait scheduling with flow-aware model conversion in time-sensitive net-
working,” in IEEE Global Communications Conference (GLOBECOM).
IEEE, 2022, pp. 413–418.

[43] J. Pommaret and A. Quadrat, “Generalized bezout identity,” Applicable
Algebra in Engineering, Communication and Computing, vol. 9, no. 2,
pp. 91–116, 1998.

[44] R. Mahfouzi, A. Aminifar, S. Samii, P. Eles, and Z. Peng, “Security-
aware routing and scheduling for control applications on ethernet TSN
networks,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 25, no. 1, pp. 1–26, 2019.

[45] X. Dai, S. Zhao, Y. Jiang, X. Jiao, X. S. Hu, and W. Chang, “Fixed-
priority scheduling and controller co-design for time-sensitive networks,”
in Proceedings of the 39th International Conference on Computer-Aided
Design, 2020, pp. 1–9.

[46] M. Barzegaran, B. Zarrin, and P. Pop, “Quality-of-control-aware
scheduling of communication in TSN-based fog computing platforms
using constraint programming,” in 2nd Workshop on Fog Computing
and the IoT (Fog-IoT 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[47] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and S. Mubeen,
“Synthesising schedules to improve QoS of best-effort traffic in TSN
networks,” in 29th International Conference on Real-Time Networks and
Systems, 2021, pp. 68–77.

[48] P.-J. Chaine and M. Boyer, “Shortening gate closing time to limit
bandwidth waste when implementing time-triggered scheduling in
TAS/TSN,” in International Conference on Real-Time Networks and
Systems (RTNS) 2022, 2022.

[49] W. Ma, X. Xiao, G. Xie, N. Guan, Y. Jiang, and W. Chang, “Fault
tolerance in time-sensitive networking with mixed-critical traffic,” in
2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE,
2023, pp. 1–6.

[50] N. Reusch, P. Pop, and S. Craciunas, “Technical report: Safe and
secure configuration synthesis for TSN-based distributed cyber-physical
systems using constraint programming,” 2020.

[51] Y. Zhou, S. Samii, P. Eles, and Z. Peng, “ASIL-decomposition based
routing and scheduling in safety-critical time-sensitive networking,” in
2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2021, pp. 184–195.

[52] S. S. Craciunas and R. S. Oliver, “Out-of-sync schedule robustness for
time-sensitive networks,” in 2021 17th IEEE International Conference
on Factory Communication Systems (WFCS). IEEE, 2021, pp. 75–82.

[53] T. Industrial, “Edge IP solution.” [Online]. Available: https://www.
tttech-industrial.com/products/slate/edge-ip-solution

[54] P. Park, M. Son, J. Lee, and J. Yoon, “Performance evaluation of the
efficient precise time synchronization protocol for the redundant ring
topology network,” in 2021 IEEE/AIAA 40th Digital Avionics Systems
Conference (DASC), 2021, pp. 1–10.

[55] R. Cochran and C. Marinescu, “Design and implementation of a PTP
clock infrastructure for the Linux kernel,” in 2010 IEEE International
Symposium on Precision Clock Synchronization for Measurement, Con-
trol and Communication. IEEE, 2010, pp. 116–121.

[56] W. Fischer, J. Gelish, and M. Hegarty, Aerospace
TSN use cases, traffic types, and requirements. [On-
line]. Available: https://www.ieee802.org/1/files/public/docs2021/
dp-Jabbar-et-al-Aerospace-Use-Cases-0321-v06.pdf

[57] M. Mohaqeqi, M. Nasri, Y. Xu, A. Cervin, and K.-E. Årzén, “Optimal
harmonic period assignment: complexity results and approximation
algorithms,” Real-Time Systems, vol. 54, pp. 830–860, 2018.

[58] D. Bruckner, R. Blair, M. Stanica, A. Ademaj, W. Skeffington,
D. Kutscher, S. Schriegel, R. Wilmes, K. Wachswender, L. Leurs

et al., “OPC UA TSN a new solution for industrial communication,”
Whitepaper. Shaper Group, vol. 168, 2018.

[59] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
in Proceedings of the 14th International Conference of Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), 2008.
Springer, 2008, pp. 337–340.

[60] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2021.
[Online]. Available: https://www.gurobi.com/documentation/9.1/refman/
index.html

[61] Center, IBM Knowledge, “IBM ILOG CPLEX Optimization
Studio,” 2019. [Online]. Available: https://www.ibm.com/products/
ilog-cplex-optimization-studio

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[63] “IEEE standard for local and metropolitan area networks-bridges and
bridged networks-amendment 31: stream reservation protocol (SRP)
enhancements and performance improvements,” IEEE Std 802.1 Qcc-
2018, 2018.

[64] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock et al., “Lessons
learned from the chameleon testbed,” in 2020 USENIX annual technical
conference (USENIX ATC 20), 2020, pp. 219–233.

[65] D. Pannell, “Choosing the right TSN tools to meet a bounded latency,”
IEEE SA Ethernet & IP@ Automotive Technology Day, 2019.

[66] A. Finzi and R. Serna Oliver, “General framework for routing, schedul-
ing and formal timing analysis in deterministic time-aware networks,”
in 34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

121

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.

