# A dynamical limit to evolutionary adaptation

Matthew J. Melissa<sup>a</sup> and Michael M. Desai<sup>1a</sup>

<sup>a</sup>Department of Organismic and Evolutionary Biology, Department of Physics, Quantitative Biology Initiative, and NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge MA 02138

This manuscript was compiled on July 28, 2024

10

11

12

15

17

10

11

12

15

17

22

23

24

25

27

Natural selection makes evolutionary adaptation possible even if the overwhelming majority of new mutations are deleterious. However, in rapidly evolving populations where numerous linked mutations occur and segregate simultaneously, clonal interference and genetic hitchhiking can limit the efficiency of selection, allowing deleterious mutations to accumulate over time. This can in principle overwhelm the fitness increases provided by beneficial mutations, leading to an overall fitness decline. Here, we analyze the conditions under which evolution will tend to drive populations to higher versus lower fitness. Our analysis focuses on quantifying the boundary between these two regimes, as a function of parameters such as population size, mutation rates, and selection pressures. This boundary represents a state in which adaptation is precisely balanced by Muller's ratchet, and we show that it can be characterized by rapid molecular evolution without any net fitness change. Finally, we consider the implications of global fitness-mediated epistasis, and find that under some circumstances this can drive populations towards the boundary state, which can thus represent a long-term evolutionary attractor.

rapid evolution | evolutionary attractor | Muller's ratchet | fitness-mediated epistasis

volution is often thought of as an optimization process, in which natural selection pushes populations inevitably uphill, towards a local optimum in the fitness landscape (1). However, much recent work has shown that in many populations, numerous linked mutations often arise and segregate simultaneously (2–9). In these rapidly evolving populations, natural selection is much less efficient: it cannot act on each mutation independently (10). As a result, deleterious mutations can often fix, which can slow down adaptation or even reverse its direction, leading to declining fitness over time.

Extensive previous work has studied the accumulation of deleterious mutations via Muller's ratchet (11, 12), particularly in models in which beneficial mutations are either negligible or can be treated as a rare perturbation (13–15). Similarly, numerous studies have considered the accumulation of beneficial mutations (i.e. adaptation) when deleterious mutations are absent (16–18) or can be treated as a perturbation (19, 20). However, we lack an understanding of the interplay between the accumulation of beneficial and deleterious mutations more generally. Except in special cases (e.g. when clonal interference is absent (21), or when all beneficial and deleterious mutations have the same fitness effect (22), or in a regime where fixations are dominated by single driver mutations (23)), this has made it impossible to answer a very basic question: given a particular set of population genetic parameters (population size, mutation rate, and fitness landscape), will a population tend to increase or decrease in fitness? In other words, under what circumstances can evolution act as an optimization process, and when do populations actually move towards less-optimal

Here, we analyze this interplay between beneficial and

deleterious mutations in rapidly evolving populations, in the regime where both types of mutations can be important. Our analysis leverages recent work in traveling wave models of evolutionary dynamics, and in particular our recently introduced moderate selection, strong-mutation (MSSM) approximation (24). Using this approach, we predict the conditions under which populations will tend to increase or decrease in fitness (i.e. where the rate of change in mean fitness, v, is positive or negative). The boundary surface between these two regions of the parameter space, at which v=0, corresponds to a state in which beneficial and deleterious mutations accumulate in a balanced way. While the fitness trajectory of a population in the v = 0 state appears neutral, the evolutionary dynamics of these populations can be strongly nonneutral (as has been suggested by several earlier studies; see e.g. (21–23, 25)). For example, a steady state accumulation of weakly deleterious mutations may be offset by the fixation of beneficial mutations under moderate or strong selection. We also consider additional surfaces of the parameter space on which patterns of molecular divergence and genetic diversity would suggest a population has evolved neutrally or nearly neutrally, but in fact mask a balance between the competing signatures of positive and negative selection.

33

34

35

36

37

38

39

40

41

42

43

47

48

49

50

51

52

53

54

57

58

60

We conclude by considering how our results and the structure of the fitness landscape determine the long-term outcomes of evolution. For example, it is natural to expect that beneficial mutations become less common (and deleterious mutations more common) as a population increases in fitness. This will tend to lead a population not towards a local optimum, but instead towards the v=0 state (see e.g. Goyal et. al. (22)

## Significance Statement

We often think of evolution as an optimization process that increases the fitness of a population over time through the action of natural selection on random mutations. However, this process is imperfect, and deleterious mutations can occasionally spread through a population. Depending on the mutation rates and selection pressures involved, this can overwhelm adaptation and lead to fitness decline. Here, we calculate the conditions under which natural selection can drive a population to higher fitness, and characterize the scenarios that lead to fitness declines. Our results quantify the limits on the ability of natural selection to drive populations towards a fitness optimum. We analyze how these constraints can lead populations to steady-state evolutionary "attractors" that are not fitness optima.

 $\mbox{M.J.M.}$  and  $\mbox{M.M.D.}$  designed the project;  $\mbox{M.J.M.}$  conducted the simulations and analysis;  $\mbox{M.J.M.}$  and  $\mbox{M.M.D.}$  wrote the paper.

The authors declare no conflicts of interest

<sup>&</sup>lt;sup>1</sup>To whom correspondence should be addressed. E-mail: mdesai@oeb.harvard.edu

and Schiffels et al. (23)). More generally, recent empirical work has identified a consistent pattern of diminishing returns epistasis: beneficial mutations tend to have weaker effects as populations increase in fitness (26–28). An analogous pattern for epistasis on deleterious mutations is less clear, but recent work has identified a trend in which deleterious mutations are more costly in more-fit backgrounds (29, 30). We show here that, depending on details of the landscape and the starting point, these and other patterns of fitness-mediated epistasis can often (but not always) drive a population towards the v = 0 state. Thus the v = 0 state can in some circumstances represent a long-term evolutionary attractor, and define the extent to which evolution can act to optimize fitness. We refer to this as a dynamical limit on evolutionary adaptation, because it arises due to the stochastic nature of the evolutionary process, and can be reached far from any fitness peak.

#### Model

62

63

64

65

68

69

70

71

72

73

74

75

76

77

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

We model the evolution of a population of N haploid individuals, in which random mutations arise within a specific genomic region at a total rate U. We assume that recombination can be neglected within this region on the relevant timescales. We assume that each new mutation confers a fitness effect, s, drawn from some distribution of fitness effects (DFE),  $\rho(s|\vec{q})$ , that depends on the genotype  $\vec{g}$  of an individual as well as the environment the population evolves in (its fitness landscape). The DFE includes both beneficial and deleterious mutations, with beneficial mutations corresponding to s > 0 and deleterious mutations corresponding to s < 0. To be more precise, a mutation with effect s increments an individual's (log) fitness X by an amount s, and we assume offspring numbers are drawn from a multinomial distribution each generation; the expected offspring number of an individual with fitness X is  $e^{\bar{X}-\bar{X}}$ , where  $\bar{X}$  denotes the mean fitness of the population.

The genotype-dependence of  $\rho(s|\vec{q})$  has been termed macroscopic epistasis (31). This macroscopic epistasis can arise due to individual microscopic epistatic interactions among specific mutations, which collectively determine the overall DFE for a given genotype. We make the key assumption that similar genotypes share a similar  $\rho(s|\vec{q})$ , and in particular, that those genotypes simultaneously present in a population (which are similar because of their relatedness by common ancestry) share the same DFE,  $\rho(s)$ . This allows us to solve for the dynamics by treating  $\rho(s)$  instantaneously as a constant parameter. We note that this assumption can be satisfied even in the presence of pervasive microscopic epistasis, as long as idiosyncratic interactions among mutations largely "average out" in contributing to the full distribution  $\rho(s|\vec{q})$ .

For simplicity, we focus on a few simplifying forms of  $\rho(s)$ in our analysis. For instance, we consider the case where all beneficial mutations have effect  $s_b$  and all deleterious mutations have effect  $-s_d$  (with  $s_b, s_d > 0$  by convention). This example is useful for building general intuition, and is motivated by recent work showing that the evolutionary dynamics of rapidly evolving populations can in many cases be wellcaptured by a DFE consisting of a single appropriately-chosen "predominant" effect size (17, 18, 32). We also consider the cases of exponentially-distributed (and more generally gammadistributed) effects of beneficial and of deleterious mutations, though our analysis can be extended to more general DFEs relatively straightforwardly. Importantly, we make no assumption that the DFEs of beneficial mutations and of deleterious mutations are the same or similar in shape or in scale.

Results 124

The central goal of our analysis is to determine whether a population will tend to increase or decrease in fitness for a given set of parameters: the population size, N, the mutation rate, U, and the distribution of fitness effects,  $\rho(s)$ . Because our goal is to determine whether v > 0 or v < 0 for a given set of parameters, we focus on analyzing the boundary between these two regimes. This boundary is by definition a v=0surface where the mean fitness of the population does not on average either increase or decrease. We will find it useful to write the average rate of change in mean fitness, v, in terms of the fixation probability of a new mutation,  $p_{fix}(s)$ ,

$$v = NU \int 
ho(s) s p_{
m fix}(s) ds.$$
 [1] 136

122

123

125

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

144

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

To find the v = 0 surface we then set Eq. (1) equal to 0, which gives a constraint on the parameters N, U, and  $\rho(s)$ that defines the v = 0 surface in parameter space.

We can clearly have v = 0 if selection on deleterious mutations is sufficiently strong and beneficial mutations are sufficiently rare that no selected mutations fix at all, and the evolutionary dynamics are entirely neutral (i.e. if  $\rho(s)p_{\text{fix}}(s)$ is negligible for all s). Apart from this trivial case, the v=0state by definition involves substantial accumulation of deleterious mutations (at least relative to the accumulation of beneficial mutations) which can be facilitated by the effects of linked selection and clonal interference. For instance, deleterious mutations may routinely hitchhike along with, or hinder the fixation of, a beneficial mutation (33-35). Interference among multiple beneficial mutations may also substantially reduce the rate at which they can fix in the population (10, 36). To obtain an accurate description of the v=0 state, our expression for the fixation probabilities  $p_{fix}(s)$  must therefore take these effects into account.

Frequent interference among mutations is a defining feature of rapid evolution, which has been the focus of much recent theoretical work (13, 18, 20, 37-40). Broadly speaking, this work uses traveling wave models, which first analyze the steady-state distribution of fitness within the population (the "traveling wave of fitness"), and then use this as the basis for computing the fixation probabilities of new mutations,  $p_{\text{fix}}(s)$ , and the average rate of fitness increase or decline, v. Most work on traveling wave models has been done by considering only beneficial mutations (16–18) or only deleterious mutations (14), or by focusing on one type and treating the other perturbatively (20). A key exception is the moderate selection, strong-mutation (MSSM) approximation we have recently introduced (24), which can be applied to analyze rapidly evolving populations for which both beneficial and deleterious mutations affect the dynamics in a substantial way. Here, we use this MSSM approximation to analytically describe the v = 0 state.

A key result is that within the MSSM regime (which we discuss below), the fixation probability of a new mutation is given by

$$p_{\rm fix}(s) \approx \frac{e^{T_c s}}{N},$$
 [2]

valid for both positive and negative s. Here  $T_c$  is a derived quantity whose definition and relationship to the parameters N, U and  $\rho(s)$  we reproduce in SI Appendix, and which approximately equals  $\langle T_2 \rangle /2$ —one-half the average time since two randomly chosen individuals share a common ancestor (i.e., a coalescence timescale). We note that an identical result for  $p_{\text{fix}}(s)$  was derived in a somewhat different context by Hallatschek (41). We also note that in much of the population genetics literature, the average pairwise coalescent time  $\langle T_2 \rangle$  is identified with an effective population size  $N_e$ . We avoid this language here because in general, the evolutionary dynamics in rapidly evolving populations are not equivalent to those in a neutrally evolving population for any choice of  $N_e$  (42).

Eq. (2) differs from the standard formula for the fixation probabilities of independently evolving loci (43), which in our notation can be written as

$$p_{\text{fix}}(s) = \frac{2T_c}{N} \times \frac{2s}{1 - e^{-4T_c s}}.$$
 [3]

Eq. (3) has been used by Whitlock (21) to address similar questions, although that work treats  $T_c$  (referred to as  $N_e/2$ ) as an independent parameter, instead of considering how it depends on the population parameters N, U, and  $\rho(s)$ . For the sake of comparison, we discuss the predictions following from Eq. (3) alongside our results below. The predictions are qualitatively (and even quantitatively) similar in some respects, but they break down in other cases. This is unsurprising in light of recent work that has shown that Eq. (3) fails to adequately describe the fixation probabilities of mutations in the presence of widespread linked selection, particularly when mutations confer fitness effects on a wide range of scales (44).

Eq. (2) immediately implies that if we scale fitness effects to the coalescence timescale by defining  $\gamma \equiv T_c s$ , the v=0 surface is defined by the concise equation

$$\int \tilde{\rho}(\gamma)\gamma e^{\gamma}d\gamma = 0.$$
 [4]

Eq. (4) implies that we can characterize the v=0 surface given only the distribution of "scaled" fitness effects,  $\tilde{\rho}(\gamma)$  (as well as validity of the MSSM approximation, which we discuss below). We emphasize that this is not by itself sufficient to determine how the v=0 surface depends on the underlying parameters, because  $T_c$  depends in a nontrivial way on N, U, and  $\rho(s)$ . We return to this dependence in more detail below. However, in the next section we first analyze key properties of the v=0 surface in the space of scaled selective effects, focusing particular attention on two specific choices of the DFE as representative examples.

The v=0 surface in the space of scaled effects. In the scaled parameter space, the v=0 surface depends only on  $\tilde{\rho}(\gamma)$ , and not on the population size N or the mutation rate U (which enter only through their effect in determining  $T_c$ ). To gain qualitative insight, we begin by considering the simple case in which all beneficial mutations confer a single scaled effect,  $\gamma_b \equiv T_c s_b$ , and all deleterious mutations confer a (potentially different) single scaled effect,  $-\gamma_d \equiv -T_c s_d$  (with  $s_b, s_d > 0$  by convention). Specifically, we have  $\tilde{\rho}(\gamma) = [\eta/(1+\eta)] \delta(\gamma - \gamma_b) + [1/(1+\eta)] \delta(\gamma + \gamma_d)$ , where we have defined  $\eta \equiv U_b/U_d$  as the ratio of beneficial to deleterious mutation rates. Plugging this into Eq. (4), we find that within the 3-dimensional parameter

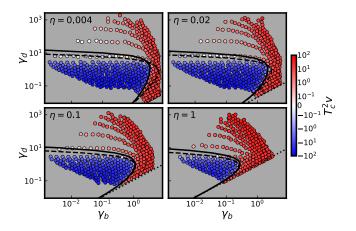


Fig. 1. Cross sections of the v=0 surface in the space of scaled effects  $\gamma_d$  vs.  $\gamma_b$ , for the four values of  $\eta$  denoted above. Each point corresponds to a simulated parameter combination, colored by its measured value of  $T_c^2v$ . Solid line denotes the prediction for the v=0 curve given by Eq. (4). Dashed lines denotes the prediction for the v=0 curve obtained using Eq. (3). Dotted lines denote the lines on which  $\eta=\gamma_d/\gamma_b$ . Simulated parameter combinations lie on the grids of logarithmically spaced  $Ns_d$  and  $Ns_b$  values depicted in Fig. 2, with DFEs consisting of a single beneficial effect and a single deleterious effect, and with  $NU=10^4$ .

space spanned by  $\gamma_b$ ,  $\gamma_d$ , and  $\eta$ , the v=0 constraint is a 2-dimensional surface given by

$$\eta|_{v=0} = \frac{\gamma_d e^{-\gamma_d}}{\gamma_b e^{\gamma_b}}.$$
 [5] 236

In Fig. 1 we validate this prediction for the v=0 surface. To do so, we conducted Wright-Fisher simulations for populations whose parameters lie on a grid with varying  $\eta$ ,  $Ns_b$  and  $Ns_d$ . Each simulated population is plotted using its corresponding value of  $T_c$ , measured by observing its pairwise neutral heterozygosity  $\pi_{\rm neu}$  averaged over simulation runs (with  $T_c$  taken as  $\langle T_2 \rangle / 2 = \pi_{\rm neu} / (4U_n)$ , where  $U_n$  is the neutral mutation rate used in simulations). The prediction in Eq. (5) qualitatively (and except perhaps for  $\gamma_d \gg 1$ , quantitatively) describes the v=0 surface in the space of scaled fitness effects  $\gamma_b$  and  $\gamma_d$ . The simulations represented in Fig. 1 are all conducted for populations with  $NU=10^4$ . In Fig. S1, we present the results of additional simulations which include the cases  $NU=10^3$  and  $NU=10^2$ ; similar agreement is

Several qualitative features of Eq. (5) are notable. If the selective effects of both beneficial and deleterious mutations are small compared to  $1/T_c$  (i.e.  $\gamma_b \ll 1$  and  $\gamma_d \ll 1$ ), we see from Eq. (5) that the v=0 surface is defined by  $\eta|_{v=0} \approx \gamma_d/\gamma_b$  (dotted line in Fig. 1; note this converges with the v=0 surface observed in simulations when  $\gamma_b \ll 1$  and  $\gamma_d \ll 1$ ). This corresponds to  $U_b s_b = U_d s_d$ , the surface on which v=0 if beneficial and deleterious mutations accumulate neutrally, such that each mutation fixes with probability 1/N. The surface  $\eta = \gamma_d/\gamma_b$  can be thought of as an upper bound to the actual v=0 surface; as the strength of selection (i.e.  $\gamma_b$  and/or  $\gamma_d$ ) is increased, the actual fraction  $\eta$  required to have v=0 will always be smaller than  $\gamma_d/\gamma_b$ .

More generally, if we increase  $\gamma_b$  at fixed  $\gamma_d$ ,  $\eta|_{v=0}$  decreases: a smaller ratio  $\eta$  of beneficial to deleterious mutations is required to be in the v=0 state. This makes intuitive sense: increasing  $\gamma_b$  increases both the fixation probability of

beneficial mutations and the fitness benefit they provide to the population upon fixing. The effect of changing  $\gamma_d$  is more subtle, because while increasing  $\gamma_d$  decreases the fixation probability of deleterious mutations, it also increases the fitness cost to the population they incur upon fixing. This means that the expected fitness costs to the population of deleterious mutations are not monotonic with effect size: for a fixed value of  $\gamma_b$  (below a threshold value described below), the population will adapt for small  $\gamma_d$ , decline in fitness for intermediate  $\gamma_d$ , and adapt for large  $\gamma_d$ . This is because for sufficiently small  $\gamma_d$ , deleterious mutations fix routinely but do not confer large enough effects to counteract the beneficial mutations which fix, while for sufficiently large  $\gamma_d$ , deleterious mutations are purged by selection too efficiently to counteract the fixation of beneficial mutations. Instead, deleterious mutations are maximally impactful (in the sense that  $\eta|_{v=0}$  is maximized) at the intermediate scaled effect size  $\gamma_d^* = 1$ . For sufficiently large  $\gamma_b$  and/or  $\eta$ , deleterious mutations cannot lead to decline in fitness for any value of  $\gamma_d$  (although  $T_c v$  will still be minimized at  $\gamma_d = 1$ ). For example, at a given  $\eta$ , the population will always adapt provided that  $\gamma_b > \gamma_b^*$ , where  $\gamma_b^* e^{\gamma_b^*} = 1/(e\eta)$ . We can think of the curve  $(\gamma_d, \gamma_b, \eta) = (\gamma_d^*, \gamma_b^*, \eta)$ , parameterized by  $\eta$ , as a "ridgeline" of the v=0 surface, on which  $\eta$  is maximized as a function of  $\gamma_d$ .

The above analysis can be extended straightforwardly to a full distribution of fitness effects. As a simple example, we consider the case in which both beneficial and deleterious mutations are drawn from exponential distributions with mean scaled effects  $\gamma_b$  and  $\gamma_d$  respectively, and a ratio  $\eta = U_b/U_d$  of beneficial to deleterious mutations (in the SI Appendix, we extend these results to the case of gamma-distributed DFEs, and comment further on arbitrary DFEs). Specifically, we have  $\tilde{\rho}(\gamma) = [\eta/(1+\eta)/\gamma_b] \, e^{-\gamma/\gamma_b} + [1/(1+\eta)/\gamma_d] \, e^{\gamma/\gamma_d}$ . Plugging this scaled DFE into Eq. (4), we find that the v=0 surface is defined by

$$\eta = \frac{\gamma_d}{\gamma_b} \left( \frac{1 - \gamma_b}{1 + \gamma_d} \right)^2.$$
 [6]

We note that in this case, a requirement that  $\gamma_b < 1$  dynamically emerges given validity of the MSSM approximation (and thus the  $\eta$  given by Eq. (6) is positive for all relevant  $\gamma_b$  and  $\gamma_d$ ) while  $\gamma_d > 1$  is permitted. As in the case of a two-effect DFE, a v=0 "ridgeline" exists on which  $\eta$  is maximized as a function of  $\gamma_d$ , and on which  $\gamma_d^* = 1$  and  $\gamma_b^* = \eta \left( \sqrt{1 + 1/\eta} - 1 \right)^2$ . The behavior of the v = 0 surface for large  $\gamma_d$  is qualitatively different, however. Instead of the dependence  $\eta \propto \gamma_d e^{-\gamma_d}$ , we have the much slower falloff  $\eta \propto 1/\gamma_d$  for large  $\gamma_d$ . The dependence  $1/\gamma_d$  in turn approximates the fraction of deleterious effects with  $|\gamma| < 1$ —that is, the fraction of deleterious effects with a reasonable chance of fixing—as opposed to the fixation probability  $\propto e^{-\gamma_d}$  of the average deleterious effect. As a result, compared to the case of a two-effect DFE, v=0curves for a full DFE have a much more broad decay of  $\gamma_b$ toward zero at large  $\gamma_d$ . In Fig. S1 we compare the prediction in Eq. (6) to the results of simulations for the same  $\eta$  values considered in Fig. 1, and for NU values ranging from  $10^2$  to 10<sup>4</sup>. Our results are qualitatively similar to the case of single fitness effects shown in Fig. 1, although agreement begins to break down—particularly for  $\gamma_d \sim \gamma_d^*$ —for smaller NU and smaller  $\eta$  (i.e. for smaller values of  $NU_b$ ).

#### Computing $T_c$ in terms of the population genetic parameters,

327

328

329

330

333

334

335

336

337

340

341

342

343

344

345

347

348

349

350

351

352

354

355

356

357

358

363

365

366

367

368

369

371

372

373

374

377

378

379

380

381

N and  $U\rho(s)$ . Above, we described the v=0 constraint on the distribution of scaled effects  $\gamma = T_c s$ . Expressed in this way, the v = 0 constraint takes on the simple analytical form in Eq. (4). In certain cases, the distribution of scaled effects  $\gamma$  is more readily probed than the distribution of unscaled effects s. For instance, given DNA sequencing data from a population at a fixed point in time (e.g. an observation of its site frequency spectra, of both synonymous mutations and nonsynonymous mutations), its distribution of scaled fitness effects can be inferred (45–47). To infer the distribution unscaled fitness effects s then requires an independent estimate of the coalescence timescale, which is typically confounded with estimates of the neutral mutation rate (48). However, in certain cases—such as in the context of experimentally evolved populations (49, 50), the distribution of unscaled effects s may be more practical to measure. For this reason, it may be more useful to obtain a v = 0 constraint on the parameters N and  $U\rho(s)$ ; this can also be useful in building an intuitive understanding for how shifts in these underlying parameters affect adaptation or fitness decline. As we will see in the Discussion, a v = 0 constraint on unscaled effects s may also be more useful in working out the long-term implications of simple patterns of fitness-mediated epistasis observed empirically, for which the parameter  $U\rho(s)$  may vary in a more straightforward way, over the course of an evolutionary trajectory, than the distribution of scaled effects.

In general, the coalescence timescale  $T_c$  depends in a complicated way on the parameters N and  $U\rho(s)$ , and except in special cases, the mapping between a distribution of unscaled effects Ns and the distribution of scaled effects  $T_cs$  is not particularly clear. The MSSM approximation yields a relation between  $T_c$  and the underlying parameters N and  $U\rho(s)$ —and can thus be used to obtain a v=0 constraint on the parameters N and  $U\rho(s)$ . We reproduce the relation between  $T_c$ , N and  $U\rho(s)$  under the MSSM approximation in the SI Appendix. The key result is

$$\log Nx_c pprox T_c(x_c-U) - rac{vT_c^2}{2} + U \int rac{
ho(s)ds}{s} \left(e^{T_cs} - 1\right), \quad [7]$$
 364

along with equations for v and  $x_c$  in terms of  $U\rho(s)$  and  $T_c$  which we reproduce in the SI Appendix. Although it is in general straightforward to solve these equations numerically, the v=0 constraint induces a particular simplification in that it becomes possible to solve for  $T_c|_{v=0}$  in terms of the single parameter  $\rho(s)$ , using Eq. (4). A v=0 constraint between N and  $U\rho(s)$  then follows straightforwardly from the Eq. (7), although the nature of these equations precludes writing down simple analytical expressions for the v=0 constraint such as Eq. (5).

Validity of the MSSM approximation. The results for  $p_{\rm fix}(s)$  in Eq. (2) and particularly for  $T_c$  in Eq. (7) both depend on the validity of the MSSM approximation. We review the conditions of validity of the MSSM approximation in the SI Appendix. Roughly speaking, validity of the MSSM approximation requires that selection on individual mutations is at most moderate (in that typical fixed fitness effects are smaller than the characteristic range in relative fitnesses from which future common ancestors typically descend) while mutation is strong (in that the dynamics by which individuals fix are

269

270

271

272

275

276

277

282

283

284

285

286

287

289

290

291

292

293

294

295

297

298

299

300

301

302

303

304

305

306

307

311

312

313

314

315

316

318

319

320

321

322

323

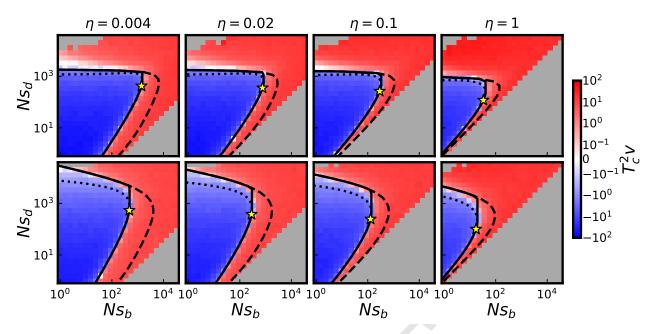


Fig. 2. Cross-sections of the v=0 surface in the space of unscaled effects  $Ns_d$  vs.  $Ns_b$ , for  $NU=10^4$  and four values of  $\eta$ , with populations colored by simulated values of  $T_c^2v$ . Populations in the top row are subject to a two-effect DFE; populations in the bottom row are subject to a two-exponential DFE. Solid lines denote predictions of the v=0 surface obtained by connecting predictions obtained using the MSSM approximation and  $N_e$ -based heuristic (that is, using Eq. (9)). Dotted lines denote predictions obtained using the MSSM approximation, for  $Ns_d > (Ns_d)^*$ ; dashed lines denote predictions of the  $N_e$ -based heuristic. Stars denote points at which  $(\gamma_d, \gamma_b) = (\gamma_d^*, \gamma_b^*)$ , as computed by MSSM approximation. Gray squares denote parameter combinations not simulated because  $U_ds_d < U_bs_b$ , or parameter combinations eliminated from consideration because fewer than 10 epochs were reached during the simulation runtime.

strongly nonneutral and the population is rapidly evolving). Given  $U\rho(s)$  and a solution for  $T_c$ , it is straightforward to determine whether these conditions are met for a particular point on the v=0 surface.

The points  $(\gamma_d^*, \gamma_b^*, \eta)$  lying along the v=0 "ridgeline" are convenient landmarks of v=0 curves at which the validity of the MSSM approximation can be assessed. At these points, selection is sufficiently strong that the MSSM predictions are nontrivial, and the v=0 surface is guaranteed to deviate substantially from the surface  $\eta=\gamma_d/\gamma_b$  on which v=0 assuming neutral accumulation. Furthermore, validity of the MSSM approximation at  $(\gamma_d^*, \gamma_b^*, \eta)$  implies validity of the approach for smaller values of  $\gamma_d$  and  $\gamma_b$  along the same v=0 curve, up to and including  $(\gamma_d^*, \gamma_b^*, \eta)$ , for a given  $\eta$ . Note that in the limit  $\gamma_b \to 0$  and  $\gamma_d \to 0$ , the population dynamics become purely neutral, and "strong mutation" condition of the MSSM approximation breaks down; however, by this point, the v=0 surface will simply approach its neutral expectation  $\eta=\gamma_d/\gamma_b$ .

In the SI Appendix, we assess the validity of the MSSM approximation at the points  $(\gamma_d^*, \gamma_b^*, \eta)$ , for the cases of a two-effect DFE and a two-exponential DFE. We find that in both of these cases, the conditions of validity of the MSSM approximation are met provided that  $T_cU_b \gg 1$  at  $(\gamma_d^*, \gamma_b^*, \eta)$ ; note that we assume  $U_b \leq U_d$  throughout, so that  $T_cU_d \gg 1$  is also implied. The condition  $T_cU_b \gg 1$  has a relatively simple dynamical interpretation—essentially, that a given lineage will acquire multiple beneficial mutations over the coalescence timescale—and is satisfied at  $(\gamma_d^*, \gamma_b^*, \eta)$  for sufficiently large NU (since  $T_cU$  increases with NU, if  $\gamma_b$ ,  $\gamma_d$  and  $\eta$  are held fixed). This suggests that the MSSM approximation is of broad use in the describing the  $\gamma_d < \gamma_d^*$  portion of v = 0 curves for rapidly evolving populations in which interference

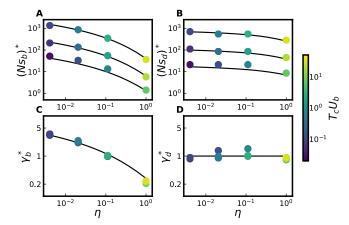
is important.

While the MSSM approximation is expected to be valid in describing the  $\gamma_d < \gamma_d^*$  portion of the v=0 surface, it may break down in the presence of strong deleterious effects  $\gamma_d \gg \gamma_d^*$ , even if  $T_c U_b \gg 1$ . Here, however, we will see that an alternative heuristic approach works well: we take

$$T_c \approx Ne^{-U_d \int \frac{\rho_d(s)}{s} \left(1 - e^{-T_c s}\right) ds}.$$
 [8]

The form of  $T_c$  in Eq. (8) can be motivated by analyzing how strongly deleterious mutations contribute to the determination of  $T_c$  in the MSSM approximation (that is, through the final term in Eq. (7)). We note that in using Eq. (8) we neglect any effect of beneficial mutations on the determination of  $T_c$ , which is reasonable when beneficial effects are sufficiently weak and deleterious effects sufficiently strong. When deleterious mutations all confer a single deleterious effect with  $T_c s_d \gg 1$ ,  $T_c$  in Eq. (8) reduces to the well-known quantity  $Ne^{-U_d/s_d}$ . This is often referred to as  $N_e$ , and under certain conditions gives the number of deleterious-mutation-free individuals in the population at equilibrium (51), and in turn the coalescence timescale (52). A similar interpretation can be given if  $T_c s \gg 1$ for all possible deleterious effects (53, 54). When instead both weak and strong deleterious effects are possible, the factor  $(1 - e^{-T_c s})$  essentially picks out those deleterious effects with  $T_c s \gg 1$  (which are important in reducing the effective population size and related coalescence timescale). Here, we refer to this heuristic approach to estimating  $T_c$  as an " $N_e$ based heuristic"; by substituting this  $T_c$  into Eq. (3) we can obtain predictions for v = 0 curves in the same way v = 0curves are obtained above using the MSSM approximation.

The v=0 constraint in terms of population genetic parameters. We compare our predictions for the v=0 constraint to



**Fig. 3.** Comparison between simulations and MSSM predictions for, in panels A and B, the extremal point  $((Ns_b)^*,(Ns_d)^*)$  and, in panels C and D, the ridgeline point  $(\gamma_b^*,\gamma_d^*)$ . Each point is obtained from the simulation results depicted in a particular panel of Fig. 2 or Fig. S2 (with values of  $\eta$  denoted on the horizontal axis and values of  $NU \in \{10^2,10^3,10^4\}$ , and with populations subject to a two-effect DFE); for details on how ridgeline and extremal points are extracted from a given panel of simulation results, see *Materials and Methods*. In panels A and B, the top theory curve corresponds to  $NU=10^4$ , the middle theory curve corresponds to  $NU=10^3$ , and the bottom theory curve corresponds to  $NU=10^2$ . Points are colored according to their values of  $T_cU_b$  at  $(\gamma_d,\gamma_b,\eta)=(\gamma_d^*,\gamma_b^*,\eta)$ , with  $T_c$  measured in simulations through levels of pairwise neutral heterozygosity.

the results of simulations in Fig. 2. We can see that the small  $Ns_d$  and large  $Ns_d$  portions of v=0 curves are well-described by the MSSM approximation and our  $N_e$ -based heuristic, respectively. For concreteness, we connect these two approaches by taking the result of the MSSM approximation for  $Ns_d$  up to and including  $(Ns_d)^*$ , the maximal value of  $Ns_d$  on a v=0 curve, given  $\eta$  and NU. We therefore consider the following prediction for v=0 curves:

$$Ns_b = \begin{cases} (Ns_b)^{MSSM} & Ns_d \le (Ns_d)^* \\ \min \left[ (Ns_b)^*, (Ns_b)^{NE} \right] & Ns_d > (Ns_d)^* \end{cases}$$
[9]

where  $(Ns_b)^{MSSM}$  and  $(Ns_b)^{NE}$  denote predictions for  $Ns_b$ along v = 0 curves, given the MSSM approximation and  $N_e$ -based heuristic, respectively;  $(Ns_d)^*$  and  $(Ns_b)^*$  are predictions for maximal  $Ns_d$  value and corresponding  $Ns_b$  at which v = 0, obtained using the MSSM approximation. In Fig. 2 we can see that Eq. (9) adequately predict v = 0 curves across a range of  $Ns_d$  values and  $\eta$  values for both the cases of two-effect and two-exponential DFEs. These simulations are conducted with  $NU = 10^4$ ; the results of simulations with  $NU = 10^2$  and  $NU = 10^3$  are presented in Fig. S2. As is observed for v=0 curves in the space of scaled effects, we note that the v = 0 curves are much less "sharp" at large values of  $Ns_d$  for the cases of two-exponential DFEs, as compared to cases of two-effect DFEs. Note that because at fixed  $\eta$  and NU,  $T_c$  varies with  $Ns_b$  and  $Ns_d$ , the point in parameter space at which  $(\gamma_d, \gamma_b) = (\gamma_d^*, \gamma_b^*)$  is not the same as the point at which  $(Ns_b, Ns_d) = ((Ns_b), (Ns_d)^*)$ . However, we can see in Fig. 2 and Fig. S2—with the point at which  $(\gamma_d, \gamma_b) = (\gamma_d^*, \gamma_b^*)$ denoted by a star marker—that for all cases considered, these points nearly coincide. Thus, validity of the MSSM approximation up to one of these points essentially implies validity up to the other point, which motivates us to use the predictions of the MSSM approximation for  $Ns_d$  up to  $(Ns_d)^*$  in Eq. (9). To summarize the accuracy of the MSSM approximation in predicting v=0 curves across the entire range of NU and  $\eta$  values simulated, in Fig. 3 we compare our predictions for  $(Ns_b)^*$ ,  $(Ns_d)^*$ ,  $\gamma_b^*$  and  $\gamma_d^*$  to the corresponding quantities obtained from simulations (with details of how these quantities are extracted from simulations provided in *Materials and Methods*). Fig. 3 includes populations which are subject to two-effect DFEs; we provide the same comparison for populations instead subject to two-exponential DFEs in Fig. S3. We can see that these quantities (and thus the weaker-selection portion of v=0 curves) are well-predicted as long as  $T_cU_b\gg 1$  at a given point along the v=0 ridgeline.

481

482

483

484

487

488

489

494

495

496

497

498

499

501

502

503

504

509

510

511

512

513

514

515

516

517

518

519

522

523

524

525

529

530

531

532

533

534

536

537

In Fig. 2, we have chosen to illustrate cross sections of the parameter space spanned by the axes  $Ns_b$  and  $Ns_d$  because of the striking nonmonotonicity of v=0 curves in this space (at fixed  $\eta$  and NU). To gain a more complete qualitative understanding of the v=0 constraint, we can consider small perturbations of parameters from the v=0 constraint along each of the two remaining axes,  $\eta$  and NU. The behavior with  $\eta$  is simple:  $N^2v$  increases monotonically with  $\eta$  (with other parameters held fixed), so v = 0 curves are shifted (and distorted, to some extent) towards lower  $Ns_b$  values as  $\eta$  is increased (i.e. with larger  $\eta$ , smaller values of  $Ns_b$  are needed to have v=0). The behavior with NU is less immediately clear, but also straightforward: v = 0 curves are shifted toward larger  $Ns_b$  values as NU is increased. This reflects the fact that a larger NU value implies more frequent interference, and thus less efficient selection for beneficial mutations and against deleterious mutations. From this dependence, the behavior with U (at fixed  $\eta$ , N,  $s_b$  and  $s_d$ ) also follows: v = 0 curves are shifted toward larger  $Ns_b$  values as U is increased. Note also that these patterns are reflected in the dependence of  $(Ns_b)^*$ on  $\eta$  and NU as shown in Fig. 3, as well as the dependence of full v = 0 curves on  $\eta$  and NU, which can be seen in Fig. S2.

Patterns of Molecular Evolution. Despite the fact that the v=0 surface involves no change in the mean fitness of a population over time, the evolutionary dynamics of populations on the v=0 surface can be far from neutral. These populations lie in a dynamic steady state involving accumulation of both beneficial and deleterious mutations, at rates which may differ substantially from the accumulation rate of neutral mutations. The fixation probabilities  $p_{\rm fix}(s) \approx e^{T_c s}/N$ , along with the MSSM approximation for determining  $T_c$ , can be used to characterize the expected total rate F of (selected) mutation fixation of a population, both lying on or off of the v=0surface. In particular, with analogy to our characterization of a v=0 surface, an F=U surface can be characterized on which selected mutations, on average, accumulate/fix as if they were entirely neutral (with faster-than-neutral accumulation of beneficial mutations precisely balancing slower-than-neutral accumulation of deleterious mutations). If we assume that synonymous mutations are neutral and nonsynonymous mutations are selected, the F = U surface can also be thought of as a dN/dS = 1 surface (which would typically be interpreted as evidence for neutral, or nearly neutral, evolution (55, 56)).

The F = U surface is described by the equation  $\int \tilde{\rho}(\gamma)(e^{\gamma} - 1)d\gamma = 0$ , from which it follows that

$$\eta|_{F=U} = \frac{1 - e^{-\gamma_d}}{e^{\gamma_b} - 1},\tag{10}$$

for the special case of a two-effect DFE. Note that  $\eta|_{F=U}$ 

450

451

453

454

455

456

458

459

460

461

462

463

464

465

466

467

468

469

470

473

474

475

476

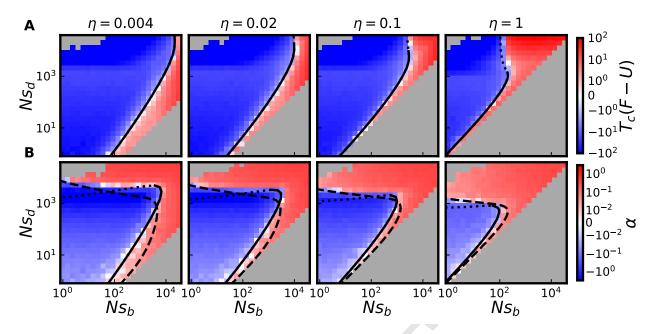


Fig. 4. Cross sections of F=U and  $\alpha=0$  surfaces. (A) Populations shown in Fig. 2A (which are subject to a two-effect DFE with  $NU=10^4$ ) are colored by their values of  $T_c(F-U)$  measured in simulations. (B) Populations shown in Fig. 2A are colored by measured values of  $\alpha$  in simulations. In A and B, solid lines depict predictions of the MSSM approximation for the F=U and  $\alpha=0$  surface, respectively, within its regime of validity; dotted lines denote MSSM predictions beyond its regime of validity. In B, dashed lines denote the corresponding predictions obtained using the  $N_e$ -based heuristic described above.

increases monotonically with  $\gamma_d$ , and decreases monotonically with  $\gamma_b$ ; thus, in contrast to v=0 curves, F=U curves do not attain extrema (at least in the space of scaled effects). In contrast to the v = 0 surface,  $\gamma_b$  does not tend to 0 as  $\gamma_d \to \infty$ , but instead tends to  $\log (1 + 1/\eta)$ . As a result, to obtain F = U curves in the space of unscaled effects, the " $N_e$ -based heuristic" described above, in which  $T_c$  is given by Eq. (8), does not apply; even at large  $\gamma_d$ , the dynamics are not driven primarily by strong purifying selection on deleterious mutations. Instead, we can use  $T_c$  obtained with the MSSM approximation (that is, using Eq. (7)) over a larger range of  $Ns_d$  values. In Fig. 4, we plot a grid of fixation rates obtained from the same simulations (of populations subject to two-effect DFEs) considered in Fig. 2, along with corresponding F = Utheory curves obtained using the MSSM approximation. Our theory curves quite accurately distinguish simulated parameter combinations in which F > U from those in which F < U. The same comparison is provided in Fig. S4, including populations with different NU values and populations subject to a twoexponential DFE. We note that, as compared to the F=Usurface in the space of scaled effects, the behavior is slightly more complex in this case, and the F = U surface can be somewhat non-monotonic in certain cases (due to variation of  $T_c$  with  $Ns_b$  and  $Ns_d$ ).

Measurements of within-population genetic diversity enable another way of characterizing and potentially drawing inferences from a population. In particular, an imbalance in the number of nonsynonymous (and synonymous) polymorphisms observed, relative to the number of nonsynonymous (and synonymous) mutations fixed since divergence of two populations, is often interpreted as a signature of selection—either positive or negative—through the McDonald Kreitman test (57). We can quantify a related imbalance through the statistic  $\alpha$ ,

defined as

$$\alpha = 1 - \frac{U_n \pi_{\text{sel}}}{F \pi_{\text{neu}}},\tag{11}$$

573

574

575

578

579

580

581

582

583

585

586

587

588

589

590

591

592

593

594

595

596

597

598

600

which resembles the McDonald-Kreitman statistic  $\alpha_{MK}$ , making an analogy between synonymous mutations and neutral mutations, and between nonsynonymous mutations and selected mutations. Here  $\pi_{\text{neu}}$  and  $\pi_{\text{sel}}$  denote levels of pairwise heterozygosity of neutral and selected mutations, respectively (with pairwise heterozygosity simply the average number of polymorphisms observed in a sample of two individuals). The statistic  $\alpha_{MK}$  has often been used to estimate the fraction of substitutions in a population which are adaptive (58). However, neither  $\alpha_{MK}$  nor the statistic  $\alpha$  defined here need be positive;  $\alpha_{MK} < 0$  is often observed and interpreted as evidence that purifying selection plays a dominant role in the evolution of a population (59). The  $\alpha = 0$  surface is thus a third surface on which the dynamics are at least ostensibly neutral in some capacity, and which can also be described using the MSSM approximation. We reproduce results of the MSSM approximation for  $\pi_{\rm neu}$  and  $\pi_{\rm sel}$  in the SI Appendix. Using these results, the  $\alpha = 0$  surface follows as

$$\int \tilde{\rho}(\gamma) \left( \frac{\gamma e^{\gamma} + 1 - e^{\gamma}}{\gamma} \right) d\gamma = 0,$$
 [12]

a consequence of which is that

$$\eta|_{v=0} < \eta|_{\alpha=0} < \eta|_{F=U},$$
 [13]

for any  $\tilde{\rho_b}(\gamma)$  and  $\tilde{\rho_d}(\gamma)$ . Thus, v > 0 and F < U on the  $\alpha = 0$  surface (and  $\alpha < 0$  and F < U on the v = 0 surface). Fig. 4 includes a comparison between predictions for the  $\alpha = 0$  surface—obtained using Eq. (12), along with Eq. (7) or Eq. (8)—and the values of  $\alpha$  obtained in simulations, for populations subject to two-effect DFEs. To obtain predictions for the  $\alpha = 0$  surface in the space of unscaled effects, the

540

541

542

544

545

547

548

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

" $N_e$ -based heuristic" is again useful for large  $N_{s_d}$  and the MSSM approximation (i.e. Eq. (7)) is useful for small  $Ns_d$ in relating  $T_c$  to N, although the specific patching we have employed in Eq. (9) to obtain the v=0 surface does not quite carry over. We provide a comparison between  $\alpha = 0$ predictions and simulated  $\alpha$  values for populations subject to a two-exponential DFE in Fig. S5; except for cases when  $\eta$  is small and  $Ns_d$  is large (and the MSSM approximation breaks down) agreement is qualitatively similar.

### **Discussion**

603

604

605

606

609

610

611

612

613

614

615

616

617

619

620

621

622

623

624

625

626

627

628

629

630

631

634

635

636

637

638

639

641

642

643

644

650

651

652

653

655

656

657

658

Previous efforts to treat the dynamics of both beneficial and deleterious mutations have largely done so by treating the two types of mutations in fundamentally different ways (15, 19, 20, 22, 60). These efforts typically start by making one of several assumptions about whether and how often deleterious mutations can fix, and how they impact the fixation probabilities of beneficial mutations. We lack an adequate understanding of the interplay between the two types of mutation in general, or even of which type of mutation will be more important in shaping the fitness trajectory of a population, given a particular distribution of fitness effects. Here, we have used our recently developed MSSM approximation, along with a simple  $N_e$ -based heuristic, to characterize this balance between beneficial and deleterious mutations. Our description of the v = 0 surface applies under quite general conditions we have described above—essentially, as long as  $NU_b$  is sufficiently large that beneficial mutations enter the population sufficiently frequently. As we discuss in more detail below, the v = 0 surface is particularly relevant to the fate of a population at long evolutionary times: the v = 0 surface limits the ability of evolution to climb fitness landscapes—and thus, under certain conditions, determines the extent to which evolution acts as an optimization process.

We have found that the v=0 constraint is concisely expressed in terms of the distribution of scaled fitness effects  $T_c s$  available to a population. Expressed as such, the population size N is relevant only via its impact on the coalescence timescale  $T_c$ . Alternatively, given a fixed U and  $\rho(s)$ , a particular  $N_0$  can be identified such that v > 0 for  $N > N_0$  and v < 0for  $N < N_0$ . This has long been recognized in the context of mutational meltdown models (61), which typically assume that decreases in fitness imply decreases in a population's size, and thus further decreases in its fitness (or the opposite increase in its size, if the population instead increases in fitness initially). Our analysis immediately yields a critical effective population size  $N_e$  at which v = 0. For example, for the case of a single beneficial effect and a single deleterious effect, rearranging Eq. (5) yields  $N_e|_{v=0} = 2/(s_b + s_d) \log [(U_d s_d)/(U_b s_b)]$ . A similar critical effective population size is identified by Whitlock (21). Because the MSSM approximation provides a relation between  $T_c$  and N, however, our analysis can also yield a critical census population size  $N_0$  at which v=0, for a given  $U\rho(s)$ .

Previous work has considered the balance between accumulation of beneficial mutations and deleterious mutations under more limiting assumptions (22, 62–64). Notably, Held et. al. (63) analyze the v=0 balance between beneficial and deleterious mutations that emerges under a biophysically grounded model of selection on traits at multiple genes, finding that selection coefficients are tuned to a state of marginal relevance in which  $T_c s \sim \mathcal{O}(1)$ , under assumptions of negative epistasis on individual traits and sufficiently frequent mutations. Goval et. al. (22) compute the fraction  $U_b/(U_b+U_d)$  of beneficial mutations to total mutations at which v = 0, given a single effect size  $s_b = s_d = s$  of both beneficial mutations and deleterious mutations. Goyal et. al. (22) also provide bounding arguments for the case in which the effect sizes of beneficial mutations and deleterious mutations differ, and briefly discuss the case in which distributions of fitness effects are more broad. The key idea of this and other single-effect approaches is that the single effect s that is modeled must be chosen as the mostlikely (or in a sense, typical) effect size of a fixed mutation (17, 18). Thus, use of a single-s approach to obtain a v=0constraint requires that the most-likely effect size of a fixed beneficial mutation at least roughly matches the most-likely effect size of a fixed deleterious mutation.

664

665

666

669

670

671

672

673

674

676

677

678

679

680

681

684

685

686

687

688

689

692

693

694

695

696

699

700

701

702

703

705

706

707

708

709

710

711

712

713

714

716

717

718

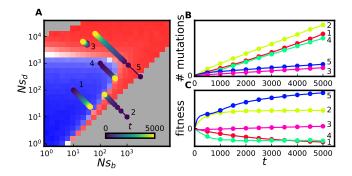
719

720

721

Rice et. al. (64) have found that, under the assumption of no epistasis (i.e., assuming a genome of finite size where mutations at the different loci do not interact epistatically) this is precisely to be expected after long evolutionary timescales. Their basic argument is simple: if beneficial mutations of a particular effect size are more likely to fix than deleterious mutations of that effect size, those mutational opportunities will be depleted faster (or vice versa). This will continue until the distribution of fixed beneficial effects precisely matches the distribution of fixed deleterious effects, at which point adaptation will come to a halt (v = 0) and the DFE can be described as "evolutionarily stable". Therefore, a single-s approach is perhaps appropriate in describing the approach to an evolutionary attractor at long times resulting from a population running out of beneficial mutations. In the presence of epistasis, however, a mutation not only enables a back mutation of the opposite effect, but can also alter the full distribution of fitness effects available to an individual. As a result, the distributions  $\rho_b(s)$  and  $\rho_d(s)$  can change in independent ways over the course of evolution. Our analysis—which makes no assumption that  $\rho_b(s)$  and  $\rho_d(s)$  are similar in scale—is thus more applicable to a description of the v=0 constraint in the presence of widespread epistasis. We emphasize that the existence of the v=0 state does not depend on the existence of any particular form of epistasis, and is expected to hold under fairly general conditions. However, the form of the equilibrium point will depend on epistasis, and as we now discuss, our analysis provides a framework to work out the implications of various proposed patterns of fitness-mediated epistasis (31), in which  $\rho(s)$  varies systematically with the fitness of a population.

To do so requires an additional assumption of how the parameters of a population depend on fitness. For instance, in the presence of diminishing-returns epistasis (in which beneficial effects become systematically weaker as the fitness of a population increases) populations are constrained to lie on a horizontal line in the space  $Ns_d$  vs.  $Ns_b$  depicted in Fig. 2 and Fig. 4. If a population starts out in the v > 0 region, its mean fitness will increase and its value of  $Ns_b$  will subsequently decrease, until the population converges to the v=0 surface. Qualitatively, then, the implications of diminishing-returns epistasis are similar to the implications of a declining fraction of beneficial mutations (which are considered by Goval et. al. (22)): as evolution proceeds, the population will approach the v = 0 surface (either from the v < 0 region or the v > 0 region); the v = 0 surface is thus a stable evolutionary attractor.



**Fig. 5.** (A) Simulated trajectories of evolving populations subject to both diminishing-returns and increasing-costs epistasis, overlaid on panel C of Fig. 2. Populations are subject to two-effect DFEs with  $NU=10^4$  and  $\eta=0.1$ . In all cases, the product  $(Ns_b)(Ns_d)$  is assumed constant as a population evolves; depending on a population's initial values of  $Ns_b$  and  $Ns_d$  it may or may not approach the v=0 surface at long times. The color of a filled circle denotes the time (in generations a population had a given set of parameters. (B) Mutation accumulation and (C) fitness trajectories of the simulated populations depicted in A. Despite a declining rate of fitness change observed in all cases, rates of (selected) mutation accumulation remain roughly constant.

On the other hand, a pattern of increasing-costs epistasis (in which deleterious fitness effects systematically increase with fitness) corresponds to a vertical line in the space  $Ns_d$  vs.  $Ns_b$ . The behavior in this case is more complex, depending on the location of the starting point in relation to the v=0ridgeline: if  $Ns_b > Ns_b^*$ , a long term evolutionary attractor does not exist, while if  $Ns_b < Ns_b^*$ , two fixed points exist, one of which is stable and one of which is unstable. One could also imagine a pattern of decreasing-costs epistasis, in which deleterious fitness effects become systematically smaller as a population increases in fitness (e.g. if deleterious mutations are thought of as reversions of beneficial mutations for which a pattern of diminishing-returns epistasis exists). The behavior in this case is similar to that of increasing-costs epistasis, but the stablity (and instability) of the two fixed points is swapped. The combination of decreasing-costs epistasis and diminishing-returns epistasis (i.e. negative epistasis), which is present in the biophysically grounded model studied by Held et. al. (63), can also be considered, and results in a stable

It is not yet entirely clear which, if any, of these simple patterns best describe the dominant patterns of epistasis in natural populations. More generally, a curve through the parameter space—parameterized by fitness—can be assumed, on which populations are constrained to lie. The intersection(s) of these curves with the v=0 surface determine the longterm evolutionary fixed points, the stability of which can be determined straightforwardly. In principle, these curves may covary along several dimensions (e.g. with quantities such as the overall mutation rate, the relative fraction of beneficial to total mutations, and other quantities such as the shapes of beneficial and deleterious DFEs). In Fig. 5, as a schematic we illustrate the consequences of a relatively simple pattern involving both diminishing-returns epistasis and increasingcosts epistasis; as recently argued by Lyons et. al. (65) and Reddy and Desai (66), these two trends both emerge from a simple null model of pervasive microscopic epistasis. Populations are simulated starting from a range of five initial conditions in the parameter space; in each case,  $s_b$  decreases with the fitness of an individual and  $s_d$  increases with fitness of an individual, with the product  $s_bs_d$  assumed constant (see Materials and Methods for details). Note that for two of the five initial conditions, the population would never approach the v=0 surface (but its rate of adaptation does slow down over time). For the remaining three initial conditions, the population approaches the v=0 surface, either from higher fitness or from lower fitness, and in particular approaches the  $\gamma_d<\gamma_d^*$  portion of the v=0 surface described by the MSSM approximation .

763

764

765

766

769

770

771

772

774

775

776

777

778

779

780

782

783

784

785

787

790

791

792

793

794

796

797

798

799

800

803

804

805

806

807

808

809

810

811

812

813

814

815

817

818

819

820

821

822

823

824

In all cases shown in Fig. 5, selected mutation accumulation proceeds throughout at a roughly constant rate, although, consistent with fixation rates measured in simulations and shown in Fig. 4, those populations which approach the v=0surface have a higher long-term steady state fixation rate of new mutations. Those populations which approach the v=0surface can be thought to undergo rapid molecular evolution at steady state, in that  $F \sim U_b + U_d$  is possible. In contrast, those populations which do not approach the v=0 surface can instead end up with a much smaller fixation rate  $F \sim U_b$ (with  $F = U_b$  if deleterious mutations are strong enough that all are purged by selection, and beneficial mutations weak enough that they accumulate entirely neutrally). Broadly speaking, these patterns—a rate of fitness increase which declines over time (67), and in particular, the maintenance of a roughly constant rate of mutation accumulation despite a declining rate of fitness increase (27, 68, 69)—have been observed in multiple microbial evolution experiments. Our analysis provides a way to identify regions of the parameter space in which these and similar observed patterns are possible, or alternatively, to yield constraints on the dominant modes of fitness-mediated epistasis given an observed fitness and/or mutation accumulation trajectory.

Using arguments along the lines described above, our analysis can be used to predict the flow of a population through parameter space, given a complete characterization of any form of fitness-mediated epistasis—that is, of  $\rho(s|X)$ . Crucially, we make the assumption of slow epistasis, such that  $\rho(s|X)$  can be treated as uniform within the population, and constant in time, in identifying its corresponding rate of fitness increase. This assumption means that we neglect the possibility that individual mutations could lead to specific shifts in  $U\rho(s)$ , which could then themselves be subject to selection. For example, a lineage could arise that has access to more (or stronger-effect) beneficial (or deleterious) mutations than other individuals within the population, and this lineage could then be subject to second-order selection. Addressing this effect is an interesting topic for other work, and has recently been addressed by (70) using a related theoretical framework.

#### **Materials and Methods**

To validate our predictions, we conducted individual-based Wright-Fisher simulations. Simulations were performed using code available at https://github.com/mjmel/mssm-sim and used by (24). Simulations consist of a mutation step and a reproduction step repeated each generation. In the mutation step, each individual acquires a Poisson-distributed number of mutations with mean U; the effect of each mutation is independently drawn from the distribution  $\rho(s)$  and increments (or decrements) an indivitual's log-fitness X. Purely neutral mutations are also introduced at rate  $U_n$ . The identities and fitness effects of the mutations carried by each individual are tracked. In the reproduction step, individuals are resampled with replacement with probabilities proportional to their fitnesses  $e^X$ .

726

727

728

729

730

731

732

733

734

735

736

737

738

741

742

743

744

745

748

749

750

751

752

753

754

755

756

757

758

759

760

Populations are initialized clonally and the number of generations which elapses before the first fixation of a mutation is recorded, setting the epoch length. Simulations are run for up to 100 epochs, with the mean fitness and heterozygosities—both of neutral mutations and of selected mutations—recorded at each epoch. Simulations which for which fewer than 10 epochs have been reached after a runtime of 24 hours are discarded from our analysis.

825

827

828

829

830

831

832

833

835

836

837

838

840

842

843

847

848

849

850

851

852

853

854

855

856

857

858

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

889

891

893

895

896

897

898

899

For a given value of  $\eta$  and NU, we simulated parameter combinations lying on a grid of  $Ns_b$  and  $Ns_d$  values (depicted in Fig. 2, for example). For each value of  $\eta$  and NU, we extracted the coordinates of its ridgeline point, both in the space of scaled effects and in the space of unscaled effects, for comparison with theory. To do so in the space of scaled effects, we take the point with the largest  $\gamma_b$ value such that v < 0; the  $\gamma_b$  and  $\gamma_d$  of this point are then recorded as  $\gamma_b^*$  and  $\gamma_d^*$ , respectively. In the space of unscaled effects, we take  $(Ns_b)^*$  as the largest value of  $Ns_b$  such that v < 0 for some parameter combination;  $(Ns_d)^*$  is then taken as the median value of  $Ns_d$  for those parameter combinations such that  $Ns_b = (Ns_b)^*$ and v < 0.

We also conducted simulations in which the available fitness effects  $s_b$  and  $s_d$  depend on fitness. These simulations are identical to those described above, except after the occurrence of each mutation, the effect magnitudes of the next available beneficial and deleterious mutations are updated accordingly. In all cases, we held the product  $s_b s_d$  constant with  $s_b \propto e^{-X/5}$ , where X denotes an individual's logfitness. A similar functional dependence of  $s_b$  on X is found by Wiser et. al. (71) to describe E.coli populations in the LTEE experiment. These simulations were run for a total of 5000 generations, with measurements of fitness and the number of fixed mutations recorded every 100 generations.

**ACKNOWLEDGMENTS.** We thank Benjamin Good and Ivana Cvijovic for many helpful comments and suggestions. MMD acknowledges support from NSF Grant PHY-1914916 and NIH grant R01GM104239. Simulations were conducted on the FASRC Cannon cluster supported by the FAS Division of Science Research Computing Group at Harvard University.

- 1. Wright S (1932) The roles of mutation, inbreeding, crossbreeding, and selection in evolution (na) Vol. 1.
- Miralles R, Gerrish PJ, Moya A, Elena SF (1999) Clonal interference and the evolution of rna viruses. Science 285(5434):1745-1747.
- De Visser A, Zeyl CW, Gerrish PJ, Blanchard JL, Lenski RE (1999) Diminishing returns from mutation supply rate in asexual populations. Science 283(5400):404-406.
- Desai MM, Fisher DS, Murray AW (2007) The speed of evolution and maintenance of variation in asexual populations. Current Biology 17(5):385-394.
- Kao KC, Sherlock G (2008) Molecular characterization of clonal interference during adaptive evolution in asexual populations of saccharomyces cerevisiae. Nat Genet 40(12):1499-1504
- Lang GI, et al. (2013) Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500(7464):571-574.
- Nourmohammad A. Otwinowski J. Łuksza M. Mora T. Walczak AM (2019) Fierce selection and interference in b-cell repertoire response to chronic hiv-1. Molecular Biology and Evolution 36(10):2184-2194
- Strelkowa N, Lässig M (2012) Clonal interference in the evolution of influenza. Genetics 192(2):671. 9
- Barroso-Batista J, et al. (2014) The first steps of adaptation of escherichia coli to the gut are dominated by soft sweeps. PLOS Genetics 10(3):1-12.
- Gerrish PJ, Lenski RE (1998) The fate of competing beneficial mutations in an asexual oopulation. Genetica 102(0):127.
- Muller HJ (1964) The relation of recombination to mutational advance. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1(1):2-9.
- Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78(2):737.
- Rouzine IM, Brunet É, Wilke CO (2008) The traveling-wave approach to asexual evolution: Muller's ratchet and speed of adaptation. Theoretical Population Biology 73(1):24 - 46.
- Neher RA, Shraiman BI (2012) Fluctuations of fitness distributions and the rate of muller's ratchet. Genetics 191(4):1283-1293
- Bachtrog D, Gordo I (2004) Adaptive evolution of asexual populations under muller's ratchet Evolution 58(7):1403-1413
- Desai MM, Fisher DS (2007) Beneficial mutation-selection balance and the effect of linkage on positive selection. Genetics 176(3):1759-1798.
- Fisher DS (2013) Asexual evolution waves: fluctuations and universality. Journal of Statistica Mechanics: Theory and Experiment 2013(01):P01011.
- Good BH, Rouzine IM, Balick DJ, Hallatschek O, Desai MM (2012) Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proceedings of the National Academy of Sciences 109(13):4950-4955
- 19. Johnson T, Barton NH (2002) The effect of deleterious alleles on adaptation in asexual populations. Genetics 162(1):395.

20. Good BH. Desai MM (2014) Deleterious passengers in adapting populations. Genetics 198(3):1183-1208

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

925

926

927

928

929

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

- Whitlock MC (2000) Fixation of new alleles and the extinction of small populations: Drift load, beneficial alleles, and sexual selection. Evolution 54(6):1855-1861.
- 22. Goval S, et al. (2012) Dynamic mutation-selection balance as an evolutionary attractor, Genetics 191(4):1309-1319.
- Schiffels S, Szöllősi GJ, Mustonen V, Lässig M (2011) Emergent neutrality in adaptive asexual evolution. Genetics 189(4):1361.
- Melissa MJ, Good BH, Fisher DS, Desai MM (2022) Population genetics of polymorphism and divergence in rapidly evolving populations. Genetics 221(4):iyac053.
- Mustonen V, Lässig M (2009) From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends in Genetics 25(3):111-119.
- 26 Chou HH, Chiu HC, Delaney NF, Segrè D, Marx CJ (2011) Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332(6034):1190-1192.
- Kryazhimskiy S, Rice DP, Jerison ER, Desai MM (2014) Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344(6191):1519-1522.
- Bakerlee CW, Phillips AM, Nguyen Ba AN, Desai MM (2021) Dynamics and variability in the pleiotropic effects of adaptation in laboratory budding yeast populations. eLife 10:e70918.
- Johnson MS, Martsul A, Kryazhimskiy S, Desai MM (2019) Higher-fitness yeast genotypes are less robust to deleterious mutations. Science 366(6464):490-493.
- Johnson MS, Desai MM (2022) Mutational robustness changes during long-term adaptation in laboratory budding yeast populations. eLife 11:e76491.
- Good BH, Desai MM (2015) The impact of macroscopic epistasis on long-term evolutionary dynamics. Genetics 199(1):177-190.
- Hegreness M, Shoresh N, Hartl D, Kishony R (2006) An equivalence principle for the incorporation of favorable mutations in asexual populations. Science 311(5767):1615.
- Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genetical Research 23(1):23?35.
- Peck JR (1994) A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137(2):597.
- Charlesworth B (1994) The effect of background selection against deleterious mutations on weakly selected, linked variants. Genetics Research 63(3):213-227
- Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genetical Research 8(3):269-294.
- Hallatschek O (2011) The noisy edge of traveling waves. Proceedings of the National Academy of Sciences 108(5):1783-1787.
- Neher RA, Shraiman BI, Fisher DS (2010) Rate of adaptation in large sexual populations. Genetics 184(2):467-481
- Neher RA, Hallatschek O (2013) Genealogies of rapidly adapting populations. Proceedings of the National Academy of Sciences 110(2):437-442.
- Rouzine IM, Wakeley J, Coffin JM (2003) The solitary wave of asexual evolution. Proceedings of the National Academy of Sciences 100(2):587-592.
- Hallatschek O (2018) Selection-like biases emerge in population models with recurrent jackpot events. Genetics 210(3):1053-1073.
- 42. Neher RA (2013) Genetic draft, selective interference, and population genetics of rapid adaptation. Annual Review of Ecology, Evolution, and Systematics 44(1):195-215.
- Crow JF, Kimura M,, et al. (1970) An introduction to population genetics theory. An introduction to population genetics theory.
- Messer PW, Petrov DA (2013) Frequent adaptation and the mcdonald-kreitman test. Proceedings of the National Academy of Sciences 110(21):8615.
- Sawyer SA, Hartl DL (1992) Population genetics of polymorphism and divergence. Genetics 132(4):1161-1176.
- Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nature Reviews Genetics 8:610 EP -
- Keightlev PD. Evre-Walker A (2010) What can we learn about the distribution of fitness effects of new mutations from dna sequence data? Philosophical Transactions of the Royal Society of London B: Biological Sciences 365(1544):1187-1193.
- Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics 10(3):195-205.
- Frenkel EM, Good BH, Desai MM (2014) The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations. Genetics 196(4):1217-1226
- Levy SF, et al. (2015) Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519(7542):181-186.
- Haigh J (1978) The accumulation of deleterious genes in a population-muller's ratchet. Theoretical population biology 14(2):251–267.
- Charlesworth B, Morgan M, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134(4):1289-1303.
- Söderberg RJ, Berg OG (2007) Mutational interference and the progression of muller's ratchet when mutations have a broad range of deleterious effects. Genetics 177(2):971-986.
- Good BH, Walczak AM, Neher RA, Desai MM (2014) Genetic diversity in the interference selection limit. PLOS Genetics 10(3):1-1.
- Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends in
- Ecology & Evolution 15(12):496-503. Kryazhimskiy S, Plotkin JB (2008) The population genetics of dn/ds. PLOS Genetics
- 4(12):e1000304-McDonald JH, Kreitman M (1991) Adaptive protein evolution at the adh locus in drosophila. Nature 351 (6328):652-654.
- Eyre-Walker A (2006) The genomic rate of adaptive evolution. Trends in Ecology & Evolution
- Charlesworth J, Eyre-Walker A (2008) The mcdonald-kreitman test and slightly deleterious mutations. Molecular biology and evolution 25(6):1007-1015.
- McFarland CD, Korolev KS, Kryukov GV, Sunyaev SR, Mirny LA (2013) Impact of deleterious passenger mutations on cancer progression. Proceedings of the National Academy of Sciences

984 110(8):2910-2915.

985 986

- Lynch M, Bürger R, Butcher D, Gabriel W (1993) The mutational meltdown in asexual populations. Journal of Heredity 84(5):339

  –344.
- 987 62. McFarland CD, Mirny LA, Korolev KS (2014) Tug-of-war between driver and passenger 988 mutations in cancer and other adaptive processes. *Proceedings of the National Academy of* 989 *Sciences* 111(42):15138–15143.
- 63. Held T, Klemmer D, Lässig M (2019) Survival of the simplest in microbial evolution. *Nature Communications* 10(1):2472.
- 64. Rice DP, Good BH, Desai MM (2015) The evolutionarily stable distribution of fitness effects.
   Genetics 200(1):321–329.
- 65. Lyons DM, Zou Z, Xu H, Zhang J (2020) Idiosyncratic epistasis creates universals in mutational
   effects and evolutionary trajectories. Nature Ecology & Evolution.
- 66. Reddy G, Desai MM (2021) Global epistasis emerges from a generic model of a complex trait.
   eLife 10:e64740.
  - Couce A, Tenaillon OA (2015) The rule of declining adaptability in microbial evolution experiments. Frontiers in Genetics 6:99.
- 68. Barrick JE, et al. (2009) Genome evolution and adaptation in a long-term experiment with
   escherichia coli. Nature 461(7268):1243–1247.
- 69. Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM (2017) The dynamics of molecular
   evolution over 60,000 generations. *Nature* 551:45 EP –.
- 70. Ferrare JT, Good BH (2023) Evolution of evolvability in rapidly adapting populations. *bioRxiv*.
- Wiser MJ, Ribeck N, Lenski RE (2013) Long-term dynamics of adaptation in asexual populations. Science 342(6164):1364–1367.