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Clustering and Selection of Hurricane Wind Records Using
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Abstract: In wind engineering, to accurately estimate the nonlinear dynamic response of structures while considering uncertainties of
hurricanes, a suite of wind records representing the hurricane hazards of a given location is of great interest. Such a suite generally consists
of a large number of hurricane wind records, which may lead to highly computational cost for structural analysis. To reduce the computational
demand while still preserving the accuracy of the uncertainty quantification process, this paper proposes a machine learning approach to
select a representative subset of all collected hurricane wind records for a location. First, hurricane wind records, which are expressed as time
series with information that includes both wind speed and direction, are collected from a synthetic hurricane catalog. The high dimensional
hurricane wind records are then compressed into a set of low dimensional latent feature vectors using an artificial neural network, designated
as an autoencoder. The latent feature vectors represent the important patterns of wind records such as duration, magnitude, and the changing
of wind speeds and directions over time. The wind records are then clustered by applying the k-means algorithm on the latent features, and a
subset of records is selected from each cluster. The wind records selected from each cluster are those whose latent feature points are closest to
the centroid of all latent feature points in that cluster. In order to do regional analysis while taking into account that the hurricane wind records
are site-specific, this paper suggests that a region can be discretized into a set of grids, with the proposed hurricane selection approach applied
to each grid. This procedure is demonstrated using Massachusetts as a testbed. DOI: 10.1061/JSENDH.STENG-12110. © 2023 American
Society of Civil Engineers.

Author keywords: Hurricane selection; Time series clustering; Autoencoder; k-means; Uncertainty quantification; Regional analysis;

Wind direction.

Introduction

Nonlinear dynamic analysis is increasingly being considered
in wind design of buildings and other structures as performance-
based design becomes an increasingly popular option (ASCE
2019) where controlled inelastic deformations are allowed
under strong winds (Wang and Wu 2022). In the fully probabilistic
performance-based hurricane engineering framework (Barbato
et al. 2013), fragility curves of structures are commonly adopted
to do probabilistic damage assessment. Strength limit states of
structures usually involve nonlinear behavior that is then inte-
grated into the predictions of likelihood of damage that is offered
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through fragility analysis. Fragility functions are defined as the
failure probability of a structure conditional on the intensity mea-
sure of hazards, including hurricanes in this work. If only the fail-
ure probability or fragility is of interest for a hurricane event
(i.e., at the end of the loading time history) instead of for a certain
time interval within the hurricane duration, the uncertainties in the
loading time histories can be accounted for through running a
series of nonlinear dynamic analysis with a suite of hurricane wind
records. The hurricane wind records should include time histories
that incorporate the wind directions as well as wind speeds, be-
cause the changing of wind directions during hurricanes has sig-
nificant effects on the structural response. Consequently, the wind
records in this research are time series of both wind speed and di-
rection. To develop accurate fragility curves, the structures should
be analyzed with a suite of hurricane wind records that can cover
the record-to-record uncertainties in the changing of wind speeds
and directions within the hurricane durations. A large amount of
hurricane wind records can be collected for a location considering
the existing historical and synthetic hurricanes (ASCE 2016b;
Vickery et al. 2010, 2009b, c). However, it is challenging to
run nonlinear dynamic analysis for all of the collected hurricane
records due to the high computational demand of finite-element
analysis of structures; thus, a minimum number of hurricane re-
cords should be selected to represent the uncertainties in all of
the collected hurricane records.

In prior work, Li (2005) and Li and Ellingwood (2006) developed
hurricane fragility curves for wood-frame residential construction
with a simplified limit state function, in which the nonlinear and
dynamic effects are neglected. Cui and Caracoglia (2015) carried
out fragility analysis on tall buildings only for the serviceability limit
state, so frequency domain analysis is adopted, and duration and
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nonstationary effects of hurricanes cannot be considered. In order to
avoid performing structural analysis for long durations of wind-
storms, the dynamic shakedown method was utilized by researchers
to model the inelastic behavior of buildings (Chuang and Spence
2019, 2020; Tabbuso et al. 2016). Other researchers tried to develop
hurricane fragility curves using nonlinear dynamic analysis only for
a fixed time interval with a constant wind direction. For example,
Hallowell et al. (2018) used wind records with 1-h time intervals,
while Ma et al. (2021) used wind records with 2-min time intervals.
The fragility developed for this certain time interval cannot represent
the fragility for a whole hurricane because of dynamic effects,
yielding, and changes in wind speeds and directions. Of course,
one can discretize the hurricane duration into a series of short time
intervals and apply the developed fragility curves to each short
time interval; however, the failure probabilities within those short
time intervals are correlated (Der Kiureghian 2005; Kim et al. 2019;
Straub et al. 2020). This correlation is difficult to quantify from the
view of time-variant reliability and is not considered by the afore-
mentioned authors. Given the limitations of the previous research,
this paper considers the failure probability for a hurricane event in-
stead of a certain time interval during a hurricane and tries to select
hurricane wind records that can account for the record-to-record un-
certainties in hurricanes. The selected wind records can be used to
estimate failure probabilities of structures with nonlinear time history
analysis. Through this way it is no longer needed to estimate the
correlations of failure probabilities in the short time intervals within
a hurricane.

In performance-based earthquake engineering (Moehle and
Deierlein 2004), a probabilistic framework has been proposed
to integrate seismic hazard analysis and structural damage analy-
sis, in which a suite of ground motions are adopted to represent
the uncertainties in earthquake ground motions. Ground motion
selection has been widely studied in the literature (Baker and
Lee 2018; Bojorquez et al. 2013; Du and Padgett 2021;
Jayaram et al. 2011; Naeim et al. 2004). Some generally used
ground motions suites are the FEMA/SAC steel project records
(Somerville et al. 1997) records, large magnitude-short distance
bin records (Krawinkler et al. 2003), and FEMA-P695 records
(FEMA 2009). Recently, machine learning approaches have also
been introduced to ground motion selection, in which a reduced
number of ground motions are obtained through clustering of a
large number of ground motions (Bond et al. 2022; Kim et al.
2021; Zhang et al. 2020). However, there is no similar research
in the literature for selection of hurricane wind records. There are
two instances of prior research that consider uncertainties in hur-
ricane wind hazards using a set of wind records, but they do not
use a selection procedure. Vickery et al. (2006) studied hurricane
fragility curves for building envelope components that were de-
veloped in the Hazus-MH (for multi-hazard) software by compar-
ing the wind pressure demand and the capacity of the envelope
components. The record-to-record uncertainties of hurricane wind
speeds were accounted for through the use of a 20,000-year sim-
ulation of hurricanes created by employing the hurricane model
described by Vickery et al. (2000a, b). The simulated hurricanes
inherently incorporated many of the duration effects associated
with the changes in wind speed and direction that accompany hur-
ricane winds. Joyner and Sasani (2018) developed fragility curves
for the windborne debris damage of building glazing in which
eight hurricanes that made landfall in the US in the last 10 years
were adopted. Uncertainties in the record-to-record variability for
different hurricanes were accounted for by employing the eight
hurricane records in the damage analysis. Vickery et al. (2006)
used all hurricanes in the 20,000-year simulation, which may
address the uncertainties in hurricanes, but is not suitable for
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nonlinear dynamic analysis considering the computational de-
mand. On the contrary, Joyner and Sasani (2018) only used eight
hurricanes without an analysis of the hazard uncertainties, which
may not be able to represent the uncertainties in hurricanes for a
specific location.

This paper proposes a clustering and selection procedure to
obtain a suite of hurricane wind records that can be used for
performance-based design and fragility analysis. The wind speed
and direction records for a location are collected from a synthetic
hurricane catalog (Liu 2014) with some preprocessing, after
which the collected wind records have durations that are short
enough to make a nonlinear time history analysis feasible. The
collected high dimensional wind records are then compressed into
low dimensional latent feature vectors using a neural network des-
ignated as an autoencoder (Aggarwal 2018; Kramer 1991), so that
it is easier to measure similarity of different wind records and
apply the standard clustering algorithms such as the k-means al-
gorithm (Aggarwal et al. 2001; Shalev-Shwartz and Ben-David
2014). For standard clustering methods, similarities of data are
measured by distance metrics such as the Euclidean distance;
however, these distance metrics may fail for high dimensional
data because the contrast between the distances of a point to other
different points becomes too small (Aggarwal et al. 2001; Beyer
et al. 1999). Therefore, dimensionality reduction is needed before
k-means clustering. There are several dimensionality reduction
techniques in the literature. Principal component analysis is a
traditional method that is widely used for linear dimensionality
reduction (Pearson 1901; Wold et al. 1987). Regarding nonlinear
dimensionality reduction, some well-known methods are locally
linear embedding (Roweis and Saul 2000) and autoencoder
(Aggarwal 2018; Kramer 1991). As used in this paper, autoen-
coder is an artificial neural network in which the input and output
layers have the same number of neurons, while the number of
neurons in the middle is constricted. The training algorithm tries
to reconstruct the input data in the output layer; however, this
reconstruction is not exact because the neurons in the middle only
carry a reduced representation of the input data. The data held by
the neurons in the middle (i.e., the low dimensional vectors com-
pared to the input and output layer) are called latent features, to
which the clustering algorithm is applied. This means that only
important information in the wind records is preserved for clus-
tering. The latent features representing hurricane wind records are
then clustered into several groups using the conventional k-means
algorithm (Shalev-Shwartz and Ben-David 2014). Finally, only a
few hurricane wind records are selected from each cluster for fra-
gility development or design checks, which significantly reduces
the number of required time history analyses, while still ensuring
that the uncertainties of different hurricanes are covered with a
limited number of wind records. Since the properties of hurricanes
for different locations have significant differences, a hazard map
can be developed for hurricane wind records so that users are able
to choose appropriate records for their locations of interest. As an
example, the Commonwealth of Massachusetts has been divided
into 92 grids and a suite of hurricane wind records has been se-
lected for each grid using the proposed hurricane selection ap-
proach. To demonstrate the usefulness and effectiveness of the
selected wind records, they have been adopted to develop fragility
curves for electrical transmissions towers in Massachusetts, which
can be found in Du and Hajjar (2022). Since only a small number
of representative hurricane records are used, the developed fragil-
ity curves are relatively sensitive to errors in records selection.
Therefore, appropriate hurricane wind records should be selected
using a good algorithm.
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Fig. 1. (Color) Examples of the simulated hurricane tracks.

Hurricane Simulation

Synthetic hurricanes are widely used for risk analysis and structural
design in wind engineering, which evolved from the single site
probabilistic model (Russell 1971) to Vickery’s hurricane track
model (Vickery et al. 2000a). For example, ASCE 7 has adopted
the hurricane track model when generating the wind hazard maps
(ASCE 2016b). This research also uses a 10,000-year synthetic
hurricane catalog developed by Liu (2014) for the Atlantic basin
based on Vickery’s hurricane track model, which consists of a hur-
ricane genesis model, track model, central pressure model, decay
model, and boundary layer model. The temporal and spatial evo-
lution of thousands of hurricanes from emergence to dissipation
was modeled using the Monte Carlo method. The hurricane data-
base HURDAT (Jarvinen et al. 1984) for historical storms was
adopted for building the hurricane model through regression and
calibrating the simulated results. In this simulation, the state of
a hurricane can be determined with seven parameters: the hurricane
eye’s latitude and longitude, storm translation speed, storm heading
angle, storm central pressure, radius to maximum winds (describ-
ing storm size), and Holland’s radial pressure profile parameter
[i.e., the Holland B parameter (Holland 1980)]. These parameters
are updated at each 6-h point. As suggested by Vickery et al.
(2000a), linear interpolation is performed within each 6-h interval,
which results in 10-min updates of the parameters as used in Vickery
etal. (2009¢). Examples of the simulated hurricane tracks are shown
in Fig. 1. In this research, the gradient wind speeds are calculated
by employing Georgiou’s model (Georgiou 1985), which gives the
10-min sustained wind speeds at 500-2,000 m above the ground
surface (Cui and Caracoglia 2019; Pei et al. 2014, 2018). An exam-
ple of the calculated gradient wind field is shown in Fig. 2.

The obtained hurricane gradient wind speeds V, need to be con-
verted to surface wind speeds V', (10 m above the ground or water)
for wind force calculation on structures. The reduction factor
V,/V o over water proposed by Batts et al. (1980) is used in this
research (Vickery et al. 2009a). A sea-land transition factor ob-
tained from the model given in Simiu and Scanlan (1996) is then
utilized to calculate the surface wind over land (open terrain with
surface roughness z, = 0.03 m) from the surface wind over water
(zo = 0.0013 m). In addition, the surface wind speed over land ap-
proaches the fully transitioned value asymptotically over a fetch
distance as the wind moves from sea to land; therefore, the tran-
sition function proposed in Vickery et al. (2009b) is employed here,
which defines the percentage of the sea-land transition as a function
of the fetch distance. With the methods discussed in this section,
the time series of the 10-min sustained wind speeds at 10 m height
and the corresponding wind directions at a location of interest
(assuming open terrain) during a hurricane may be obtained.
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Fig. 2. (Color) Example of hurricane gradient wind field (m/s).

Hurricane Wind Records Collection and
Preprocessing

ASCE 7 wind hazard maps display wind speeds with a certain
mean recurrence interval (MRI) for the entire US, including hurri-
cane prone regions (ASCE 2016b). However, much information
regarding hurricane winds is omitted in the ASCE 7 wind hazard
maps, such as the variation of wind speeds and directions during a
hurricane, and the durations of hurricane winds. This kind of in-
formation, which are contained in the time series of hurricane wind
speeds and directions, are critical for structural response estimation
and risk analysis. Thus, in this section, a number of hurricane wind
speed and direction records are collected for a location of interest.
In order to collect hurricane wind records for a region, the region
is first discretized into a series of grids and then hurricane wind
records are collected for each grid.

A location in Massachusetts with latitude 41.7 and longitude
—70.1 is used as an example in this section. Wind records are
collected for this specific location from 10,000-year synthetic
hurricanes developed by Liu (2014). Examples of the collected
10-min sustained wind speed and wind direction records at the lo-
cation of interest are shown in Figs. 3-5 with the corresponding
hurricane tracks. It is seen in Figs. 3(a), 4(a), and 5(a) that the
hurricane eye usually moves thousands of miles from a hurricane’s
genesis to dissipation. It is reasonable to assume that the wind
speed induced by a hurricane that is very far away is relatively
small and can be neglected. Therefore, as suggested by Vickery
et al. (2009c), hurricane winds are considered only when the
location of interest is within 250 km of the hurricane eye (see
the blue circles in Figs. 3-5). This limit on distance also provides
a limit for the durations of the hurricane wind records. Figs. 3(c),
4(c), and 5(c) illustrate the absolute values of the wind speeds and
the wind directions in a polar coordinate system, while Figs. 3(d),
4(d), and 5(d) illustrate the hurricane wind speeds in the North and
East directions in a Cartesian coordinate system. Note that the
wind direction in the polar coordinate system is clockwise positive
from the North direction. It is seen that the patterns of wind speed
and direction records are different for different hurricanes, which
depends on a number of factors, including the seven parameters
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Fig. 3. (Color) Example of hurricanes going through the location of interest: (a) whole hurricane track (the blue circle represents the 250 km limit);
(b) hurricane track within the 250 km limit (blue circle) of the location of interest (blue dot); (c) wind speed and direction records; and (d) wind speed
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250 km limit); (b) hurricane track within the 250 km limit (blue circle) of the location of interest (blue dot); (c) wind speed and direction records; and
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Fig. 5. (Color) Example of hurricanes passing by the East side of the location of interest: (a) whole hurricane track (the blue circle represents the
250 km limit); (b) hurricane track within the 250 km limit (blue circle) of the location of interest (blue dot); (c) wind speed and direction records; and

(d) wind speed records in the North and East directions.

defining the hurricane eye tracks and wind fields. While the im-
pacts of the hurricane wind field as shown in Fig. 2 on the wind
records is complex, a qualitative analysis of the impact of hurricane
eye tracks on the wind records provides examples of the range of
loading developed during hurricanes. Specifically, when the loca-
tion of interest is very close to the hurricane eye track, the record of
the absolute values of the wind speeds usually has two peaks and
the drop of the wind speed in the middle is due to the near zero wind
speed in the hurricane eye [Fig. 3(c)]. On the contrary, if the loca-
tion of interest is further from the hurricane eye track, the record of
the absolute values of the wind speeds will typically only have one
peak [Figs. 4(c) and 5(c)]. The difference between Figs. 4 and 5 is
that the hurricane eye passes by the West or East side of the location
of interest, which dominates the variation of the wind directions as
presented in these two figures.

Wind records are first collected through applying the 250 km
distance limit between the hurricane eye and the location of inter-
est. Hurricanes with very low wind speeds are then filtered out
through a strategy that only hurricanes whose maximum wind
speeds at the location of interest are greater than the 50-year MRI
wind speed at the same location are considered. The 50-year MRI
wind speed obtained from the ASCE 7 Hazard Tool (ASCE
20164, b) is a 3-s gust wind speed at 10 m above ground (47 m/s
for this location), which is then converted to 10-min sustained wind
speed at 10 m above ground (32.4 m/s for this location) following
the approach proposed by Simiu and Scanlan (1996). This 50-year
MRI 10-min sustained wind speed is used as the threshold for
comparison with the collected hurricane wind records to get rid
of those with small maximum wind speeds. Thus, a total of 162
hurricane wind records are collected from the 10,000-year synthetic

© ASCE

04023096-5

b
S

750 1000 1250 1500

0F N
20} “\\\‘\‘\

Wind speed in East dir. (m/s) Wind speed in North dir. (m/s)
S
o
S
W
3
(=}

0 250 500 750 1000 1250 1500
Time (min)

Fig. 6. (Color) 160 collected hurricane wind records resolved in two
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hurricanes, of which 160 records are shown in Fig. 6 within a
Cartesian coordinate system and are used in the following sections
for clustering. Only 160 records are included because 162 cannot
be divided by the batch size (i.e., 16) employed in the training pro-
cess of the autoencoder, as will be introduced in the following
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sections. In addition, Fig. 7 presents the histogram of the durations
of all of the collected hurricanes with a mean duration of 12.4 h. To
avoid the impulse effects, a 1-h linear ramp-up and a 1-h linear
ramp-down are attached to the beginning and the end of the
collected wind records, respectively, as recommended in the
Prestandard for Performance-Based Wind Design (ASCE 2019).
To be consistent with the hurricane wind records with 10-min in-
tervals, the ramp is added as six 10-min steps with a constant wind
direction. Note that the ramps are not included in Figs. 3-5 but
included in Figs. 6 and 7. Moreover, as will be discussed in the
following sections, the collected wind records may have different
durations, but the autoencoder needs the same size for the input
data of each record. Therefore, to facilitate training the autoen-
coder, zero paddings are added to the beginning and the end of the
records that are shorter than the longest one. Consequently, all re-
cords after preprocessing have the same length as the longest one.
For each record, zero paddings at the beginning and the end have
the same length, which means all records after preprocessing have a
midpoint that is usually recorded when the hurricane eye is closest
to the location of interest.

Hurricane wind records for different locations have different
patterns. Consequently, it is appropriate to select site-specific wind
records instead of generic wind records for all locations. Compared
to generic wind records, site-specific wind records have lower un-
certainties and thus can be used to predict responses of structures at
a given location more accurately. To collect and select site-specific
hurricane wind records for a region of interest, this research pro-
poses that this region can be discretized into a set of grids and the
centroid of each grid is used to represent the whole grid for record-
ing wind speeds and directions. Thus, hurricane wind records can
be collected for all centroids of the grids. To demonstrate this idea,
Fig. 8 shows Massachusetts as a testbed, which is divided into 0.2°
by 0.2° grids. In Fig. 8, the red dots represent the centroids of the
grids that are not associated with Massachusetts, while the 92 blue
dots represent the centroids of the grids that are associated with
Massachusetts. The hurricane wind records collection procedure
proposed in the previous sections is then run for all 92 grids. Note
that when generating the wind records, the percentage of the sea-
land transition is calculated for the centroid of each grid based on
its fetch distance. In addition, the 50-year MRI wind speeds for
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the centroids of some grids cannot be obtained from the ASCE
7 Hazard Tool because these centroids are over the ocean (Fig. 8);
therefore, for these cases, locations within the same grids but on
land are used to find the 50-year MRI wind speeds. Fig. 9 presents
the histogram of the number of hurricanes collected for all 92 grids,
with a mean value of 202.

Wind Records Clustering and Selection

The approximately 200 collected hurricane wind records for each
grid are still too many for design checks and fragility development,
especially considering the long durations of the wind records.
Incremental dynamic analysis (IDA) may be used to estimate col-
lapse probability of structures under hurricanes (Du and Hajjar
2022; Vamvatsikos and Cornell 2002). This approach is computa-
tionally intensive because direct integration of the nonlinear dy-
namic governing equations is required over the entire duration
of the hurricane wind records and this nonlinear time history analy-
sis needs to be run multiple times with scaled wind records. As
such, it is important to limit the number of records used. Therefore,
in this research, the collected wind records for each grid are first
clustered using a machine learning approach and then approxi-
mately 1/10 of the wind records in each cluster are selected, which
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the location of interest.

are combined together to create approximately 20 selected wind
records for each grid. This significantly reduces the number of
nonlinear time history analyses required, while still preserving
the uncertainties in the collected records. This procedure is similar
to stratified sampling in statistics. Sampling is the process of select-
ing a subset from a population so that the characteristics of the
whole population can be estimated using this subset, while strati-
fied sampling is used by dividing the population into subpopula-
tions (i.e., clusters in this paper), in which the elements within
each subpopulation are similar, and performing sampling on each
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Fig. 12. Histogram of the reconstruction error.

subpopulation. Stratified sampling may improve the precision of
the sample because sampling variability within each subpopulation
is smaller than the sampling variability on the entire population
(Botev and Ridder 2017; Parsons 2014). Specifically, the selected
wind records can cover a spread of properties such as durations,
patterns of wind speed records, and patterns of wind direction re-
cords, because the collected wind records are divided into clusters
based on these properties.

Fully Connected Autoencoder

Since the collected hurricane wind records are high dimensional
time series of both wind speed and direction, it is challenging to
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Fig. 13. WSS for different number of clusters.

cluster the records directly. To facilitate the clustering process, the
high dimensional wind records are first transformed into low di-
mensional latent features using an artificial neural network named
autoencoder (Aggarwal 2018; Bond et al. 2022; Tavakoli et al.
2020). The architecture of the autoencoder for wind records at
the location of interest given in the previous section is presented
in Fig. 10. It is seen that the input matrix is the original wind speed
records in the Cartesian system, which has two columns with each
column representing wind speed time histories in the North and
East directions, respectively. The input matrix is first flattened into
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a vector as the input layer of the fully connected autoencoder and
then passed through other hidden layers to reconstruct the data as
another vector in the output layer, which is finally reshaped to a
matrix as the reconstructed wind speed records in the Cartesian sys-
tem. Even though the two columns of the input matrix are corre-
lated time series of wind speeds in two directions, this flatten and
reshape process is reasonable because the correlations are consid-
ered in the flattened vectors (input and output layers) through the
weights of the fully connected layers. In another word, flatten and
reshape only change the appearance of the data while retaining the
relationships and correlations of the elements within the data. A
fully connected autoencoder means that all the neurons in one layer
are connected to all the neurons in the next layer. The autoencoder
architecture consists of two parts: the encoder that compresses the
high dimensional input data into the small-size latent feature vector,
and the decoder that utilizes the latent features to reconstruct the
input data. In this example, the flattened wind speeds in the input
layer are transformed into five latent features through the encoder
process, which are then expanded to form the reconstructed but still
flattened wind records in the output layer through the decoder pro-
cess. The hyperparameters of the autoencoder including the dimen-
sion of the latent space are empirically selected, which is common
practice. Parametric studies with particular metrics (e.g., the con-
vergence of reconstruction accuracy) are typically used to deter-
mine the minimal latent dimension. Nevertheless, designing the
new autoencoder architecture with interpretable representation of
the latent space will help determine the underlying dimension. This
may need more study in the future. The hidden layers with a
nonlinear activation function (Tanh) are included to enhance the
power of this autoencoder so that it can map the input data into
much smaller dimensional spaces. Here Tanh is adopted because
it has better performance than other activation functions based
on numerical tests in this research. This autoencoder architecture
requires that all input matrices have the same size; thus, the size
of the longest wind record is used as the size of the input matrices
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Fig. 14. (Color) Principal components of the latent features for the eight clusters: (a) illustration in perspective 1; and (b) illustration in perspective 2.
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and zero padding is added to the beginning and the end of all
other shorter wind records. This strategy retains all information
in the wind records. In this example, the longest record has 156
data points (including the ramp-up and ramp-down) with 10-min
intervals, so the number of rows of the input matrices is 156.
The training of this autoencoder is conducted by minimizing the
error between the reconstructed data in the output layer and the
input data, which ensures that the latent features can represent
the important patterns of the wind records. The Adaptive Moment
Estimation (Adam) algorithm is adopted for stochastic optimization
and batch normalization is added to some hidden layers as shown in
Fig. 10 to address the exploding and vanishing gradient problems
(Aggarwal 2018). Since the chosen batch size is 16, only 160 of the
collected 162 wind records are used for the training process. In ad-
dition, Fig. 11 illustrates the reconstructed 160 wind records in the
North and East directions after training the proposed autoencoder
neural network. The histogram of the reconstruction error between
the original and the reconstructed wind records is shown in Fig. 12,
which demonstrates that the reconstructed records match well with
the original ones and the latent features hold the most important
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Fig. 15. (Color) Hurricanes in Cluster 1: (a) wind records; and
(b) hurricane eye tracks.

characteristics of the wind records. It should be noted that since
the 312 data points in the input layer are compressed into only five
latent features, there must be some loss of information in this pro-
cess and the discrepancies between the original and reconstructed
records are inevitable. However, these discrepancies are usually in-
duced by noise or other nonsignificant factors; therefore, the low
dimensional latent features should be adequate for clustering be-
cause the important information has been extracted through the
autoencoder.

Clustering and Selection Based on Latent Features

The location of interest studied in the previous sections is used here
as an example. After the training process, all wind speed time series
are converted into latent feature vectors, on which the k-means al-
gorithm is applied for clustering. The goal of clustering is to maxi-
mize the similarity of data within each cluster and maximize the
dissimilarity of data in distinct clusters. Therefore, one can take
a subset of the data in a cluster to represent all data in that cluster,
the accuracy of which depends on the number of clusters used.
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Fig. 16. (Color) Hurricanes in Cluster 2: (a) wind records; and
(b) hurricane eye tracks.
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Here, the elbow rule is adopted to find an optimal number of clus-
ters (Thorndike 1953). To do so, the k-means algorithm has been
run multiple times on the latent features with different number of
clusters ranging from 2 to 20. For this example, when the number of
clusters k equals 8, the within-cluster-sum of squared errors (WSS)
curve reaches its elbow, as shown in Fig. 13. Therefore, the 160
hurricane wind records are divided into eight clusters. Since it is
difficult to show the five latent features on a two-dimensional
(2D) or three-dimensional (3D) figure, principal component analy-
sis is performed on the latent features and the first three principal
components are plotted in Fig. 14 to demonstrate the results of the
k-means clustering. This is acceptable because the first three prin-
cipal components possess 82% of the variation of the five latent
features and it is believed that the five latent features must show
better performance than the three principal components if they
can be plotted in a figure. In Fig. 14, the first three principal com-
ponents are presented using eight different colors for the eight clus-
ters, from which it may be seen that the hurricane wind records are
clustered well because the principal components of different clus-
ters have rare overlaps and the principal components of each cluster
are gathered closely around their centroid.

To demonstrate the effectiveness of the proposed clustering ap-
proach, Figs. 15-22 illustrate the hurricane wind speeds and tracks
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Fig. 17. (Color) Hurricanes in Cluster 3: (a) wind records; and
(b) hurricane eye tracks.

of the eight clusters. It is seen that the clustering results are suc-
cessful because hurricane wind speeds and durations within each
cluster have similar patterns. Specifically, Clusters 2 and 7 have
hurricanes whose tracks pass by the East side of the location of
interest, while other clusters have hurricanes whose tracks pass
by the West side of the location of interest. The number of hurri-
canes in each cluster from Cluster 1 to Cluster 8 are 31, 17, 31, 13,
20, 12, 19, and 17, respectively. So many more hurricanes pass by
the West side of the location of interest than the East side. The main
difference between Cluster 2 and Cluster 7 is that the durations of
hurricanes in Cluster 7 are longer. For the clusters passing by the
West side of the location of interest, Clusters 3 and 4 have the short-
est and the longest durations, respectively, while Clusters 1, 5, 6,
and 8 have durations in the middle. Clusters 6 and 8 have very sim-
ilar durations, but they are divided into two clusters because they
have different shapes for the profiles of the wind speed time histor-
ies. There are outliers in some clusters such as the one with abrupt
changing of the storm heading direction as seen in the figure of
hurricane tracks of Cluster 2. This can be expected because the
k-means algorithm cannot eliminate outliers, but instead assigns
outliers to their closest cluster. Usually, outliers are rare and their
latent feature points are far from the centroid of all points in a clus-
ter. Therefore, the outlier commonly will not be included in the
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Fig. 18. (Color) Hurricanes in Cluster 4: (a) wind records; and
(b) hurricane eye tracks.
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Fig. 19. (Color) Hurricanes in Cluster 5: (a) wind records; and
(b) hurricane eye tracks.

final suite of wind records considering the selection strategy within
a cluster that will be introduced in the following. The wind field
shown in Fig. 2 also has impacts on the clustering results, which
cannot be explained explicitly here because its information is in-
cluded in the latent features through the operations on the wind
records during the training of the autoencoder.

Considering the computational demand of nonlinear time his-
tory analyses that these wind records will be used to perform, ap-
proximately 1/10 of the hurricanes in each cluster are selected and
combined together as the final suite of hurricane wind records.
Here, the proportion 1/10 is selected based on two considerations:
(1) this proportion should be small enough to reduce the number of
hurricanes significantly; and (2) this proportion should be large
enough to select at least one record for each cluster. The number
of records selected from each cluster is proportional to the total
number of records in each cluster, which results in 3, 2, 3, 1, 2,
1, 2, and 2 records from each cluster, respectively. This strategy
is used to make sure the proportions of different patterns of wind
records are similar in the selected 16 hurricanes and the original
160 ones. It is also reasonable to make sure the selected records
from each cluster are the most representative ones. To achieve this
goal, the clustering results of the latent features are used, and for
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Fig. 20. (Color) Hurricanes in Cluster 6: (a) wind records; and
(b) hurricane eye tracks.

each cluster it is recommended to select those records whose latent
feature points are the closest to the centroid of all latent feature
points in that cluster. The selected records for each cluster are high-
lighted in bold solid lines as shown in Figs. 15-22, which is a dem-
onstration of the validity of this selection strategy within a cluster.
In Figs. 15-22, all wind records are shown in different colors and
curves resolved from the same record are shown in the same color.
It is seen that the selected records are representative, because they
are near the middle of all the records. The total of 16 selected hur-
ricanes can be employed to represent uncertainties in wind loading
for design check and fragility development for structures at the lo-
cation of interest. Note that these selected wind records are only
time series of 10-min mean wind speed at 10 m height. If one wants
to use them for structural dynamic analysis, the fluctuating wind
speeds and the atmospheric boundary layer should be considered.

As a case study for regional analysis, Massachusetts has been
divided into 92 grids and wind records have been collected for each
grid. Here the procedures for wind records clustering and selection
introduced in the previous sections are applied to all 92 grids. The
same autoencoder architecture is used for all grids except for the
slightly different sizes of the input vectors for different grids, which
is because the maximum duration of the collected records for
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Fig. 21. (Color) Hurricanes in Cluster 7: (a) wind records; and
(b) hurricane eye tracks.

different grids may be different. The same k-means algorithm is
also adopted for clustering on the latent features; however, the num-
ber of clusters may vary for different grids because it is dynamically
determined using the elbow rule. The histogram of the number of
clusters for all grids is presented in Fig. 23 with a mean value of
5.65. Since approximately 200 hurricane wind records are collected
for each grid, approximately 20 records are selected for each grid
according to the method introduced in the previous sections.
Finally, a wind map is generated so that a suite of hurricane wind
speed and direction records can be provided for any location in
Massachusetts. For example, Fig. 24(a) gives 16 wind records se-
lected from eight clusters for a grid whose centroid has a latitude of
41.7 and a longitude of —70.1 (this location is used in the previous
sections), while Fig. 24(b) gives 19 wind records selected from four
clusters for a grid whose centroid has a latitude of 42.1 and a lon-
gitude of —72.5. Here the wind records selected from the same clus-
ter are shown in the same color, and it is seen that wind records
within the same cluster have similar characteristics in terms of wind
speeds, directions, and durations. This approach provides an alter-
native to the ASCE 7 wind map. The ASCE 7 wind map can only
provide a wind speed without any information of variation of the
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Fig. 24. (Color) Examples of selected hurricane wind records for a grid
whose centroid (a) has a latitude of 41.7 and a longitude of —70.1; and
(b) has a latitude of 42.1 and a longitude of —72.5.

wind speed and direction during a hurricane. This methodology can
be generalized to any other region besides Massachusetts.

Conclusions

This paper presents a machine learning approach for collecting
and selecting hurricane wind speed and direction records for a
location and region, which can be used for efficiently developing
fragility curves or assessing probabilistic behaviors of structures
considering uncertainties in hurricanes. The selected hurricane
wind records are supposed to address the uncertainties in hurricanes
because (1) they are selected from 10,000-year synthetic hurri-
canes, and (2) the collected records with similar properties are first
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divided into clusters and then the most representative ones are se-
lected from each cluster. The preprocessing of the wind records is
also important since it can remove hurricanes with very small wind
speeds and limit the durations of the records to a relatively short
time. The proposed autoencoder architecture is shown to be able
to reconstruct the wind speed time series and compress them into
low dimensional latent features. The clustering results based on
the latent features using the k-means algorithm are successful, be-
cause the points in the latent space are divided clearly into several
clusters, and the wind records in the same cluster exhibit similar
properties in duration, hurricane track, and changing of wind
speeds and directions. A method is also proposed to select the most
representative records from each cluster based on the clustering re-
sults of latent features. This hurricane selection procedure is dem-
onstrated using wind records from both location and region. For the
regional hurricane selection, Massachusetts is used as a testbed, and
it is discretized into a set of grids with performing the proposed
hurricane selection procedure on each grid. Usually, approximate
20 wind records are selected for a location, which make the non-
linear structural analysis feasible for uncertainty propagation sim-
ulation under hurricanes.
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