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Natural selection makes evolutionary adaptation possible even if the
overwhelming majority of new mutations are deleterious. However,
in rapidly evolving populations where numerous linked mutations
occur and segregate simultaneously, clonal interference and genetic
hitchhiking can limit the efficiency of selection, allowing deleterious
mutations to accumulate over time. This can in principle overwhelm
the fitness increases provided by beneficial mutations, leading to an
overall fitness decline. Here, we analyze the conditions under which
evolution will tend to drive populations to higher versus lower fitness.
Our analysis focuses on quantifying the boundary between these two
regimes, as a function of parameters such as population size, muta-
tion rates, and selection pressures. This boundary represents a state
in which adaptation is precisely balanced by Muller’s ratchet, and we
show that it can be characterized by rapid molecular evolution without
any net fitness change. Finally, we consider the implications of global
fitness-mediated epistasis, and find that under some circumstances
this can drive populations towards the boundary state, which can
thus represent a long-term evolutionary attractor.
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Evolution is often thought of as an optimization process,1

in which natural selection pushes populations inevitably2

uphill, towards a local optimum in the fitness landscape (1).3

However, much recent work has shown that in many popula-4

tions, numerous linked mutations often arise and segregate5

simultaneously (2–9). In these rapidly evolving populations,6

natural selection is much less e�cient: it cannot act on each7

mutation independently (10). As a result, deleterious muta-8

tions can often fix, which can slow down adaptation or even9

reverse its direction, leading to declining fitness over time.10

Extensive previous work has studied the accumulation of11

deleterious mutations via Muller’s ratchet (11, 12), particularly12

in models in which beneficial mutations are either negligible or13

can be treated as a rare perturbation (13–15). Similarly, nu-14

merous studies have considered the accumulation of beneficial15

mutations (i.e. adaptation) when deleterious mutations are16

absent (16–18) or can be treated as a perturbation (19, 20).17

However, we lack an understanding of the interplay between18

the accumulation of beneficial and deleterious mutations more19

generally. Except in special cases (e.g. when clonal interference20

is absent (21), or when all beneficial and deleterious mutations21

have the same fitness e�ect (22), or in a regime where fixations22

are dominated by single driver mutations (23)), this has made23

it impossible to answer a very basic question: given a par-24

ticular set of population genetic parameters (population size,25

mutation rate, and fitness landscape), will a population tend26

to increase or decrease in fitness? In other words, under what27

circumstances can evolution act as an optimization process,28

and when do populations actually move towards less-optimal29

genotypes?30

Here, we analyze this interplay between beneficial and31

deleterious mutations in rapidly evolving populations, in the 32

regime where both types of mutations can be important. Our 33

analysis leverages recent work in traveling wave models of evo- 34

lutionary dynamics, and in particular our recently introduced 35

moderate selection, strong-mutation (MSSM) approximation 36

(24). Using this approach, we predict the conditions under 37

which populations will tend to increase or decrease in fitness 38

(i.e. where the rate of change in mean fitness, v, is positive or 39

negative). The boundary surface between these two regions of 40

the parameter space, at which v = 0, corresponds to a state 41

in which beneficial and deleterious mutations accumulate in 42

a balanced way. While the fitness trajectory of a population 43

in the v = 0 state appears neutral, the evolutionary dynamics 44

of these populations can be strongly nonneutral (as has been 45

suggested by several earlier studies; see e.g. (21–23, 25)). For 46

example, a steady state accumulation of weakly deleterious 47

mutations may be o�set by the fixation of beneficial muta- 48

tions under moderate or strong selection. We also consider 49

additional surfaces of the parameter space on which patterns 50

of molecular divergence and genetic diversity would suggest 51

a population has evolved neutrally or nearly neutrally, but 52

in fact mask a balance between the competing signatures of 53

positive and negative selection. 54

We conclude by considering how our results and the struc- 55

ture of the fitness landscape determine the long-term outcomes 56

of evolution. For example, it is natural to expect that benefi- 57

cial mutations become less common (and deleterious mutations 58

more common) as a population increases in fitness. This will 59

tend to lead a population not towards a local optimum, but 60

instead towards the v = 0 state (see e.g. Goyal et. al. (22) 61
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and Schi�els et al. (23)). More generally, recent empirical62

work has identified a consistent pattern of diminishing returns63

epistasis: beneficial mutations tend to have weaker e�ects as64

populations increase in fitness (26–28). An analogous pattern65

for epistasis on deleterious mutations is less clear, but recent66

work has identified a trend in which deleterious mutations are67

more costly in more-fit backgrounds (29, 30). We show here68

that, depending on details of the landscape and the starting69

point, these and other patterns of fitness-mediated epistasis70

can often (but not always) drive a population towards the71

v = 0 state. Thus the v = 0 state can in some circumstances72

represent a long-term evolutionary attractor, and define the73

extent to which evolution can act to optimize fitness. We refer74

to this as a dynamical limit on evolutionary adaptation, be-75

cause it arises due to the stochastic nature of the evolutionary76

process, and can be reached far from any fitness peak.77

Model78

We model the evolution of a population of N haploid individu-79

als, in which random mutations arise within a specific genomic80

region at a total rate U . We assume that recombination can81

be neglected within this region on the relevant timescales.82

We assume that each new mutation confers a fitness e�ect, s,83

drawn from some distribution of fitness e�ects (DFE), fl(s|g̨),84

that depends on the genotype g̨ of an individual as well as the85

environment the population evolves in (its fitness landscape).86

The DFE includes both beneficial and deleterious mutations,87

with beneficial mutations corresponding to s > 0 and deleteri-88

ous mutations corresponding to s < 0. To be more precise, a89

mutation with e�ect s increments an individual’s (log) fitness90

X by an amount s, and we assume o�spring numbers are91

drawn from a multinomial distribution each generation; the92

expected o�spring number of an individual with fitness X is93

eX≠X̄ , where X̄ denotes the mean fitness of the population.94

The genotype-dependence of fl(s|g̨) has been termed macro-95

scopic epistasis (31). This macroscopic epistasis can arise due96

to individual microscopic epistatic interactions among specific97

mutations, which collectively determine the overall DFE for98

a given genotype. We make the key assumption that simi-99

lar genotypes share a similar fl(s|g̨), and in particular, that100

those genotypes simultaneously present in a population (which101

are similar because of their relatedness by common ancestry)102

share the same DFE, fl(s). This allows us to solve for the103

dynamics by treating fl(s) instantaneously as a constant pa-104

rameter. We note that this assumption can be satisfied even105

in the presence of pervasive microscopic epistasis, as long as106

idiosyncratic interactions among mutations largely “average107

out” in contributing to the full distribution fl(s|g̨).108

For simplicity, we focus on a few simplifying forms of fl(s)109

in our analysis. For instance, we consider the case where all110

beneficial mutations have e�ect sb and all deleterious muta-111

tions have e�ect ≠sd (with sb, sd > 0 by convention). This112

example is useful for building general intuition, and is moti-113

vated by recent work showing that the evolutionary dynamics114

of rapidly evolving populations can in many cases be well-115

captured by a DFE consisting of a single appropriately-chosen116

“predominant” e�ect size (17, 18, 32). We also consider the117

cases of exponentially-distributed (and more generally gamma-118

distributed) e�ects of beneficial and of deleterious mutations,119

though our analysis can be extended to more general DFEs120

relatively straightforwardly. Importantly, we make no assump-121

tion that the DFEs of beneficial mutations and of deleterious 122

mutations are the same or similar in shape or in scale. 123

Results 124

The central goal of our analysis is to determine whether a 125

population will tend to increase or decrease in fitness for a 126

given set of parameters: the population size, N , the mutation 127

rate, U , and the distribution of fitness e�ects, fl(s). Because 128

our goal is to determine whether v > 0 or v < 0 for a given set 129

of parameters, we focus on analyzing the boundary between 130

these two regimes. This boundary is by definition a v = 0 131

surface where the mean fitness of the population does not on 132

average either increase or decrease. We will find it useful to 133

write the average rate of change in mean fitness, v, in terms 134

of the fixation probability of a new mutation, pfix(s), 135

v = NU

⁄
fl(s)spfix(s)ds. [1] 136

To find the v = 0 surface we then set Eq. (1) equal to 0, 137

which gives a constraint on the parameters N , U , and fl(s) 138

that defines the v = 0 surface in parameter space. 139

We can clearly have v = 0 if selection on deleterious mu- 140

tations is su�ciently strong and beneficial mutations are suf- 141

ficiently rare that no selected mutations fix at all, and the 142

evolutionary dynamics are entirely neutral (i.e. if fl(s)pfix(s) 143

is negligible for all s). Apart from this trivial case, the v = 0 144

state by definition involves substantial accumulation of dele- 145

terious mutations (at least relative to the accumulation of 146

beneficial mutations) which can be facilitated by the e�ects of 147

linked selection and clonal interference. For instance, deleteri- 148

ous mutations may routinely hitchhike along with, or hinder 149

the fixation of, a beneficial mutation (33–35). Interference 150

among multiple beneficial mutations may also substantially 151

reduce the rate at which they can fix in the population (10, 36). 152

To obtain an accurate description of the v = 0 state, our ex- 153

pression for the fixation probabilities pfix(s) must therefore 154

take these e�ects into account. 155

Frequent interference among mutations is a defining fea- 156

ture of rapid evolution, which has been the focus of much 157

recent theoretical work (13, 18, 20, 37–40). Broadly speaking, 158

this work uses traveling wave models, which first analyze the 159

steady-state distribution of fitness within the population (the 160

“traveling wave of fitness”), and then use this as the basis 161

for computing the fixation probabilities of new mutations, 162

pfix(s), and the average rate of fitness increase or decline, v. 163

Most work on traveling wave models has been done by con- 164

sidering only beneficial mutations (16–18) or only deleterious 165

mutations (14), or by focusing on one type and treating the 166

other perturbatively (20). A key exception is the moderate 167

selection, strong-mutation (MSSM) approximation we have 168

recently introduced (24), which can be applied to analyze 169

rapidly evolving populations for which both beneficial and 170

deleterious mutations a�ect the dynamics in a substantial 171

way. Here, we use this MSSM approximation to analytically 172

describe the v = 0 state. 173

A key result is that within the MSSM regime (which we 174

discuss below), the fixation probability of a new mutation is 175

given by 176

pfix(s) ¥
eTcs

N
, [2] 177

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Melissa et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

valid for both positive and negative s. Here Tc is a derived178

quantity whose definition and relationship to the parameters179

N , U and fl(s) we reproduce in SI Appendix, and which ap-180

proximately equals ÈT2Í /2—one-half the average time since181

two randomly chosen individuals share a common ancestor182

(i.e., a coalescence timescale). We note that an identical result183

for pfix(s) was derived in a somewhat di�erent context by184

Hallatschek (41). We also note that in much of the population185

genetics literature, the average pairwise coalescent time ÈT2Í is186

identified with an e�ective population size Ne. We avoid this187

language here because in general, the evolutionary dynamics188

in rapidly evolving populations are not equivalent to those in189

a neutrally evolving population for any choice of Ne (42).190

Eq. (2) di�ers from the standard formula for the fixation191

probabilities of independently evolving loci (43), which in our192

notation can be written as193

pfix(s) = 2Tc

N
◊

2s
1 ≠ e≠4Tcs

. [3]194

Eq. (3) has been used by Whitlock (21) to address similar195

questions, although that work treats Tc (referred to as Ne/2)196

as an independent parameter, instead of considering how it197

depends on the population parameters N , U , and fl(s). For198

the sake of comparison, we discuss the predictions following199

from Eq. (3) alongside our results below. The predictions are200

qualitatively (and even quantitatively) similar in some respects,201

but they break down in other cases. This is unsurprising in202

light of recent work that has shown that Eq. (3) fails to203

adequately describe the fixation probabilities of mutations in204

the presence of widespread linked selection, particularly when205

mutations confer fitness e�ects on a wide range of scales (44).206

Eq. (2) immediately implies that if we scale fitness e�ects207

to the coalescence timescale by defining “ © Tcs, the v = 0208

surface is defined by the concise equation209

⁄
fl̃(“)“e“d“ = 0. [4]210

Eq. (4) implies that we can characterize the v = 0 surface211

given only the distribution of “scaled” fitness e�ects, fl̃(“) (as212

well as validity of the MSSM approximation, which we discuss213

below). We emphasize that this is not by itself su�cient to214

determine how the v = 0 surface depends on the underlying215

parameters, because Tc depends in a nontrivial way on N , U ,216

and fl(s). We return to this dependence in more detail below.217

However, in the next section we first analyze key properties218

of the v = 0 surface in the space of scaled selective e�ects,219

focusing particular attention on two specific choices of the220

DFE as representative examples.221

The v = 0 surface in the space of scaled effects. In the scaled222

parameter space, the v = 0 surface depends only on fl̃(“), and223

not on the population size N or the mutation rate U (which224

enter only through their e�ect in determining Tc). To gain225

qualitative insight, we begin by considering the simple case226

in which all beneficial mutations confer a single scaled e�ect,227

“b © Tcsb, and all deleterious mutations confer a (potentially228

di�erent) single scaled e�ect, ≠“d © ≠Tcsd (with sb, sd > 0 by229

convention). Specifically, we have fl̃(“) = [÷/(1 + ÷)] ”(“≠“b)+230

[1/(1 + ÷)] ”(“ + “d), where we have defined ÷ © Ub/Ud as the231

ratio of beneficial to deleterious mutation rates. Plugging this232

into Eq. (4), we find that within the 3-dimensional parameter233

Fig. 1. Cross sections of the v = 0 surface in the space of scaled effects “d vs.
“b, for the four values of ÷ denoted above. Each point corresponds to a simulated
parameter combination, colored by its measured value of T 2

c v. Solid line denotes the
prediction for the v = 0 curve given by Eq. (4). Dashed lines denotes the prediction
for the v = 0 curve obtained using Eq. (3). Dotted lines denote the lines on which
÷ = “d/“b. Simulated parameter combinations lie on the grids of logarithmically
spaced Nsd and Nsb values depicted in Fig. 2, with DFEs consisting of a single
beneficial effect and a single deleterious effect, and with NU = 104 .

space spanned by “b, “d, and ÷, the v = 0 constraint is a 234

2-dimensional surface given by 235

÷|v=0 = “de≠“d

“be“b
. [5] 236

In Fig. 1 we validate this prediction for the v = 0 sur- 237

face. To do so, we conducted Wright-Fisher simulations for 238

populations whose parameters lie on a grid with varying ÷, 239

Nsb and Nsd. Each simulated population is plotted using 240

its corresponding value of Tc, measured by observing its pair- 241

wise neutral heterozygosity fineu averaged over simulation runs 242

(with Tc taken as ÈT2Í /2 = fineu/(4Un), where Un is the neu- 243

tral mutation rate used in simulations). The prediction in 244

Eq. (5) qualitatively (and except perhaps for “d ∫ 1, quan- 245

titatively) describes the v = 0 surface in the space of scaled 246

fitness e�ects “b and “d. The simulations represented in Fig. 1 247

are all conducted for populations with NU = 104. In Fig. S1, 248

we present the results of additional simulations which include 249

the cases NU = 103 and NU = 102; similar agreement is 250

obtained. 251

Several qualitative features of Eq. (5) are notable. If the 252

selective e�ects of both beneficial and deleterious mutations are 253

small compared to 1/Tc (i.e. “b π 1 and “d π 1), we see from 254

Eq. (5) that the v = 0 surface is defined by ÷|v=0 ¥ “d/“b 255

(dotted line in Fig. 1; note this converges with the v = 0 256

surface observed in simulations when “b π 1 and “d π 1). 257

This corresponds to Ubsb = Udsd, the surface on which v = 0 258

if beneficial and deleterious mutations accumulate neutrally, 259

such that each mutation fixes with probability 1/N . The 260

surface ÷ = “d/“b can be thought of as an upper bound to 261

the actual v = 0 surface; as the strength of selection (i.e. “b 262

and/or “d) is increased, the actual fraction ÷ required to have 263

v = 0 will always be smaller than “d/“b. 264

More generally, if we increase “b at fixed “d, ÷|v=0 de- 265

creases: a smaller ratio ÷ of beneficial to deleterious mutations 266

is required to be in the v = 0 state. This makes intuitive 267

sense: increasing “b increases both the fixation probability of 268
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beneficial mutations and the fitness benefit they provide to269

the population upon fixing. The e�ect of changing “d is more270

subtle, because while increasing “d decreases the fixation prob-271

ability of deleterious mutations, it also increases the fitness272

cost to the population they incur upon fixing. This means273

that the expected fitness costs to the population of deleterious274

mutations are not monotonic with e�ect size: for a fixed value275

of “b (below a threshold value described below), the population276

will adapt for small “d, decline in fitness for intermediate “d,277

and adapt for large “d. This is because for su�ciently small278

“d, deleterious mutations fix routinely but do not confer large279

enough e�ects to counteract the beneficial mutations which280

fix, while for su�ciently large “d, deleterious mutations are281

purged by selection too e�ciently to counteract the fixation282

of beneficial mutations. Instead, deleterious mutations are283

maximally impactful (in the sense that ÷|v=0 is maximized) at284

the intermediate scaled e�ect size “ú
d = 1. For su�ciently large285

“b and/or ÷, deleterious mutations cannot lead to decline in286

fitness for any value of “d (although Tcv will still be minimized287

at “d = 1). For example, at a given ÷, the population will288

always adapt provided that “b > “ú
b , where “ú

b e“ú
b = 1/(e÷).289

We can think of the curve (“d, “b, ÷) = (“ú
d , “ú

b , ÷), parameter-290

ized by ÷, as a “ridgeline” of the v = 0 surface, on which ÷ is291

maximized as a function of “d.292

The above analysis can be extended straightforwardly to293

a full distribution of fitness e�ects. As a simple example,294

we consider the case in which both beneficial and deleterious295

mutations are drawn from exponential distributions with mean296

scaled e�ects “b and “d respectively, and a ratio ÷ = Ub/Ud297

of beneficial to deleterious mutations (in the SI Appendix, we298

extend these results to the case of gamma-distributed DFEs,299

and comment further on arbitrary DFEs). Specifically, we have300

fl̃(“) = [÷/(1 + ÷)/“b] e≠“/“b + [1/(1 + ÷)/“d] e“/“d . Plugging301

this scaled DFE into Eq. (4), we find that the v = 0 surface302

is defined by303

÷ = “d

“b

3
1 ≠ “b

1 + “d

42

. [6]304

We note that in this case, a requirement that “b < 1 dynami-305

cally emerges given validity of the MSSM approximation (and306

thus the ÷ given by Eq. (6) is positive for all relevant “b and “d)307

while “d > 1 is permitted. As in the case of a two-e�ect DFE,308

a v = 0 “ridgeline” exists on which ÷ is maximized as a func-309

tion of “d, and on which “ú
d = 1 and “ú

b = ÷
1

1 + 1/÷ ≠ 1
22

.310

The behavior of the v = 0 surface for large “d is qualitatively311

di�erent, however. Instead of the dependence ÷ Ã “de≠“d ,312

we have the much slower fallo� ÷ Ã 1/“d for large “d. The313

dependence 1/“d in turn approximates the fraction of delete-314

rious e�ects with |“| < 1—that is, the fraction of deleterious315

e�ects with a reasonable chance of fixing—as opposed to the316

fixation probability Ã e≠“d of the average deleterious e�ect.317

As a result, compared to the case of a two-e�ect DFE, v = 0318

curves for a full DFE have a much more broad decay of “b319

toward zero at large “d. In Fig. S1 we compare the prediction320

in Eq. (6) to the results of simulations for the same ÷ values321

considered in Fig. 1, and for NU values ranging from 102 to322

104. Our results are qualitatively similar to the case of single323

fitness e�ects shown in Fig. 1, although agreement begins to324

break down—particularly for “d ≥ “ú
d—for smaller NU and325

smaller ÷ (i.e. for smaller values of NUb).326

Computing Tc in terms of the population genetic parameters, 327

N and Ufl(s). Above, we described the v = 0 constraint on 328

the distribution of scaled e�ects “ = Tcs. Expressed in this 329

way, the v = 0 constraint takes on the simple analytical form 330

in Eq. (4). In certain cases, the distribution of scaled e�ects 331

“ is more readily probed than the distribution of unscaled 332

e�ects s. For instance, given DNA sequencing data from a 333

population at a fixed point in time (e.g. an observation of 334

its site frequency spectra, of both synonymous mutations and 335

nonsynonymous mutations), its distribution of scaled fitness 336

e�ects can be inferred (45–47). To infer the distribution 337

unscaled fitness e�ects s then requires an independent estimate 338

of the coalescence timescale, which is typically confounded 339

with estimates of the neutral mutation rate (48). However, in 340

certain cases—such as in the context of experimentally evolved 341

populations (49, 50), the distribution of unscaled e�ects s may 342

be more practical to measure. For this reason, it may be 343

more useful to obtain a v = 0 constraint on the parameters 344

N and Ufl(s); this can also be useful in building an intuitive 345

understanding for how shifts in these underlying parameters 346

a�ect adaptation or fitness decline. As we will see in the 347

Discussion, a v = 0 constraint on unscaled e�ects s may also be 348

more useful in working out the long-term implications of simple 349

patterns of fitness-mediated epistasis observed empirically, for 350

which the parameter Ufl(s) may vary in a more straightforward 351

way, over the course of an evolutionary trajectory, than the 352

distribution of scaled e�ects. 353

In general, the coalescence timescale Tc depends in a com- 354

plicated way on the parameters N and Ufl(s), and except in 355

special cases, the mapping between a distribution of unscaled 356

e�ects Ns and the distribution of scaled e�ects Tcs is not 357

particularly clear. The MSSM approximation yields a relation 358

between Tc and the underlying parameters N and Ufl(s)—and 359

can thus be used to obtain a v = 0 constraint on the parame- 360

ters N and Ufl(s). We reproduce the relation between Tc, N 361

and Ufl(s) under the MSSM approximation in the SI Appendix. 362

The key result is 363

log Nxc ¥ Tc(xc ≠ U) ≠
vT 2

c

2 + U

⁄
fl(s)ds

s

!
eTcs

≠ 1
"

, [7] 364

along with equations for v and xc in terms of Ufl(s) and Tc 365

which we reproduce in the SI Appendix. Although it is in 366

general straightforward to solve these equations numerically, 367

the v = 0 constraint induces a particular simplification in that 368

it becomes possible to solve for Tc|v=0 in terms of the single 369

parameter fl(s), using Eq. (4). A v = 0 constraint between 370

N and Ufl(s) then follows straightforwardly from the Eq. (7), 371

although the nature of these equations precludes writing down 372

simple analytical expressions for the v = 0 constraint such as 373

Eq. (5). 374

Validity of the MSSM approximation. The results for pfix(s) 375

in Eq. (2) and particularly for Tc in Eq. (7) both depend 376

on the validity of the MSSM approximation. We review the 377

conditions of validity of the MSSM approximation in the SI 378

Appendix. Roughly speaking, validity of the MSSM approxi- 379

mation requires that selection on individual mutations is at 380

most moderate (in that typical fixed fitness e�ects are smaller 381

than the characteristic range in relative fitnesses from which 382

future common ancestors typically descend) while mutation is 383

strong (in that the the dynamics by which individuals fix are 384
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Fig. 2. Cross-sections of the v = 0 surface in the space of unscaled effects Nsd vs. Nsb, for NU = 104 and four values of ÷, with populations colored by simulated values
of T 2

c v. Populations in the top row are subject to a two-effect DFE; populations in the bottom row are subject to a two-exponential DFE. Solid lines denote predictions of the
v = 0 surface obtained by connecting predictions obtained using the MSSM approximation and Ne-based heuristic (that is, using Eq. (9)). Dotted lines denote predictions
obtained using the MSSM approximation, for Nsd > (Nsd)ú; dashed lines denote predictions of the Ne-based heuristic. Stars denote points at which (“d, “b) = (“ú

d , “ú
b ),

as computed by MSSM approximation. Gray squares denote parameter combinations not simulated because Udsd < Ubsb, or parameter combinations eliminated from
consideration because fewer than 10 epochs were reached during the simulation runtime.

strongly nonneutral and the population is rapidly evolving).385

Given Ufl(s) and a solution for Tc, it is straightforward to386

determine whether these conditions are met for a particular387

point on the v = 0 surface.388

The points (“ú
d , “ú

b , ÷) lying along the v = 0 “ridgeline" are389

convenient landmarks of v = 0 curves at which the validity of390

the MSSM approximation can be assessed. At these points,391

selection is su�ciently strong that the MSSM predictions are392

nontrivial, and the v = 0 surface is guaranteed to deviate393

substantially from the surface ÷ = “d/“b on which v = 0394

assuming neutral accumulation. Furthermore, validity of the395

MSSM approximation at (“ú
d , “ú

b , ÷) implies validity of the396

approach for smaller values of “d and “b along the same v = 0397

curve, up to and including (“ú
d , “ú

b , ÷), for a given ÷. Note that398

in the limit “b æ 0 and “d æ 0, the population dynamics399

become purely neutral, and "strong mutation" condition of the400

MSSM approximation breaks down; however, by this point,401

the v = 0 surface will simply approach its neutral expectation402

÷ = “d/“b.403

In the SI Appendix, we assess the validity of the MSSM404

approximation at the points (“ú
d , “ú

b , ÷), for the cases of a405

two-e�ect DFE and a two-exponential DFE. We find that in406

both of these cases, the conditions of validity of the MSSM407

approximation are met provided that TcUb ∫ 1 at (“ú
d , “ú

b , ÷);408

note that we assume Ub Æ Ud throughout, so that TcUd ∫ 1 is409

also implied. The condition TcUb ∫ 1 has a relatively simple410

dynamical interpretation—essentially, that a given lineage411

will acquire multiple beneficial mutations over the coalescence412

timescale—and is satisfied at (“ú
d , “ú

b , ÷) for su�ciently large413

NU (since TcU increases with NU , if “b, “d and ÷ are held414

fixed). This suggests that the MSSM approximation is of415

broad use in the describing the “d < “ú
d portion of v = 0416

curves for rapidly evolving populations in which interference417

is important. 418

While the MSSM approximation is expected to be valid 419

in describing the “d < “ú
d portion of the v = 0 surface, it 420

may break down in the presence of strong deleterious e�ects 421

“d ∫ “ú
d , even if TcUb ∫ 1. Here, however, we will see that 422

an alternative heuristic approach works well: we take 423

Tc ¥ Ne
≠Ud

s
fld(s)

s (1≠e≠Tcs)ds
. [8] 424

The form of Tc in Eq. (8) can be motivated by analyzing how 425

strongly deleterious mutations contribute to the determination 426

of Tc in the MSSM approximation (that is, through the final 427

term in Eq. (7)). We note that in using Eq. (8) we neglect 428

any e�ect of beneficial mutations on the determination of Tc, 429

which is reasonable when beneficial e�ects are su�ciently weak 430

and deleterious e�ects su�ciently strong. When deleterious 431

mutations all confer a single deleterious e�ect with Tcsd ∫ 1, 432

Tc in Eq. (8) reduces to the well-known quantity Ne≠Ud/sd . 433

This is often referred to as Ne, and under certain conditions 434

gives the number of deleterious-mutation-free individuals in 435

the population at equilibrium (51), and in turn the coalescence 436

timescale (52). A similar interpretation can be given if Tcs ∫ 1 437

for all possible deleterious e�ects (53, 54). When instead 438

both weak and strong deleterious e�ects are possible, the 439

factor
!
1 ≠ e≠Tcs

"
essentially picks out those deleterious e�ects 440

with Tcs ∫ 1 (which are important in reducing the e�ective 441

population size and related coalescence timescale). Here, we 442

refer to this heuristic approach to estimating Tc as an “Ne- 443

based heuristic”; by substituting this Tc into Eq. (3) we can 444

obtain predictions for v = 0 curves in the same way v = 0 445

curves are obtained above using the MSSM approximation. 446

The v = 0 constraint in terms of population genetic parame- 447

ters. We compare our predictions for the v = 0 constraint to 448

Melissa et al. PNAS | July 28, 2024 | vol. XXX | no. XX | 5



DRAFT
Fig. 3. Comparison between simulations and MSSM predictions for, in panels A
and B, the extremal point ((Nsb)ú, (Nsd)ú) and, in panels C and D, the ridgeline
point (“ú

b , “ú
d ). Each point is obtained from the simulation results depicted in a

particular panel of Fig. 2 or Fig. S2 (with values of ÷ denoted on the horizontal axis
and values of NU œ {102, 103, 104}, and with populations subject to a two-effect
DFE); for details on how ridgeline and extremal points are extracted from a given
panel of simulation results, see Materials and Methods. In panels A and B, the top
theory curve corresponds to NU = 104, the middle theory curve corresponds to
NU = 103, and the bottom theory curve corresponds to NU = 102. Points are
colored according to their values of TcUb at (“d, “b, ÷) = (“ú

d , “ú
b , ÷), with Tc

measured in simulations through levels of pairwise neutral heterozygosity.

the results of simulations in Fig. 2. We can see that the small449

Nsd and large Nsd portions of v = 0 curves are well-described450

by the MSSM approximation and our Ne-based heuristic, re-451

spectively. For concreteness, we connect these two approaches452

by taking the result of the MSSM approximation for Nsd up453

to and including (Nsd)ú, the maximal value of Nsd on a v = 0454

curve, given ÷ and NU . We therefore consider the following455

prediction for v = 0 curves:456

Nsb =
;

(Nsb)MSSM Nsd Æ (Nsd)ú

min
#
(Nsb)ú, (Nsb)NE

$
Nsd > (Nsd)ú [9]457

where (Nsb)MSSM and (Nsb)NE denote predictions for Nsb458

along v = 0 curves, given the MSSM approximation and459

Ne-based heuristic, respectively; (Nsd)ú and (Nsb)ú are pre-460

dictions for maximal Nsd value and corresponding Nsb at461

which v = 0, obtained using the MSSM approximation. In462

Fig. 2 we can see that Eq. (9) adequately predict v = 0 curves463

across a range of Nsd values and ÷ values for both the cases464

of two-e�ect and two-exponential DFEs. These simulations465

are conducted with NU = 104; the results of simulations with466

NU = 102 and NU = 103 are presented in Fig. S2. As is467

observed for v = 0 curves in the space of scaled e�ects, we note468

that the v = 0 curves are much less “sharp” at large values469

of Nsd for the cases of two-exponential DFEs, as compared470

to cases of two-e�ect DFEs. Note that because at fixed ÷ and471

NU , Tc varies with Nsb and Nsd, the point in parameter space472

at which (“d, “b) = (“ú
d , “ú

b ) is not the same as the point at473

which (Nsb, Nsd) = ((Nsb),(Nsd)ú). However, we can see in474

Fig. 2 and Fig. S2—with the point at which (“d, “b) = (“ú
d , “ú

b )475

denoted by a star marker—that for all cases considered, these476

points nearly coincide. Thus, validity of the MSSM approxi-477

mation up to one of these points essentially implies validity up478

to the other point, which motivates us to use the predictions479

of the MSSM approximation for Nsd up to (Nsd)ú in Eq. (9).480

To summarize the accuracy of the MSSM approximation 481

in predicting v = 0 curves across the entire range of NU 482

and ÷ values simulated, in Fig. 3 we compare our predictions 483

for (Nsb)ú, (Nsd)ú, “ú
b and “ú

d to the corresponding quantities 484

obtained from simulations (with details of how these quantities 485

are extracted from simulations provided in Materials and 486

Methods). Fig. 3 includes populations which are subject to two- 487

e�ect DFEs; we provide the same comparison for populations 488

instead subject to two-exponential DFEs in Fig. S3. We can 489

see that these quantities (and thus the weaker-selection portion 490

of v = 0 curves) are well-predicted as long as TcUb ∫ 1 at a 491

given point along the v = 0 ridgeline. 492

In Fig. 2, we have chosen to illustrate cross sections of the 493

parameter space spanned by the axes Nsb and Nsd because 494

of the striking nonmonotonicity of v = 0 curves in this space 495

(at fixed ÷ and NU). To gain a more complete qualitative 496

understanding of the v = 0 constraint, we can consider small 497

perturbations of parameters from the v = 0 constraint along 498

each of the two remaining axes, ÷ and NU . The behavior 499

with ÷ is simple: N2v increases monotonically with ÷ (with 500

other parameters held fixed), so v = 0 curves are shifted (and 501

distorted, to some extent) towards lower Nsb values as ÷ is 502

increased (i.e. with larger ÷, smaller values of Nsb are needed 503

to have v = 0). The behavior with NU is less immediately 504

clear, but also straightforward: v = 0 curves are shifted toward 505

larger Nsb values as NU is increased. This reflects the fact 506

that a larger NU value implies more frequent interference, and 507

thus less e�cient selection for beneficial mutations and against 508

deleterious mutations. From this dependence, the behavior 509

with U (at fixed ÷, N , sb and sd) also follows: v = 0 curves are 510

shifted toward larger Nsb values as U is increased. Note also 511

that these patterns are reflected in the dependence of (Nsb)ú
512

on ÷ and NU as shown in Fig. 3, as well as the dependence of 513

full v = 0 curves on ÷ and NU , which can be seen in Fig. S2. 514

Patterns of Molecular Evolution. Despite the fact that the 515

v = 0 surface involves no change in the mean fitness of a popu- 516

lation over time, the evolutionary dynamics of populations on 517

the v = 0 surface can be far from neutral. These populations 518

lie in a dynamic steady state involving accumulation of both 519

beneficial and deleterious mutations, at rates which may di�er 520

substantially from the accumulation rate of neutral mutations. 521

The fixation probabilities pfix(s) ¥ eTcs/N , along with the 522

MSSM approximation for determining Tc, can be used to 523

characterize the expected total rate F of (selected) mutation 524

fixation of a population, both lying on or o� of the v = 0 525

surface. In particular, with analogy to our characterization 526

of a v = 0 surface, an F = U surface can be characterized on 527

which selected mutations, on average, accumulate/fix as if they 528

were entirely neutral (with faster-than-neutral accumulation 529

of beneficial mutations precisely balancing slower-than-neutral 530

accumulation of deleterious mutations). If we assume that 531

synonymous mutations are neutral and nonsynonymous muta- 532

tions are selected, the F = U surface can also be thought of 533

as a dN/dS = 1 surface (which would typically be interpreted 534

as evidence for neutral, or nearly neutral, evolution (55, 56)). 535

The F = U surface is described by the equation
s

fl̃(“)(e“
≠ 536

1)d“ = 0, from which it follows that 537

÷|F =U = 1 ≠ e≠“d

e“b ≠ 1 , [10] 538

for the special case of a two-e�ect DFE. Note that ÷|F =U 539

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Melissa et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT
Fig. 4. Cross sections of F = U and – = 0 surfaces. (A) Populations shown in Fig. 2A (which are subject to a two-effect DFE with NU = 104) are colored by their values of
Tc(F ≠ U) measured in simulations. (B) Populations shown in Fig. 2A are colored by measured values of – in simulations. In A and B, solid lines depict predictions of the
MSSM approximation for the F = U and – = 0 surface, respectively, within its regime of validity; dotted lines denote MSSM predictions beyond its regime of validity. In B,
dashed lines denote the corresponding predictions obtained using the Ne-based heuristic described above.

increases monotonically with “d, and decreases monotonically540

with “b; thus, in contrast to v = 0 curves, F = U curves do541

not attain extrema (at least in the space of scaled e�ects).542

In contrast to the v = 0 surface, “b does not tend to 0 as543

“d æ Œ, but instead tends to log (1 + 1/÷). As a result, to544

obtain F = U curves in the space of unscaled e�ects, the545

“Ne-based heuristic" described above, in which Tc is given by546

Eq. (8), does not apply; even at large “d, the dynamics are not547

driven primarily by strong purifying selection on deleterious548

mutations. Instead, we can use Tc obtained with the MSSM549

approximation (that is, using Eq. (7)) over a larger range of550

Nsd values. In Fig. 4, we plot a grid of fixation rates obtained551

from the same simulations (of populations subject to two-e�ect552

DFEs) considered in Fig. 2, along with corresponding F = U553

theory curves obtained using the MSSM approximation. Our554

theory curves quite accurately distinguish simulated parameter555

combinations in which F > U from those in which F < U . The556

same comparison is provided in Fig. S4, including populations557

with di�erent NU values and populations subject to a two-558

exponential DFE. We note that, as compared to the F = U559

surface in the space of scaled e�ects, the behavior is slightly560

more complex in this case, and the F = U surface can be561

somewhat non-monotonic in certain cases (due to variation of562

Tc with Nsb and Nsd).563

Measurements of within-population genetic diversity enable564

another way of characterizing and potentially drawing infer-565

ences from a population. In particular, an imbalance in the566

number of nonsynonymous (and synonymous) polymorphisms567

observed, relative to the number of nonsynonymous (and syn-568

onymous) mutations fixed since divergence of two populations,569

is often interpreted as a signature of selection—either posi-570

tive or negative—through the McDonald Kreitman test (57).571

We can quantify a related imbalance through the statistic –,572

defined as 573

– = 1 ≠
Unfisel
F fineu

, [11] 574

which resembles the McDonald-Kreitman statistic –MK , mak- 575

ing an analogy between synonymous mutations and neutral 576

mutations, and between nonsynonymous mutations and se- 577

lected mutations. Here fineu and fisel denote levels of pairwise 578

heterozygosity of neutral and selected mutations, respectively 579

(with pairwise heterozygosity simply the average number of 580

polymorphisms observed in a sample of two individuals). The 581

statistic –MK has often been used to estimate the fraction of 582

substitutions in a population which are adaptive (58). How- 583

ever, neither –MK nor the statistic – defined here need be 584

positive; –MK < 0 is often observed and interpreted as evi- 585

dence that purifying selection plays a dominant role in the 586

evolution of a population (59). The – = 0 surface is thus a 587

third surface on which the dynamics are at least ostensibly 588

neutral in some capacity, and which can also be described 589

using the MSSM approximation. We reproduce results of the 590

MSSM approximation for fineu and fisel in the SI Appendix. 591

Using these results, the – = 0 surface follows as 592

⁄
fl̃(“)

3
“e“ + 1 ≠ e“

“

4
d“ = 0, [12] 593

a consequence of which is that 594

÷|v=0 < ÷|–=0 < ÷|F =U , [13] 595

for any fl̃b(“) and fl̃d(“). Thus, v > 0 and F < U on the 596

– = 0 surface (and – < 0 and F < U on the v = 0 surface). 597

Fig. 4 includes a comparison between predictions for the – = 0 598

surface—obtained using Eq. (12), along with Eq. (7) or 599

Eq. (8)—and the values of – obtained in simulations, for 600

populations subject to two-e�ect DFEs. To obtain predictions 601

for the – = 0 surface in the space of unscaled e�ects, the 602
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“Ne-based heuristic” is again useful for large Nsd and the603

MSSM approximation (i.e. Eq. (7)) is useful for small Nsd604

in relating Tc to N , although the specific patching we have605

employed in Eq. (9) to obtain the v = 0 surface does not606

quite carry over. We provide a comparison between – = 0607

predictions and simulated – values for populations subject to608

a two-exponential DFE in Fig. S5; except for cases when ÷ is609

small and Nsd is large (and the MSSM approximation breaks610

down) agreement is qualitatively similar.611

Discussion612

Previous e�orts to treat the dynamics of both beneficial613

and deleterious mutations have largely done so by treating614

the two types of mutations in fundamentally di�erent ways615

(15, 19, 20, 22, 60). These e�orts typically start by making616

one of several assumptions about whether and how often dele-617

terious mutations can fix, and how they impact the fixation618

probabilities of beneficial mutations. We lack an adequate619

understanding of the interplay between the two types of mu-620

tation in general, or even of which type of mutation will be621

more important in shaping the fitness trajectory of a popu-622

lation, given a particular distribution of fitness e�ects. Here,623

we have used our recently developed MSSM approximation,624

along with a simple Ne-based heuristic, to characterize this625

balance between beneficial and deleterious mutations. Our626

description of the v = 0 surface applies under quite general627

conditions we have described above—essentially, as long as628

NUb is su�ciently large that beneficial mutations enter the629

population su�ciently frequently. As we discuss in more detail630

below, the v = 0 surface is particularly relevant to the fate631

of a population at long evolutionary times: the v = 0 surface632

limits the ability of evolution to climb fitness landscapes—and633

thus, under certain conditions, determines the extent to which634

evolution acts as an optimization process.635

We have found that the v = 0 constraint is concisely ex-636

pressed in terms of the distribution of scaled fitness e�ects637

Tcs available to a population. Expressed as such, the popula-638

tion size N is relevant only via its impact on the coalescence639

timescale Tc. Alternatively, given a fixed U and fl(s), a particu-640

lar N0 can be identified such that v > 0 for N > N0 and v < 0641

for N < N0. This has long been recognized in the context of642

mutational meltdown models (61), which typically assume that643

decreases in fitness imply decreases in a population’s size, and644

thus further decreases in its fitness (or the opposite increase in645

its size, if the population instead increases in fitness initially).646

Our analysis immediately yields a critical e�ective population647

size Ne at which v = 0. For example, for the case of a single648

beneficial e�ect and a single deleterious e�ect, rearranging Eq.649

(5) yields Ne|v=0 = 2/(sb + sd) log [(Udsd)/(Ubsb)]. A similar650

critical e�ective population size is identified by Whitlock (21).651

Because the MSSM approximation provides a relation between652

Tc and N , however, our analysis can also yield a critical census653

population size N0 at which v = 0, for a given Ufl(s).654

Previous work has considered the balance between accumu-655

lation of beneficial mutations and deleterious mutations under656

more limiting assumptions (22, 62–64). Notably, Held et. al.657

(63) analyze the v = 0 balance between beneficial and delete-658

rious mutations that emerges under a biophysically grounded659

model of selection on traits at multiple genes, finding that660

selection coe�cients are tuned to a state of marginal relevance661

in which Tcs ≥ O(1), under assumptions of negative epistasis662

on individual traits and su�ciently frequent mutations. Goyal 663

et. al. (22) compute the fraction Ub/(Ub + Ud) of beneficial 664

mutations to total mutations at which v = 0, given a single 665

e�ect size sb = sd = s of both beneficial mutations and dele- 666

terious mutations. Goyal et. al. (22) also provide bounding 667

arguments for the case in which the e�ect sizes of beneficial 668

mutations and deleterious mutations di�er, and briefly discuss 669

the case in which distributions of fitness e�ects are more broad. 670

The key idea of this and other single-e�ect approaches is that 671

the single e�ect s that is modeled must be chosen as the most- 672

likely (or in a sense, typical) e�ect size of a fixed mutation 673

(17, 18). Thus, use of a single-s approach to obtain a v = 0 674

constraint requires that the most-likely e�ect size of a fixed 675

beneficial mutation at least roughly matches the most-likely 676

e�ect size of a fixed deleterious mutation. 677

Rice et. al. (64) have found that, under the assumption of 678

no epistasis (i.e., assuming a genome of finite size where mu- 679

tations at the di�erent loci do not interact epistatically) this 680

is precisely to be expected after long evolutionary timescales. 681

Their basic argument is simple: if beneficial mutations of a 682

particular e�ect size are more likely to fix than deleterious 683

mutations of that e�ect size, those mutational opportunities 684

will be depleted faster (or vice versa). This will continue until 685

the distribution of fixed beneficial e�ects precisely matches the 686

distribution of fixed deleterious e�ects, at which point adapta- 687

tion will come to a halt (v = 0) and the DFE can be described 688

as “evolutionarily stable”. Therefore, a single-s approach is 689

perhaps appropriate in describing the approach to an evolu- 690

tionary attractor at long times resulting from a population 691

running out of beneficial mutations. In the presence of epis- 692

tasis, however, a mutation not only enables a back mutation 693

of the opposite e�ect, but can also alter the full distribution 694

of fitness e�ects available to an individual. As a result, the 695

distributions flb(s) and fld(s) can change in independent ways 696

over the course of evolution. Our analysis—which makes no 697

assumption that flb(s) and fld(s) are similar in scale—is thus 698

more applicable to a description of the v = 0 constraint in 699

the presence of widespread epistasis. We emphasize that the 700

existence of the v = 0 state does not depend on the existence 701

of any particular form of epistasis, and is expected to hold 702

under fairly general conditions. However, the form of the 703

equilibrium point will depend on epistasis, and as we now 704

discuss, our analysis provides a framework to work out the 705

implications of various proposed patterns of fitness-mediated 706

epistasis (31), in which fl(s) varies systematically with the 707

fitness of a population. 708

To do so requires an additional assumption of how the 709

parameters of a population depend on fitness. For instance, 710

in the presence of diminishing-returns epistasis (in which ben- 711

eficial e�ects become systematically weaker as the fitness of a 712

population increases) populations are constrained to lie on a 713

horizontal line in the space Nsd vs. Nsb depicted in Fig. 2 and 714

Fig. 4. If a population starts out in the v > 0 region, its mean 715

fitness will increase and its value of Nsb will subsequently 716

decrease, until the population converges to the v = 0 surface. 717

Qualitatively, then, the implications of diminishing-returns 718

epistasis are similar to the implications of a declining fraction 719

of beneficial mutations (which are considered by Goyal et. al. 720

(22)): as evolution proceeds, the population will approach the 721

v = 0 surface (either from the v < 0 region or the v > 0 re- 722

gion); the v = 0 surface is thus a stable evolutionary attractor. 723
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Fig. 5. (A) Simulated trajectories of evolving populations subject to both diminishing-
returns and increasing-costs epistasis, overlaid on panel C of Fig. 2. Populations
are subject to two-effect DFEs with NU = 104 and ÷ = 0.1. In all cases, the
product (Nsb)(Nsd) is assumed constant as a population evolves; depending on a
population’s initial values of Nsb and Nsd it may or may not approach the v = 0
surface at long times. The color of a filled circle denotes the time (in generations) a
population had a given set of parameters. (B) Mutation accumulation and (C) fitness
trajectories of the simulated populations depicted in A. Despite a declining rate of
fitness change observed in all cases, rates of (selected) mutation accumulation remain
roughly constant.

On the other hand, a pattern of increasing-costs epistasis (in724

which deleterious fitness e�ects systematically increase with725

fitness) corresponds to a vertical line in the space Nsd vs.726

Nsb. The behavior in this case is more complex, depending727

on the location of the starting point in relation to the v = 0728

ridgeline: if Nsb > Nsú
b , a long term evolutionary attractor729

does not exist, while if Nsb < Nsú
b , two fixed points exist, one730

of which is stable and one of which is unstable. One could731

also imagine a pattern of decreasing-costs epistasis, in which732

deleterious fitness e�ects become systematically smaller as a733

population increases in fitness (e.g. if deleterious mutations734

are thought of as reversions of beneficial mutations for which735

a pattern of diminishing-returns epistasis exists). The behav-736

ior in this case is similar to that of increasing-costs epistasis,737

but the stablity (and instability) of the two fixed points is738

swapped. The combination of decreasing-costs epistasis and739

diminishing-returns epistasis (i.e. negative epistasis), which is740

present in the biophysically grounded model studied by Held741

et. al. (63), can also be considered, and results in a stable742

fixed point.743

It is not yet entirely clear which, if any, of these simple744

patterns best describe the dominant patterns of epistasis in745

natural populations. More generally, a curve through the746

parameter space—parameterized by fitness—can be assumed,747

on which populations are constrained to lie. The intersection(s)748

of these curves with the v = 0 surface determine the long-749

term evolutionary fixed points, the stability of which can be750

determined straightforwardly. In principle, these curves may751

covary along several dimensions (e.g. with quantities such as752

the overall mutation rate, the relative fraction of beneficial to753

total mutations, and other quantities such as the shapes of754

beneficial and deleterious DFEs). In Fig. 5, as a schematic755

we illustrate the consequences of a relatively simple pattern756

involving both diminishing-returns epistasis and increasing-757

costs epistasis; as recently argued by Lyons et. al. (65)758

and Reddy and Desai (66), these two trends both emerge759

from a simple null model of pervasive microscopic epistasis.760

Populations are simulated starting from a range of five initial761

conditions in the parameter space; in each case, sb decreases762

with the fitness of an individual and sd increases with fitness 763

of an individual, with the product sbsd assumed constant (see 764

Materials and Methods for details). Note that for two of the 765

five initial conditions, the population would never approach 766

the v = 0 surface (but its rate of adaptation does slow down 767

over time). For the remaining three initial conditions, the 768

population approaches the v = 0 surface, either from higher 769

fitness or from lower fitness, and in particular approaches the 770

“d < “ú
d portion of the v = 0 surface described by the MSSM 771

approximation . 772

In all cases shown in Fig. 5, selected mutation accumulation 773

proceeds throughout at a roughly constant rate, although, 774

consistent with fixation rates measured in simulations and 775

shown in Fig. 4, those populations which approach the v = 0 776

surface have a higher long-term steady state fixation rate of 777

new mutations. Those populations which approach the v = 0 778

surface can be thought to undergo rapid molecular evolution 779

at steady state, in that F ≥ Ub + Ud is possible. In contrast, 780

those populations which do not approach the v = 0 surface 781

can instead end up with a much smaller fixation rate F ≥ Ub 782

(with F = Ub if deleterious mutations are strong enough that 783

all are purged by selection, and beneficial mutations weak 784

enough that they accumulate entirely neutrally). Broadly 785

speaking, these patterns—a rate of fitness increase which 786

declines over time (67), and in particular, the maintenance 787

of a roughly constant rate of mutation accumulation despite 788

a declining rate of fitness increase (27, 68, 69)—have been 789

observed in multiple microbial evolution experiments. Our 790

analysis provides a way to identify regions of the parameter 791

space in which these and similar observed patterns are possible, 792

or alternatively, to yield constraints on the dominant modes 793

of fitness-mediated epistasis given an observed fitness and/or 794

mutation accumulation trajectory. 795

Using arguments along the lines described above, our anal- 796

ysis can be used to predict the flow of a population through 797

parameter space, given a complete characterization of any 798

form of fitness-mediated epistasis—that is, of fl(s|X). Cru- 799

cially, we make the assumption of slow epistasis, such that 800

fl(s|X) can be treated as uniform within the population, and 801

constant in time, in identifying its corresponding rate of fitness 802

increase. This assumption means that we neglect the possi- 803

bility that individual mutations could lead to specific shifts 804

in Ufl(s), which could then themselves be subject to selection. 805

For example, a lineage could arise that has access to more 806

(or stronger-e�ect) beneficial (or deleterious) mutations than 807

other individuals within the population, and this lineage could 808

then be subject to second-order selection. Addressing this 809

e�ect is an interesting topic for other work, and has recently 810

been addressed by (70) using a related theoretical framework. 811

Materials and Methods 812

To validate our predictions, we conducted individual-based Wright- 813

Fisher simulations. Simulations were performed using code available 814

at https://github.com/mjmel/mssm-sim and used by (24). Simula- 815

tions consist of a mutation step and a reproduction step repeated 816

each generation. In the mutation step, each individual acquires a 817

Poisson-distributed number of mutations with mean U ; the e�ect 818

of each mutation is independently drawn from the distribution fl(s) 819

and increments (or decrements) an indiviual’s log-fitness X. Purely 820

neutral mutations are also introduced at rate Un. The identities 821

and fitness e�ects of the mutations carried by each individual are 822

tracked. In the reproduction step, individuals are resampled with 823

replacement with probabilities proportional to their fitnesses eX
. 824
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Populations are initialized clonally and the number of generations825

which elapses before the first fixation of a mutation is recorded, set-826

ting the epoch length. Simulations are run for up to 100 epochs, with827

the mean fitness and heterozygosities—both of neutral mutations828

and of selected mutations—recorded at each epoch. Simulations829

which for which fewer than 10 epochs have been reached after a830

runtime of 24 hours are discarded from our analysis.831

For a given value of ÷ and NU , we simulated parameter combina-832

tions lying on a grid of Nsb and Nsd values (depicted in Fig. 2, for833

example). For each value of ÷ and NU , we extracted the coordinates834

of its ridgeline point, both in the space of scaled e�ects and in the835

space of unscaled e�ects, for comparison with theory. To do so in836

the space of scaled e�ects, we take the point with the largest “b837

value such that v < 0; the “b and “d of this point are then recorded838

as “ú
b and “ú

d , respectively. In the space of unscaled e�ects, we839

take (Nsb)
ú

as the largest value of Nsb such that v < 0 for some840

parameter combination; (Nsd)
ú

is then taken as the median value841

of Nsd for those parameter combinations such that Nsb = (Nsb)
ú842

and v < 0.843

We also conducted simulations in which the available fitness844

e�ects sb and sd depend on fitness. These simulations are identical to845

those described above, except after the occurrence of each mutation,846

the e�ect magnitudes of the next available beneficial and deleterious847

mutations are updated accordingly. In all cases, we held the product848

sbsd constant with sb Ã e≠X/5
, where X denotes an individual’s log-849

fitness. A similar functional dependence of sb on X is found by Wiser850

et. al. (71) to describe E.coli populations in the LTEE experiment.851

These simulations were run for a total of 5000 generations, with852

measurements of fitness and the number of fixed mutations recorded853

every 100 generations.854
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