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Natural selection makes evolutionary adaptation possible even if the
overwhelming majority of new mutations are deleterious. However,
in rapidly evolving populations where numerous linked mutations
occur and segregate simultaneously, clonal interference and genetic
hitchhiking can limit the efficiency of selection, allowing deleterious
mutations to accumulate over time. This can in principle overwhelm
the fitness increases provided by beneficial mutations, leading to an
overall fithess decline. Here, we analyze the conditions under which
evolution will tend to drive populations to higher versus lower fitness.
Our analysis focuses on quantifying the boundary between these two
regimes, as a function of parameters such as population size, muta-
tion rates, and selection pressures. This boundary represents a state
in which adaptation is precisely balanced by Muller’s ratchet, and we
show that it can be characterized by rapid molecular evolution without
any net fitness change. Finally, we consider the implications of global
fitness-mediated epistasis, and find that under some circumstances
this can drive populations towards the boundary state, which can
thus represent a long-term evolutionary attractor.

rapid evolution | evolutionary attractor | Muller’s ratchet | fitness-

mediated epistasis

Evolution is often thought of as an optimization process,
in which natural selection pushes populations inevitably
uphill, towards a local optimum in the fitness landscape (1).
However, much recent work has shown that in many popula-
tions, numerous linked mutations often arise and segregate
simultaneously (2-9). In these rapidly evolving populations,
natural selection is much less efficient: it cannot act on each
mutation independently (10). As a result, deleterious muta-
tions can often fix, which can slow down adaptation or even
reverse its direction, leading to declining fitness over time.

Extensive previous work has studied the accumulation of
deleterious mutations via Muller’s ratchet (11, 12), particularly
in models in which beneficial mutations are either negligible or
can be treated as a rare perturbation (13-15). Similarly, nu-
merous studies have considered the accumulation of beneficial
mutations (i.e. adaptation) when deleterious mutations are
absent (16—18) or can be treated as a perturbation (19, 20).
However, we lack an understanding of the interplay between
the accumulation of beneficial and deleterious mutations more
generally. Except in special cases (e.g. when clonal interference
is absent (21), or when all beneficial and deleterious mutations
have the same fitness effect (22), or in a regime where fixations
are dominated by single driver mutations (23)), this has made
it impossible to answer a very basic question: given a par-
ticular set of population genetic parameters (population size,
mutation rate, and fitness landscape), will a population tend
to increase or decrease in fitness? In other words, under what
circumstances can evolution act as an optimization process,
and when do populations actually move towards less-optimal
genotypes?

Here, we analyze this interplay between beneficial and
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deleterious mutations in rapidly evolving populations, in the
regime where both types of mutations can be important. Our
analysis leverages recent work in traveling wave models of evo-
lutionary dynamics, and in particular our recently introduced
moderate selection, strong-mutation (MSSM) approximation
(24). Using this approach, we predict the conditions under
which populations will tend to increase or decrease in fitness
(i.e. where the rate of change in mean fitness, v, is positive or
negative). The boundary surface between these two regions of
the parameter space, at which v = 0, corresponds to a state
in which beneficial and deleterious mutations accumulate in
a balanced way. While the fitness trajectory of a population
in the v = 0 state appears neutral, the evolutionary dynamics
of these populations can be strongly nonneutral (as has been
suggested by several earlier studies; see e.g. (21-23, 25)). For
example, a steady state accumulation of weakly deleterious
mutations may be offset by the fixation of beneficial muta-
tions under moderate or strong selection. We also consider
additional surfaces of the parameter space on which patterns
of molecular divergence and genetic diversity would suggest
a population has evolved neutrally or nearly neutrally, but
in fact mask a balance between the competing signatures of
positive and negative selection.

We conclude by considering how our results and the struc-
ture of the fitness landscape determine the long-term outcomes
of evolution. For example, it is natural to expect that benefi-
cial mutations become less common (and deleterious mutations
more common) as a population increases in fitness. This will
tend to lead a population not towards a local optimum, but
instead towards the v = 0 state (see e.g. Goyal et. al. (22)
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and Schiffels et al. (23)). More generally, recent empirical
work has identified a consistent pattern of diminishing returns
epistasis: beneficial mutations tend to have weaker effects as
populations increase in fitness (26—28). An analogous pattern
for epistasis on deleterious mutations is less clear, but recent
work has identified a trend in which deleterious mutations are
more costly in more-fit backgrounds (29, 30). We show here
that, depending on details of the landscape and the starting
point, these and other patterns of fitness-mediated epistasis
can often (but not always) drive a population towards the
v = 0 state. Thus the v = 0 state can in some circumstances
represent a long-term evolutionary attractor, and define the
extent to which evolution can act to optimize fitness. We refer
to this as a dynamical limit on evolutionary adaptation, be-
cause it arises due to the stochastic nature of the evolutionary
process, and can be reached far from any fitness peak.

Model

‘We model the evolution of a population of N haploid individu-
als, in which random mutations arise within a specific genomic
region at a total rate U. We assume that recombination can
be neglected within this region on the relevant timescales.
We assume that each new mutation confers a fitness effect, s,
drawn from some distribution of fitness effects (DFE), p(s|g),
that depends on the genotype g of an individual as well as the
environment the population evolves in (its fitness landscape).
The DFE includes both beneficial and deleterious mutations,
with beneficial mutations corresponding to s > 0 and deleteri-
ous mutations corresponding to s < 0. To be more precise, a
mutation with effect s increments an individual’s (log) fitness
X by an amount s, and we assume offspring numbers are
drawn from a multinomial distribution each generation; the
expected offspring number of an individual with fitness X is
X=X where X denotes the mean fitness of the population.

The genotype-dependence of p(s|g) has been termed macro-
scopic epistasis (31). This macroscopic epistasis can arise due
to individual microscopic epistatic interactions among specific
mutations, which collectively determine the overall DFE for
a given genotype. We make the key assumption that simi-
lar genotypes share a similar p(s|g), and in particular, that
those genotypes simultaneously present in a population (which
are similar because of their relatedness by common ancestry)
share the same DFE, p(s). This allows us to solve for the
dynamics by treating p(s) instantaneously as a constant pa-
rameter. We note that this assumption can be satisfied even
in the presence of pervasive microscopic epistasis, as long as
idiosyncratic interactions among mutations largely “average
out” in contributing to the full distribution p(s|g).

For simplicity, we focus on a few simplifying forms of p(s)
in our analysis. For instance, we consider the case where all
beneficial mutations have effect s, and all deleterious muta-
tions have effect —sq (with sp,sq4 > 0 by convention). This
example is useful for building general intuition, and is moti-
vated by recent work showing that the evolutionary dynamics
of rapidly evolving populations can in many cases be well-
captured by a DFE consisting of a single appropriately-chosen
“predominant” effect size (17, 18, 32). We also consider the
cases of exponentially-distributed (and more generally gamma-
distributed) effects of beneficial and of deleterious mutations,
though our analysis can be extended to more general DFEs
relatively straightforwardly. Importantly, we make no assump-

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

tion that the DFEs of beneficial mutations and of deleterious
mutations are the same or similar in shape or in scale.

Results

The central goal of our analysis is to determine whether a
population will tend to increase or decrease in fitness for a
given set of parameters: the population size, IV, the mutation
rate, U, and the distribution of fitness effects, p(s). Because
our goal is to determine whether v > 0 or v < 0 for a given set
of parameters, we focus on analyzing the boundary between
these two regimes. This boundary is by definition a v = 0
surface where the mean fitness of the population does not on
average either increase or decrease. We will find it useful to
write the average rate of change in mean fitness, v, in terms
of the fixation probability of a new mutation, pgx(s),

v= NU/p(s)spﬁx(s)ds. [1]

To find the v = 0 surface we then set Eq. (1) equal to 0,
which gives a constraint on the parameters N, U, and p(s)
that defines the v = 0 surface in parameter space.

We can clearly have v = 0 if selection on deleterious mu-
tations is sufficiently strong and beneficial mutations are suf-
ficiently rare that no selected mutations fix at all, and the
evolutionary dynamics are entirely neutral (i.e. if p(s)psx(s)
is negligible for all s). Apart from this trivial case, the v = 0
state by definition involves substantial accumulation of dele-
terious mutations (at least relative to the accumulation of
beneficial mutations) which can be facilitated by the effects of
linked selection and clonal interference. For instance, deleteri-
ous mutations may routinely hitchhike along with, or hinder
the fixation of, a beneficial mutation (33-35). Interference
among multiple beneficial mutations may also substantially
reduce the rate at which they can fix in the population (10, 36).
To obtain an accurate description of the v = 0 state, our ex-
pression for the fixation probabilities psx(s) must therefore
take these effects into account.

Frequent interference among mutations is a defining fea-
ture of rapid evolution, which has been the focus of much
recent theoretical work (13, 18, 20, 37-40). Broadly speaking,
this work uses traveling wave models, which first analyze the
steady-state distribution of fitness within the population (the
“traveling wave of fitness”), and then use this as the basis
for computing the fixation probabilities of new mutations,
pax(8), and the average rate of fitness increase or decline, v.
Most work on traveling wave models has been done by con-
sidering only beneficial mutations (16-18) or only deleterious
mutations (14), or by focusing on one type and treating the
other perturbatively (20). A key exception is the moderate
selection, strong-mutation (MSSM) approximation we have
recently introduced (24), which can be applied to analyze
rapidly evolving populations for which both beneficial and
deleterious mutations affect the dynamics in a substantial
way. Here, we use this MSSM approximation to analytically
describe the v = 0 state.

A key result is that within the MSSM regime (which we
discuss below), the fixation probability of a new mutation is
given by
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valid for both positive and negative s. Here T¢ is a derived
quantity whose definition and relationship to the parameters
N, U and p(s) we reproduce in SI Appendiz, and which ap-
proximately equals (T%) /2—one-half the average time since
two randomly chosen individuals share a common ancestor
(i.e., a coalescence timescale). We note that an identical result
for psx(s) was derived in a somewhat different context by
Hallatschek (41). We also note that in much of the population
genetics literature, the average pairwise coalescent time (7%) is
identified with an effective population size N.. We avoid this
language here because in general, the evolutionary dynamics
in rapidly evolving populations are not equivalent to those in
a neutrally evolving population for any choice of N. (42).

Eq. (2) differs from the standard formula for the fixation
probabilities of independently evolving loci (43), which in our
notation can be written as

2T y 2s
N = 1—e4Tes’

pax(s) = 3]
Eq. (3) has been used by Whitlock (21) to address similar
questions, although that work treats 7. (referred to as N./2)
as an independent parameter, instead of considering how it
depends on the population parameters N, U, and p(s). For
the sake of comparison, we discuss the predictions following
from Eq. (3) alongside our results below. The predictions are
qualitatively (and even quantitatively) similar in some respects,
but they break down in other cases. This is unsurprising in
light of recent work that has shown that Eq. (3) fails to
adequately describe the fixation probabilities of mutations in
the presence of widespread linked selection, particularly when
mutations confer fitness effects on a wide range of scales (44).

Eq. (2) immediately implies that if we scale fitness effects
to the coalescence timescale by defining v = Tcs, the v = 0
surface is defined by the concise equation

/ p(y)ye'dy = 0. (4]

Eq. (4) implies that we can characterize the v = 0 surface
given only the distribution of “scaled” fitness effects, p(y) (as
well as validity of the MSSM approximation, which we discuss
below). We emphasize that this is not by itself sufficient to
determine how the v = 0 surface depends on the underlying
parameters, because 1. depends in a nontrivial way on N, U,
and p(s). We return to this dependence in more detail below.
However, in the next section we first analyze key properties
of the v = 0 surface in the space of scaled selective effects,
focusing particular attention on two specific choices of the
DFE as representative examples.

The v = 0 surface in the space of scaled effects. In the scaled
parameter space, the v = 0 surface depends only on 5(7y), and
not on the population size N or the mutation rate U (which
enter only through their effect in determining 7;). To gain
qualitative insight, we begin by considering the simple case
in which all beneficial mutations confer a single scaled effect,
Yo = Tesp, and all deleterious mutations confer a (potentially
different) single scaled effect, —y4 = —Tcsq (with sp, 84 > 0 by
convention). Specifically, we have p(y) = [n/(1 + )] §(y—~s)+
[1/(1 + n)] (v + va), where we have defined n = U, /Uy as the
ratio of beneficial to deleterious mutation rates. Plugging this
into Eq. (4), we find that within the 3-dimensional parameter
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101 10°

Yb

Fig. 1. Cross sections of the v = 0 surface in the space of scaled effects 4 vs.
s, for the four values of n denoted above. Each point corresponds to a simulated
parameter combination, colored by its measured value of 7'2v. Solid line denotes the
prediction for the v = 0 curve given by Eq. (4). Dashed lines denotes the prediction
for the v = 0 curve obtained using Eq. (3). Dotted lines denote the lines on which
n = ~va/7vp. Simulated parameter combinations lie on the grids of logarithmically
spaced Nsg4 and N sy values depicted in Fig. 2, with DFEs consisting of a single
beneficial effect and a single deleterious effect, and with NU = 10% .

space spanned by 7, Y4, and 1, the v = 0 constraint is a
2-dimensional surface given by

e d
[5]

77‘11:0: ’ybe% .

In Fig. 1 we validate this prediction for the v = 0 sur-
face. To do so, we conducted Wright-Fisher simulations for
populations whose parameters lie on a grid with varying 7,
Nsp and Nsq. Each simulated population is plotted using
its corresponding value of 7., measured by observing its pair-
wise neutral heterozygosity mneu averaged over simulation runs
(with T¢ taken as (T2) /2 = mneu/(4Uy), where U, is the neu-
tral mutation rate used in simulations). The prediction in
Eq. (5) qualitatively (and except perhaps for v4 > 1, quan-
titatively) describes the v = 0 surface in the space of scaled
fitness effects 7, and 4. The simulations represented in Fig. 1
are all conducted for populations with NU = 10*. In Fig. SI,
we present the results of additional simulations which include
the cases NU = 10 and NU = 10%; similar agreement is
obtained.

Several qualitative features of Eq. (5) are notable. If the
selective effects of both beneficial and deleterious mutations are
small compared to 1/7¢ (i.e. 75 < 1 and 74 < 1), we see from
Eq. (5) that the v = 0 surface is defined by 7|v=0 ~ Y4/
(dotted line in Fig. 1; note this converges with the v = 0
surface observed in simulations when v, < 1 and v4 < 1).
This corresponds to Upsy, = Ugsa, the surface on which v =0
if beneficial and deleterious mutations accumulate neutrally,
such that each mutation fixes with probability 1/N. The
surface 7 = 74/ can be thought of as an upper bound to
the actual v = 0 surface; as the strength of selection (i.e. v,
and/or 7q) is increased, the actual fraction n required to have
v = 0 will always be smaller than 4 /7.

More generally, if we increase 7, at fixed 74, 7|v=0 de-
creases: a smaller ratio n of beneficial to deleterious mutations
is required to be in the v = 0 state. This makes intuitive
sense: increasing s increases both the fixation probability of
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beneficial mutations and the fitness benefit they provide to
the population upon fixing. The effect of changing 4 is more
subtle, because while increasing 4 decreases the fixation prob-
ability of deleterious mutations, it also increases the fitness
cost to the population they incur upon fixing. This means
that the expected fitness costs to the population of deleterious
mutations are not monotonic with effect size: for a fixed value
of 15 (below a threshold value described below), the population
will adapt for small -4, decline in fitness for intermediate 74,
and adapt for large 4. This is because for sufficiently small
74, deleterious mutations fix routinely but do not confer large
enough effects to counteract the beneficial mutations which
fix, while for sufficiently large 74, deleterious mutations are
purged by selection too efficiently to counteract the fixation
of beneficial mutations. Instead, deleterious mutations are
maximally impactful (in the sense that n],=o is maximized) at
the intermediate scaled effect size v = 1. For sufficiently large
~p and/or 7, deleterious mutations cannot lead to decline in
fitness for any value of 74 (although T,v will still be minimized
at ¢ = 1). For example, at a given 7, the population will
always adapt provided that v, > 7;, where ~; e =1 /(en).
We can think of the curve (va,vs,m) = (71,7, 1), parameter-
ized by 7, as a “ridgeline” of the v = 0 surface, on which 7 is
maximized as a function of 4.

The above analysis can be extended straightforwardly to
a full distribution of fitness effects. As a simple example,
we consider the case in which both beneficial and deleterious
mutations are drawn from exponential distributions with mean
scaled effects v, and 74 respectively, and a ratio n = Uy /Uyq
of beneficial to deleterious mutations (in the SI Appendiz, we
extend these results to the case of gamma-distributed DFEs,
and comment further on arbitrary DFEs). Specifically, we have
5(7) = [/ (L +m)/w] e/ + [1/(1 4+ ) /74] /7. Plugging
this scaled DFE into Eq. (4), we find that the v = 0 surface

is defined by
2
Ya [ 1=
= 12 . 6
U ’Yb(l‘i"}/d) (6]

We note that in this case, a requirement that 7, < 1 dynami-
cally emerges given validity of the MSSM approximation (and
thus the i given by Eq. (6) is positive for all relevant v, and ~4)
while 4 > 1 is permitted. As in the case of a two-effect DFE,
a v =0 “ridgeline” exists on which 7 is maximized as a func-

2
tion of v4, and on which v; =1 and v, =7 (\/1 +1/n— 1) .
The behavior of the v = 0 surface for large vq is qualitatively
different, however. Instead of the dependence 1 < vqze~ 74,
we have the much slower falloff n « 1/v4 for large v4. The
dependence 1/74 in turn approximates the fraction of delete-
rious effects with |y| < 1—that is, the fraction of deleterious
effects with a reasonable chance of fixing—as opposed to the
fixation probability o< e” 74 of the average deleterious effect.
As a result, compared to the case of a two-effect DFE, v =0
curves for a full DFE have a much more broad decay of v,
toward zero at large 4. In Fig. S1 we compare the prediction
in Eq. (6) to the results of simulations for the same 71 values
considered in Fig. 1, and for NU values ranging from 107 to
10*. Our results are qualitatively similar to the case of single
fitness effects shown in Fig. 1, although agreement begins to
break down—particularly for 4 ~ «;—for smaller NU and
smaller n (i.e. for smaller values of NUy).
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Computing 7. in terms of the population genetic parameters,
N and Up(s). Above, we described the v = 0 constraint on
the distribution of scaled effects v = T.s. Expressed in this
way, the v = 0 constraint takes on the simple analytical form
in Eq. (4). In certain cases, the distribution of scaled effects
v is more readily probed than the distribution of unscaled
effects s. For instance, given DNA sequencing data from a
population at a fixed point in time (e.g. an observation of
its site frequency spectra, of both synonymous mutations and
nonsynonymous mutations), its distribution of scaled fitness
effects can be inferred (45-47). To infer the distribution
unscaled fitness effects s then requires an independent estimate
of the coalescence timescale, which is typically confounded
with estimates of the neutral mutation rate (48). However, in
certain cases—such as in the context of experimentally evolved
populations (49, 50), the distribution of unscaled effects s may
be more practical to measure. For this reason, it may be
more useful to obtain a v = 0 constraint on the parameters
N and Up(s); this can also be useful in building an intuitive
understanding for how shifts in these underlying parameters
affect adaptation or fitness decline. As we will see in the
Discussion, a v = 0 constraint on unscaled effects s may also be
more useful in working out the long-term implications of simple
patterns of fitness-mediated epistasis observed empirically, for
which the parameter Up(s) may vary in a more straightforward
way, over the course of an evolutionary trajectory, than the
distribution of scaled effects.

In general, the coalescence timescale T. depends in a com-
plicated way on the parameters N and Up(s), and except in
special cases, the mapping between a distribution of unscaled
effects Ns and the distribution of scaled effects 7T.s is not
particularly clear. The MSSM approximation yields a relation
between T, and the underlying parameters N and Up(s)—and
can thus be used to obtain a v = 0 constraint on the parame-
ters N and Up(s). We reproduce the relation between Tc, N
and Up(s) under the MSSM approximation in the SI Appendiz.
The key result is

2
log Nze = Te(ze — U) — ”gc +U/@ (e’ —1), [7]

along with equations for v and z. in terms of Up(s) and T,
which we reproduce in the SI Appendiz. Although it is in
general straightforward to solve these equations numerically,
the v = 0 constraint induces a particular simplification in that
it becomes possible to solve for T¢|,=o in terms of the single
parameter p(s), using Eq. (4). A v = 0 constraint between
N and Up(s) then follows straightforwardly from the Eq. (7),
although the nature of these equations precludes writing down
simple analytical expressions for the v = 0 constraint such as
Eq. (5).

Validity of the MSSM approximation. The results for pg«(s)
in Eq. (2) and particularly for T, in Eq. (7) both depend
on the validity of the MSSM approximation. We review the
conditions of validity of the MSSM approximation in the SI
Appendiz. Roughly speaking, validity of the MSSM approxi-
mation requires that selection on individual mutations is at
most moderate (in that typical fixed fitness effects are smaller
than the characteristic range in relative fitnesses from which
future common ancestors typically descend) while mutation is
strong (in that the the dynamics by which individuals fix are
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Fig. 2. Cross-sections of the v = 0 surface in the space of unscaled effects Nsg4 vs. N sy, for NU = 10* and four values of n, with populations colored by simulated values
of va. Populations in the top row are subject to a two-effect DFE; populations in the bottom row are subject to a two-exponential DFE. Solid lines denote predictions of the
v = 0 surface obtained by connecting predictions obtained using the MSSM approximation and N.-based heuristic (that is, using Eq. (9)). Dotted lines denote predictions
obtained using the MSSM approximation, for Nsg > (Nsq4)™; dashed lines denote predictions of the N.-based heuristic. Stars denote points at which (va, ) = (73,75 ),
as computed by MSSM approximation. Gray squares denote parameter combinations not simulated because Ugsq < Uy sy, Or parameter combinations eliminated from
consideration because fewer than 10 epochs were reached during the simulation runtime.

strongly nonneutral and the population is rapidly evolving).
Given Up(s) and a solution for T, it is straightforward to
determine whether these conditions are met for a particular
point on the v = 0 surface.

The points (75,7 ,n) lying along the v = 0 “ridgeline" are
convenient landmarks of v = 0 curves at which the validity of
the MSSM approximation can be assessed. At these points,
selection is sufficiently strong that the MSSM predictions are
nontrivial, and the v = 0 surface is guaranteed to deviate
substantially from the surface n = 4/ on which v = 0
assuming neutral accumulation. Furthermore, validity of the
MSSM approximation at (v7,7s,n) implies validity of the
approach for smaller values of 74 and ~; along the same v =0
curve, up to and including (77,74 ,n), for a given n. Note that
in the limit 7, — 0 and 74 — 0, the population dynamics
become purely neutral, and "strong mutation" condition of the
MSSM approximation breaks down; however, by this point,
the v = 0 surface will simply approach its neutral expectation
n="Ya/%

In the SI Appendiz, we assess the validity of the MSSM
approximation at the points (vj,7s,n), for the cases of a
two-effect DFE and a two-exponential DFE. We find that in
both of these cases, the conditions of validity of the MSSM
approximation are met provided that T.Uy > 1 at (73,7 ,M);
note that we assume U, < Uy throughout, so that T.Ug > 1 is
also implied. The condition T.U, > 1 has a relatively simple
dynamical interpretation—essentially, that a given lineage
will acquire multiple beneficial mutations over the coalescence
timescale—and is satisfied at (v3,7;,n) for sufficiently large
NU (since TcU increases with NU, if vy, v4 and n are held
fixed). This suggests that the MSSM approximation is of
broad use in the describing the 4 < «; portion of v = 0
curves for rapidly evolving populations in which interference
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is important.

While the MSSM approximation is expected to be valid
in describing the v4 < 7 portion of the v = 0 surface, it
may break down in the presence of strong deleterious effects
Ya > vy, even if T.U, > 1. Here, however, we will see that
an alternative heuristic approach works well: we take

—Udf—pds(s)(l—e_Tcs)ds.

T. ~ Ne

(8]
The form of T¢ in Eq. (8) can be motivated by analyzing how
strongly deleterious mutations contribute to the determination
of T in the MSSM approximation (that is, through the final
term in Eq. (7)). We note that in using Eq. (8) we neglect
any effect of beneficial mutations on the determination of T,
which is reasonable when beneficial effects are sufficiently weak
and deleterious effects sufficiently strong. When deleterious
mutations all confer a single deleterious effect with Tesq > 1,
T. in Eq. (8) reduces to the well-known quantity Ne~Va/sa,
This is often referred to as Ne, and under certain conditions
gives the number of deleterious-mutation-free individuals in
the population at equilibrium (51), and in turn the coalescence
timescale (52). A similar interpretation can be given if T,.s > 1
for all possible deleterious effects (53, 54). When instead
both weak and strong deleterious effects are possible, the
factor (1 — e_Tcs) essentially picks out those deleterious effects
with T.s > 1 (which are important in reducing the effective
population size and related coalescence timescale). Here, we
refer to this heuristic approach to estimating 7. as an “Ne-
based heuristic”; by substituting this T¢ into Eq. (3) we can
obtain predictions for v = 0 curves in the same way v = 0
curves are obtained above using the MSSM approximation.

The v = 0 constraint in terms of population genetic parame-
ters. We compare our predictions for the v = 0 constraint to
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Fig. 3. Comparison between simulations and MSSM predictions for, in panels A
and B, the extremal point ((N'sp)™, (Nsq)™) and, in panels C and D, the ridgeline
point (v, ,~,;)- Each point is obtained from the simulation results depicted in a
particular panel of Fig. 2 or Fig. S2 (with values of n) denoted on the horizontal axis
and values of NU € {102, 103, 104}, and with populations subject to a two-effect
DFE); for details on how ridgeline and extremal points are extracted from a given
panel of simulation results, see Materials and Methods. In panels A and B, the top
theory curve corresponds to NU = 10%, the middle theory curve corresponds to
NU = 102, and the bottom theory curve corresponds to NU = 102. Points are
colored according to their values of .Uy, at (va, vs,m) = (V3,75 ,m), With T¢
measured in simulations through levels of pairwise neutral heterozygosity.

the results of simulations in Fig. 2. We can see that the small
Nsq and large Nsq portions of v = 0 curves are well-described
by the MSSM approximation and our N.-based heuristic, re-
spectively. For concreteness, we connect these two approaches
by taking the result of the MSSM approximation for Nsgq up
to and including (Nsq)*, the maximal value of Nsg onav =0
curve, given 1 and NU. We therefore consider the following
prediction for v = 0 curves:

New — {(Nsb)MSSJM NSd S (NSd)* [9]
b min [(Nsb)*,(Nsb)NE] Nsq > (Nsg)*
where (Nsp)M5%M and (Ns,)M¥ denote predictions for N,
along v = 0 curves, given the MSSM approximation and
N.-based heuristic, respectively; (Nsq)* and (Nsp)* are pre-
dictions for maximal Nsq value and corresponding Ns; at
which v = 0, obtained using the MSSM approximation. In
Fig. 2 we can see that Eq. (9) adequately predict v = 0 curves
across a range of Nsy values and 7 values for both the cases
of two-effect and two-exponential DFEs. These simulations
are conducted with NU = 10%; the results of simulations with
NU = 10%? and NU = 10 are presented in Fig. S2. As is
observed for v = 0 curves in the space of scaled effects, we note
that the v = 0 curves are much less “sharp” at large values
of Nsy for the cases of two-exponential DFEs, as compared
to cases of two-effect DFEs. Note that because at fixed n and
NU, T, varies with Ns, and Nsq, the point in parameter space
at which (va,7) = (73,7 ) is not the same as the point at
which (Nsy, Nsq) = ((Nsp) (Nsq)™). However, we can see in
Fig. 2 and Fig. S2—with the point at which (v4,v) = (v3,7%)
denoted by a star marker—that for all cases considered, these
points nearly coincide. Thus, validity of the MSSM approxi-
mation up to one of these points essentially implies validity up
to the other point, which motivates us to use the predictions
of the MSSM approximation for Nsq up to (Nsq)* in Eq. (9).
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To summarize the accuracy of the MSSM approximation
in predicting v = 0 curves across the entire range of NU
and n values simulated, in Fig. 3 we compare our predictions
for (Nsp)*™, (Nsa)*, 75 and v to the corresponding quantities
obtained from simulations (with details of how these quantities
are extracted from simulations provided in Materials and
Methods). Fig. 3 includes populations which are subject to two-
effect DFEs; we provide the same comparison for populations
instead subject to two-exponential DFEs in Fig. S3. We can
see that these quantities (and thus the weaker-selection portion
of v = 0 curves) are well-predicted as long as T.Up > 1 at a
given point along the v = 0 ridgeline.

In Fig. 2, we have chosen to illustrate cross sections of the
parameter space spanned by the axes Ns, and Nsq because
of the striking nonmonotonicity of v = 0 curves in this space
(at fixed n and NU). To gain a more complete qualitative
understanding of the v = 0 constraint, we can consider small
perturbations of parameters from the v = 0 constraint along
each of the two remaining axes, n and NU. The behavior
with 7 is simple: N2v increases monotonically with 1 (with
other parameters held fixed), so v = 0 curves are shifted (and
distorted, to some extent) towards lower Ns; values as 7 is
increased (i.e. with larger 7, smaller values of Ns; are needed
to have v = 0). The behavior with NU is less immediately
clear, but also straightforward: v = 0 curves are shifted toward
larger Nsp values as NU is increased. This reflects the fact
that a larger NU value implies more frequent interference, and
thus less efficient selection for beneficial mutations and against
deleterious mutations. From this dependence, the behavior
with U (at fixed n, N, s, and sq) also follows: v = 0 curves are
shifted toward larger Ns; values as U is increased. Note also
that these patterns are reflected in the dependence of (Nsp)*
on 17 and NU as shown in Fig. 3, as well as the dependence of
full v = 0 curves on n and NU, which can be seen in Fig. S2.

Patterns of Molecular Evolution. Despite the fact that the
v = 0 surface involves no change in the mean fitness of a popu-
lation over time, the evolutionary dynamics of populations on
the v = 0 surface can be far from neutral. These populations
lie in a dynamic steady state involving accumulation of both
beneficial and deleterious mutations, at rates which may differ
substantially from the accumulation rate of neutral mutations.
The fixation probabilities pax(s) = e**/N, along with the
MSSM approximation for determining 7., can be used to
characterize the expected total rate F of (selected) mutation
fization of a population, both lying on or off of the v = 0
surface. In particular, with analogy to our characterization
of a v = 0 surface, an F' = U surface can be characterized on
which selected mutations, on average, accumulate/fix as if they
were entirely neutral (with faster-than-neutral accumulation
of beneficial mutations precisely balancing slower-than-neutral
accumulation of deleterious mutations). If we assume that
synonymous mutations are neutral and nonsynonymous muta-
tions are selected, the F' = U surface can also be thought of
as a dN/dS = 1 surface (which would typically be interpreted
as evidence for neutral, or nearly neutral, evolution (55, 56)).

The F = U surface is described by the equation [ 5(v)(e” —
1)dy = 0, from which it follows that

1— e*'Yd

enw —1"

nlr=v = [10]

for the special case of a two-effect DFE. Note that n|r=v
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dashed lines denote the corresponding predictions obtained using the IN.-based heuristic described above.

increases monotonically with v4, and decreases monotonically
with ~3; thus, in contrast to v = 0 curves, F' = U curves do
not attain extrema (at least in the space of scaled effects).
In contrast to the v = 0 surface, 7, does not tend to 0 as
~Ya — 00, but instead tends to log (14 1/n). As a result, to
obtain F' = U curves in the space of unscaled effects, the
“N.-based heuristic" described above, in which 7. is given by
Eq. (8), does not apply; even at large 4, the dynamics are not
driven primarily by strong purifying selection on deleterious
mutations. Instead, we can use T, obtained with the MSSM
approximation (that is, using Eq. (7)) over a larger range of
Nsq values. In Fig. 4, we plot a grid of fixation rates obtained
from the same simulations (of populations subject to two-effect
DFEs) considered in Fig. 2, along with corresponding F' = U
theory curves obtained using the MSSM approximation. Our
theory curves quite accurately distinguish simulated parameter
combinations in which F' > U from those in which F' < U. The
same comparison is provided in Fig. S4, including populations
with different NU values and populations subject to a two-
exponential DFE. We note that, as compared to the ' =U
surface in the space of scaled effects, the behavior is slightly
more complex in this case, and the F' = U surface can be
somewhat non-monotonic in certain cases (due to variation of
T. with Ns, and Nsg).

Measurements of within-population genetic diversity enable
another way of characterizing and potentially drawing infer-
ences from a population. In particular, an imbalance in the
number of nonsynonymous (and synonymous) polymorphisms
observed, relative to the number of nonsynonymous (and syn-
onymous) mutations fixed since divergence of two populations,
is often interpreted as a signature of selection—either posi-
tive or negative—through the McDonald Kreitman test (57).
We can quantify a related imbalance through the statistic a,
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defined as

Unﬂ—sel

11
P [11]

a=1

which resembles the McDonald-Kreitman statistic aasx, mak-
ing an analogy between synonymous mutations and neutral
mutations, and between nonsynonymous mutations and se-
lected mutations. Here mpen and mse1 denote levels of pairwise
heterozygosity of neutral and selected mutations, respectively
(with pairwise heterozygosity simply the average number of
polymorphisms observed in a sample of two individuals). The
statistic aarx has often been used to estimate the fraction of
substitutions in a population which are adaptive (58). How-
ever, neither any x nor the statistic a defined here need be
positive; axrx < 0 is often observed and interpreted as evi-
dence that purifying selection plays a dominant role in the
evolution of a population (59). The o = 0 surface is thus a
third surface on which the dynamics are at least ostensibly
neutral in some capacity, and which can also be described
using the MSSM approximation. We reproduce results of the
MSSM approximation for mpew and mser in the SI Appendiz.
Using these results, the a = 0 surface follows as

- e’ +1—¢"
[0 (”) dy =0, 12
vy
a consequence of which is that
Nlv=0 < Na=0 < N|F=v, [13]

for any py(v) and gg(v). Thus, v > 0 and F < U on the
o = 0 surface (and o < 0 and F' < U on the v = 0 surface).
Fig. 4 includes a comparison between predictions for the « = 0
surface—obtained using Eq. (12), along with Eq. (7) or
Eq. (8)—and the values of a obtained in simulations, for
populations subject to two-effect DFEs. To obtain predictions
for the a = 0 surface in the space of unscaled effects, the

PNAS | July28,2024 | vol. XXX | no.XX | 7

573

574

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

592

593

594

595

596

597

598

599

600

601

602



603
604
605
606
607
608
609
610

611

612

613
614
615
616
617
618
619

620

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

652

653

654

655

656

657

658

659

660

661

662

“N-based heuristic” is again useful for large Nsq and the
MSSM approximation (i.e. Eq. (7)) is useful for small Nsq
in relating T, to N, although the specific patching we have
employed in Eq. (9) to obtain the v = 0 surface does not
quite carry over. We provide a comparison between o = 0
predictions and simulated « values for populations subject to
a two-exponential DFE in Fig. S5; except for cases when 7 is
small and Nsg4 is large (and the MSSM approximation breaks
down) agreement is qualitatively similar.

Discussion

Previous efforts to treat the dynamics of both beneficial
and deleterious mutations have largely done so by treating
the two types of mutations in fundamentally different ways
(15, 19, 20, 22, 60). These efforts typically start by making
one of several assumptions about whether and how often dele-
terious mutations can fix, and how they impact the fixation
probabilities of beneficial mutations. We lack an adequate
understanding of the interplay between the two types of mu-
tation in general, or even of which type of mutation will be
more important in shaping the fitness trajectory of a popu-
lation, given a particular distribution of fitness effects. Here,
we have used our recently developed MSSM approximation,
along with a simple N.-based heuristic, to characterize this
balance between beneficial and deleterious mutations. Our
description of the v = 0 surface applies under quite general
conditions we have described above—essentially, as long as
NUy, is sufficiently large that beneficial mutations enter the
population sufficiently frequently. As we discuss in more detail
below, the v = 0 surface is particularly relevant to the fate
of a population at long evolutionary times: the v = 0 surface
limits the ability of evolution to climb fitness landscapes—and
thus, under certain conditions, determines the extent to which
evolution acts as an optimization process.

We have found that the v = 0 constraint is concisely ex-
pressed in terms of the distribution of scaled fitness effects
Te.s available to a population. Expressed as such, the popula-
tion size N is relevant only via its impact on the coalescence
timescale T,. Alternatively, given a fixed U and p(s), a particu-
lar Ny can be identified such that v > 0 for N > Np and v < 0
for N < Np. This has long been recognized in the context of
mutational meltdown models (61), which typically assume that
decreases in fitness imply decreases in a population’s size, and
thus further decreases in its fitness (or the opposite increase in
its size, if the population instead increases in fitness initially).
Our analysis immediately yields a critical effective population
size N. at which v = 0. For example, for the case of a single
beneficial effect and a single deleterious effect, rearranging Eq.
(5) yields Ne|v=0 = 2/(s6 + sa)log [(Uasa)/(Upss)]. A similar
critical effective population size is identified by Whitlock (21).
Because the MSSM approximation provides a relation between
T. and N, however, our analysis can also yield a critical census
population size Ng at which v = 0, for a given Up(s).

Previous work has considered the balance between accumu-
lation of beneficial mutations and deleterious mutations under
more limiting assumptions (22, 62-64). Notably, Held et. al.
(63) analyze the v = 0 balance between beneficial and delete-
rious mutations that emerges under a biophysically grounded
model of selection on traits at multiple genes, finding that
selection coefficients are tuned to a state of marginal relevance
in which T.s ~ O(1), under assumptions of negative epistasis
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on individual traits and sufficiently frequent mutations. Goyal
et. al. (22) compute the fraction Uy /(U 4+ Uq) of beneficial
mutations to total mutations at which v = 0, given a single
effect size s, = sq = s of both beneficial mutations and dele-
terious mutations. Goyal et. al. (22) also provide bounding
arguments for the case in which the effect sizes of beneficial
mutations and deleterious mutations differ, and briefly discuss
the case in which distributions of fitness effects are more broad.
The key idea of this and other single-effect approaches is that
the single effect s that is modeled must be chosen as the most-
likely (or in a sense, typical) effect size of a fixred mutation
(17, 18). Thus, use of a single-s approach to obtain a v = 0
constraint requires that the most-likely effect size of a fixed
beneficial mutation at least roughly matches the most-likely
effect size of a fixed deleterious mutation.

Rice et. al. (64) have found that, under the assumption of
no epistasis (i.e., assuming a genome of finite size where mu-
tations at the different loci do not interact epistatically) this
is precisely to be expected after long evolutionary timescales.
Their basic argument is simple: if beneficial mutations of a
particular effect size are more likely to fix than deleterious
mutations of that effect size, those mutational opportunities
will be depleted faster (or vice versa). This will continue until
the distribution of fixed beneficial effects precisely matches the
distribution of fixed deleterious effects, at which point adapta-
tion will come to a halt (v = 0) and the DFE can be described
as “evolutionarily stable”. Therefore, a single-s approach is
perhaps appropriate in describing the approach to an evolu-
tionary attractor at long times resulting from a population
running out of beneficial mutations. In the presence of epis-
tasis, however, a mutation not only enables a back mutation
of the opposite effect, but can also alter the full distribution
of fitness effects available to an individual. As a result, the
distributions ps(s) and p4(s) can change in independent ways
over the course of evolution. Our analysis—which makes no
assumption that py(s) and pq(s) are similar in scale—is thus
more applicable to a description of the v = 0 constraint in
the presence of widespread epistasis. We emphasize that the
existence of the v = 0 state does not depend on the existence
of any particular form of epistasis, and is expected to hold
under fairly general conditions. However, the form of the
equilibrium point will depend on epistasis, and as we now
discuss, our analysis provides a framework to work out the
implications of various proposed patterns of fitness-mediated
epistasis (31), in which p(s) varies systematically with the
fitness of a population.

To do so requires an additional assumption of how the
parameters of a population depend on fitness. For instance,
in the presence of diminishing-returns epistasis (in which ben-
eficial effects become systematically weaker as the fitness of a
population increases) populations are constrained to lie on a
horizontal line in the space Nsq vs. Ns;, depicted in Fig. 2 and
Fig. 4. If a population starts out in the v > 0 region, its mean
fitness will increase and its value of Ns, will subsequently
decrease, until the population converges to the v = 0 surface.
Qualitatively, then, the implications of diminishing-returns
epistasis are similar to the implications of a declining fraction
of beneficial mutations (which are considered by Goyal et. al.
(22)): as evolution proceeds, the population will approach the
v = 0 surface (either from the v < 0 region or the v > 0 re-
gion); the v = 0 surface is thus a stable evolutionary attractor.
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Fig. 5. (A) Simulated trajectories of evolving populations subject to both diminishing-
returns and increasing-costs epistasis, overlaid on panel C of Fig. 2. Populations
are subject to two-effect DFEs with NU = 10* and = 0.1. In all cases, the
product (N sy, ) (N sq) is assumed constant as a population evolves; depending on a
population’s initial values of Ns; and N s4 it may or may not approach the v = 0
surface at long times. The color of a filled circle denotes the time (in generations) a
population had a given set of parameters. (B) Mutation accumulation and (C) fitness
trajectories of the simulated populations depicted in A. Despite a declining rate of
fitness change observed in all cases, rates of (selected) mutation accumulation remain
roughly constant.

On the other hand, a pattern of increasing-costs epistasis (in
which deleterious fitness effects systematically increase with
fitness) corresponds to a vertical line in the space Nsq vs.
Nsp. The behavior in this case is more complex, depending
on the location of the starting point in relation to the v =0
ridgeline: if Ns, > Nsj, a long term evolutionary attractor
does not exist, while if Ns, < Ns;, two fixed points exist, one
of which is stable and one of which is unstable. One could
also imagine a pattern of decreasing-costs epistasis, in which
deleterious fitness effects become systematically smaller as a
population increases in fitness (e.g. if deleterious mutations
are thought of as reversions of beneficial mutations for which
a pattern of diminishing-returns epistasis exists). The behav-
ior in this case is similar to that of increasing-costs epistasis,
but the stablity (and instability) of the two fixed points is
swapped. The combination of decreasing-costs epistasis and
diminishing-returns epistasis (i.e. negative epistasis), which is
present in the biophysically grounded model studied by Held
et. al. (63), can also be considered, and results in a stable
fixed point.

It is not yet entirely clear which, if any, of these simple
patterns best describe the dominant patterns of epistasis in
natural populations. More generally, a curve through the
parameter space—parameterized by fitness—can be assumed,
on which populations are constrained to lie. The intersection(s)
of these curves with the v = 0 surface determine the long-
term evolutionary fixed points, the stability of which can be
determined straightforwardly. In principle, these curves may
covary along several dimensions (e.g. with quantities such as
the overall mutation rate, the relative fraction of beneficial to
total mutations, and other quantities such as the shapes of
beneficial and deleterious DFEs). In Fig. 5, as a schematic
we illustrate the consequences of a relatively simple pattern
involving both diminishing-returns epistasis and increasing-
costs epistasis; as recently argued by Lyons et. al. (65)
and Reddy and Desai (66), these two trends both emerge
from a simple null model of pervasive microscopic epistasis.
Populations are simulated starting from a range of five initial
conditions in the parameter space; in each case, s, decreases
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with the fitness of an individual and sq increases with fitness
of an individual, with the product sysq assumed constant (see
Materials and Methods for details). Note that for two of the
five initial conditions, the population would never approach
the v = 0 surface (but its rate of adaptation does slow down
over time). For the remaining three initial conditions, the
population approaches the v = 0 surface, either from higher
fitness or from lower fitness, and in particular approaches the
~va < 75 portion of the v = 0 surface described by the MSSM
approximation .

In all cases shown in Fig. 5, selected mutation accumulation
proceeds throughout at a roughly constant rate, although,
consistent with fixation rates measured in simulations and
shown in Fig. 4, those populations which approach the v =0
surface have a higher long-term steady state fixation rate of
new mutations. Those populations which approach the v =0
surface can be thought to undergo rapid molecular evolution
at steady state, in that F' ~ U, + Uy is possible. In contrast,
those populations which do not approach the v = 0 surface
can instead end up with a much smaller fixation rate F' ~ U,
(with F = Uy if deleterious mutations are strong enough that
all are purged by selection, and beneficial mutations weak
enough that they accumulate entirely neutrally). Broadly
speaking, these patterns—a rate of fitness increase which
declines over time (67), and in particular, the maintenance
of a roughly constant rate of mutation accumulation despite
a declining rate of fitness increase (27, 68, 69)—have been
observed in multiple microbial evolution experiments. Our
analysis provides a way to identify regions of the parameter
space in which these and similar observed patterns are possible,
or alternatively, to yield constraints on the dominant modes
of fitness-mediated epistasis given an observed fitness and/or
mutation accumulation trajectory.

Using arguments along the lines described above, our anal-
ysis can be used to predict the flow of a population through
parameter space, given a complete characterization of any
form of fitness-mediated epistasis—that is, of p(s|X). Cru-
cially, we make the assumption of slow epistasis, such that
p(s|X) can be treated as uniform within the population, and
constant in time, in identifying its corresponding rate of fitness
increase. This assumption means that we neglect the possi-
bility that individual mutations could lead to specific shifts
in Up(s), which could then themselves be subject to selection.
For example, a lineage could arise that has access to more
(or stronger-effect) beneficial (or deleterious) mutations than
other individuals within the population, and this lineage could
then be subject to second-order selection. Addressing this
effect is an interesting topic for other work, and has recently
been addressed by (70) using a related theoretical framework.

Materials and Methods

To validate our predictions, we conducted individual-based Wright-
Fisher simulations. Simulations were performed using code available
at https://github.com/mjmel/mssm-sim and used by (24). Simula-
tions consist of a mutation step and a reproduction step repeated
each generation. In the mutation step, each individual acquires a
Poisson-distributed number of mutations with mean U; the effect
of each mutation is independently drawn from the distribution p(s)
and increments (or decrements) an indiviual’s log-fitness X. Purely
neutral mutations are also introduced at rate U,,. The identities
and fitness effects of the mutations carried by each individual are
tracked. In the reproduction step, individuals are resampled with

replacement with probabilities proportional to their fitnesses eX.
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Populations are initialized clonally and the number of generations
which elapses before the first fixation of a mutation is recorded, set-
ting the epoch length. Simulations are run for up to 100 epochs, with
the mean fitness and heterozygosities—both of neutral mutations
and of selected mutations—recorded at each epoch. Simulations
which for which fewer than 10 epochs have been reached after a
runtime of 24 hours are discarded from our analysis.

For a given value of n and NU, we simulated parameter combina-
tions lying on a grid of Ns, and Nsg values (depicted in Fig. 2, for
example). For each value of n and NU, we extracted the coordinates
of its ridgeline point, both in the space of scaled effects and in the
space of unscaled effects, for comparison with theory. To do so in
the space of scaled effects, we take the point with the largest ~;
value such that v < 0; the v and 4 of this point are then recorded
as 7, and 7], respectively. In the space of unscaled effects, we
take (Nsp)* as the largest value of Ns, such that v < 0 for some
parameter combination; (Nsg)* is then taken as the median value
of Nsy for those parameter combinations such that Ns, = (Nsp)*
and v < 0.

We also conducted simulations in which the available fitness
effects s and sy depend on fitness. These simulations are identical to
those described above, except after the occurrence of each mutation,
the effect magnitudes of the next available beneficial and deleterious

mutations are updated accordingly. In all cases, we held the product

X/5

SpSq constant with s, oc e™ , where X denotes an individual’s log-

fitness. A similar functional dependence of s, on X is found by Wiser
et. al. (71) to describe E.coli populations in the LTEE experiment.
These simulations were run for a total of 5000 generations, with
measurements of fitness and the number of fixed mutations recorded
every 100 generations.
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