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Abstract

This paper presents new methods for analyzing and evaluating generalized plans that
can solve broad classes of related planning problems. Although synthesis and learning of
generalized plans has been a longstanding goal in Al it remains challenging due to fun-
damental gaps in methods for analyzing the scope and utility of a given generalized plan.
This paper addresses these gaps by developing a new conceptual framework along with
proof techniques and algorithmic processes for assessing termination and goal-reachability
related properties of generalized plans. We build upon classic results from graph theory
to decompose generalized plans into smaller components that are then used to derive hi-
erarchical termination arguments. These methods can be used to determine the utility
of a given generalized plan, as well as to guide the synthesis and learning processes for
generalized plans. We present theoretical as well as empirical results illustrating the scope
of this new approach. Our analysis shows that this approach significantly extends the class
of generalized plans that can be assessed automatically, thereby reducing barriers in the
synthesis and learning of reliable generalized plans.

1. Introduction

Enabling autonomous agents to learn and represent generalized knowledge that can be used
to solve multiple related planning problems is a longstanding goal in AI. The ability to create
transferrable, generalized plans that can solve large classes of sequential decision making
problems has long been recognized as essential in achieving this goal. However, research on
the problem has been limited due to technical challenges in analyzing generalized plans. The
problem of determining whether an arbitrary generalized plan is useful — i.e., whether it can
be “transferred” to solve a desired class of problem instances is equivalent to determining
whether a generalized plan terminates, which is undecidable in general. This significantly
limits approaches for computing generalized plans: the absence of an effective evaluation
function precludes computationally popular approaches for learning from past data as well
as methods for synthesizing and improving candidate generalized plans. This reduces not
only the robustness of algorithms for computing generalized plans but also the reliability of
the computed generalized plans.

This paper presents a new, hierarchical approach for assessing the utility of a generalized
plan. Since reachability of a desired goal state while executing a generalized plan can be
reduced to determining termination, we focus on methods for determining termination. Our
main contribution is a new conceptual framework and proof technique that can be used to
design and validate algorithms for analyzing the reachability and termination properties of
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generalized plans. We draw upon insights from classic results in graph theory to create a
hierarchical decomposition of a given generalized plan. This decomposition facilitates more
general termination analysis than is possible using prior work. Although the problem of
termination for generalized plans is undecidable in general, we show that in practice, the
methods developed this paper can determine termination for broad classes of generalized
plans that are beyond the scope of existing methods. This approach can also be used
in popular generate-and-test driven paradigms for generalized planning where candidate
generalized plans can be synthesized or learned from examples and pruned or refined on the
basis of reachability analysis facilitated using the presented methods.

Advances in determining termination for limited classes of generalized plans (Srivastava
et al., 2010, 2011b, 2012) have led to immense progress in the field (e.g., Segovia Aguas
et al. (2018); Bonet and Geffner (2018); Illanes and Mcllraith (2019); a more complete
survey is presented in the next section). We expect that methods for more general methods
for analyzing generalized plans will further enable continued breakthroughs in the field.

Prior work on theoretical aspects of generalized planning uses strong assumptions that
restrict the structure of generalized plans, or limit the permitted actions to “qualitative”
actions that cannot capture general forms of behavior. The framework developed in this
paper goes beyond these limitations. It offers a sound but non-complete test of termination
for generalized plans with arbitrary structures and actions that can increment or decrement
variables by specific amounts in non-deterministic or deterministic control structures. Sound
and complete methods for termination assessment of generalized plans are not possible, due
to equivalence with the halting problem for Turing machines. Our framework supports
counter-based actions that can express the full range of structured behaviors including
arbitrary Turing machines. They can express changes in Boolean state variables as well as
changes in higher-order state properties or features (e.g., the number of packages that still
need to be delivered in logistics planning problems). Prior work on generalized planning
has established that such counter-based representations capture the essence of generalized
plans as needed for analysis of their utility (Srivastava et al., 2010, 2012) as well as for
synthesis of generalized plans and policies (Srivastava et al., 2008; Bonet & Geffner, 2021).

The main new insight in this paper is that classic results in graph theory can be used
to decompose an arbitrary generalized plan, expressed as a finite-state machine, into a
finite hierarchy of generalized plans with a desirable property: the structure of generalized
plans necessarily decreases in complexity as one descends in the hierarchy. This allows
us to inductively build a new form of termination argument for a parent generalized plan
in the hierarchy by composing termination arguments for its children generalized plans.
Theoretical analysis and empirical results show that this method effectively addresses a
broad class of generalized plans that were not amenable to existing approaches.

The rest of this paper is organized as follows. Sec.2 presents a survey of related work
followed by our formal framework and the problem setting (Sec. 3). Sec. 4 presents our new
algorithmic framework for the analysis of generalized plans. This is followed by theoretical
analysis illustrating the new proof techniques that this approach enables along with our
key theoretical results on the soundness of the presented algorithm (Sec.5.1) as well as our
empirical analysis (Sec. 5.2). Sec. 6 presents our conclusions and directions for future work.
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2. Related Work

Early work by Levesque (2005) articulated the value of planning with iterative constructs
and the challenges of proving that such constructs would terminate (or equivalently, achieve
the desired goals) upon execution. This work focused on settings where problem classes are
defined by varying a single numeric planning parameter. Levesque showed that this param-
eter could be used to build iterative constructs. He argued that rather than attempting
to assess or prove the termination of such plans, asserting weaker guarantees could lead to
computationally pragmatic approaches. Levesque proposed validation of computed iterative
plans up to a certain upper bound on the single numeric planning parameter. To the best of
our knowledge, this work constitutes the first clear articulation of the value and challenges
of computing plans with loops using Al planning methods.

2.1 Counter-Based Models for Generalized Planning

Srivastava et al. (2008) showed that counters based on logic-based properties could be used
to create numeric features, e.g., the number of cells that need to be visited in a grid explo-
ration task. Such features can help identify useful iterative structures and compute “gen-
eralized plans”. Furthermore, the team showed that counter-based models for generalized
planning could be used to determine whether a computed generalized would terminate and
reach the goal. These methods were used to compute generalized plans with simple loops.
The plan synthesis process ensured provable correctness and for a broad class of problems,
the computed plans were guaranteed to solve infinitely many problem instances involving
arbitrary numbers of counters. Hu and Levesque (2010) showed that determining termi-
nation for plans featuring iteration over a single numeric planning parameter is decidable.
In subsequent work, Srivastava et al. (2010) showed that the problem of identifying useful
cyclic control structures in generalized plans could be studied using foundational models
of computation such as abacus programs by transforming the planning-domain actions into
equivalent operations that changed counters corresponding to logic-based state properties.
The team developed algorithms for determining termination and graph-theoretic charac-
terizations of generalized plans that could be assessed for termination despite the general
incomputability of the problem (Srivastava et al., 2012). These methods were also used to
develop directed search and learning techniques for generalized planning (Srivastava et al.,
2011a).

In practice, the main technical problems in determining whether a generalized plan is
“useful” is that it is difficult to construct termination arguments for complex terminating
generalized plans: the set of generalized plans that can be proved to be terminating is a small
subset of the set of terminating generalized plans. Although the strict subset relationship
must hold due to equivalence of this problem with the halting problem, it is essential to
develop new approaches that identify and push the boundary of decidability further.

The framework of qualitative numeric planning (QNP, Srivastava et al. (2011b)) ex-
tended the counter-based model for generalized planning further to address these limita-
tions. This framework introduces action semantics under which the set of terminating
generalized plans reduces to generalized plans for which the “Sieve” algorithm can assert
termination. The QNP framework is broadly applicable in practice and yet insufficient to
express Turing machines. A more formal comparison of termination under qualitative and
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deterministic semantics is presented in Sec.4.1. QNPs were later extended to more general
settings along with analysis of their expressiveness and a more general version of the Sieve
algorithm (Srivastava et al., 2015). Bonet and Geffner (2020) showed that the analysis con-
ducted by the Sieve algorithm for QNP problems can also be viewed as a fully observable
non-determinstic (FOND) planning process. These foundational formulations of generalized
planning have been extended in several directions. Bonet et al. (2019) develop connections
between generalized planning and LTL synthesis; Belle (2022) analyzes the relationships
between various correctness criteria in stochastic and non-deterministic settings.

2.2 Meta-Level Planning for Computing Generalized Plans

The theoretical advances discussed above have been accompanied with numerous advances
in approaches for computing generalized plans. Bonet et al. (2009) showed that the compu-
tation of finite-state controllers for some classes of planning problems could be reduced to
planning by creating meta-level planning domains whose actions involved the addition or
deletion of edges in a controller. These finite-state controllers were observed to have good
generalization capabilities. Several threads of research have developed this approach of
creating meta-level planning problems that synthesize generalized plans in the form of con-
trollers (Bonet et al., 2009; Hu & Giacomo, 2011; Hu & De Giacomo, 2013). Segovia Aguas
et al. (2018) present algorithms for computing hierarchical generalized plans that include
subroutines and are guaranteed to solve an input set of finitely many planning problems.
The planning domains used in this reduction include actions that construct components of
hierarchical finite-state controllers as well as validate the resulting controllers on the input
problem set. This paradigm of evaluation using a finite validation set has been developed
along multiple directions to utilize finite sets of positive examples as well as negative exam-
ples indicating undesired outcomes of plan execution (Segovia Aguas et al., 2020) and with
finite validation sets for use in a general heuristic search process for computing generalized
plans (Segovia Aguas et al., 2021, 2022).

2.3 Broader Applications

Foundations of generalized planning discussed above have also enabled broader advances
in sequential decision making. As noted above, state representations based on counters
capturing the numbers of objects that satisfy various properties were developed originally
for identifying and analyzing iterative structures for generalized plans. They have since
been found to be useful also for computing generalized, domain-wide planning knowledge.
Such methods have been utilized for learning and synthesis of generalized knowledge for se-
quential decision making in the form of general sketches and policies for planning (Bonet &
Geflner, 2018; Frances et al., 2021; Bonet & Geffner, 2021; Drexler et al., 2022), for learning
neuro-symbolic generalized heuristics for planning (Karia & Srivastava, 2021) and neuro-
symbolic generalized Q-functions for reinforcement learning in stochastic settings (Karia
& Srivastava, 2022), as well as for few-shot learning of generalized policy automata for
stochastic shortest path problems (Karia et al., 2022). In the terminology of metrics for
generalized planning presented by Srivastava et al. (2011), these methods compute gen-
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eralized plans that have a relatively higher cost of instantiation' that is still much lesser
lower than that of planning from scratch. On the other hand, these methods provide a
significantly higher domain coverage than that of an optimized generalized plan. These
directions of research bridge the gap between generalized planning and lifted sequential
decision making (Boutilier et al., 2001; Sanner & Boutilier, 2009; Cui et al., 2019). Other
approaches for learning generalized knowledge include approaches for learning general poli-
cies in a relational language (Khardon, 1999; Winner & Veloso, 2003; Yoon et al., 2008),
learning heuristics for solving multiple planning problems (Shen et al., 2020; Toyer et al.,
2020; Rivlin et al., 2020; Ferber et al., 2022; Stahlberg et al., 2022) as well as generalized
neural policies for relational MDPs (Garg et al., 2020).

3. Problem Formulation

We use a foundational but powerful representation where all variables are numeric variables
with N as their domains. Let V be the set of such variables. A concrete state is an assignment
that maps each variable in V to a value in that variable’s domain. We denote the set of all
possible concrete states as Sy. The value of a variable x in a state s € Sy is denoted as
s(x). In this paper we use the unqualified term “state” to refer to concrete states.

Definition 1. An action consists of a precondition, which maps each variable in V to a
union of intervals for that variable, and a set of action effects, effects(a). Each member of
effects(a) is of the form ®x or &z, where x € vars; effects(a) must include at most one
occurrence of each variable in V.

Prior work in generalized planning considers three types of interpretations of @&, © that
correspond to popular frameworks in the literature (Srivastava et al., 2015). We focus on
deterministic and qualitative semantics in this work:

Deterministic semantics Under deterministic semantics, each occurrence of @ (©) in an
action effect is interpreted as an increment (decrement) by a fixed discrete quantity. E.g., an
action’s effects may include 1+ 1,29 — 5, x3+ 1 for variables x1, 22, and z3. a(sy) is defined
as the unique state sy such that for every x € V if x + i is an effect of a, s2(z) = s1(x) 4+
and if x — j is an effect of a then sy(z) = s1(x) — j. s2(x) = si(x) for all x that don’t
occur in effects of a. The special case of deterministic semantics where for every variable z,
@r =x+ 1 and ©Ox = x — 1 yields formulations close to abacus programs (Lambek, 1961).
Although we will focus on deterministic semantics in this paper, we introduce qualitative
semantics below in order to compare and contrast our approach with prior work.

Qualitative semantics Under qualitative semantics, each occurrence of & (©) is inter-
preted as an increase (decrease) by a non-deterministic amount. The amount of change
caused due to each © is such that in any execution, a finite sequence of consecutive &z
effects is sufficient to reduce = to zero for any finite value of x. This is defined formally as
follows (Srivastava et al., 2011b). Let € > 0 be an unknown constant that is fixed for an
entire execution. Formally, the effect of @z is to non-deterministically increase x by dq),

1. the computational cost of computing a plan for a specific problem instance using the computed auxiliary
data structure.
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where dg € [¢,00). The effect of ©x is to non-deterministically decrease x by dg such that
for every execution, dg € [min{e, x}, x].

To accommodate a unified discussion of these semantics, we will use the notation a(s)
to refer to the set of states that can result upon execution of a in s and clarify the semantics
being used as required.

Definition 2. A planning domain (V, A) consists of a finite set of variables V, and a
finite set of actions A over V.

Definition 3. A planning problem (D, s,, g) consists of a planning domain D = (V, A),
a concrete state sg and a goal mapping g from VCV to intervals in N.

3.1 Solutions to Planning Problems

At every step, the action to be performed for solving a given planning problem may depend
on finite representations of the history of executed actions and received observations. Such
solutions can be represented as graph-based generalized plans (Srivastava et al., 2011), or
as finite-state controllers (Bonet et al., 2009; Srivastava et al., 2010). Formally, we use the
following notion of a finite-state controller based policy.

Definition 4. Let D = (V, A) be a planning domain and let ¥ be the set of formulas over
propositions of the form x; z l; where x; € V and l; € N. A finite-memory policy (FMP)
for D is defined as (Q, qo € Q, 0, k) where Q is a finite set of control states, qo is the starting
state, 6 C @ x Q 1is the transition relation and k : § — ¥ x P(A) is a labeling function
that labels each directed edge between control states with an execution condition and a set
of actions.

Throughout this paper we will assume that execution conditions on FMP edges include
as defaults the non-negativity condition x; > 0, for all z; € V. In practice each variable can
have a different lower bound as the methods presented in this paper depend only on the
existence of default bounds on variables. The technical results presented in this paper can
be easily extended to settings where x;’s also have upper bounds. They can also be extended
to settings where z;’s are bounded only above by replacing arguments about actions’ effects
on decreasing variables with their effects on increasing variables and including the upper
bounds as default execution conditions.

This representation generalizes the existing forms of policies used with qualitative as
well as deterministic semantics. When needed for clarity, we will use the term “control
states” or “gstates” to refer to the states of an FMP policy and “problem states” to refer
to the states defined by a planning domain.

Execution of an FMP starts with gg. At any stage during the execution where the
problem state is s1 € Sy and the FMP is in control state q; € @), the agent can execute any
action a s.t. there exists a control state go € @ for which x(q1,q2) = (¢, A), a € A, and
s1 | . Following such an action, the FMP’s control state becomes g2. Execution stops
at a state s if the FMP is in a control state ¢ that has no outgoing edges whose execution
condition is consistent with s. Thus, an FMP terminates if its execution reaches a terminal
control state, or if it reaches a control state such that none of its outgoing edge conditions
is satisfied in the current problem state.
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An FMP is said to be deterministic iff for every ¢ € @, the set of outgoing edges are
labeled with mutually inconsistent execution conditions and singleton action sets so that at
most one action is possible at every step during execution.

Existing notions of qualitative policies are closely related with FMPs. For instance,
an abstract policy m (Srivastava et al., 2011b, 2015) that maps abstract states to actions
can be expressed as FMPs with one control state gy and the labeling function x(qo, q0) =
{(5,{a}) : m(8) = a}. “Sketch” based generalized policies (Bonet & Geffner, 2021) can be
expressed as FMPs where the edge label consists of a condition 3 but P(A) is replaced by
a set of integers denoting changes in the values of a subset of the variables in V. An edge
in such a sketch can be taken if the agent executes a sequence of actions that causes the
corresponding change. Since the framework for analysis developed in this paper considers
the changes induced by FMP edges rather than the action names, it offers a promising
direction for analyzing properties of sketch based policies as well.

We say that an FMP has a well-defined set of terminal states H C @ if the states in
H have no outgoing edges and when started with any state in s € S, execution continues
until H is reached. Execution of policies that do not have well-defined halt states can end
in arbitrary control states when the policy does not have any outgoing edges corresponding
to the current state of the problem. This represents situations that are in some sense
unforeseen according to the FMP and is especially common with FMPs that are generated
through learning over a limited training dataset.

3.1.1 SOLUTION PROPERTIES

Given an initial state sg € Sy, an execution of an FMP policy (Q,qo € Q, 9, k) is defined as
a sequence (qo, $0), a0, (q1,81), a1, - . . such that x(q;,qi+1) = (i, 4s), a; € A;, Sit1 € ai(s;)
and s; = ¢;. Two criteria over the set of executions possible under an FMP policy can
be used to define the quality of the policy. If a policy ® is such that every execution of
® stops after a finite number of steps when started with an initial state sg, we say that ®
terminates for so. If ® terminates for all s € Sy, we say that it is a terminating policy. A
terminating policy whose execution ends only at states satisfying the goal condition g of
the given domain is said to be goal achieving.

4. Determining Termination of Finite Memory Policies

Recall that we adopt the fail-stop mode of execution semantics for FMPs, where execution
stops if the current control state has no outgoing edges consistent with the current problem
state. As discussed under related work, several algorithms for generalized planning learn
or iterate over multiple solution structures that can be expressed in the form of FMPs.
To evaluate the utility of a candidate FMP as a solution, we need to consider two key
properties: reachability and termination. Ideally, we would want to establish that every
execution of an FMP reaches the goal in a finite number of steps for all the initial problem
states of interest.

It is well known that decision problems of termination and reachability can be reduced
to each other. Prior work (Srivastava et al., 2010, 2012) shows that this is undecidable
in general, because showing that every execution terminates in a finite number of steps is
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Algorithm 1: (Progress-Sieve) abstract policy termination test (Srivastava et al., 2015)

Input: g = ts(m, s7)
Remove all edges e of g that have a progress variable w.r.t. their SCCs
if no edge was removed then

L Return “Non-terminating”

for ¢’ € SCCs-of(g) do

if Progress-Sieve(q' )= “Non-terminating” then
L Return “Non-terminating”

w N

o o s

7 Return “Terminating”

equivalent to the halting problem for Turing machines. In this section we present our new
approach for hierarchically decomposing and analyzing FMPs to determine termination.

We begin with a formal analysis of the relationship between qualitative semantics and
deterministic semantics with respect to termination analysis.

4.1 Termination Under Qualitative and Deterministic Semantics

Background on the Sieve family of algorithms The Sieve family of algorithms (Sri-
vastava et al., 2011b, 2015) are sound and complete tests of termination under qualitative
semantics, but only sound for deterministic semantics. Although the correctness of these
algorithms was proved for abstract policies and transition graphs, the results carry over in a
straightforward manner to FMPs. The Sieve algorithm (Srivastava et al., 2011b) conducted
this analysis for variables bounded below. The Progress-Sieve algorithm (Srivastava et al.,
2015) generalized this intuition to settings with variables with discrete observable levels and
upper or lower bounds, and is listed here as Alg. 1 for ease of reference.

Intuitively, this class of algorithms operate as follows: for each strongly connected com-
ponent (SCC), the algorithm identifies “progress” variables that are changed in only one
direction (positively or negatively): the direction in which they are bounded (above or
below, respectively). Progress-Sieve removes edges modifying such a variable if the edge
moves it towards the bound on the variable. If any edge was removed, the entire process is
repeated. This continues until either the graph is left with no strongly connected compo-
nents and the policy is reported as terminating, or strongly connected components remain,
but no progress variables are found and the policy is reported as non-terminating.

The following natural result relating termination in deterministic and qualitative settings
is useful to list out for completeness:

Proposition 1. Let ® = (Q,qo,d,x) be an FMP. If ® terminates for so € Sy under
qualitative semantics, then it must terminate for sq under deterministic semantics.

The proof is straightforward because increments and decrements by a constant are a
special case of qualitative effects. If ® does not terminate under such effects, then it clearly
cannot terminate under the qualitative semantics with the same action instantiations.

However, the other direction is not true: termination under deterministic semantics
does not imply termination under qualitative semantics, as shown in the following counter-
example.
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ex
(a] ®x
Gx

Figure 1: An FMP that terminates under deterministic semantics (& = +1 and & = —1) but not
under qualitative semantics (see Example 1).

Example 1. Let ® be an FMP with three gstates qo,q1 and g2 as shown in Fig. 1. ® is a
terminating policy under deterministic semantics where Ox = x —1,dx = x+1 (due to the
default edge conditions on non-negativity). However, it is not a terminating policy under
qualitative semantics because the ©’es may be small enough to be overwhelmed by the @ in
every iteration of the cycle.

This example also shows why we are able to develop sound and complete tests for termi-
nation for qualitative numeric planning: under qualitative semantics, actions are sufficiently
imprecise that the effective class of terminating policies reduces to match the analysis con-
ducted by the Sieve family of algorithms. This also limits the types of behaviors that can be
expressed using qualitative semantics. Srivastava et al. (2015) study this boundary of ex-
pressiveness further and identify conditions under which policies with qualitative semantics
are insufficient for expressing solutions to planning problems.

4.2 A Hierarchical Framework for Termination Analysis

While the Sieve algorithms discussed above constitute an efficient and sound method for
identifying a restricted class of terminating FMPs, they have somewhat obvious limitations
when considering deterministic semantics, as illustrated in Example 1. Under deterministic
semantics with default edge conditions enforcing non-negativity, the execution of this SCC
is guaranteed to stop in a finite number of steps regardless of the initial value of the variable
being changed by its actions. However, Sieve algorithms cannot determine that this SCC
terminates because it does not have a progress variable. This is consistent with completeness
under qualitative semantics, which would allow the @& operation to increase the variable
arbitrarily, although it misses rather obvious patterns of termination under deterministic
semantics.

Example 1 lends some intuition about the type of reasoning that is required to develop a
more general algorithm for determining termination under deterministic semantics. Instead
of requiring a non-monotonic decrease over all edges in an SCC, we need a way to assess
the net changes on a variable over execution segments that can be repeated indefinitely in
an infinite execution that might occur when the FMP is interpreted as a finite automaton
without edge conditions. However, reasoning about possible execution trajectories in an
SCC becomes difficult when nested cycles are present: any number of iterations of one cycle
may be interleaved with an arbitrary number of iterations of subsequences another cycle
within the same SCC. A test for termination would have to assess all the infinitely many
possible permutations of this form.
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We formalize this intuition by first defining a richer notion of progress variables as
follows. If variables are bounded above, a similar notion of increasing progress variables
can be defined and the subsequent analysis can be extended to those cases. As with the
default edge conditions, in this paper we focus on the setting where variables are bounded
only from below. We focus on deterministic semantics in the rest of this paper.

Definition 5. Let II be a set of paths in an FMP and let w € II. A wariable v is a net-
decrease variable for a path w w.r.t. Il iff v undergoes a net decrease in m and v does not
undergo a net increase in any path in II. We use ||} to denote the set of all net-decrease
variables for m w.r.t I and extend this notation to define {11 as the set of sets of net-decrease

variables for all paths in I1: Yn= {{f;: = € II}.

Notice that each element of |7 is a set. Thus if the number of non-empty sets in {1
is the same as the cardinality of II, then every path in II creates a net decrease in some
variable that does not undergo a net increase by any path in II. Intuitively, if II denotes
the set of all possible paths in (including repetitions) in an SCC, and |};; has no empty
sets then execution cannot continue indefinitely within II: every path creates a net decrease
that cannot be undone in II and execution conditions include non-negativity. Unfortunately
however, this intuition is computationally ineffectual because the set of possible execution
paths (which can include multiple executions of SCCs) in a graph with SCCs is infinite.

4.2.1 STRUCTURES FOR HIERARCHICAL DECOMPOSITION OF FMPs

To push the envelope on determining whether an FMP will terminate, we need to be able
to structure the possible executions of an SCC in an FMP. Intuitively, we wish to develop
a bottom-up process that analyzes “inner” loops before moving on to “outer” loops that
span the inner ones. Although this intuition is helpful, it is not sufficient because an infinite
execution of an FMP can include infinitely many non-consecutive occurrences of non-cycles
in the form of “bridge” paths and shortcuts through SCCs. We develop this intuition
by building on McNaughton’s notion of analysis of a graph (McNaughton, 1969), which
facilitates the construction of a directed tree over the components of an SCC. For clarity we
will use Gruber’s version of this concept, formalized as Directed Elimination Trees (Gruber,
2012). Let Gx denote the subgraph of G = (V, E) formed using the vertices X C V.

Definition 6. A directed elimination tree (DET) for a non-trivially strongly connected
digraph G = (V, E) is a rooted tree DETg = (T, Tg) where Tyy C 2V x V with the root
(V,v) such that DETq satisfies the following properties:

o If (Hv) € Ty, thenv € H
e There is no pair of distinct vertices of the form (H,z) and (H,y)

e If (H,v) is a node in T and Gg \ {v} has j > 0 non-trivial SCCs G1,...,G;, then
(H,v) has exactly j children denoted as ch(H,v) = {(G1,v1),...,(Gj,v;)}, for some
Viy...,v5 € V.

If (G,v) is anode in a DET, we refer to v as the elimination point for that node. We will
use the concept of directed elimination trees with FMPs by interpreting an FMP as a graph
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(@8 a9, a8)
(a4_95_46_q7.q7)
(a) Finite-memory policy ®; (b) Directed elimination forest Dg, for ®;

Figure 2: A finite-memory policy and its directed elimination forest. Nodes in Dg, are labeled
(Vi,v) where Vi is the set of vertices for the component G.

in the usual manner of representing controllers as graphs. We will use FMPs and their
graphs interchangeably and clarify the distinction when required for clarity. In general, an
FMP will yield a directed elimination forest (DEF) consisting of one directed elimination
tree for each strongly connected component in the FMP.

Example 2. Fig. 2 (left) shows an example of an FMP with edge labels representing ac-
tions in deterministic semantics. This example was created by adding additional edges and
edge labels to McNaughton’s classic example of a strongly connected digraph (McNaughton,
1969). In this example, edge conditions are the default non-negativity conditions. The right
subfigure shows a DEF for the same FMP.

Directed elimination trees are closely related to cycle ranks (Eggan, 1963). In fact, the
minimal height of directed elimination trees for a graph is the cycle rank of that graph (Mc-
Naughton, 1969). Cycle ranks are closely related to multiple notions of the complexity of
recurring patterns of behavior, e.g., the star-height of regular expressions.

Although the problem of computing a minimal directed elimination tree is equivalent to
the problem of computing the cycle rank of a graph and is NP-complete, our algorithm does
not require minimality. This is helpful because polynomial-time divide-and-conquer algo-
rithm can be used to compute a directed elimination tree within a factor O((log n)*/?) of the
minimal height. This result and a greater discussion of DETSs for structural categorizations
of computational complexity can be found at (Gruber, 2012).

Termination Analysis Using DEFs We now develop the formal concepts required to
develop a stronger test for termination under deterministic concepts.

We wish to define an inductive, bottom-up process on the directed elimination tree to
derive a set of net-progress variables for the entire SCC. To do this, we need to define the
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Figure 3: Quotient graph corresponding to the first node of the non-trivial tree in Fig.2b. Com-
ponent vertices are labeled using the prefix c:.

notion of a graph that considers sub-components as black boxes that are guaranteed to
have net-progress variables. Let (G,v) be a node in a directed elimination tree for an FMP
policy, with children nodes ch(G,v) = {(G1,v1),...,(Gk,v)}. Recall that by definition
this implies that G is an SCC such that upon removing v, G is left with SCCs G4, ..., Gy.

We define the quotient graph of G w.r.t. ch(G,v) (denoted as G|.p(q,v)) as the graph
obtained by replacing each G; in ch(G,v) with a new component vertex ¢; while inheriting
all the edges that led into, or out of G;. Intuitively, ¢; encapsulates G; and G| (g,v) can be
thought of as an SCC of rank 1 over G;’s.

Example 3. Fig. 3 shows the quotient graph G|i44 45 46 q7},{q0.q1} for the Toot node of the
non-trivial tree in the DEF from Fig. 2b. Here G is the subgraph of Fig. 2a induced by the
gstates {q0,ql,q2,q3,q4,q5,q6,q7}. Since the root node (G,q2) has two children nodes,
these subgraphs are replaced by component vertices in the quotient graph. Quotient graphs
help simplify reasoning about possible executions of a FMP policy. For instance, this quo-
tient graph indicates that any infinite execution of ®1 that does not have an infinite suffiz
in {q4,q5,q6,q7} and in {q0,ql} (i.e., that does not have an infinite execution contained
entirely within one of the two child components) must visit q2 infinitely often.

The hierarchical sieve algorithm developed in this paper formalizes the intuition that
if each path segment that can be executed infinitely often (while ignoring edge conditions)
has a net-progress variable that is not increased by other inner loops, and the outer loop
also has such a net-progress variable, then the SCC cannot be executed indefinitely when
edge conditions are considered. More precisely, if G|y, and each G; € ch(G,v) has
net-progress variables that are not increased by the other children of G' or by G|a )
then G itself has a net-progress variable, which implies that executions within G' must
terminate or exit G. We develop this intuition by first computing a superset of paths (not
necessarily complete cycles) that can be executed infinitely often when edge conditions are
not considered.

Let GY be the graph of an FMP @ and let (G, v) be a node in the DEF of G% = (Vg, Eg).
Let I1.(G,v) denote the set of all cycle-paths in G/|cy,): paths that start and end at v
and visit v exactly twice. II.(G,v) denotes cycles in G|, that start and end at v.
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No such path can visit any node (gstate or component vertex) of G\Ch(Gﬂ)) other than v
twice because by definition of the elimination tree and G|c(q,v), removing v from G renders
G| en(c,v) acyclic.

We also need to consider paths that go through G without encountering any cycles. Let
I be the set of boundary vertices for edges that enter G, ie., {v € G : there is aw €
Vo \ G such that (w,v) € Eg}. Similarly, let Og be the set of boundary vertices for out-
going edges from G. We define the set of through-paths for G, I1;,(G, G%), as the set of all
cycle-free paths in GG that go from a vertex in I to a vertex in Og. Notice that this definition
of through paths considers all of the vertices in G while the Il considers paths in G| .G v)-
Considering all through-paths in this manner allows for a more accurate algorithmic test
for termination but this would be difficult to do while considering all possible combinations
of cycles in G, with different possible numbers of iterations of each cycle. Thus we use
quotient graphs to hierarchically structure the cycles into a more manageable framework.

Let II(G,v) = [L;o(G,GY) UTL.(G, v).

Example 4. Continuing with the running example, consider G|{q47q57q67q7}7{q07q1}, the quo-
tient graph (Fig. 3) corresponding to the first node of the non-trivial DET shown in Fig.2b.
In this quotient graph the cycle paths are (q2,¢3,q2), (¢2,c¢: q4-g5.g6_q7,q2) and (q2,c:
q0_q1,q2). This node of the DET represents the gstates {q0,ql,q2,q3,q4,45,¢6,q7}. The
only boundary vertex of the subgraph defined by these gstates is qb, and thus this subgraph
has no through-paths. On the other hand, the subgraph defined by ({q4,q5,q6,q7},q7), a
child node of ({q0,q1,q2,q3,q4,a5,q6,q7},q2), has ¢4 and g6 as boundary vertices and two
through-paths: (g4, q6) and (¢6,q4).

Using the notion of net-decrease variables for a set of paths (Def.5), we define the net-
decreased set for a node (G,v) in the elimination tree as the set of sets of net-decrease
variables, with one set for each path in II(G,v). We denote this collection as {y(q,v)
(abbreviated as |}g,). If any path in II(G,v) has no net-decrease variables, then the set
of net decreased variables for that path is included in {¢, as the empty set, . In the
same vein, we define possibly increased variables for (G,v), fg.,, as the set of variables that
undergo a net increase in at least one path in II(G,v).

4.2.2 THE GENSIEVE ALGORITHM

We now have all of the concepts required to present the main algorithm of this paper. Let
AH B denote the element-wise set-minus operation where A is a set of sets and B is a set:
ABB={z\B:xc A}.

Let G be the strongly connected graph of an FMP @ and let (G,v) be the root node
of its DET. If the input FMP has multiple strongly-connected components, we consider
each component independently and prove termination by proving that each component
terminates. GENSIEVE (Alg.2) inductively derives an estimate fLGm (ﬁG7U) for the set of
variables that could undergo a net negative (positive) change in a path in II(G,v) under
default edge labels in G as follows.
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/ﬁG’v = ﬂG,U U U ﬁGi»”i (1)
(Gi,vi)éch(G,v)
‘llG,v - {uG,U U U ﬂGi,vi} B TATG,U (2)

(Gi,vi)Ech(Gw)

Since every directed elimination tree of a finite graph is finite and the base case is defined
in closed form, this process must terminate after h recursions where h is the height of the
directed elimination tree.

Algorithm 2: GENSIEVE
Input: FMP policy G

/* IV: set of variables increased by a path in II(G) */
/* pDV: set of sets of potential net-decrease variables per path in II(G) */
/* DV: set of sets of net-decrease variables per path in II(G) */

/* ZV: set of variables that undergo zero net change in a path in II(G) */
1 progress=True

2 while progress=True do

3 DETg,{(G,v) < DET of G with root (G,v)

4 1V, ZV < BuildIncVars(G,v, DETg)

5 decreasedVars < BuildDecVars(G,v, DET¢q, IV)

6 decreasingEdges < edges that reduce decreasedVars not in ZV

7 remove decreasingEdges from G

8 if decreasingEdges = 0 or {} ¢ decreasedVars then progress=False

o if {} € decreasedVars then

10 ‘ return “unknown”
else

11 L return “terminating”

Function BuildIncVars(G, v, DET)

1 IV« 0; ZV+ 0

2 foreach 7 € II(G, v) do

3 IV« IVU{z : © undergoes a net increase in 7}

4 L ZV « ZV U{z : x undergoes net zero change in 7}

5 foreach (G;,v;) € ch(G,v) do
| expand sets IV, ZV with output pair from BuildIncVars(G;,v;, DET)

6 return IV, ZV

Function BuildDecVars(G, v, DET, IV)

7 pDV « 0; DV «+ (;

foreach 7 € II(G,v) do

9 L pDV + pDV U {{z :  undergoes net decrease in 7}}

10 foreach (G;,v;) € ch(G,v) do pDV < pDV U BuildDecVars(G;,v;, DET,IV)
11 DV« pDVBIV
12 return DV
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Intuitively, GENSIEVE generalizes the intuition behind Sieve and Progress-Sieve algo-
rithms. It attempts to identify every minimal path that can occur infinitely often in an
execution in the form of II(G,v). The computation of every such path is difficult because of
the variable nature of executions possible in FMPs with cycles, and the DET helps impose
a hierarchical structure for extracting them.

GENSIEVE (Alg.2) uses functions BuildIncVars and BuildDecVars to compute TATGW

and ilGﬂ] using equations (1) and (2) respectively. In cases where llG’v includes an empty
set, it means that there is a path in II(G,v) whose infinite execution cannot be ruled out
yet. However, the computation of llGﬂ, is conservative and can overestimate the impact of
paths that increase variables. Some of these paths can become unreachable after finitely
many steps of execution. To accommodate such situations, GENSIEVE computes the set
of variables that are only decreased by elements of II(G,v) (lines 5-6). It then removes
decreasingEdges, or edges that decrease such variables (line 7), and reinvokes the compu-
tation of T}G,U and ﬂGm (the while loop starting in line 2). If in any iteration of this loop,

each set in lALGﬂ, is found to be non-empty, this means that every path that can be executed
infinitely often includes at least one variable that undergoes a net negative change that is
not increased in any path that can be executed infinitely often. This implies that the FMP
must terminate. Theorem 3 asserts this result formally in Sec.5.1. On the other hand, if
the algorithm reaches a stage where ﬂGﬂ) contains an empty set and no edges were removed
in line 7, GENSIEVE terminates without asserting termination (lines 8 — 10). In practice,
we check ILGW for the absence of an empty set before removing decreasingEdges to allow
the algorithm to assert termination early if possible.

The hierarchical structure developed in this approach allows us to compute minimal
paths that may occur infinitely often in the execution of an FMP. The Sieve family of algo-
rithms constitute a special case of this general principle: they consider each edge as possibly
occurring infinitely often in an execution. From this perspective, Example 1 shows how that
approach is unnecessarily conservative under deterministic semantics — even though each
@ can be executed only in conjunction with two & operations (which leads to a minimal
recurring path with a net change of —1 in deterministic semantics) in the FMP shown in
Fig. 1, Progress-Sieve and Sieve consider the @ edge as an independently executable edge
that can undo the negative change. Consequently, they fail to determine that the FMP will
terminate under deterministic semantics but GENSIEVE obtains the correct result.

Example 5. We continue with the running example ®1 from Examples 2 through 4. GEN-
SIEVE asserts that ®1 terminates, after two iterations of the while loop shown in Alg. 2.
Edges reducing the variable x2 are removed after the first iteration. Fig. 4 shows the FMP
obtained after this operation along with the DEF for this FMP. As seen in Fig. 4(a), every
path involving x1 that could be executed infinitely often is a decreasing execution over x1
because the only positive change in x1 is accompanied with a larger negative change. The
total time taken was less than 1.2s. The sieve algorithm fails to assert termination of ®,
due to the absence of a net decrease variable.

The following sections formalize the key notions required to concretize these intuitions
and present our main formal and empirical results.
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(q0_92_g3_q4_q5_q6_q7,q2)
(q4_95_96_q7,q5)

(q4_q6_q7,q4)

(96_q7, q6)

(a) Finite-memory policy ®7 obtained after re- (b) Directed elimination forest Dg3> for ®7.
moving edges that decrease x2 from ;.

Figure 4: Steps in GENSIEVE’s execution on ;.

5. Results

This section presents the key formal and empirical results obtained using the hierarchical
analysis framework and the GENSIEVE algorithm developed in Sec.4.2. We begin with
formal results (Sec.5.1) followed by empirical results (Sec.5.2) including results from an
implementation of of GENSIEVE, illustrations of intermediate steps of its execution, and
several examples of complex, terminating FMPs that are beyond the scope of prior methods
for determining termination but were found to be terminating using the methods developed
in this paper.

5.1 Theoretical Analysis and Results

In this section we develop new concepts and methods for formalizing the intuitive reasoning
behind GENSIEVE and its soundness. We also illustrate the proof techniques made pos-
sible with this framework. These concepts refine the intuitive notions presented with the
specification of GENSIEVE in Sec. 4.2.2.

We consider the general case of FMPs with default edge conditions. Additional edge
conditions can limit the set of possible executions. Therefore, any FMP that is a terminating
policy without considering additional edge conditions remains a terminating policy when
they are considered. We focus on the case where the default edge conditions lower bound all
variables at zero. The same arguments can be transposed to apply to situations where the
lower bound is different, as well as to situations where all variables have an upper bound.

The main result of this section, Thm. 3, establishes the soundness of GENSIEVE. To
obtain this result we need to develop additional terminology that allows us to build inductive
arguments about the desired properties of T}G and llG sets.
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Definition 7. Let m be an execution of an FMP policy. If 7 is finite, we say that 7 is
an increasing (decreasing) sequence for x iff the sum of the effects of actions on x in 7 is
positive (negative). If w is infinite, we say that 7 is an increasing (decreasing) sequence
for x iff there is an index ¢ such that for every j > i, there exists k > j such that the net
change on x due to m; 1 is positive (negative).

Intuitively an infinite increasing sequence for x will increase it indefinitely while an
infinite decreasing sequence for x will decrease it indefinitely.

For any path 7 in a component G of a FMP with a DEF T, we define 7|, as a
version of m where every maximal contiguous segment of nodes in 7 that belong to a single
child component G; is replaced by the component vertex c; of G|, defined using 7.
We use the notation v ~ w to denote the set of paths of the form v, vy, vs,...,v,, w in an
underlying graph made clear from the context, such that each v; # v;, v; # v and v; # w
for distinct 7,5 € {1,2,...,n}.

To simplify notation, we use f}4 to denote ﬁG,vo where (G, ) is the root node of the
DET for G. The following result establishes that ﬂG is a superset of variables that may be
increased indefinitely by .

Lemma 1. Let H be a FMP ® for a domain D = (V, ¢, A), let Ty be the directed elimination
forest for H and let (G,v) be a node in Ty. Let I and Og be the set of incoming and
outgoing boundary vertices in G.

Suppose that 7 is an execution of ® starting from Ig such that every gstate in m is in G
and either w ends in Og or w is an infinite execution sequence. If w causes a net increase
on a variable in x € V under default edge conditions, then x € ﬁva.

Proof. We prove the result by induction on the height of (G, v). In the proof we will consider
execution paths over control states (gstates) in ® regardless of the problem states because
we wish to prove the result under default edge conditions.

Base case Suppose (G,v) is a leaf node and assume for a proof by contradiction that z
is a variable such that 7 causes a net increase in z but x ¢ TATGW. We first consider the
case that m is a finite path that reaches Og. In such a situation, 7 may or may not include
repetition of control states. If there are no repetitions, m € II;,(G,v) and every variable
that undergoes a net increase is included in f}q,,, by definition. If 7 includes repetition, then
7 is of the form ¢; ~ (v ~» v)* ~» g, where ¢; € I and ¢, € Og, and ~ represents paths
without repetitions as noted above. This is because G is a leaf node, which implies that
removing v eliminates all cycles in GG. In other words, every cycle in G must pass through
v. If any of the paths going from v to v in G created a net increase in z, x would have been
included in fg,, by definition. Thus, no segment of 7 of the form v ~» v can create a net
increase in x. This implies m must be a finite path of the form ¢; ~» v ~» ¢, that has a net
positive change on x. However, such paths are included in II(G,v), which implies that =
should be in f}g ., leading to a contradiction.

Suppose on the other hand that 7 is an infinite path that is an increasing sequence for
x. Then 7 must be of the form: g; ~» (v ~» v)*. Since variables that undergo a net positive
change in v ~» v are included in g, and z €{g,», the only component that can increase
x is the finite prefix ¢; ~» v. But this implies that after the index ¢ denoting the length of
this prefix, x stops increasing in 7 and 7 is not an increasing sequence for x.
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Inductive case Suppose the hypothesis holds for DEF nodes at height at most &, i.e., if
m is an execution that continues indefinitely within G or reaches Og and 7 is an increasing
sequence in a variable x € V, then x € TATG’U for all tuples of the form (G, v) with height at
most k.

Let (G,v) be at height k + 1. We need to prove that if a variable x undergoes a net
increase as a result of a path m with the properties noted in the premise, then x € TATGW.
Suppose this is not true and there exists a path 7 in G that starts from ¢; € Ig, and is
an increasing sequence for x but = & ﬁg. Since all paths of the form ¢; ~ ¢, in G where
¢o € Og are considered in the II;,(G, v) component of /g ,, ™ cannot be such a path and 7
must include a cycle.

In general, m may include gstates from its child SCCs. However, since each child is of
height at most k¥ and x ¢ TATG?U, the inductive hypothesis and the fact that T}Gw includes
TATGMZ_ for its children SCCs (by Eq. 1) implies that no path lying entirely within a child
component can be increasing for z. Thus, if 7 is an increasing sequence for x, 7. (g ) must
be an infinite sequence of the form ¢; ~» (v ~» v)* in G| or a finite sequence of the
form g; ~ (v~ V)" ~ go In Glen(G.0)-

In the former case, 7’s suffix of the form (v ~» v)* must be an increasing sequence for
x. The induction hypothesis allows us to conclude that each component of 7 that is within
¢; must create a net zero or a net negative change on x because x ¢ TATG’U. Thus we can
think of each ¢; as a pseudo-gstate such that paths within ¢; cannot possibly create a net
increase in z. But this implies that x must undergo a net positive change in at least one
path of the form v ~ v in G\Ch(Gm), which implies  €ftg,, by definition of ftg,, and we
reach a contradication.

On the other hand, if 7 is a finite sequence of the form ¢; ~ (v ~ v)* ~ g, where
G0 € Og in G|ep(a ), the Teasoning is similar. Neither the segments of 7 within G’s child
components nor any segment of the form v ~» v can be increasing for x because of the
inductive hypothesis and the consideration of I;, (G, v) in g ,. This implies that a sequence
of the form ¢; ~» v ~ g, must create a net positive change in x, but that implies that = €ftg
by definition. Again, this contradicts = & TATG,U- Thus, x must be in TATGW. O

The result above shows that the estimated set ﬁG’v is a superset of variables that may be
increased in a possible execution of the FMP. For decreases, we require a tighter result: that
every possible execution creates a net decrease on some variable. If a subset of the variables
that undergo a net decrease in every possible execution does not include the superset of
variables that may be increased (T}Gﬂ)) in any possible execution, then we know that every
execution must terminate in a finite number of steps due to the default edge conditions.
The following theorem establishes what we need with net-decreased variables.

Lemma 2. Let H be the graph of a FMP ® for a domain D = (V,{, A), let Ty be the
directed elimination forest for H and let (G,v) be a node in Tyg. Let I and Og be the set
of incoming and outgoing boundary vertices in G.

Ifh ¢ ﬂGﬂ, and 7 is an execution of ® starting from Ig such that every gstate in w is in
G and either m ends in Og or m is an infinite execution sequence, then m is a net-decreasing
execution for at least one variable in V.

Proof. By induction on height of the tuple (G, v) in Tx.
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Base Case Let (G,v) be a leaf tuple such that the empty set, (), is not in ﬂG,U and let 7
be an execution sequence of the form described in the premise. By Eq. (1), the premise of

the theorem and the fact that Eq. (2) cannot remove empty-sets from UG vs we know that

0 ¢ ﬂG,U and consequently, that 0 ¢llg,. Suppose 7 is of the form ¢; ~» ¢, with ¢; € Ig
and g, € Og. By definition of |G, this means that all paths of the form ¢; ~ ¢, create a
net negative change in at least one variable and we have the desired result. Suppose on the
other hand that = is a finite sequence of the form ¢; ~» (v ~» v)* ~ g,. Because 0 €| ¢ .,
G, includes, for each through path from Ig to Og as well as for each v ~ v path in
G|en(a,w) @ non-empty set of variables that undergo a net decrease under that path. In this
case G|cp(gp) = G. Thus each of the three types of segments in © (¢; ~ v, v ~ v, and

~ (,) must create a net negative change in at least one variable that is not in ﬁG (recall
that we use the abbreviated form fi to refer to {1 ,, where vy is the root of the DET) by

Eq. (2) and the premise that () ¢ llqv. This implies that each of these segments creates a
net negative change in at least one variable for which 7 is not an increasing sequence, and
thus m must create a net negative change on at least one variable. Finally, suppose 7 is
an infinite sequence of the form ¢; ~ (v ~» v)*. Through arguments identical to those for
the previous form of 7, all segments of the form v ~» v must create net negative changes
in at least one variable. This implies that = must be a decreasing sequence for at least one
variable.

Inductive Case Suppose the result holds for tuples at height at most k. Let (G,v) be
at height k¥ +1 and 0 ¢ |} ,,. We need to prove that 7 is a net decreasing sequence for at
least one variable.

We consider the finite case first. If 7 is finite, it may be of form ¢; ~» ¢, in G or of the
form ¢; ~ (v ~ v)* ~ g, in Glepap) With ¢; € Ig and ¢, € Og. Let 7 be of the form
gi ~ (v ~» v)* ~> g,. The argument for 7 of the form ¢; ~ ¢, is similar. Since () ¢ llg,v, and
the empty set cannot be removed as a result of the B operation, Eq. (2) implies 0 €\,
and () & llGi’Ui for each child (G;,v;). This implies that the components of 7 within child
SCCs must be decreasing sequences because of the inductive hypothesis. Furthermore, all
paths of the form ¢; ~ v ~ ¢, and all paths of the form v ~» v in G| (q,,) must decrease
at least one variable because the set of variables that undergo a net negative change due to
each such path is added as a set into ¢, and ) ¢{¢,. Furthermore, () ¢ lle implies that
removing T}G from each of these sets leaves them non-empty. By Lemma 1, 7 cannot result
in a net increasing change on any variable not in ﬁg. Thus 7 is composed of segments, each
of which causes a net decrease in at least one variable and each such variable is such that it
does not undergo a net increase in the entire finite sequence represented by 7. This implies
that 7 is a net decreasing sequence for each of the variables in 7.

If 7 is infinite, it may be such that it has an infinite suffix in one of the child components
of G or such that 7. v is of the form g; ~ (v ~ v)* in G| g, because these are the
only possible infinite execution sequences in G|, that do not have an infinite suffix
within a single child component. Suppose 7 has an infinite suffix in a child component
(Gi,v;) of G. Since ilGi,Ui C ﬂG’v by Eq. (2) and fio can never contain () as an element, if
0 ¢ lle then by Eq. (2), 0 ¢ llGi,vi' The inductive hypothesis implies that such a suffix
must be a net-decreasing sequence for at least one variable.
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Suppose T|cn(q,v) 18 of the form g; ~ (v ~ v)* in G|p(g,)- Consider the infinite segment
Typ that is of the form (v ~» v)*. By inductive hypothesis we know that every finite segment
of 7 that lies within a child component G; decreases at least one variable because such a
segment constitutes an I, to Og, path, and Eq. 2 implies that when 0 ¢ @Gﬂ,, 0 ¢ ﬂgwi
because T}G cannot contain the set () as an element. Furthermore, each path of the form
v~ vin G ’ch(G’,v) decreases a variable because such paths are included in II(G,v) and

0 €lG.; each of these decreased variable sets remain non-empty when ﬁG is removed from

U This implies that when 7 enters the (v ~ v)* segment, each v ~» v segment in
G|eh(,w) and each foray into a child component of G results in a net decrease on at least

one variable that is not increased by 7 after a finite prefix because ﬁG contains all variables
that could possibly undergo net increases in m (Lemma 1). Since there are only finitely
many variables, the segment of 7 in v ~» v must create a decreasing sequence on at least
one such variable. O

The following result provides the first test of termination using the methods developed
in this paper. This result shows that assertions of termination obtained without removing
any edges (in executions of GENSIEVE without using lines 6 and 7) are sound.

Theorem 1. Let ® be a FMP for a domain D = (V,{, A). If ) & lALGm then ® is a
terminating policy.

Proof. We prove the result assuming that ® has only default edge conditions because if ¢
has additional edge conditions, they will further limit the set of executions possible, thereby
maintaining termination. By Lemma 2, we know that every execution 7 of ® is a decreasing
sequence on at least one variable x € V. Suppose 7 is an infinite sequence. When started
with a finite value for x, every execution of 7 will eventually lead to an action that attempts
to reduce = below zero, at which point the default edge condition will lead to the end of
that execution and we arrive at a contradiction. O

In cases where () belongs to lle, we cannot assert termination directly but the quantities
computed in Equations 1 and 2 allow us to simplify the input policy by remove certain
edges (lines 6 and 7 in GENSIEVE) and then continue the analysis. The following results
establish that certain edges can be executed only finitely many times, setting up the stage
for removing them and creating a simpler policy for the purpose of termination analysis.
In particular, if some variables satisfy stronger conditions than membership in an element
of @G,m then the following two results show that edges involving such variables can be
executed only finitely many times, and thus removed from consideration when we wish to
focus on infinite executions.

Lemma 3. Let ® be a FMP for a domain D = (V,l, A). Let Hg be its graph and let
Ty be its DEF and let Il(H) = UG yyer, (G, v). Suppose x € V is such that every path
p € II(H) that includes an edge with an action that affects x is such that p creates a net
negative change in x.

Let (G,v) be a node in Ty. Let I and Og be the set of incoming and outgoing boundary
vertices in G. If w is a finite path that starts in I and ends in Og, then ™ cannot increase
x.

Proof. By induction on the height of (G, v) in Th.
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Base case Let (G,v) be a leaf node. Since 7 is a finite path, it must be of the form
gi ~ (v~ v)* ~» @, in G where ¢; € I and ¢, € Og. Since all segments of the form
v ~» v are considered in II(G,v). This leaves a segment of the form ¢; ~ ¢,, which is also
considered in II(G, v) as a part of I1;,(G, v). Since II(G, v) is included in II(H), and no such
segments increase x, ™ cannot increase .

Inductive case Suppose the result holds for all nodes at height at most k in T and
(G, v) is at height k+1. 7 must be of the form g; ~ (v ~ v)* ~ g in G|epGw) With ¢ € I
and g, € Og. All segments of 7|, ) of the form g¢; ~ g, and v ~ v in G|epq ) are
included in 7(G,v) and thus these segments cannot create an increase in . Furthermore,
the segments of 7 within each child component are finite and satisfy the premises of the
theorem because II(H) includes II(G;,v;) for all nodes (G;,v;) € Ty. Since these child
components are at height at most k£, no such segment of 7 can increase x and we have the
result. O

Theorem 2. Let ® be a FMP for a domain D = (V, ¢, A). Let Hg be its graph and let Ty
be its DEF. Let II(H) = U ¢ yer, NG, v). If 2 € V is such that every path p € TI(H) that
includes an edge with an action that affects x is such that p creates a net negative change
in x, then edges in ® that decrease x can be executed only finitely many times in every
execution of P.

Proof. By Eq. 1 and the definitions of {} and ﬁ, x cannot be in T} - By Lemma 1, no infinite
execution of ® can be an increasing sequence for . Suppose an edge that decreases x is
executed infinitely often (perhaps because a subsequent edge increases x). Let m be such
an infinite execution sequence in a subgraph G corresponding to the tuple (G,v) in Tx.

Base case 7 must be of the form ¢; ~ (v ~ v)*. x cannot possibly have a net positive
or net zero change in segments of the form v ~» v because such segments are considered in
II(G, v) and such segments create a net negative change on z by the premise of the theorem.
Thus 7 can have only finitely many occurrences of edges that reduce x in all of its segments
of the form v ~» v due to the default edge conditions. x may undergo a net positive change
in the segment ¢; ~» v but this segment can have only finitely many decreases. Thus we
have a contradiction.

Inductive case Suppose the premise holds for (G;,v;) at height at most k£ and (G,v) is
at height k + 1. 7|y (g,w) must be of the form ¢; ~ ¢; in G|cy(q,y) With an infinite segment
within a child SCC Gj, or of the form ¢; ~» (v ~» v)*. In the former case, the induction
hypothesis implies that the segment of © within G; will have only finitely many occurrences
of edges that decrease =x.

Suppose 7|ch(q,v) is of the form g; ~ (v ~ v)* in G|ep,). No segment within child
components will increase z because x is reduced by every path in II(H) that affects it, by
the premise of this theorem and Lemma 3. Segments of 7 that lie within child components
will include only finitely many executions of edges that reduce x because these segments
will be finite (execution returns to v infinitely often in this case). Furthermore, paths of
the form v ~» v are considered in II(G,v) and all such paths create a net reduction in z,
as noted in the premise. Thus 7 can decrease x only finitely many times before further
decreases are prevented due to the default edge conditions. O
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Corollary 1. When the premise of Theorem 4 holds for a FMP ® and a variable x, every
execution ™ of ® has a last step i after which m does not use edges that decrease x.

Theorem 2 and Corollary 1 above allow us to design the complete GENSIEVE, which
proceeds by iteratively computing @G’v, and if ) € ﬂGw, removing edges that reduce vari-
ables that satisfy the premise of Theorem 2 (lines 6 and 7 in GENSIEVE), and repeating
the process with the reduced graph. This process generalizes the intuition behind Sieve
and Progress-Sieve, which are special cases obtained by replacing II(G,v) with the set of
all edges of G.

Theorem 3. If GENSIEVE returns “terminating” when called with o FMP ® then all exe-
cutions of ® are finite.

Proof. GENSIEVE computes the set ﬂGﬂ) for the graph of ®. Theorem 2 establishes the
desired result if line 11 is reached without executing lines 6 and 7 (pruning of decreasing
edges). Execution of lines 6 and 7 results in a smaller policy ®'. Suppose GENSIEVE
returns “terminating” for ® and yet ® has an infinite execution. By Corollary 1, after a
finite prefix, this infinite execution never decreases variables that are removed in lines 6
and 7. The infinite suffix after this prefix does not use any edges that were removed from
® to create ®, so this must be an infinite execution for ®’ as well, but this contradicts
the consequence of Theorem 1 for ®'. Therefore if GENSIEVE returns “terminating” after
finitely many iterations of the main loop (line 2), ® and all of the intermediate pruned
policies are terminating policies. O

The analysis presented above can also be generalized to apply to FMPs under qualitative
semantics where the absolute value of all decreases (&) is bounded below to be at least
de and all increases (@) are bounded above to be at most dg, so that we can obtain
conservative estimates of the net change due to a sequence with x decreases and y increases
as < xdg — Y. In such a case we would replace all net changes with zdg — yds. The
analysis conducted above uses the same value zdg — ydg but for deterministic semantics
Wlth b = 5@ = +1 and o = —5@ = —1.

The time complexity of GENSIEVE depends on the number of nodes in the DET and the
number of vertices in the quotient graphs. The process of computing all paths between two
vertices in a graph is O(2") and this is done O(k) times in BuildDec Vars and BuildIncVars
where k is the number of nodes in the DET. Let ¢ be the maximum number of vertices in
quotient graphs and let [ be the number of segments included in the II(G, v) sets, which are
subsets of non-repeating paths in graphs of at most ¢ vertices. Thus the runtime complexity
is O(k21+kl) = O(k29). In practice we found ¢ to be significantly less than the total number
of gstates in FMPs with multiple strongly connected components.

The approach presented in this section is complementary to methods based on the
synthesis of ranking functions for linear arithmetic simple-while loop programs (Cook et al.,
2006) and the two approaches can be used in conjunction by using our approach to produce
a finite set of possible paths that need to be validated.

5.2 Empirical Analysis and Results

We developed a preliminary implementation of GENSIEVE in Python. All experiments were
carried out on a laptop with a 3.1GhZ Quad-Core Intel Core i7 processor and 16GB of RAM.
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We tested the implementation using custom generated FMPs as well as randomized, auto-
generated FMPs. This implementation caches quotient graphs with DEF nodes but several
other optimizations are possible, e.g., by computing the sets constructed in BuildIncVars and
BuildDecVars simultaneously for each DEF node. DEF's are computed in a straightforward
manner by identifying all SCCs, removing a randomly selected vertex from each of the SCCs
and repeating this process on each of the resulting graphs. All reported times include the
time taken for generating DEFs in this manner.

We present several randomly generated FMP policies with increasing numbers of nodes
where the sieve algorithm is unable to assert termination due to the absence of net decrease
variables but GENSIEVE asserts termination. We limited the randomly generated policies
to use a small number of variables to make the analysis of termination harder as with larger
numbers of variables there tend to be fewer instances of the same variable being increased
and decreased in the same strongly connected component. Further analysis of the ratio of
variables to control states and its relationship with difficulty of asserting termination is a
promising direction in the study of termination assessment of FMPs.

The runtime for this Python implementation was less than 2-3s in all of our experiments.
However it can be difficult to randomly generate interesting policies that can be manually
verified as terminating policies, especially with more than 5-6 control states. Currently,
generating such policies (with and without consideration of termination properties) is one
of the major thrusts in research on generalized planning. GENSIEVE can be used for analysis
of candidate FMPs in algorithms for the synthesis or learning of generalized plans.

Figures 5 to 10 show randomly generated policies and the DEFs generated for them
initially as well after every round of edge removal. All of these policies were found to
be terminating by GENSIEVE. The Sieve algorithm could not assert termination for any of
these policies. Some of the policies required multiple rounds of edge removals. An additional
policy that required four iterations of the main while loop in GENSIEVE is presented in
Appendix A.

(c) 23 = 4\ {s0—,22-}  (d) D,

Figure 5: Steps in GENSIEVE’s assertion of termination on ®5 (4 control states). Total runtime:
1.5s.
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(90_q1_q2 g3 g4 ¢5.92)

(90_q1_g3_g4_q5,45)

(b) Da, (c) @F = @3\ {x0—, 22—} (d) Daz

Figure 6: Steps in GENSIEVE’s assertion of termination on ®3 (5 control states). Total runtime:
1.5s.

(a0 22
OO
OERO

&

(b) Da, (c) ®f = ®4\{20—, 21—} (d) D3

2-1

Figure 7: Steps in GENSIEVE’s assertion of termination on ®4 (6 control states). Total runtime:
1.2s.
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(e) @3 = @3\ {x2-} (f) Da3

Figure 8: Steps in GENSIEVE’s assertion of termination on ®5 (7 control states). Total runtime:
1.2s.
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(c) @ = 5\ {z0—} (d) Dy

Figure 9: Steps in GENSIEVE’s assertion of termination on ®g (8 control states). Total runtime:
1.2s.
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(e) @7 = @7\ {0} (f) Da3

Figure 10: Steps in GENSIEVE’s assertion of termination on ®7 (10 control states). Total runtime:
2s.
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5.2.1 DEPENDENCE ON DIRECTED ELIMINATION FORESTS

The analysis conducted by GENSIEVE is dependent on the DEF because DEF nodes guide
the construction of quotient graphs and the path sets II(G,v). We observed that in rare
cases GENSIEVE can return “unknown” with one DEF and “terminating” with another DEF
for the same FMP. Fig. 11 shows an example of an FMP (®g) that exhibits this feature.
When run with DETg,, GENSIEVE returns “terminating” but it returns ”unknown” when
run with DETg, .

The formal analysis presented in Sec. 5.1 ensures that the input policy terminates if
GENSIEVE returns “terminating” for any DEF for the policy. The set of possible DEF's
is finite, albeit exponential in the number of gstates in the FMP and running GENSIEVE
with all possible DEFs for an FMP could be viewed as a reasonable cost of determining
termination. An alternative approach could develop a probabilistic by allocating a fixed
computational budget towards assessing termination, and iteratively sampling a DEF and
running GENSIEVE with the sampled DEF until the computational budget is exhausted.

(90_q1_q2_q3_q4_q5,q4)

(a) g (b) Da, (¢) D,

Figure 11: @4 (six control states). When used with Dg,, GENSIEVE returns “terminating” in 2s.
When used with Débg, GENSIEVE returns “unknown” in 2s.

6. Conclusions

We presented a new approach that uses graph theoretic decompositions of finite-memory
policies to efficiently determine whether they permit non-terminating executions. In con-
trast to prior approaches, this framework neither requires qualitative semantics nor does it
place a priori restrictions on the structure of FMPs that it can analyze. Empirical evalua-
tion shows that these methods go beyond the scope of existing approaches for this problem.
Several optimizations and extensions are possible with this new framework for analyzing
generalized plans. Parallelized implementations for per-DET analyses, better bookkeeping
and compiled language implementations could be used to speed up the presented algorithm.
The current methods could be refined to incorporate more precise estimates of graph con-
nectivity to refine the set of paths that could be composed together in an execution. Edge
conditions can be also be included in this analysis. Heuristic search techniques could be
developed to create DETs that are more likely to identify termination and mitigate the
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impact of the order of node elimination in the creation of DETs and in the analysis carried
out by GENSIEVE. Finally, the hierarchical approach developed in this paper could be used
in heuristics and early pruning strategies for learning and synthesizing generalized finite
memory policies.
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Appendix A. Additional Results

Figs. 12 and 13 show the execution of GENSIEVE on a policy that resulted in a longer
sequence of reductions and iterations of the main while loop. The total run time for analysis
was 1.2s.
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(b) D‘I’s

Figure 12: Steps in GENSIEVE’s execution on ®g (ten control states and seven variables). Continued
on Fig. 13.
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(90_q1_q2_g3_q4_45_96_q7_q9,q9)

(90_q1_q2 q3_q4_q5_g6.93)

(90_q1_q2_g4_q5_g6, 40)

(42_95,95)

(c) ®F = ®F\ {26}

@_at.a) > 797

(f) Das (8) g =2\ {z1-}  (h) Dy

Figure 13: (continued) Steps in GENSIEVE’s execution on ®g. Total runtime: 1.2s.
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