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Abstract—Time-Sensitive Networking (TSN) has been recog-
nized as one of the key enabling technologies for Industry 4.0
and has been deployed in many mission- and safety-critical
applications e.g., automotive and aerospace systems. Given the
stringent real-time requirements of these applications, the Time-
Aware Shaper (TAS) draws special attention among TSN’s many
traffic shapers due to its ability to achieve deterministic timing
guarantees. Many scheduling methods for TAS shapers have been
recently developed that claim to improve system schedulability.
However, these scheduling methods have yet to be thoroughly
evaluated, especially through experimental comparisons, to pro-
vide a systematical understanding of their performance in diverse
application scenarios. In this paper, we fill this gap by presenting
a systematic review and experimental study on existing TAS-
based scheduling methods for TSN. We first categorize the system
models employed in these works along with the specific problems
they aim to solve, and outline the fundamental considerations in
the designs of TAS-based scheduling methods. We then perform
an extensive evaluation on 17 representative solutions using
both high-fidelity simulations and a real-life TSN testbed, and
compare their performance under both synthetic scenarios and
real-life industrial use cases. Through these studies, we identify
the limitations of individual scheduling methods and highlight
several important findings. We expect this work will provide
foundational knowledge and performance benchmarks needed
for future studies on real-time TSN scheduling.

I. INTRODUCTION

Time-Sensitive Networking (TSN), as an enhancement of
Ethernet, has quickly become the local area network (LAN)
technology of choice to enable the co-existence of information
technology (IT) and operation technology (OT) in the indus-
trial Internet-of-Things (IloT) paradigm. TSN aims to pro-
vide deterministic Layer-2 communications which are highly
desirable for many real-time industrial applications, such as
process automation and factory automation [1]-[3]. To enable
such communication capabilities, the TSN Task Group (TG)
has developed a suite of traffic shapers in the TSN standards,
including the Credit-Based Shaper (CBS) [4], Asynchronous
Traffic Shaper (ATS) [5], and Time-Aware Shaper (TAS) [6],
to handle different traffic types and satisfy communication re-
quirements at different levels. In terms of providing strict real-
time performance guarantees, TAS stands out by leveraging
network-wide synchronization and time-triggered scheduling
mechanisms [7], making it a critical technology to support
deterministic traffic in industrial applications.

TAS operates in a time-triggered scheduling fashion. It
achieves deterministic communications by buffering and re-
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Fig. 1. An illustration of the Time-Aware Shaper (TAS) mechanism
in a Time-Sensitive Networking (TSN) bridge.

leasing traffic at specific time instances following a predeter-
mined schedule. Specifically, as shown in Fig. 1, each egress
port in a TSN switch (also called bridge) is equipped with
a set of time-gated queues to buffer frames from each traffic
flow. A scheduled gate mechanism is utilized to open or close
the queues and control the transmission of frames according
to a predefined Gate Control List (GCL). Each GCL includes
a limited number of entries. Each entry provides the status of
associated queues over a particular duration. The GCL repeats
itself periodically, and the network-wide schedule is generated
by the Centralized Network Configuration (CNC) and de-
ployed on individual bridges. In addition to the scheduled gate,
the priority filter utilizes a 3-bit Priority Code Point (PCP) field
in the packet header to identify the stream priority, and directs
incoming traffic to the appropriate egress queue(s) [6].

Although the scheduling mechanism of TAS is clearly
defined in the IEEE 802.1Qbv standard, the configuration of
TAS, e.g., what to put in the GCL and how to assign queues
for individual traffic at each hop, has no clear-cut best practice.
Specifically, the fundamental question for TAS-based real-time
scheduling in TSN is how to generate a network-wide schedule
to guarantee the timing requirements of all time-triggered (TT)
traffic [8]. Given that applications that employ TSN as the
communication fabric can be diverse from different perspec-
tives (e.g., traffic patterns, topology, deployment environments,
and QoS requirements), the specific scheduling problems to be
studied may vary significantly. This results in a large amount
of efforts from both researchers and practitioners to study
various system models and develop corresponding algorithms.
These studies considerably enrich the literature, paving the
way to improve TSN network performance.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 28,2024 at 19:24:56 UTC from IEEE Xplore. Restrictions apply.



There have been several recent survey works on real-time
scheduling in TSN networks (e.g., [8]-[14]). These studies
provided a broad overview of the TSN standards, identified the
limitations of existing TSN scheduling methods, and outlined
future research directions. In addition, [8], [15] provided com-
parisons among various TSN scheduling approaches, with [8]
primarily focusing on TAS-based studies and [15] extending
the comparisons to all TSN shapers. However, all the afore-
mentioned works suffer from the following two significant
limitations. First, they don’t provide a thorough model-based
categorization for the TSN scheduling methods considering the
used network models, traffic models, and scheduling models.
Second, for the few existing works conducting comparisons of
TSN scheduling methods, their comparisons are all conceptual
in nature, which are far from sufficient for determining the
effectiveness of individual methods under diverse scenarios.

To address the above limitations, this paper summarizes the
network models, traffic models, and scheduling models used
in the literature for real-time scheduling in TSN. Based on
the summarized models, we categorize 17 representative TAS-
based scheduling methods proposed since 2016 (i.e., [16]—
[31]). To perform realistic experimental comparisons among
these methods, we establish an 8-bridge TSN testbed to obtain
quantitative measurement results of several key parameters
commonly used in TSN models (e.g., propagation delay,
processing delay, and synchronization error). Relying on the
TSN testbed, we further conduct performance validation for
all the scheduling methods to ensure the consistency between
testbed results and analytic results derived from simulations.
Based on all these preliminary outcomes, we perform extensive
experimental studies for the 17 TSN scheduling methods under
various stream sets and network settings covering a broad
range of industrial application scenarios. Benefiting from our
model-based categorization, we are able to perform exper-
imental comparisons not only among individual scheduling
methods but also across different system models.

Based on the comprehensive experimental results, we are
able to highlight a set of interesting observations and findings.
In general, our study shows that there is no one-size-fits-
all solution that can achieve dominating performance in all
scenarios; individual scheduling method/model may demon-
strate superiority under certain setting(s). Furthermore, we
demonstrate that diverse experimental settings complicate the
fair evaluation of scheduling methods without introducing bias,
which can make conclusions from previous studies only valid
under specific settings. We expect that our findings will help
the community understand better the benefits and drawbacks
of existing TSN scheduling methods and provide valuable in-
sights for the development of future TSN scheduling methods.!
In summary, this work makes the following contributions:

1) We provide a comprehensive review of various TSN system
models and categorize 17 representative TAS-based scheduling
methods accordingly.

IFor detailed experimental results and open source code, please refer to our
technical report [32] and Github repository [33], respectively.

2) We establish a real-world TSN testbed and perform quanti-
tative parameter measurement and performance validation for
the studied TSN scheduling methods.

3) We perform extensive experimental evaluations on the 17
scheduling methods under comprehensive industrial scenarios.
4) We summarize the findings obtained from the evaluation
and provide takeaway lessons for future research and devel-
opment on TSN real-time scheduling methods.

II. TSN SYSTEM MODELING

This section presents an overview of the network models,
traffic models, and scheduling models for real-time scheduling
in TSN. It provides the foundation for the categorization of
TAS-based scheduling methods in Section III.

A. Network Models

A TSN network consists of two types of devices: bridges
and end stations (ES). A bridge can forward Ethernet frames
for one or multiple TSN streams according to a schedule
constructed based on the IEEE 802.1Q standard [34]. Each
ES can be a talker, acting as the source of TSN stream(s), a
listener, acting as the destination of TSN stream(s), or both.
Each full-duplex physical link connecting two TSN devices
(either bridge or ES) is modeled as two directed logical
links. Each logical link is associated with the following five
attributes:

* Propagation delay refers to the time duration of a signal
transmitting on the physical link. It is solely dependent on the
length of the cable and the type of the physical media used.
* Processing delay refers to the time duration from a frame
reaches the ingress port until it is fully stored in the egress
queue. The delay is determined by the processing capability
of the bridge or ES implementation. It is typically modeled as
a constant or a bounded value in the literature.

* Number of egress queues refers to the available egress
queues dedicated to TT traffic. The IEEE 802.1Q standard sets
a max of eight queues per egress port for a TSN bridge [34].
e Maximum GCL length indicates the maximum allowed
number of entries in the GCL of a logical link, and this is
determined by the specific bridge implementation (typically
between 8 and 1024 [17]).

e Synchronization error is typically defined as the maximum
time offset between any two non-faulty logical clocks in the
network, and is shared across all nodes and links. However,
the recently released IEEE 802.1AS-rev standard introduces
a more precise synchronization error model, enabling the
modeling of individual error for each node based on specific
network configurations, roles of nodes, and hop distance to
the grandmaster [35].

B. Traffic Models

In TSN, a traffic stream refers to a flow of data transmitted
from a talker to one or multiple listeners, passing through
one or multiple bridges. TSN can accommodate both real-time
time-triggered (TT) traffic and lower-criticality asynchronous
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traffic (e.g., audio and video (AVB) traffic). The focus of this
paper is on TT traffic in real-time industrial applications.

Each TSN stream can be characterized by five parameters:
release time, period, transmission delay, deadline, and jitter.
Each parameter can be modeled individually to capture the
specific characteristics of the targeted traffic pattern.

¢ Release time: The release time of a stream is defined as the
time when its first frame is dispatched on the physical link by
the talker. Depending on whether the talker can determine the
release time of its stream(s), the traffic model can be classified
into fully schedulable traffic and partially schedulable traffic.
The former allows the scheduler to configure the release time
of each stream, while the latter assumes that the release time
of each stream is given by the application.

e Period: The period of a stream defines the inter-arrival
pattern of its frames. It can be classified into strictly periodic
model and non-strictly periodic model based on the determin-
ism of their arrival times. In a strictly periodic model, each
frame must follow the same release offset, resulting in a fixed
time interval between any two consecutive frames.

e Transmission delay: The transmission delay is the time
required for a frame to be serialized on the wire following
egress queuing. The transmission delay is determined by the
stream’s payload size and the link’s line rate.

e Deadline: The deadline of a stream defines the time by
which the released frame(s) must be received at the listener.
The stream deadline can be modeled as implicit (equal to the
period), constrained (less than the period), or arbitrary.

 Jitter: The jitter of a stream captures the variation of
end-to-end (e2e) stream delay (i.e., the difference between
the minimum and maximum delays of all the frames of a
stream) [36]. Based on the stream jitter, the traffic models can
be classified into zero-jitter model and jitter-allowed model.

C. Scheduling Models

The TAS-based real-time scheduling problem in TSN aims
to construct a feasible schedule specifying the assignment of
transmission times for each stream on individual bridges to
satisfy the timing constraints of all the streams. Based on
the network models and traffic models described above, a
range of scheduling models have been proposed to define
specific constraints on the TSN systems under study. Below,
we summarize these scheduling models and categorize them
according to their unique features.

* Queuing delay: Compared with other delay components,
the queuing delay (i.e., the amount of time that a frame spends
waiting in the egress queue) is decided by the schedule and
has the most impact on the e2e delay of a stream. Based on the
assumptions on queuing delay, the scheduling models can be
classified into no-wait model and wait-allowed model. The no-
wait model requires consecutive frame transmissions along the
path, i.e., frames should be forwarded without queuing delay.
While the wait-allowed model is more general as it allows
frames to be stored in the queue with queuing delays.

* Scheduling entity: Depending on the objects used for the
allocation of GCL entry [10], the scheduling models can be
classified into frame-based model and window-based model.
In the frame-based model, each GCL entry specifies the
transmission time of a specific frame. In the window-based
model, each GCL entry specifies a transmission time window
that can be shared by a set of frames to be transmitted. In
general, the window-based model can be further classified as
assigned, partially assigned or non-assigned based on different
frame-to-window allocations [37].

* Queue isolation (QI): Proper queue assignment isolates
streams into different queues to avoid schedule inconsis-
tency [16], [38], i.e., difference between the designed schedule
and actual transmissions, which is mainly caused by the
FIFO property of TSN egress queues. Queue isolation can be
realized in the frame level and stream level. The goal of both
frame-based QI and stream-based QI is to prevent changes in
the forwarding order of frames that are in the same queue.

* Routing and scheduling co-design: Depending on
whether the routing path of each stream is given or needs to
be determined, the scheduling models can be categorized as
fixed routing (FR) model and joint routing and scheduling
(JRS) model. Compared to the FR model, the JRS model
provides more flexibility while incurring high computational
overhead.

* Fragmentation: In the network layer, fragmentation oc-
curs when a packet is split into smaller fragments to fit
the maximum transmission unit (MTU) size of the network.
However, default fragmentation policy may result in high
latency due to the large fragment size. To address this issue,
the fragmentation (FRAG) model is proposed, which allows
the determination of the number and size of fragments.

* Preemption: The IEEE 802.1Qbu standard defines frame
preemption as the capacity of an express frame to interrupt the
transmission of a preemptable frame, and subsequently resume
the preempted frame at the earliest available opportunity [39].
In the preemption (PRE) model, frames may be assigned
with varied preemption classes at different hops, with only
express frames being able to interrupt preemptable frames.
The preemptable frame can thus be broken into two or more
fragments.

III. REAL-TIME TSN SCHEDULING METHODS

Based on the TSN system models discussed above, we
now delve into a detailed review of 17 TAS-based real-time
scheduling methods published since 2016. Following the stan-
dard protocol of systematic review outlined in [40], we select
these methods based on two main criteria. 1) Breadth: to give
a comprehensive review and experimental study, we aim to
include as diverse a set of models and algorithms as possible;
2) Relevance: to concentrate on real-time scheduling of time-
triggered traffic in TSN, approaches centered on enhancing
AVB or BE traffics in mixed-criticality scenarios or improving
reliability are not included. We also exclude learning-based
methods that cannot provide deterministic schedules.
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Fig. 2. Classification of the TSN real-time scheduling methods based on the employed system models.

In the following, we categorize the 17 scheduling methods
and highlight their specific optimization objectives in addi-
tion to generating feasible schedules. We first classify all
the methods into two categories, FR-based methods or JRS-
based methods, depending on whether the routing path of
each stream is given or to be determined. The methods in
each category are further divided into no-wait-based methods
and wait-allowed-based methods according to their employed
delay models. Finally, each method is classified as either
an exact solution or a heuristic solution based on whether
the method can yield an optimal schedule or not’>. Fig. 2
summarizes the categorization.

A. Fixed Routing (FR) Methods

FR-based methods assume that the routing paths of indi-
vidual streams are pre-determined as input and focus on the
generation of a feasible schedule.

1) No-wait: The no-wait model requires that all frames are
forwarded along their routing paths without any queuing delay.
Among the 17 studied methods, the following methods employ
a combination of the FR model and no-wait model, which tend
to minimize the e2e latency.

e SMT-NW: Durr et al. [22] addressed the problem of reduc-
ing the e2e latency of TT traffic. The key idea is to adapt this
problem to the no-wait job-shop scheduling problem [41].

e SMT-FRAG: Jin et al. [25] proposed a no-wait-based ap-
proach allowing fragmentation to improve the schedulability.
The key idea is to jointly determine the traffic schedule along
with the number/size of fragments for individual streams.

e DT: Zhang et al. [42] studied the high computational over-
head issue induced by the constraint of non-overlap transmis-
sions among any traffic in the no-wait model. It proposed
a stream-aware model conversion algorithm to accelerate the
feasible schedule search based on divisibility theory [43].

2) Wait-allowed: In the wait-allowed model, frames can
be stored in the egress queue and forwarded at a later time.
Thus, it introduces a larger solution space compared to the no-
wait model. The following seven scheduling methods employ
a combination of the FR model and wait-allowed model.

e SMT-WA: Craciunas et al. [16] focused on the system
modeling of wait-allowed-based scheduling. It provided the
SMT formulation for the scheduling constraints associated
with the wait-allowed model and first introduced the queuing
isolation model in the scheduling solution.

2Some selected works proposed both exact and heuristic solutions. In this
paper, we only evaluate one of them based on their key contributions to make
the review and performance comparison more concise and informative.

111

e AT: Oliver et al. [17] considered the GCL length limita-
tion and introduced a window-based scheduling method that
applied array theory to an SMT solver.

e I-OMT: Jin et al. [28] also studied the GCL length lim-
itation. Instead of setting the GCL length as a constraint,
it aimed to minimize the number of used GCL entries by
proposing an iterative-Optimization Modulo Theories (OMT)-
based approach to scheduling streams in groups.

e CP-WA: VIk et al. [27] modeled the deterministic TT traffic
using constraint programming (CP). It claimed that CP is more
efficient compared to other formalization methods, e.g., SMT
and ILP, and a decomposition optimization was also proposed
to enhance the scalability of the solution.

* SMT-PRE: Zhou et al. [29] aimed to increase the system
schedulability by enabling preemption among frames. An
SMT-based approach was proposed to assign streams into two
classes: express class and preemptable class.

e LS-TB: VIk et al. [23] focused on addressing the scalability
issue (i.e., low efficiency) in scheduling large-scale TSN traffic
sets by removing reliance on third-party solvers. The proposed
algorithm reverts to a previous search stage and modifies the
timing and queue assignments if the current frame conflicts
with any other scheduled frames.

e LS-PL: Bujosa et al. [31] also focused on improving the
scalability of TSN networks. They proposed a heuristic algo-
rithm that groups links into phases based on their scheduling
dependency and schedules these links parallelly phase by
phase.

B. Joint Routing and Scheduling (JRS) Methods

Under the FR model, a feasible schedule may not be found
when the routing paths of the streams are pre-determined.
By contrast, the JRS-based methods allow the scheduler to
jointly determine the routes and schedules for the streams,
thus offering a better chance to find a feasible schedule.

1) No-wait: The following five methods employ a combi-
nation of the JRS model and no-wait model.
e JRS-NW-L: Falk et al. [20] proposed an ILP-based ap-
proach to determining the routing path of each stream and the
schedule. Different from other ILP-based methods (e.g., [18],
[21], [22]) that employ the Big-M formulation, this work used
the indicator constraints to address the logical constraints.
e JRS-NW: Hellmanns et al. [19] addressed the high compu-
tational overhead in solving the JRS-based scheduling prob-
lem. It evaluated the impact of stream set scale and network
scale on the schedulability and provided an optimization
framework including three components: input optimization,
model generation optimization, and solver parameter tuning.
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TABLE I
A SUMMARY OF THE SYSTEM MODELS AND SCHEDULING APPROACHES EMPLOYED IN THE STUDIED TSN SCHEDULING METHODS.

Article Year schf(;l:l]l);hle :et;:g:ill); No-wait VY;:::: Queueing | Routing | Multicast | Heuristic | Exact | Algorithms Enhancements
Diirr et al. (SMT-NW) [22] 2016 | v v v ) v ILP (Tabu)

Schweissguth et al. JRS-WA) [18] | 2017 | v v v v ILP Paths reduce
Oliver et al. (AT) [17] 2018 | v v v v SMT Array-theory
Falk et al. JRS-NW-L) [20] 2018 | v v v v v ILP Logic indicator
Pahlevan et al. (LS) [24] 2019 | v v v v v List scheduler

Schweissguth et al. JRS-MC) [21] | 2020 | v v v v v ILP Paths reduce
Atallah et al. (I-ILP) [26] 2020 | v v v v v v Tterative-ILP

Jin et al. (I-OMT) [28] 2020 v v v ) Iterative-OMT

Falk et al. (CG) [30] 2020 | v v v v v W) Conflict-graph

Hellmanns et al. JRS-NW) [19] 2021 v v v v v ILP Path cut-off
Jin et al. (SMT-FRAG) [25] 2021 | v v v ) v SMT (WCRT) Fragmentation
VIk et al. (CP-WA) [27] 2021 | v v v ) v CP (Decompose)

VIk et al. (LS-TB) [23] 2022 v v v ) List scheduler Traceback
Bujosa et al. (LS-PL) [31] 2022 v v v List scheduler Per-link search
Zhou et al. (SMT-PRE) [29] 2022 | v v SMT Preemption
Zhang et al. (DT) [42] 2022 | v v v v ) Divisibility

e LS: Pahlevan et al. [24] proposed a heuristic-based list
scheduling algorithm to improve the efficiency of solving
the JRS-based scheduling problem. The algorithm schedules
streams one by one without backtracking, which stops and
returns infeasible if any stream cannot be scheduled.

o I-ILP: Atallah et al. [26] considered multicast routing and
proposed a heuristic solution based on three key techniques:
iterative ILP-based scheduling for enhanced scalability, Degree
of Conflict (DoC)-aware partitioning for stream grouping, and
DoC-aware multicast routing (DAMR).

* CG: Falk et al. [30] aimed to reduce the high computational
overhead in existing JRS-based methods. The key idea is to
gradually construct a conflict graph by capturing the collision
between individual stream’s transmission time, and identify an
independent set to obtain a feasible schedule.

2) Wait-allowed: The following two works employ a com-
bination of the JRS model and wait-allowed model.
e JRS-WA: Schweiliguth et al. [18] first proposed the JRS
framework and addressed the issue that FR-based methods
may exclude feasible solutions without considering routing
in the design space. It proposed an ILP-based approach and
improved the searching efficiency by excluding infeasible
routing paths during pre-processing.
¢ JRS-MC: Schweiliguth et al. [21] further extended JRS-
WA to support multicast traffic streams by adding additional
scheduling constraints to prevent loops and negative latency.

Table I summarizes the 17 scheduling methods in a chrono-
logical order. A (v') symbol indicates that the method was
presented in the original paper but we do not implement it.

It is worth noting that besides the fundamental feasibility
requirement, we also reviewed TSN scheduling methods in
the literature with other optimization objectives, e.g., delay
and jitter minimization [44], [45], co-existence with non-TT
traffic [46]-[48], and reliability [49]-[52]. Due to the page
limit, we cannot include them in this paper, but summarize
them in our technical report [32] for the completeness of the
review.

IV. TESTBED VALIDATION

To validate the correctness and effectiveness of the studied
TSN scheduling methods on COTS hardware, we set up a

TSN testbed and implemented all the scheduling algorithms
on it. The testbed consists of 8 bridges and 8 ESs as shown
in Fig. 3(a). Each bridge is an FPGA hardware-based TTTech
TSN evaluation board [53], and each ES is implemented using
the Linux Ethernet stack with an external Network Interface
Controller (NIC) Intel i210 as shown in Fig. 3(b). The network
is set up following the ring topology as shown in Fig. 3(c)
which is commonly applied in industrial scenarios [54]. We
use the Linux PTP stack [55] with the gPTP profile for
synchronization on end-stations, and the bridge implements
its own synchronization stack. The synchronization traffic is
set with a priority higher than the best-effort traffic and lower
than the critical traffic.

This testbed serves two main objectives: i) to calibrate key
parameters assumed in the TSN system model, and ii) to
validate the correctness of the scheduling methods through
the comparison between the testbed results and simulation
results. Given the limited scale of our testbed (8 bridges and
8 end stations only), and the difficulty to configure extensive
scenarios on the testbed, we focus on functional validation
rather than performance comparison using the testbed.

A. Measurements of Delays and Synchronization Error

As mentioned in Section II, most TAS-based scheduling
methods assume that the processing delay, propagation delay,
synchronization error, and clock offset on ES are constant or
bounded numbers. To the best of our knowledge, however,
there is no existing study validating these assumptions
through experimental measurements in real-world TSN
testbeds. We argue that such validation is critical as it pro-
vides the foundation for both existing and future TAS-based
scheduling method design and analysis.

1) Propagation Delay: To measure the propagation delay,
we directly connect a talker and a listener with a CAT7 cable,
while measuring the round-trip time (RTT) of a stream using
the hardware timestamping function supported by the NIC.
As shown in Fig. 3(d), the propagation delay in this one-hop
setting is bounded between 2 ns and 6 ns, with a 4 ns jitter
due to the measurement inaccuracy.

2) Processing Delay: Since we cannot measure the pro-
cessing delay on the TTTech evaluation board directly, we
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Fig. 3. (a) Overview of the 8-bridge TSN testbed; (b) Hardware components for TSN bridge and end-station; (c) The logical topology of
the testbed; (d) — (g) Measurement results of the propagation delay, processing delay, synchronization error, and physical clock to system
clock offset; (h) Measurement results of the e2e delay for three representative methods out of the 17 scheduling methods.

infer its upper bound by observing the e2e delay of a stream.
Specifically, we gradually increase the potential upper bound
of the processing delay in the TAS configuration until all
frames’ e2e delay can be statistically bounded within the test
duration. Fig. 3(e) shows that the one-hop processing delay
can be bounded within 1.9 ys in our testbed.

3) Synchronization Error: Fig. 3(f) shows the synchroniza-
tion error measured on the testbed, which is reported by the
logs of the Linux PTP stack. It can be observed that the
synchronization error becomes stable after 5 seconds. The
large values observed in the first 5 seconds are mainly due
to the grand master clock election process [35]. After that, the
synchronization error can be bounded within 10 ns.

4) Clock Offset on System: Fig. 3(g) shows the clock offset
from the system clock in the application to the physical clock
in the network card, which is also reported by the Linux PTP
stack. Similar to the synchronization error, the clock offset is
also large at the beginning, then it is bounded within 50 ns.

The above measurement results provide the calibration
values of the propagation delay, processing delay, and syn-
chronization errors from the real-world testbed. Thus, in our
subsequent simulation-based evaluation experiments, we set
the propagation delay, processing delay, synchronization error,
and clock offset as 6 ns, 1.9 us, 10 ns, and 50 ns, respectively.

B. Performance Validation

Before conducting extensive simulation-based experiments,
we need to validate if the performance of the TSN scheduling
methods is consistent on both the real-world testbed and
through simulations. Such validation not only confirms the
theoretical performance of each method but also ensures the
correctness of our implementations. We implement 16 out of
the 17 scheduling methods on the testbed where SMT-FRAG
is not implemented because its required fragmentation size
for each stream is even smaller than the lower bound of the
window size on the hardware device.

113

We conduct the performance validation using a small-scale
stream set consisting of 8 streams to simplify the hardware
configuration. The stream set includes four streams with a
payload size of 100 bytes, two streams of 200 bytes, and
two streams of 400 bytes. Each stream has a common period
and deadline of 1 ms. Each stream has a unique talker but
may have shared listeners. The streams are routed on the
same ring topology, with their routing paths determined by the
evaluated methods. After deploying the release times, queue
assignments, and GCL configurations that are generated from
each of the 16 methods on the testbed, and we record the e2e
delay of 10000 frames for each stream.

Fig. 3(h) compares the measured e2e delays of three out
of the 17 methods (other results can be found in [32]) on the
testbed (yellow line) and the analyzed worst-case delay from
the simulation (red line). Overall, our testbed results validate
the correctness of all the methods since the analyzed worst-
case e2e delays of each method are always bounded by the
corresponding measurement results. Beyond that, we have two
important observations. First, most of the streams experience
a relatively stable delay (<100 ns variation), but some streams
are observed to have delay fluctuations under certain methods.
For example, in Fig. 3(h), the delay of Stream SO under
LS-PL gradually increases to around 12 ps, then it drops
to 9.8 us suddenly. We believe that these drifts are mainly
caused by the collisions between synchronization traffic and
TT traffic, which increases the clock drift between the talker
and listener over time. Subsequent synchronization recovery
procedures eliminate such clock drift, restoring the delay to its
normal state. Secondly, a large gap can be observed between
the testbed measurements and the simulation results across
different methods, with a maximum gap of about 5 is recorded
from S2 with I-ILP (see Fig. 3(h)). This gap primarily stems
from two factors: 1) an enforced error margin of up to 3.2 us
by the TTTech evaluation board to accommodate timing errors
on the bridge; and 2) an up to 1.9 us processing delay on the
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TABLE I
PARAMETER SETTINGS FOR SIMULATION-BASED EVALUATION.

Parameter Value

Type

Number of streams - 10, 40, 70, ..., 190, 220}
Sparse single 2}
Dense single 0.4
Sparse harmonic 0.5, 1,2, 4}

Stream period (ms) Dense harmonic

Sparse inharmonic
Dense inharmonic

0.1,0.2, 0.4, 0.8}

0.25, 0.5, 1.25, 2.5, 4}
0.05, 0.1, 0.25, 0.5, 0.8}
8, 16, 32, ..., 2048, 4096}

Number of frames

Tiny size

3
£ 50
b5 Small size 50 - 500
% Stream payload (bytes) | Medium size 200 — 1500
Large size 500 — 4500
Extra size 1500 — 4500
Implicit deadline Equal to period
Relaxed deadline NW + {0.1, 0.2, 0.4, 0.8, 1.6}
Stream deadline (ms) Normal deadline NW + {0.01, 0.025, 0.05, 0.1, 0.2, 0.4}

Strict deadline
No-wait deadline
Linear, Ring, Tree, Me:

NW +
NW
sh

8, 18,28, ..., 78}
30, 32, 36, ..., 386}
8]

0, 0.01, 0.02, 0.025, 0.05}

Topology

Number of bridges
Number of links
Number of queues

Network

bridge identified during our measurements.

V. SIMULATION-BASED EXPERIMENTAL SETUP

We now present the details of our simulation-based experi-
mental setup to evaluate the 17 scheduling methods.

A. Parameter Settings

To ensure a fair evaluation among the selected TSN schedul-
ing methods, we follow the parameter settings below in the
experiments, which are summarized in Table II.

1) Stream Set Settings: We control the randomly generated
TSN stream set by tuning the following parameters:

Number of streams. In each randomly generated stream set,
the number of streams follows a uniform distribution within
the range of [10, 220] with a step size of 30. The maximum
number of streams is set to 220 to encompass the typical
settings employed in both simulation-based studies and real-
world applications. In our experiments, when the number of
streams reaches 220, the average system utilization surpasses
the recommended upper bound for industrial applications’
critical traffic [56], resulting in a very low schedulability ratio
and impractical runtime for most of the evaluated methods.
Stream period. Following the TSN profile for industrial
automation use cases in IEC/IEEE 60802 [36], we set the
range of the stream periods as [50us, 4ms]. However, ran-
domly generated stream periods are less meaningful as the
stream periods in real-world TSN applications typically follow
specific patterns in corresponding industrial sectors [57]. Thus,
we define 6 stream period types, as shown in Table II, to
include all the commonly employed periodicity settings.
Number of frames. Within a network cycle (i.e., the period
that GCL repeats itself), the number of frames is determined
by the combination of the number of streams and their periods.
In our experiments, considering the network cycle as the least
common multiple of stream periods, the number of frames can
range from 10 to 7842. Given its exponential and continuous
distribution, we sort these values into bins >8, >16, ...,
>4096 to facilitate point plotting as shown in Table II.
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Stream payload. The stream payload size is the amount of
data payload (in bytes) carried by one instance of the stream.
According to the IEEE 802.1Q standard [34], if the payload
size exceeds the MTU size (typically 1500 bytes), the stream
instance can be fragmented into multiple fragments, each of
which is transported by one frame. In the experiments, we
define 5 payload size types (see Table II) based on the typical
configurations in industrial applications.

Stream deadline. Theoretically, the minimum e2e delay ex-
perienced by a stream equals to the sum of propagation delay,
processing delay, and transmission delay along the shortest
routing path (i.e., the e2e delay under both FR and no-wait
model). Thus, we set the minimum deadline of each stream to
its delay under the no-wait model (denoted as NW) which can
be calculated according to our hardware-based measurement
results in Section IV. We define 5 stream deadline types (see
Table II) to aid the generation of random stream sets in our
experiments.

2) Network Settings: The generation of a TSN network in
our experiments is controlled by the following parameters:
Network topology. In the experiments, we employ four com-
monly used topologies: linear, ring, tree and mesh.

Number of bridges and links. The number of bridges in the
network ranges from 8 to 78 (with a step size of 10) where
the network diameter reaches the synchronization accuracy
limitation in IEEE 802.1AS [35] under our topology settings.
The number of links is determined accordingly under different
network topologies, as detailed in Table II.

Link rate and number of queues. In our experiments, unless
specified otherwise, we employ gigabit bridges with a line rate
of 1 Gbps, which is offered by most vendors [58]. The number
of queues on each egress port is fixed to 8 which is a common
setting in TSN bridges. We also assume that all eight queues
are exclusively dedicated to handling critical TT traffic.

B. Algorithm Implementation

We implement all the 17 TAS-based scheduling methods in
Python3, as some works rely on third-party software which all
provide an interface in Python3. Specifically, for SMT/OMT-
based methods, we use the Z3 solver to support the required
theories and logical formulas such as array and arithmetic the-
ory [59]. For ILP-based methods, we use the Gurobi optimizer,
one of the most advanced ILP solvers [60]°. For methods
without relying on third-party software, we implement them
from scratch using native Python. The specific implementation
of each work is described below.

SMT-WA. This work studied both the frame-based model and
stream-based isolation model, showing that the frame-based
approach can enhance schedulability with only a marginal
runtime overhead (up to 13%). Thus, we only implement the
proposed frame-based approach in our study.

3Following the original papers, we use the CPLEX ILP solver for JRS-
NW-L for the logical indicator [61], and the IBM CP Optimizer for CP-WA,
and the Sklearn library [62] to implement the spectral clustering based stream
set partition algorithm for I-ILP.
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JRS-NW-L/JRS-MC. Since the model generation optimiza-
tion techniques proposed in JRS-NW-L and JRS-MC were
found to be counter-effective in a recent study [19], we omit
such optimizations to reduce the execution time.

SMT-NW. The exact solution in SMT-NW is selected and
implemented as it shows better overall performance in our
evaluation compared with the proposed heuristic solution.
LS-TB. We omit the “global conflict set” data structure used
in the paper as it is rarely called (only 0.96%) in the problem-
solving process.

LS. The FINDIT function used in LS is not described in detail,
and thus we implement it using a binary search-based strategy.
SMT-FRAG. We only implement the exact solution in SMT-
FRAG, as the proposed heuristic-based fixed-priority schedul-
ing method involves complex worst-case delay analysis, which
is challenging to implement and verify for correctness.
CP-WA/LS-TB. We omit the “presence” decision variable
used to select streams in CP-WA and LS-TB to optimize the
number of scheduled streams. We consider a set of streams to
be schedulable only when all streams are scheduled.

I-OMT. In OMT-based methods, we introduce an indicator
variable to make sure each frame is mapped to only one
window. This is to simplify the time validity constraint to
make the original formulation practical without sacrificing
schedulability.

For methods that require additional parameters (e.g., max
number of windows for AT, max fragment count for SMT-
FRAG/SMT-PRE), we follow their default settings in the orig-
inal papers. In addition, as suggested in the IEEE 802.1Qcc
standard [63], we apply the shortest path routing algorithm to
construct the routing path in FR-based methods.

C. Evaluation Environment

Our experiments are conducted on Chameleon Cloud, an
NSF-sponsored public cloud computing platform [64]. We
utilize 8 nodes equipped with 2 AMD EPYC® CPUs, 64 cores
per CPU with a clock speed of 2.45 GHz, and 256 GB DDR4
memory. To make the benchmark robust and representative,
we ran a total of 38400 problem instances covering all
combinations of our parameter settings in Table II, with 64
experiments running simultaneously on a single node at any
given time. To avoid any interference among experiments and
enable concurrency, a single process with a maximum of 4
GB RAM and 4 threads is dedicated to each experiment. We
set a 2-hour runtime limit for all the methods where most of
them took less than 2 hours according to our evaluation. If
any thread of the algorithm exceeds the time threshold, the
algorithm is terminated and returned ‘unknown’.

VI. EXPERIMENTAL EVALUATION

We perform comprehensive simulation-based evaluation for
the 17 TAS-based scheduling methods by comparing their
schedulability and scalability. We have also conducted experi-
ments using other performance metrics to evaluate the quality
of schedule, e.g., GCL length, link utilizations, and queue
utilization. These results are available in [32].

A. Schedulability

1) Setup: As discussed in Section V-C, we set a 2-hour
timeout and 4 GB RAM limit for each method. Therefore, each
method in our evaluation outputs one of the three results for
each randomly generated stream set: schedulable, unschedu-
lable and unknown. Due to the presence of the unknown
results, we are unable to precisely quantify the schedulability
performance of each method. To overcome this issue, we
devise two evaluation scenarios to ensure a fair comparison.

Evaluation Scenario 1 (ES1). In ES1, we conduct a com-
prehensive cross-evaluation of all 17 methods by employing a
conservative statistical strategy to calculate schedulable ratio
(SR). Specifically, the SR of each method is defined as the
ratio of schedulable stream sets to all the generated stream
sets. Such SR plays as the schedulability lower bound because
all the unknown results are deemed as unschedulable.

Although SR can to some extent reflect the schedulability
of the studied methods, it can be unfair to those methods
requiring higher resource consumption where a considerable
portion of the stream sets with unknown results might be
schedulable. To mitigate the influence of unknown results on
the performance comparison, a straightforward solution is to
only consider the experimental settings where all methods
produce known results, i.e., schedulable or unschedulable.
However, the experimental settings that yield known results
for all methods could be very small, making the performance
comparison statistically insignificant.

Evaluation Scenario 2 (ES2). To tackle this issue, in ES2, we
conduct a pairwise performance comparison between any two
methods by developing a novel metric, called schedulability
advantage (SA), which is calculated only based on the known
results for both methods. SA of A to B, denoted as ®(A, B),
quantifies the degree to which method A outperforms method
B. Specifically, ®(A, B) represents the ratio of the number of
stream sets where method A returns schedulable while method
B returns unschedulable to the number of stream sets where
both methods A and B return known results. Therefore, if
®(A,B) > ®(B,A) = 0, we say that method A dominates
method B as there does not exist any stream set where method
B can find a schedulable solution but method A cannot.
Calculated from the known results for both methods, SA can
effectively reduce the impact posed by unknown outcomes
while ensuring a sufficient number of compared instances.

2) Results: Based on the two evaluation scenarios, we con-
duct extensive experiments under various stream and network
settings as described in Section V-A.

The first set of experiments evaluates the SRs of all the
methods by varying the parameter settings summarized in
Table II. Specifically, Fig. 4 shows the SR as functions of the
number of streams, frames, bridges and links, respectively. In
each subfigure, only one parameter is varied with all other
parameters fixed. We use dashed lines to denote data points
comprising over 90% unknown results. Fig. 5 shows the SR of
each method under different topologies, periodicity patterns,
payload sizes, and deadlines.
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Fig. 4. SR comparison under different stream set and network settings by
varying the parameter values.

The second set of experiments performs the pairwise com-
parison using the SA metric and the results are shown in
a heatmap in Fig. 6. Specifically, each cell represents the
®(A, B) value, where the row-index represents method A and
the column-index represents method B. Darker cells signify
higher SA values, while light yellow represents a zero SA
value. We use X to indicate that the method in a given row
dominates the method in the corresponding column. Moreover,
on the vertical axis, methods are sorted from high to low based
on their average SA values.

3) Discussion: We discuss the experimental results across
two dimensions of granularity. We first perform comparisons
among different scheduling models discussed in Section II to
show their pros and cons. We then compare the performance
of each method to discuss their advantages and limitations.

Model comparisons. We discuss the results of model com-
parison by categorizing two types of models: models with
varied or stable performance between ES1 and ES2. This
classification is based on their observed trends of results in
the experiments. The first comparison includes: 1) JRS and
FR models, 2) FRAG/PRE and non-FRAG/non-PRE models,
and 3) no-wait and wait-allowed models. The second compar-
isons includes: 1) fully and partially schedulable models, and
2) frame-based model and window-based scheduling model.
a) Models with inconsistent performance on SR and SA.
The experimental results show that a complex model can
achieve higher SA. However, it also incurs higher computation
overhead, which may significantly limit its performance on SR.
Specifically, JRS model dominates FR model on SA, but it
may cause lower performance on SR. For example, comparing
in Fig. 6, JRS-WA and JRS-MC dominate their counterparts
under the FR model (SMT-WA and CP-WA), and JRS-NW,
JRS-NW-L dominates its counterpart SMT-NW. However,
the JRS model usually leads to lower SR compared to the
FR model due to their incurred computation overhead. For
example, as shown in Fig. 4(c)—(d), along with the increase
of the network scale, the methods with exact solutions under

the JRS model (JRS-NW, JRS-NW-L, JRS-WA, JRS-MC)
suffer larger performance degradation by 41.8% on average
compared to that of the methods under FR model (SMT-WA,
SMT-NW, CP-WA) by 10.9%. The side effects of JRS model
on SR can also be validated by comparing its performance
under different topologies as shown in Fig. 5(a). All JRS-
based methods with exact solutions (JRS-WA, JRS-MC, JRS-
NW, and JRS-NW-L) show significantly degraded SR under
ring and mesh topologies than line and tree topologies, while
most FR-based methods have improved SR on mesh topology.

We also find similar patterns when comparing FRAG/PRE
vs. non-FRAG/non-PRE models and no-wait vs. wait-allowed
models. For example, in Fig. 6, SMT-FRAG and SMT-PRE
show the average SA values of 14.7% (Top-1) and 14.0% (Top-
6), respectively, outperforming the average of others. However,
both methods experience significantly reduced schedulability
due to their larger computational overhead as shown in Fig. 4.
Similarly, wait-allowed-based methods (SMT-WA and JRS-
WA) dominate their counterpart no-wait-based methods (SMT-
NW and JRS-NW) on SA as expected, but their difference in
SR is negligible (see Fig. 4 and Fig. 6).

b) Models with consistent performance on SR and SA. We
find that for some methods, the schedulability improvement
introduced by applying a complex model outweighs the cor-
respondingly increased computational overhead, which leads
to consistent performance improvement on both SA and SR.
Such a trend can be found in the comparisons among fully
schedulable model vs. partially schedulable model, and frame-
based model vs. window-based model.

As shown in Fig. 6, LS shows higher average SA (7.24%)
than LS-PL (2.8%) and LS-TB (4.29%), where the former
method follows the fully schedulable model and the latter two
methods follow the partially schedulable model. The compar-
ison results are retained when evaluating the SR performance.
As shown in Fig. 4, LS consistently outperforms LS-PL and
LS-TB under varied workloads and network scales.

Similarly, as shown in Fig. 6, the frame-based methods
SMT-NW and SMT-WA dominate the window-based method
AT on SA. Consistently, as shown in Fig. 4, both SMT-NW
and SMT-WA also consistently outperform AT in terms of SR
by increasing either the stream set or network scale. These
results imply that the constraints applied on GCL length may
significantly limit the schedulability.

Based on the above results and discussions on different
scheduling models, we conclude with the following finding.

Finding 1. Although complex TSN scheduling models (e.g.,
JRS, FRAG, PRE, and wait-allowed) can enhance the
schedulability in theory, their incurred high computational
overhead reduces the performance improvement in practice.
They may even have counterproductive effects in resource-
constrained systems.

Algorithm comparisons. We now present the comparison
of schedulability performance among individual scheduling
methods. According to the classification in Table I, each
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method is either a heuristic or exact solution. Thus, we first
perform comparisons between heuristic approaches and exact
solutions. We then delve into details of heuristic approaches to
examine the properties derived by individual heuristic designs.

a) Heuristic vs. exact solutions. Apparently, although heuris-
tic approaches may not match the performance of exact
solutions, they show higher efficiency, especially under heavy
workloads and restricted computational resources. Our results
align with this expectation. For example in Fig. 4, the exact
solution SMT-WA outperforms heuristic LS-TB in SR when
the number of streams is less than 100. However, when the
number of streams keeps increasing, LS-TB remains stable,
but the SR of SMT-WA rapidly declines to zero. Both methods
are under the FR model and wait-allowed model as shown in
Fig. 2. Similar trends can also be observed by comparing other
pairs of heuristic and exact solutions, such as JRS-NW vs. DT.

Due to their inherent efficiency, heuristic approaches also
benefit more from complex models compared to exact so-
lutions. For example, in Fig. 4(a), heuristic CG and exact
solution JRS-NW exhibit similar SR when the number of
streams is less than 80. However, when the number of streams

increases, CG outperforms JRS-NW with a widening gap.
Both methods are under JRS model and no-wait model. Similar
trends can also be observed in Fig. 4 that the heuristic method
I-OMT outperforms the exact method I-ILP consistently.

b) Comparison among heuristic algorithms. Our results
show that the performance of four heuristic algorithms signifi-
cantly degrades under certain scenarios. 1) I-ILP demonstrates
lower schedulability on routable topologies because of its
inefficient DAMR routing algorithm. For example, as shown
in Fig. 5(a), SRs of I-ILP drop from 41.6% (line) and 54.6%
(tree) to 9.6% (ring) and 7.4% (mesh). 2) Fig. 5(a) shows that
LS-PL suffers from a notably low SR (7.0%) in networks with
ring topology. This is due to the cyclic dependencies, causing
frequent failures in its phase division algorithm. 3) Under
strict deadline settings, both LS-TB and LS-PL show low
schedulability in Fig. 5(d) due to their partially schedulable
traffic model. This deficiency results in a drop in SR from
implicit deadline setting (51.9%) to no-wait deadline setting
(1.0%). 4) As shown in Fig. 5(b), in the presence of inhar-
monic periodicity, [-OMT exhibits a reduced SR (10.4%), a
consequence of its restricted number of GCL entries compared
to the single sparse method (66.4%). This decrease is mainly
due to scheduling conflicts, where a high volume of frames
rapidly exhausts the limited GCL entries.

Based on the above results and discussions, we have the
following finding on schedulability optimization.

Finding 2. Schedulability optimization is highly context-
dependent. There doesn’t exist a globally optimal scheduling
algorithm (neither exact nor heuristic algorithm). In general,

o Heuristic algorithms demonstrate higher efficiency in
large-scale systems (e.g., with more than 100 streams), es-
pecially under complex models (e.g., with JRS and window-
based model); exact solutions show better schedulability in
small-scale systems.
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o Heuristic algorithms may suffer from low schedulability
under certain scenarios, e.g., with tight deadline (LS-TB and
LS-PL), inharmonic periodicity (I-OMT), and traffic with
cyclic dependencies (LS-PL).
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Fig. 7. Runtime and memory consumption comparisons under varied
stream set and network settings.

B. Scalability

In this section, we compare the scalability of the scheduling
methods in terms of runtime and memory consumption, which
are critical performance metrics to evaluate how well the
scheduling algorithm will scale in practice [65].

1) Setup: In our experiments, the runtime of a scheduling
method consists of the pre-processing time (filtering invalid
solution space), the constraint adding time, and the problem
solving time. If a method follows an objective function, we
only measure its runtime of determining a feasible solution,
rather than the optimal one to avoid any unfair comparison. For
the memory consumption, we set a 4GB threshold to allocate
enough RAM while avoiding swap space use, and track the
peak memory usage in each experiment.

2) Results: Fig. 7 shows the runtime and memory consump-
tion performance with varied number of streams and bridges.
Overall trend. In Fig. 7(a)(b), when the number of streams
increases, we observe a significant rise in both the runtime
and memory consumption for most methods. Specifically, the
average runtime of all methods increases from 9.3 minutes
with 10 streams to 48.6 minutes with 220 streams. Likewise,
the average memory consumption increases from 476 MB with
10 streams to 1800 MB with 220 streams.

Interestingly, adding more bridges to the network has lim-
ited effect on the runtime. Overall, as shown in Fig. 7(c), the
runtime of most methods slightly increases from 23.6 minutes
with 8 bridges to 34.1 minutes with 78 bridges. Among these
methods, FR-based methods only show a modest increase from
25.4 to 29.2 minutes, while the JRS-based methods show
a more substantial rise from 19.2 minutes to 41.8 minutes.
As shown in Fig. 7(d), the memory consumption remains
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relatively steady for FR-based methods with an average in-
crease of 183 MB when the number of bridges is increased
from 8 to 78. As an exception, JRS-based methods peak at
an average of 2070 MB with 48 bridges before dropping.
This observation may be due to several factors. For example,
a larger network may lead to longer routing paths, thereby
requiring more scheduling effort. While at the same time, this
may reduce traffic density and lower the chance of collisions.
These observations suggest that a larger network size does not
necessarily result in a proportionally increased problem size,
such as an increase in the number of decision variables or
constraints.

Finding 3. The increased workload poses a significant
challenge to TSN scheduling, whereas the increased network
scale does not show proportional impact on the scalability.

VII. TAKEAWAY LESSONS

We now summarize takeaways from this study, on both fair
performance evaluation and TSN scheduling algorithm design.

A. Fair Performance Evaluation

Parameter settings. Research studies may make unfair com-
parisons under specific settings and result in biased conclu-
sions. To mitigate this issue, we propose two ways to avoid
bias. 1) We include a broader range of parameter settings to
better understand the overall performance of the individual
methods and improve the fidelity and applicability of the
evaluation. 2) We select experimental settings based on real-
world scenarios or from standards and profiles if the com-
puting resource is limited to perform extensive experiments.
For instance, [36], [56] offer realistic use cases that can serve
as common evaluation scenarios. However, it is worth noting
that given the early stage of TSN research, the availability of
real-world scenarios and standardized profiles is still limited.
Evaluation metrics. Another key takeaway is that evaluation
metrics can introduce bias. For example, we observed inconsis-
tencies between the Schedulable Ratio (SR) and Schedulability
Advantage (SA) metrics in our experiments. To reduce bias,
we provide the following two suggestions. 1) Use multi-
dimensional metrics to assess the algorithm performance, and
ensure that these metrics are based on statistically significant
data rather than limited or skewed datasets. 2) Since different
methods may not produce the same known results (i.e., either
schedulable or unschedulable) for the given problem instances,
it is important to design metrics that are robust to these
unknowns, leading to more accurate evaluation results (e.g.,
using pairwise or rank-based comparisons metrics).

B. Algorithm Design

We provide the following insights and recommendations for
future TAS-based real-time scheduling algorithm design.
Real-world constraints. In our testbed validation, we identify
several issues that prevent existing methods from ensuring
e2e delay due to the ignorance of some practice constraints.
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1) Co-scheduling of TT traffic and synchronization traffic.
Collisions between the two traffic types can occur and cause
synchronization error out of bound, resulting in network failure
or deadline miss of TT traffic. This is due to the fact that a
max sync error is included in most TSN network modeling.
However, if synchronization cannot be achieved in the pre-
defined period due to collisions, a sync error will become
larger than the max error during runtime. 2) ES may impose
stricter constraints than bridges due to their limited network
processing capability. For instance, we need to insert an inter-
frame distance (around 50 us) between TT frames to maintain
the packet order on the ESs, which is much larger than
that on the bridges. This requirement on ES is overlooked
by most existing methods. 3) TSN bridge may be subject
to a specific window size bound in GCL; however, only a
few methods consider this constraint by adding a granularity
variable to their models. If these factors are overlooked during
the schedule generation, it may lead to errors when directly
deploying them to a real-world testbed. Hence, we suggest
including these real-world constraints in future studies to
improve the practicality of the proposed scheduling methods.
Performance optimization for specific scenarios. As we
point out in the findings described in Section VI, it is important
to select the right model and scheduling methods for perfor-
mance optimization under specific scenarios. Below, we pro-
vide suggestions based on the pros and cons of the models and
algorithms observed from our experiments. First of all, using
simple models (e.g., no-wait model) or heuristic approaches
(e.g., the list scheduler) can achieve better performance with
large stream set under resource limitation. Secondly, using
JRS model can be counter-effective in large-scale network
compared with the FR model due to its low efficiency. Thirdly,
enlarging the search space on ES side (fully/partially schedula-
ble) might be more effective on improving schedulability than
search space on the bridge side (no-wait/wait-allowed).

VIII. THREATS TO VALIDITY

It is worth noting that although our findings and conclusions
are based on thorough evaluation of representative algorithms
in the literature, they may not be applicable to all comparison
scenarios. We thus summarize the following limitations of
our experimental studies to make the readers be aware of the
potential threats to their general applicability and validity.

A. Model and Algorithm Comparison

The primary goal of this study is to evaluate the performance
of 17 representative TAS-based scheduling methods under
various scenarios. The discussions on the model and algorithm
comparisons are based on the observations from the evaluation
results of individual methods under practical experimental set-
tings. Providing a thorough and independent model/algorithm
comparison requires a completely different experiment design
to isolate model, algorithm, and implementation, which is out
of the scope of this study.

In addition, since TSN research in recent years has been
explosive, we cannot include all methods in the experimental
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comparison. For example, only 2 window-based methods [17],
[28] are considered in the performance comparison, and this
is not sufficient to conclude the performance of window-based
model in the general case. Furthermore, the evaluation on
some individual methods may not be sufficient to represent
the performance of the model and algorithm they employ. For
example, AT and SMT-PREP are only designed as proofs of
concept without performance optimization. Similarly, the effi-
ciency of some exact solutions may be further improved using
incremental scheduling or decomposition approaches [66].

B. Individual Method Comparison

Although many well-designed experimental setups are em-
ployed in our study to ensure fairness, potential issues may
exist to result in inconsistent conclusions.

Additional parameter settings. For the methods that re-
quire additional parameters (e.g., max number of windows
for AT), we set those parameters in our experiments the
same as their settings in the original papers. However, the
performance of individual methods may be further improved
by fine-tuning the parameters, especially for those methods
that are sensitive to certain parameter settings, e.g., win-
dows/fragmentations/preemptions setup in [17], [25], [29].
Implementation. For the implementation of each method, we
employ the same tools (e.g., selected solver) and follow the
settings (e.g., constraints) in the original papers for fairness.
However, there may exist some issues that could potentially
limit the performance of certain methods: 1) the selected solver
and corresponding problem formulation may significantly af-
fect results. For example, the observed low performance of
JRS-NW-L may be due to the low efficiency of Cplex ILP
solver on addressing logical constraints. Furthermore, our
analysis indicates that ILP formulations are generally more
efficient than SMT if multiple CPU cores are employed.
2) Some JRS methods (e.g., JRS-WA and I-ILP) spend more
time on adding constraints on variables rather than searching
for solutions, especially with large problem instances.

IX. CONCLUSION AND FUTURE WORK

This paper examines 17 representative TAS-based real-time
scheduling methods in Time-Sensitive Networking (TSN) and
establishes a benchmark for performance comparison among
individual methods and across different system models. Com-
prehensive experiments are designed and conducted using both
high-fidelity simulation and real-world testbed to help evaluate
the performance of the state-of-the-art methods and identify
open problems in TSN scheduling design and implementation.

For future work, we will include realistic problem instances
from avionic and automobile industries, as well as incorpo-
rating fault tolerance scenarios and various traffic shapers
into the evaluation. To further evaluate the correctness and
practicability of the existing methods, more comprehensive
empirical experiments will be conducted on our TSN testbed.
Finally, we will encourage the community to utilize our open-
source toolkit to evaluate their scheduling methods to boost
the development of TSN-related R&D projects.
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