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Abstract

Directed evolution makes mutant lineages compete in climbing complicated
sequence-function landscapes. Given this underlying complexity it is unclear how
selection stringency, a ubiquitous parameter of directed evolution, impacts the outcome.
Here we approach this question in terms of the fitnesses of the candidate variants at
each round and the heterogeneity of their distributions of fitness effects. We show that
even if the fittest mutant is most likely to yield the fittest mutants in the next round of
selection, diversification can improve outcomes by sampling a larger variety of fitness
effects. We find that heterogeneity in fitness effects between variants, larger population
sizes, and evolution over a greater number of rounds all encourage diversification.

Introduction 1

A common bioengineering goal is to create a protein that performs a specific function. 2

One approach to this challenge is to use an existing protein as a template and apply 3

biochemical reasoning to modify it such that it performs the new function [1]. An 4

alternative and now widely used approach is directed evolution [2, 3], in which an 5

experimenter starts from a template or set of templates, mutagenizes them randomly, 6

selects from these mutants a new set of variants with improved function, and then 7

repeats the process. Over multiple rounds, this process leads to the accumulation of 8

multiple mutations that improve function, without the experimenter needing to 9

characterize how they do so. In this sense, directed evolution is a step-by-step analog of 10

natural selection, and has proved to be a powerful tool for bioengineering [2, 4] and 11

understanding natural evolution [5]. Directed evolution has, for example, yielded 12

enzymes more efficient than synthetic catalysts [6], experimentally useful fluorescence 13

proteins [7], and insights into affinity maturation of broadly neutralizing antibodies [8]. 14

In addition to proteins, this approach has also been used to engineer RNAs [9], 15

synthetic genetic polymers [10], and genetic circuits [11]. 16

A common way to implement directed evolution is to encode an initial protein 17

sequence on a plasmid and then use error-prone PCR to create a plasmid library 18

containing many variants of this initial protein [12]. This diverse library of protein 19

variants is then transformed into a cellular display system [13], which couples the desired 20

protein activity to cellular fluorescence in some way [14]. One can then use fluorescence 21
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activated cell sorting to select the best-performing cells [8, 15], extract the plasmids 22

from these cells, perform another round of error-prone PCR, and repeat the process. 23

While this basic workflow — repeated mutagenesis and selection — is the core of 24

any directed evolution approach, there are numerous possible variations [3]. For 25

example, lower-throughput methods in which each protein variant is spatially 26

separated [16] (e.g. across microplate wells) can provide more control of how they are 27

selected and mutagenized. Other approaches trade control for speed and automation, 28

for example in systems that allow cells to be selected via competition and mutagenized 29

continuously [17, 18]. 30

Regardless of the details of how the experimental workflow is implemented, directed 31

evolution is blind to the underlying map from sequence to function [19]. Rather than 32

using biochemical reasoning to choose the next sequences to test, the experimenter 33

chooses the parameters of a population’s evolution. As with evolutionary adaptation in 34

any system, the dynamics and outcomes of directed evolution depend on these choices. 35

One key parameter is the mutation rate [20]. One wishes to generate variation that 36

includes beneficial mutations, but not so much variation that these beneficial mutations 37

are too often linked with and weighed down by deleterious mutations, which are 38

typically more likely to occur [5]. Another choice is the number of mutants to generate 39

at each round, which is typically determined by a tradeoff between practical constraints 40

on the number of mutants that can be screened and the desire to have larger population 41

sizes that help to discover more beneficial mutations at each round. 42

Here, we focus on a third key parameter [21] of directed evolution experiments: how 43

stringently to select for improved function in each round. Selection stringency defines 44

the likelihood that each variant is selected for mutagenesis in the next round (e.g. what 45

defines the cutoff for “best-performing cells” in the workflow described above). For 46

example, we might select the top half, top one percent, or even just the single best 47

variant at each round. Or alternatively, we might select in some more complex way, for 48

example by seeding the next round primarily with mutants of the fittest variant in the 49

previous round, but also with a smaller number of mutants of less-fit variants. On the 50

one hand, we must impose some form of selection or there would be no pressure for 51

variants to climb to greater fitness through successive rounds. On the other hand, 52

imposing too harsh a selection pressure limits our ability to explore the 53

sequence-function landscape, and could potentially lead to the process becoming 54

trapped at a local optimum. The optimal choice of selection stringency is unclear, but it 55

must involve some balance between greedy exploitation of the fittest variants versus a 56

more relaxed selection that allows for broader exploration of the landscape [22]. 57

Work in adjacent fields has developed a variety of approaches to this question. For 58

example, in computer science, active learning approaches integrate available 59

sequence-function data to create a computational model of the landscape that is then 60

used to choose the set of sequences to screen at the next round in a way that will 61

optimize fitness gains while gaining additional information about the landscape [23, 24]. 62

These methods can be powerful and efficient, but they rely on high-throughput direct 63

measurements of sequence-function relationships, along with the construction of custom 64

libraries of specific chosen variants. Instead, we consider here the simpler approach of 65

directed evolution by random mutagenesis. This is analogous to analysis of the 66

short-term effects of selection stringency in population genetics, which have historically 67

been studied in the context of plant and animal breeding [25], considering mediating 68

factors such as heritability, inbreeding, and frequencies of standing variants [26]. More 69

recently, studies of protein evolution have described responses to selection 70

stringency [20, 22, 27] and the biophysical mechanisms explaining different outcomes [28] 71

in specific systems. 72

Here, we focus instead on the general problem of how the structure of the 73
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sequence-function landscape affects the optimal choice of selection stringency. In 74

practical experimental settings, there is noise in the measurement of function and 75

therefore in our estimates of the relative fitness of each variant. However, we will 76

consider the idealized case in which measurement noise can be neglected, and instead 77

characterize the optimal selection when the exact fitness of each variant is known. One 78

straightforward strategy, especially in this idealized case, is to select only the single 79

fittest variant at each round. This strategy is optimal if the sequence-function landscape 80

is perfectly smooth, meaning there are no non-additive interactions between the fitness 81

effects of different mutations (i.e. no epistasis). On a perfectly smooth landscape, a 82

given mutation will have the same effect on function regardless of which variant it 83

occurs in, so greedily selecting the fittest variant at each round will tend to yield the 84

fastest improvement in function. On the other hand, if the sequence-function landscape 85

is rugged, the effect of a given mutation can vary greatly by sequence context. The 86

magnitude of improvements available to different variants can vary dramatically and the 87

fittest variant is not guaranteed to have the best evolutionary prospects. In this case, 88

greedily selecting the fittest variant in each round may not be optimal, and less 89

stringent selection that allows for more exploration of the landscape may be preferable. 90

This reasoning suggests that the ruggedness of the landscape is critical to 91

determining the optimal selection stringency. Extensive prior work has attempted to 92

quantify this ruggedness by empirically characterizing protein sequence-function 93

landscapes. Broadly speaking, much of this work finds that epistasis is widespread and 94

that sequence-function landscapes are at least to some degree rugged [29,30]. For 95

example, studies have created combinatorially complete libraries that consist of all 96

possible combinations of some set of mutations separating two variants of a 97

protein [31–34]. This work has shown that there are numerous “idiosyncratic” epistatic 98

interactions between specific mutations, which constrain the potential trajectories that 99

evolution could have taken. Other studies have assayed the effects of libraries of specific 100

mutations on different ancestral sequences, again typically finding numerous epistatic 101

interactions between the background sequence and mutational effects [35, 36]. However, 102

there are also counter-examples [33], and the complexity of protein sequence-function 103

landscapes remains controversial [37, 38]. Thus the overall extent to which epistasis 104

creates ruggedness in protein sequence-function landscapes, and how this ruggedness 105

affects the optimal selection stringency in directed evolution, remains unclear. 106

An alternative body of work has used theoretical models of fitness landscapes to 107

explore how selection stringency and other parameters affect the statistics of 108

evolutionary trajectories. For example, extensive work has analyzed adaptive walks in 109

the NK model [39, 40], which parameterizes the landscape in terms of the number of 110

epistastic interactions each locus participates in. Other work has analyzed evolutionary 111

dynamics in numerous other types of theoretical landscapes [41]. These landscape 112

models are typically parameterized in terms of some set of genetic loci, their effects, and 113

the epistatic interactions between them. In other words, they generate the landscape 114

“microscopically” [42], in terms of specific epistatic interactions between particular loci. 115

An alternative class of models are defined geometrically (e.g. Fisher’s geometric 116

model [43] or the Rough Mount Fuji [44] models), or relatedly based on phenotypic 117

correlations that decay with genetic distance (e.g. [45]). 118

In principle, one can use these existing theoretical landscape models as the basis for 119

investigating the effects of selection stringency on the dynamics and outcomes of a 120

directed evolution experiment (see e.g. recent work focusing on the NK model [22]). 121

However, the effect of selection stringency does not depend on all of the complex details 122

of microscopic epistasis or the full geometric structure of the landscape. Instead, the key 123

question is how the spectrum of potential adaptive mutations varies across different 124

genetic backgrounds. In other words, how does the accumulation of one mutation (or a 125
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combination of mutations) change the distribution of fitness effects (DFE) of potential 126

future adaptive mutations? This effect has been termed “macroscopic” epistasis [42]. 127

While macroscopic epistasis ultimately arises from the collective effects of many 128

microscopic interactions, the effects of ruggedness on the dynamics of directed evolution 129

are more clearly described in terms of the former. 130

Motivated by this, we investigate here the effects of selection stringency on directed 131

evolution in several simple models of macroscopic epistasis. Specifically, we imagine that 132

each variant has some DFE which is in some way changed by mutation. There are many 133

possible models of these changes in the DFE, including for example the general pattern 134

of diminishing returns epistasis that has been observed experimentally in several 135

systems [46–48]. However, while this form of macroscopic epistasis leads to a systematic 136

trend of declining adaptability as fitness increases, it does not lead to ruggedness that 137

strongly favors exploration in directed evolution, because all equally fit sequences suffer 138

equally. We therefore focus instead on other, more rugged patterns of macroscopic 139

epistasis, in which mutations idiosyncratically change DFEs. We measure how the 140

optimal selection stringency for directed evolution depends on the ruggedness of the 141

model of macroscopic epistasis, as quantified by the heterogeneity in the DFEs of 142

candidate variants. We begin in the next section by analyzing a toy model of selection 143

among two variants in a single round of a directed evolution experiment. We then 144

expand this model in subsequent sections to analyze selection among an arbitrary 145

number of variants and over multiple rounds of directed evolution. 146

Results 147

Diversification can help explore heterogeneous DFEs 148

We begin by imagining that we have a set of variants (either our starting library or the 149

variants generated from a previous round of directed evolution) and we now need to 150

select the ones that pass the selection threshold and serve as the basis for mutagenesis 151

in the next round of directed evolution. Among this set of variants, one of them is the 152

fittest. Since it already has the most successful sequence, it is natural to ask: why not 153

simply select only this one? In other words, why not impose the maximum possible 154

stringency of selection? In this section, we will ask why it might be favorable to adopt a 155

less stringent selection pressure, and instead select a more diverse pool of variants. We 156

do so in the context of a toy scenario, in which we select among only two variants of 157

different fitness, to illustrate the essential tension between exploration and exploitation 158

of the sequence-function landscape (Fig. 1A). 159

Specifically, starting from these two variants, imagine we are limited by experimental 160

constraints to construct and screen a total of n mutants in the next round. However, we 161

can decide how many mutants of each variant will compose that screen. The question is 162

thus how many mutants to “draw” from each variant. Imagine that we take nhigh 163

mutants of the fittest variant and the remaining nlow = n� nhigh mutants from the 164

less-fit variant. Our goal is to understand how the fitness of the fittest variant in the 165

next round depends on nlow. If this next-round fitness is maximized with nlow = 0, then 166

maximal selection stringency is preferred, i.e. only the most-fit variant is selected for 167

mutagenesis in the next round. However, if some nlow > 0 is better, then it means that 168

less stringency is preferred (up to a maximum of nlow = n/2, which means that the two 169

variants are equally mutagenized and hence corresponds to the largest possible 170

diversification in this toy model). 171

It is natural to suppose that mutants of higher-fitness variants tend on average to be 172

more fit than mutants of lower-fitness variants. Thus at first glance it may appear that 173

choosing nlow = 0 (i.e. maximal selection stringency in which we mutagenize only the 174
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Figure 1. The immediate effect of selection stringency on fitness while
drawing mutants from two parents. (A) Schematic of our two-parent model, in
which we assume that we generate mutants for the next round (here a total of n = 5
mutants) from two parental variants of different fitness. In this model, the selection
stringency is determined by the number of mutants we draw from the lower-fitness
parent, which has a fitness disadvantage of �x compared to the higher-fitness parent.
We assume that each parent has an exponential DFE, with parameter � that is drawn
at random as described in the text. (B) Simulations of the two-parent model (with
�x = 1) showing how the maximum fitness of the mutants depends on the selection
stringency, i.e. the fraction of the mutants drawn from the less-fit parent. Note that the
advantage of diversification increases with n and with the degree of heterogeneity
between the DFEs of the parents.

fittest variant) might be optimal. However, it is possible that in some cases mutations 175

on the background of the most-fit variant are less favorable than on that of the less-fit 176

variant. For example, two proteins of similar fitness may differ greatly in evolvability if 177

one is quite stable and the other only marginally so [49]. This difference in stability 178

could arise for example due to some apparently neutral mutation [50]). Indeed, it is 179

often the apparently neutral (from the standpoint of the fitness assay) but stabilizing 180

mutations that go on to enable performance of a function [50]. While stability is likely 181

to be a key molecular phenotype underlying evolvability, other molecular 182

phenotypes [51] such as the structural organization of the protein fold [52] and 183

conformational diversity [53] might also play similar roles. 184

Regardless of the origins of differences in evolvability, the important point is that 185

even a small number of mutations can significantly alter the effects of other mutations 186

and therefore the evolutionary prospects of variants [54, 55]. Thus, even if on average 187

mutants of higher-fitness variants tend to be more fit, the opposite can also sometimes 188

be true. Even if this is only rarely the case, it can be advantageous to devote some 189

resources to mutagenizing the lower-fitness variant as well. The extent to which this is 190

true (and hence the best choice of nlow) will depend on how often and to what degree 191

genetic backgrounds differ in their favorability to mutation. 192

To analyze this situation of selecting among two starting variants more 193

quantitatively, we introduce a simple toy two-parent model) (Fig 1A, Methods). By 194

definition, the fittest variant has greater fitness than the less-fit variant. We will assume 195

this fitness difference is �x. The larger �x, the greater the advantage of sampling the 196

fittest variant; that is, the greater the advantage of exploitation. However, we assume 197

that the distributions of fitness effects (DFEs) available to the two variants can also 198

differ. For the sake of concreteness, we assume that the DFE of beneficial mutations for 199

both variants are exponential, with rate (i.e. inverse scale) parameters �low and �high, 200

respectively. Thus the fitnesses (x1, . . . , xnlow) of the mutants of the lower-fitness 201

variants are drawn independently as Exponential(�low)��x, while the mutants of the 202
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higher-fitness variants (xnlow+1, . . . , xn) are drawn independently as Exponential(�high). 203

The outcome we measure is the resulting maximum fitness of the new population of n 204

mutants, M = max(x1, . . . , xn). 205

If �low = �high, there would be no advantage to diversification, as the two variants 206

have the same DFE but the higher-fitness variant enjoys an initial fitness advantage. In 207

this case nlow = 0 clearly maximizes M . However, suppose that there is some random 208

variation in � between the variants. Even if on average �low = �high, we will sometimes 209

have �low < �high. This can create an advantage to diversification, such that nlow > 0 210

maximizes M . The key point is that there are diminishing returns to drawing more 211

mutants from a single exponential distribution. This can make it advantageous to draw 212

fewer mutants from the most-fit variant and instead devote some resources to sampling 213

from a second DFE with a different �, even if this comes at the price of starting at an 214

initially lower fitness. Whether this is true will depend on the typical scale of variation 215

in � (which determines the potential advantage of sampling from a second DFE), the 216

difference in fitness between the variants �x (which determines the penalty we pay for 217

starting from a less-fit variant), and the total number of the mutants we are screening n 218

(which determines the extent to which there are diminishing returns to drawing 219

additional mutations from the first DFE). 220

To illustrate this point, we can quantify the variation in DFEs by assuming that �low 221

and �high are themselves random. Specifically, we consider the case where they are 222

independently drawn from exponential distributions with parameter ↵. Here ↵ 223

parameterizes the degree to which DFEs tend to differ between variants: the mean 224

effect of a beneficial mutation (and the standard deviation of these effects) has an 225

interquartile range of approximately 2.8↵ (SI Appendix). In other words, the 226

heterogeneity of the DFEs increases with ↵ (and because the � are drawn independently, 227

each variant is equally likely to have the more favorable DFE). 228

In Fig. 1B, we show how the maximum fitness of the mutants in the next round 229

depends on the degree of diversification nlow for several different values of ↵ and n 230

(note that as an extreme value statistic, the convergence of the expected maximum M is 231

sensitive to model details, so we instead plot how the expected logM depends on these 232

parameters). For sampling mutants from the lower-fitness variant to be advantageous, 233

its DFE must be more favorable to such a degree that it overcomes its �x fitness 234

disadvantage. This becomes more likely as ↵ becomes larger relative to �x. Thus as ↵ 235

increases, the optimal number of samples to draw from the less-fit variant also increases 236

up to the point of maximal diversification, nlow = n/2 (because it is equally likely that 237

the DFE of the more-fit parent is more or less favorable than the DFE of the less-fit 238

parent, it is never optimal to increase nlow beyond this point). 239

The optimal number of samples to draw from the less-fit variant also depends on the 240

number of mutants that can be screened, n. Particularly for larger n, it is optimal to 241

diversify somewhat (i.e. the optimal nlow > 0) even when ↵ is small compared to �x. 242

In these cases, it is very unlikely that the DFE of the less-fit variant is sufficiently more 243

favorable than the DFE of the more-fit variant to overcome its initial fitness 244

disadvantage. Nevertheless, because of the diminishing returns of continuing to sample 245

more mutants from the DFE of the more-fit variant, given sufficient n and ↵ it is still 246

optimal to spare some samples for a second DFE: the chance this DFE is anomolously 247

favorable is larger than the chance that an additional sample from the DFE of the 248

more-fit variant will be more fit than all previous samples. For this reason, for 249

sufficiently large n it can even be optimal to favor maximal diversification (i.e. 250

nlow = n/2) even when ↵ is small compared to �x. 251

We can quantify this effect by calculating the ↵⇤ at which it becomes advantageous 252

to reduce stringency to nlow = n/2. We can think of this threshold ↵⇤ as an upper 253

bound on the ↵ that would justify more moderate diversification. When n = 2, a 254
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Figure 2. DFE heterogeneity required to justify maximal diversification.
The ↵⇤ at which it becomes more advantageous to diversify maximally than to not
diversify at all in our two-parent model (where the DFE rate parameters � are
distributed as Exponential(↵)). Note that, for small n, the DFE heterogeneity ↵ must
be roughly on the order of the fitness difference between parents �x to justify
maximum diversification. However, as n increases, maximal diversification can be
favorable even when ↵ is substantially less than �x.

straightforward calculation of the expected M as a function of nlow shows that ↵⇤ = �x 255

(SI Appendix). Thus, when sampling a small number of mutants from two parents, the 256

variation in their DFEs must be on the order of the fitness differences between them to 257

justify diversification. However, as we can see in Fig. 2, ↵⇤ rapidly declines as n 258

increases (e.g. ↵⇤ = �x when n = 2 but decreases to ↵⇤ ⇡ 0.29�x at just n = 4). 259

The benefits of sampling a wider range of DFEs 260

Thus far we have analyzed the effects of diversification in the context of a simple toy 261

model involving only two parental variants. In this model, we could quantify the degree 262

of selection stringency entirely in terms of the fraction of n mutants that are drawn 263

from the less-fit parent. However, in practice we typically have more flexibility: if we 264

screen a total of n mutants in a given round of directed evolution, we can select any 265

subset of these as parents for the next round. 266

In this section, we consider this more general case. Specifically, we imagine that out 267

of the n mutants in the current round, we select the most-fit k variants as parents for 268

the next round (since we will assume the DFE of each variant is drawn independently, 269

there is never an advantage to omitting some of the fitter variants in favor of less-fit 270

ones). In principle we could imagine that mutants for the next round are drawn in some 271

complex way from these k parental variants. However, for simplicity and concreteness 272

(and consistent with the practical constraints of many directed evolution workflows), we 273

imagine that we draw mutants for the next round about equally from each of these 274

parents for a total of n variants in the next round. Our goal is to understand how the 275

maximum fitness, M , of these n total variants depends on k. If k = 1 is optimal, we 276

should maximize selection stringency by drawing all mutants from the most-fit variant 277

in the current round. If on the other hand M is maximized for some k > 1, then at least 278

some diversification is favorable, up to the maximal possible diversification of k = n. 279

We illustrate this scenario, which we call the k-parent model, in Fig. 3A. As in the 280

two-parent model, we assume that the DFE of each parent is exponential with some 281

parameter �. As before, we model random heterogeneity in the DFEs by assuming that 282

� is drawn independently for each parent from an exponential distribution with 283

parameter ↵, so larger ↵ corresponds to greater heterogeneity in DFEs between variants. 284
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Figure 3. The effect of selection stringency in the k-parent model. (A)
Schematic of the k-parent model, here with n = 6 and k = 3. (B) Simulations of the
k-parent model (with �x = 1) showing how the maximum fitness of the mutants
depends on the selection stringency, i.e. the fraction of variants selected as parents for
the next round, k/n. Note that the advantage of diversification increases with n and
with the degree of heterogeneity between the DFEs of the parents.

We could make a variety of assumptions about the relative fitness differences between 285

the k parental variants. For simplicity, we assume here that the most-fit variant is �x 286

fitter than the other k � 1 variants, which are of equal fitness. This choice ensures that 287

the benefit of diversifying among k variants that we observe will be a lower bound on 288

the true benefit in a more complex model in which �x is the difference between the 289

fittest and least-fit of the k variants (with the other variants intermediate between 290

them). Of course, in practice the value of �x will tend to increase with k, so we can 291

also interpret �x as determining the best choice of k, by setting the bound on the 292

extent to which we want to diversify among less-fit variants. 293

In Fig. 3B, we show how the maximum fitness of the mutants in the next round 294

depends on the choice of selection stringency k, for several different values of n and ↵. 295

Our results in this k-parent model are qualitatively similar to those from the two-parent 296

model: the advantage of diversification increases with the number of mutants, n, and 297

with the degree of heterogeneity between the parental DFEs, ↵. They are qualitatively 298

similar for the same essential reason: there is diminishing returns from sampling many 299

mutants from a single DFE, so provided that the total number of mutants and the 300

degree of heterogeneity between DFEs are sufficiently large, the cost of starting from 301

less-fit parents is outweighed by the advantage of sampling from more than one DFE. 302

We also note that this result is not specific to the details of how we model DFEs and the 303

heterogeneity between them; the same basic dynamic is recapitulated in a model where 304

DFEs are normally distributed and ↵ controls the distribution of their means (Fig S1). 305

Inherited changes in DFEs drive the value of diversification 306

Thus far, we have analyzed the effects of selection stringency on the maximum fitness of 307

a set of mutants in a single round of directed evolution. If we assume that the dynamics 308

at each round are identical and independent, then the optimal selection stringency 309

across multiple rounds of directed evolution should simply be repeated use of the 310

optimal single-round stringency. However, it may often be the case that variation in 311

DFEs is not independent across multiple rounds. For example, if a particular protein 312

variant has a less-favorable DFE because it is barely stable, most of its descendants are 313

also likely to be barely stable and hence also have less-favorable DFEs, and vice 314

versa [49]. In other words, among proteins of similar fitness, the DFEs of more stable 315

proteins can be expected not only to be superior in the current round of evolution, but 316
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Figure 4. Effects of selection stringency in the k-parent inheritance model.
(A) Examples of the dynamics across four rounds of directed evolution in our k-parent
inheritance model for three different probabilities p of DFE degradation. Here d = 0.5,
n = 100, and the selection stringency is k = 5. For variants not among the fittest k,
color reflects the average � in that bin. Edges indicate parentage, though edges to
variants below the top k are not shown. (B) At a population size of n = 100, the
average maximum fitness at the end of 5, 10, and 20 rounds of directed evolution as a
function of selection stringency k and the features of DFE inheritance (p and d).

one might also expect the DFEs of their mutants to be superior than the DFEs of 317

mutants of less stable proteins. 318

To analyze these effects of heritability in DFEs, which violate the assumption that 319

the dynamics at each round are identical and independent, we consider here an 320

extension of our k-parent model. In this k-parent inheritance model, each variant 321

continues to have two properties: a current fitness and a DFE for mutations in the 322

subsequent round. However, we now assume that the DFE parameters � for each 323

variant are not drawn at random in each round, and instead are inherited (but 324

imperfectly, to maintain some model of the generation of heterogeneity). Specifically, 325

rather than being drawn at random for each variant, we assume that all variants 326

initially have identical DFEs, which are inherited by their offspring. However, each DFE 327

has some constant probability of becoming heritably less favorable at each round (for 328

example because that particular adaptive mutation has a destabilizing effect on the 329

protein). In this setting, maintaining some diversity at each round can be beneficial not 330

only in maximizing fitness in the immediately following round, but also in maintaining 331

high-evolvability lineages that promote adaptation in the future. 332

To implement this model, we assume that all variants have an exponential DFE with 333
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scale parameter �, which is initially identical for all variants. At each round, mutants 334

inherit their parental DFE, with some chance p that their � decreases by an amount d 335

(though because the exponential distribution must have positive scale, we set a 336

minimum � of 1/100; once this limit is reached the DFE cannot continue to degrade). 337

Subsequent selection is performed similarly to the k-parent model, and we quantify the 338

selection stringency using the parameter k as before. We find that the value of 339

diversification generally increases as the probability of degradation of the DFE goes up 340

or as we consider directed evolution across a larger number of rounds (Fig. 4). Because 341

these two factors control the extent of heterogeneity in the DFEs, this is analogous to 342

our results from the two-parent and k-parent models (though we note that the 343

dependence on the number of rounds suggests that, instead of enforcing a constant 344

selection stringency k, decreasing k at each round would improve the outcome). 345

In Fig. 4A, we show specific examples of evolution at different rates of DFE 346

degradation to illustrate these general trends. When p is low, occasional lineages with 347

unfavorable DFEs are effectively purged, and several of the top variants in each round 348

are viable because of the stability of DFEs. However, at moderate p, only some lineages 349

remain viable and the fittest variant at the end of the evolution has an ancestry widely 350

ranging in fitness rank, not being descended from the fittest variant at each round. This 351

indicates that maintaining evolvability of the DFE plays a critical role, making it 352

important to retain several candidate variants at each round. Finally, at even higher p, 353

diversification is able to retain the most evolvable lineages for a short time, but DFEs 354

quickly deteriorate to a minimum and diversification becomes futile. This reflects the 355

fact that in our model DFEs become monotonically less favorable over time. If we allow 356

for some small probability that mutations can occasionally improve the DFE (e.g. by 357

improving stability [49, 56]), diversification can also be favorable because it helps to cast 358

a larger net for mutations that improve evolvability (Fig S2). If k = 1, for example, 359

there is only one chance in each round for the parental DFE to have improved. In 360

contrast, at the cost of retaining some variants of comparatively lower fitness and 361

unfavorable DFEs, diversifying increases the probability of a DFE improvement that 362

can underlie fitness improvements over several subsequent rounds. 363

Discussion 364

In directed evolution, some number of mutants can be screened at each round. Mutants 365

modify the genetic sequence of their parental variants, thus exploring their DFEs — the 366

effects of mutations on those backgrounds. Since there is a dropoff in fitness between 367

the fittest variant and the rest, if the variants were equally evolvable, there should be no 368

advantage to selecting any variant other than the fittest. By selecting less-fit variants, 369

one would only sacrifice samples that could be used to better exploit the genetic 370

background of the fittest variant. However, if the statistics of adaptation in the 371

landscape around variants vary, reflecting idiosyncratic patterns of macroscopic 372

epistasis, then there can be an advantage to diversifying. The advantage depends on the 373

form of this variance and the number of mutants available to sample it. Our results 374

show that as the heterogeneity in the DFEs relative to the magnitude of the fitness 375

dropoff increases, so does the value of diversification. At sufficiently large population 376

sizes, the DFEs of less-fit variants can be explored with the expectation that some of 377

their mutants will often be fitter than those of the fittest ones. Imperfect heritability of 378

DFEs leads naturally to this heterogeneity, with greater risks to the favorability of a 379

DFE calling for more diversification. 380

In more realistic settings, there may be additional, higher-order heterogeneities in 381

evolvability than are reflected in our simple models. For example, in our multi-round 382

model (the k-parent inheritance model) we assume that DFEs are inherited variably, 383
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either perfectly or imperfectly. The probability of imperfect inheritance and the 384

corresponding magnitude of the DFE degradation were assumed the same across all 385

variants. However, one can imagine that a mutation on a particular background could, 386

for example, impact not only the DFE but the rate and magnitude of future mutational 387

effects on DFEs. Indeed, theoretical modeling of fitness landscapes has shown that the 388

evolutionary history of two sequences can be an important differentiating factor of the 389

evolvability of two sequences, even if their DFEs are similar [45]. The presence of such 390

higher-order heterogeneities would seem to encourage greater diversification. 391

Throughout our analysis, we assumed DFEs are exponentially distributed, consistent 392

with many previous theoretical studies which model beneficial fitness effects [57, 58]. 393

The empirical evidence for exponential fitness effects of beneficial mutations is 394

mixed [59], as is the evidence for whether the theoretical conditions underlying the 395

exponential assumption [60] are satisfied [5, 61, 62]. In assuming exponentially 396

distributed fitness effects, we also assumed that all effects are beneficial. We chose to 397

focus on beneficial effects since they are the ones that drive directed evolution; mutants 398

are typically not selected if they do not improve. However, although we made these 399

assumptions for concreteness and tractability, we believe our general conclusions are 400

robust to the specific choice of DFE model. For instance, we found that we could 401

reproduce a core set of results with an alternative model relying on a different set of 402

distributional assumptions (Fig S1). However, quantitative interpretation of the 403

parameters and results will vary from experiment to experiment. For example, typically 404

fitness effects are mostly deleterious [5, 63]. One should therefore interpret the 405

population size parameter n as a fraction of a larger population size that also contains 406

deleterious mutants. In proteins, this fraction is likely to be small (e.g. less than 1% [5]). 407

Throughout, we have also implicitly assumed a fixed mutation rate. As the mutation 408

rate increases, many beneficial mutations may become linked to deleterious ones, 409

leading to an effective change in the DFE. The balance between beneficial and 410

deleterious mutations in such a setting will depend on the structure of epistasis and the 411

set of mutants that happen to be generated. For example, it has been observed that 412

high mutation rate causes greater variance in outcomes, sometimes leading to superior 413

outcomes while risking inferior ones [20]. Future theoretical work could consider the role 414

of this critical parameter on the course of directed evolution more generally. 415

While our results help quantify how optimal selection stringency depends on 416

patterns of idiosyncratic macroscopic epistasis, it is less clear what these patterns are in 417

any specific setting. Some inferences can be drawn from previous observations of the 418

effects of selection stringency. For example, in prior simulated [27] and 419

experimental [20, 21, 64] work, high stringency has typically corresponded to better 420

outcomes than low stringency, indicating that DFEs between competitive variants were 421

not consistently of great heterogeneity. The advantage of some degree of diversification 422

has, however, also been recognized. For example, it has been observed that extreme 423

stringency “is likely to be detrimental” [27], and suggested that low stringency at a low 424

mutation rate might be useful in early rounds to produce diverse, viable variants [20]. 425

To apply this work to design and optimize directed evolution experiments, the 426

heterogeneity of DFEs during adaptation must be better understood. Such information 427

should be easier to derive experimentally than sequence-function maps, as only the 428

distribution of the phenotype of interest need be measured, as opposed to paired data 429

consisting of the phenotype of each sequence. The heterogeneity will depend on, among 430

other factors, the particular protein and the assay, but at least such experiments would 431

sketch the possible range of heterogeneity and may indicate general behavior of DFEs 432

over protein evolution. 433
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Methods 434

Code can be found at https://github.com/berkalpay/direvo-stringency. Average 435

maximum fitnesses for each parameter setting were computed using 100,000 samples for 436

the two-parent and k-parent models, and 2,000 samples for the k-parent inheritance 437

model. We describe the three main models used in this paper below. 438

Two-parent model 439

In the two-parent model, we assume there are two variants with a �x > 0 fitness 440

difference between them, the fitter parent of fitness 0 and the other of fitness ��x. We 441

assume a total of n mutants can be screened in the next round of directed evolution, 442

nlow mutants drawn from the less-fit parent and the remaining n� nlow drawn from the 443

fitter parent. We consider only the effects of beneficial mutations, which are drawn from 444

exponential DFEs: the DFE of the fitter parent is Exponential(�high) while that of the 445

less-fit parent is Exponential(�low). We assume that the DFE rate parameters are 446

themselves random and drawn as �low,�high
i.i.d.⇠ Exponential(↵). 447

k-parent model 448

Our k-parent model extends the two-parent model. We now assume there are n initial 449

variants with a fitness difference of �x between the fittest and all of the n� 1 remaining 450

variants. We consider a single round of directed evolution, in which we select the top k 451

parents (the fittest and a random subset of the k � 1 remaining variants). Each parent 452

gives rise to bn/kc mutants, with the remaining n mod k mutants assigned randomly 453

without replacement. Mutant fitnesses are calculated as in the two-parent model, with 454

each DFE being determined by a rate parameter drawn i.i.d. as Exponential(↵). 455

k-parent inheritance model 456

The k-parent inheritance model extends the k-parent model, with mutants becoming 457

parents in the following round of directed evolution. We assume that the initial 458

population is seeded by a single variant which has an exponential DFE with scale 459

parameter � = 1. This initial variant is mutagenized to yield the starting population of 460

n variants. At this and all subsequent rounds, a mutant inherits its parental scale 461

parameter except with a certain probability p that its DFE scale � decreases by d 462

(down to a minimum possible scale parameter of � = 1/100). At each round, we select 463

the fittest k variants, and draw mutants from among these variants, with the number 464

drawn from each parent multinomially distributed with equal sampling probabilities. In 465

the illustrated examples, the number of mutants is divided equally between the parents. 466

Acknowledgements 467

We thank Thomas Dupic, Jason Yu, Caelan Brooks, Caroline Holmes, Jeffrey Chang, 468

Andrew Murray, and Angela Phillips for discussions and helpful comments. BAA 469

acknowledges support from the NSF Graduate Research Fellowship Program 470

(DGE-2140743). MMD acknowledges support from grant PHY-1914916 from the NSF 471

and grant GM104239 from the NIH. 472

June 9, 2024 12/16

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.09.598029doi: bioRxiv preprint 

https://github.com/berkalpay/direvo-stringency
https://doi.org/10.1101/2024.06.09.598029
http://creativecommons.org/licenses/by-nd/4.0/


References 473

1. Yang W, Jones LM, Isley L, Ye Y, Lee HW, Wilkins A, et al. Rational design of 474

a calcium-binding protein. Journal of the American Chemical Society. 475

2003;125(20):6165–6171. 476

2. Arnold FH. Design by directed evolution. Accounts of Chemical Research. 477

1998;31(3):125–131. 478

3. Packer MS, Liu DR. Methods for the directed evolution of proteins. Nature 479

Reviews Genetics. 2015;16(7):379–394. 480

4. Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed evolution: 481

methodologies and applications. Chemical Reviews. 2021;121(20):12384–12444. 482

5. Bloom JD, Arnold FH. In the light of directed evolution: pathways of adaptive 483

protein evolution. Proceedings of the National Academy of Sciences. 484

2009;106(supplement 1):9995–10000. 485

6. Kan SJ, Lewis RD, Chen K, Arnold FH. Directed evolution of cytochrome c for 486

carbon–silicon bond formation: Bringing silicon to life. Science. 487

2016;354(6315):1048–1051. 488

7. McIsaac RS, Engqvist MK, Wannier T, Rosenthal AZ, Herwig L, Flytzanis NC, 489

et al. Directed evolution of a far-red fluorescent rhodopsin. Proceedings of the 490

National Academy of Sciences. 2014;111(36):13034–13039. 491

8. Wu NC, Grande G, Turner HL, Ward AB, Xie J, Lerner RA, et al. In vitro 492

evolution of an influenza broadly neutralizing antibody is modulated by 493

hemagglutinin receptor specificity. Nature Communications. 2017;8(1):15371. 494

9. Beaudry AA, Joyce GF. Directed evolution of an RNA enzyme. Science. 495

1992;257(5070):635–641. 496

10. Taylor AI, Holliger P. Directed evolution of artificial enzymes (XNAzymes) from 497

diverse repertoires of synthetic genetic polymers. Nature Protocols. 498

2015;10(10):1625–1642. 499

11. Yokobayashi Y, Weiss R, Arnold FH. Directed evolution of a genetic circuit. 500

Proceedings of the National Academy of Sciences. 2002;99(26):16587–16591. 501

12. Cadwell RC, Joyce GF. Randomization of genes by PCR mutagenesis. Genome 502

Research. 1992;2(1):28–33. 503

13. Gera N, Hussain M, Rao BM. Protein selection using yeast surface display. 504

Methods. 2013;60(1):15–26. 505

14. Adams RM, Mora T, Walczak AM, Kinney JB. Measuring the sequence-affinity 506

landscape of antibodies with massively parallel titration curves. eLife. 507

2016;5:e23156. 508

15. Yang G, Withers SG. Ultrahigh-throughput FACS-based screening for directed 509

enzyme evolution. ChemBioChem. 2009;10(17):2704–2715. 510

16. Coelho PS, Brustad EM, Kannan A, Arnold FH. Olefin cyclopropanation via 511

carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science. 512

2013;339(6117):307–310. 513

June 9, 2024 13/16

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.09.598029doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.09.598029
http://creativecommons.org/licenses/by-nd/4.0/


17. Ravikumar A, Arzumanyan GA, Obadi MK, Javanpour AA, Liu CC. Scalable, 514

continuous evolution of genes at mutation rates above genomic error thresholds. 515

Cell. 2018;175(7):1946–1957. 516

18. Esvelt KM, Carlson JC, Liu DR. A system for the continuous directed evolution 517

of biomolecules. Nature. 2011;472(7344):499–503. 518

19. Arnold FH. When blind is better: protein design by evolution. Nature 519

Biotechnology. 1998;16(7):617–618. 520

20. Leconte AM, Dickinson BC, Yang DD, Chen IA, Allen B, Liu DR. A 521

population-based experimental model for protein evolution: effects of mutation 522

rate and selection stringency on evolutionary outcomes. Biochemistry. 523

2013;52(8):1490–1499. 524

21. Alkhamis O, Xiao Y. Systematic study of in vitro selection stringency reveals 525

how to enrich high-affinity aptamers. Journal of the American Chemical Society. 526

2022;145(1):194–206. 527

22. James J, Towers S, Foerster J, Steel H. Optimisation strategies for directed 528

evolution without sequencing. bioRxiv. 2024; p. 2024–03. 529

23. Fannjiang C, Listgarten J. Autofocused oracles for model-based design. Advances 530

in Neural Information Processing Systems. 2020;33:12945–12956. 531

24. Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for 532

protein engineering. Nature Methods. 2019;16(8):687–694. 533

25. Clayton G, Morris J, Robertson A. An experimental check on quantitative 534

genetical theory I. Short-term responses to selection. Journal of Genetics. 535

1957;55:131–151. 536

26. Falconer DS. Introduction to Quantitative Genetics. Benjamin-Cummings 537

Publishing Company; 1996. 538

27. Wedge DC, Rowe W, Kell DB, Knowles J. In silico modelling of directed 539

evolution: Implications for experimental design and stepwise evolution. Journal 540

of Theoretical Biology. 2009;257(1):131–141. 541

28. Zheng J, Guo N, Wagner A. Selection enhances protein evolvability by increasing 542

mutational robustness and foldability. Science. 2020;370(6521):eabb5962. 543

29. Starr TN, Thornton JW. Epistasis in protein evolution. Protein Science. 544

2016;25(7):1204–1218. 545

30. De Visser JAG, Krug J. Empirical fitness landscapes and the predictability of 546

evolution. Nature Reviews Genetics. 2014;15(7):480–490. 547

31. Weinreich DM, Delaney NF, DePristo MA, Hartl DL. Darwinian evolution can 548

follow only very few mutational paths to fitter proteins. Science. 549

2006;312(5770):111–114. 550

32. Phillips AM, Lawrence KR, Moulana A, Dupic T, Chang J, Johnson MS, et al. 551

Binding affinity landscapes constrain the evolution of broadly neutralizing 552

anti-influenza antibodies. eLife. 2021;10:e71393. 553

33. Moulana A, Dupic T, Phillips AM, Chang J, Nieves S, Roffler AA, et al. 554

Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1. 555

Nature Communications. 2022;13(1):7011. 556

June 9, 2024 14/16

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.09.598029doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.09.598029
http://creativecommons.org/licenses/by-nd/4.0/


34. Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ. Empirical fitness landscapes 557

reveal accessible evolutionary paths. Nature. 2007;445(7126):383–386. 558

35. Starr TN, Picton LK, Thornton JW. Alternative evolutionary histories in the 559

sequence space of an ancient protein. Nature. 2017;549(7672):409–413. 560

36. Gong LI, Suchard MA, Bloom JD. Stability-mediated epistasis constrains the 561

evolution of an influenza protein. eLife. 2013;2:e00631. 562

37. Park Y, Metzger BP, Thornton JW. The simplicity of protein sequence-function 563

relationships. bioRxiv. 2023;. 564

38. Dupic T, Phillips AM, Desai MM. Protein sequence landscapes are not so simple: 565

on reference-free versus reference-based inference. bioRxiv. 2024;. 566

39. Kauffman SA, Weinberger ED. The NK model of rugged fitness landscapes and 567

its application to maturation of the immune response. Journal of Theoretical 568

Biology. 1989;141(2):211–245. 569

40. Franke J, Krug J. Evolutionary accessibility in tunably rugged fitness landscapes. 570

Journal of Statistical Physics. 2012;148(4):706–723. 571

41. Reddy G, Desai MM. Global epistasis emerges from a generic model of a complex 572

trait. eLife. 2021;10:e64740. 573

42. Good BH, Desai MM. The impact of macroscopic epistasis on long-term 574

evolutionary dynamics. Genetics. 2015;199(1):177–190. 575

43. Fisher RA. The Genetical Theory of Natural Selection. The Clarendon Press; 576

1930. 577

44. Neidhart J, Szendro IG, Krug J. Adaptation in tunably rugged fitness landscapes: 578

the rough Mount Fuji model. Genetics. 2014;198(2):699–721. 579

45. Agarwala A, Fisher DS. Adaptive walks on high-dimensional fitness landscapes 580

and seascapes with distance-dependent statistics. Theoretical Population Biology. 581

2019;130:13–49. 582

46. Tokuriki N, Jackson CJ, Afriat-Jurnou L, Wyganowski KT, Tang R, Tawfik DS. 583

Diminishing returns and tradeoffs constrain the laboratory optimization of an 584

enzyme. Nature Communications. 2012;3(1):1257. 585

47. Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF. Negative epistasis 586

between beneficial mutations in an evolving bacterial population. Science. 587

2011;332(6034):1193–1196. 588

48. Bank C. Epistasis and adaptation on fitness landscapes. Annual Review of 589

Ecology, Evolution, and Systematics. 2022;53:457–479. 590

49. Bloom JD, Labthavikul ST, Otey CR, Arnold FH. Protein stability promotes 591

evolvability. Proceedings of the National Academy of Sciences. 592

2006;103(15):5869–5874. 593

50. Tokuriki N, Stricher F, Serrano L, Tawfik DS. How protein stability and new 594

functions trade off. PLoS computational biology. 2008;4(2):e1000002. 595

51. Buda K, Miton CM, Fan XC, Tokuriki N. Molecular determinants of protein 596

evolvability. Trends in Biochemical Sciences. 2023;. 597

June 9, 2024 15/16

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.09.598029doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.09.598029
http://creativecommons.org/licenses/by-nd/4.0/


52. Toth-Petroczy A, Tawfik DS. The robustness and innovability of protein folds. 598

Current Opinion in Structural Biology. 2014;26:131–138. 599

53. Tokuriki N, Tawfik DS. Protein dynamism and evolvability. Science. 600

2009;324(5924):203–207. 601

54. Sailer ZR, Harms MJ. Molecular ensembles make evolution unpredictable. 602

Proceedings of the National Academy of Sciences. 2017;114(45):11938–11943. 603

55. Park Y, Metzger BP, Thornton JW. Epistatic drift causes gradual decay of 604

predictability in protein evolution. Science. 2022;376(6595):823–830. 605

56. Wagner A. Evolvability-enhancing mutations in the fitness landscapes of an RNA 606

and a protein. Nature Communications. 2023;14(1):3624. 607

57. Good BH, Rouzine IM, Balick DJ, Hallatschek O, Desai MM. Distribution of 608

fixed beneficial mutations and the rate of adaptation in asexual populations. 609

Proceedings of the National Academy of Sciences. 2012;109(13):4950–4955. 610
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