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Intrinsically disordered regions are poised to act
as sensors of cellular chemistry

David Moses ,1,5,@ Garrett M. Ginell ,2,3,5,@ Alex S. Holehouse ,2,3,*,@ and Shahar Sukenik 1,4,*,@

Intrinsically disordered proteins and protein regions (IDRs) are abundant in eu-

karyotic proteomes and play a wide variety of essential roles. Instead of folding

into a stable structure, IDRs exist in an ensemble of interconverting conforma-

tions whose structure is biased by sequence-dependent interactions. The ab-

sence of a stable 3D structure, combined with high solvent accessibility,

means that IDR conformational biases are inherently sensitive to changes in

their environment. Here, we argue that IDRs are ideally poised to act as sensors

and actuators of cellular physicochemistry. We review the physical principles

that underlie IDR sensitivity, the molecular mechanisms that translate this sensi-

tivity to function, and recent studies where environmental sensing by IDRs may

play a key role in their downstream function.

Intrinsically disordered regions and their conformational biases

Intrinsically disordered regions (IDRs) (see Glossary) make up around a third of most eukary-

otic proteomes and play critical roles in various cellular functions [1]. Unlike folded domains, IDRs

lack a fixed folded structure and instead exist in a set of interconverting conformations known as

an ensemble (Box 1 and Figure 1A). While IDRs are characterized as disordered, they are not ‘un-

structured.’ Instead, IDRs possess conformational biases (Box 1) that are dependent on their

amino acid sequence [2–4]. These conformational biases may be driven by polar, hydrophobic,

electrostatic, cation-pi, or pi-pi interactions between amino acid side chains that lead to attraction

or repulsion between distal regions of an IDR [5–12]. Such interactions tune intramolecular dis-

tance distributions and ensemble-average global dimensions. As an example, long-range elec-

trostatic interactions driven by clusters of oppositely charged residues can tune IDR global

dimensions [13–15], as in the case of the cell cycle inhibitor protein p27Kip1 [14]. Alternatively,

short-range transient secondary structure can manifest as specific conformational states that ap-

pear as distinct subpopulations within the overall ensemble [16], for example, transient helicity

within specific subregions of IDRs, as seen in the RNA binding protein TDP-43 or the transcription

factor p53 [17,18]. For any given IDR, the emergent combination of sequence-encoded attractive

and repulsive molecular interactions will dictate its conformational biases.

Besides amino acid sequence, another factor that influences IDR conformational biases, and

therefore ensemble properties, is their physicochemical environment [19,20]. Folded domains

benefit from a network of intramolecular noncovalent bonds that determine a consistent molec-

ular topology. In IDRs, the lack of such a network has two implications. First, the designation of

‘buried’ and ‘surface-exposed’ residues commonly made in reference to folded proteins is not

applicable (Figure 1A). In general, all residues in an IDR will be at least transiently solvent-

exposed. Thus, the entire sequence is in direct interaction with the solution and can sense any

change in surrounding chemistry. A second implication is that the sparse interactions that exist

in an IDR are often too weak to resist the push and pull of the chain’s interactions with its sur-

rounding solution. For example, interactions with denaturants like urea can pull apart the
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noncovalent bonds that maintain a protein’s structure. However, denaturation of a folded protein

often requires a high urea concentration (6–8 M as a standard) because a network of intramolec-

ular bonds resists this pull. IDRs, on the other hand, can be dramatically extended even by urea

concentrations that are almost an order of magnitude smaller (<1 M) [19–22].

Why do IDR conformational biases matter? The sequence-ensemble-function paradigm posits

that IDR function is at least partly dependent on an ensemble’s conformational biases [2,16]. Con-

formational biases can prime IDRs for molecular recognition that involves folding upon binding

[18,23,24]. Alternatively, they can tune global dimensions or facilitate the formation of fuzzy com-

plexes, where a bound structure lacks a defined 3D orientation [24–26]. Specific examples of

the sequence-ensemble-function relationship include regions that form binding motifs when they

exist as a transient helix [18], global dimensions tuning motif binding accessibility [27], and tuning

of interactions by changing the overall volume occupied by the ensemble [28,29]. Additionally,

IDRs can themselves play key functional roles without directly interacting with partners. For

example, when two globular domains are tethered by an intervening IDR, the effective

Box 1. IDR conformational ensembles and conformational biases and sensing

Conformational ensembles

An IDR’s conformational ensemble is the collection of accessible conformations assumed by the IDR in a solution. Al-

though every protein actually exists somewhere on the continuum between rock-like rigidity and complete disorder, for

simplicity the constantly changing conformational ensembles of IDRs are commonly contrasted to the ‘native’ structures

of folded proteins.

Although highly susceptible to change, IDR conformational ensembles are far from random. Rather, every IDR conforma-

tional ensemble is influenced by conformational biases (see later) that depend on, among other things, the amino acid se-

quence of the IDR, the surrounding conditions (solution components, temperature, etc.), and interactions with folded

domains to which an IDR may be tethered.

Information about the conformational biases of IDR conformational ensembles is accessible throughmeasurements of en-

semble-average properties such as average global dimensions. Ensemble-average global dimensions of an IDR in solution

can be measured through methods such as Förster resonance energy transfer (FRET) and small-angle X-ray scattering

(SAXS), and predicted through simulations and deep learning approaches.

Conformational biases and sensing

An IDR’s conformational biases (also called structural biases) are preferences in its conformational ensemble due to which

certain conformations are observed more often than expected compared with an inert flexible polymer. This may include

local structural biases (e.g., transient secondary structure), long-range intramolecular interactions, and biases in global di-

mensions. An IDR’s conformational biases can undergo pronounced changes as a result of changes in its physicochem-

ical environment, and these changes can influence function.

Importantly, if two IDRs are chemically orthogonal, their conformational biases respond differently to a given physico-

chemical change in their surroundings. These differential responses give rise to the idea of an IDR being able to ‘sense’

particular physicochemical changes. This perspective proposes that changes in IDR conformational ensembles offer a

mechanism for intracellular sensing.

A major challenge in establishing IDRs as biological sensors is demonstrating that IDR conformational ensemble prop-

erties determine molecular function. Structural biology has benefited tremendously from the application of conserva-

tive separation-of-function point mutations motivated by 3D structures to infer structure-function relationships. For

IDRs, the usability of these tools is diminished, because point mutations often have little effect on ensemble structure

and function.

As a result, linking IDR ensemble to function, especially in a range of physicochemical conditions, requires novel

approaches designed to test the ensemble-function relationship. Because of the resilience of ensemble structure to mu-

tations, meaningful exploration of this relationship requires high- or medium-throughput approaches. Recent years have

seen the expansion of computational and experimental approaches that help predict and test sequence-ensemble

relationships. These includemolecular simulations (coarse-grained and all-atom), high-throughput parallel reporter assays,

solution-space scanning, and even direct prediction of ensemble properties from sequence.
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Glossary

Biological sensor: in the context of

IDRs, a physicochemical sensor that,

by responding to a change in its

physicochemical environment, elicits a

downstream biological response.

Chemical orthogonality: modes of

interaction that are driven by chemically

distinct molecular mechanisms. In the

context of IDRs, two chemically

orthogonal IDRs may show divergent

responses to the same change in

solution chemistry. For example, one

IDR may become compact in the

presence of increased ionic strength but

show no response to pH changes, while

another could compact at elevated pH

but show no response to elevated ionic

strength.

Coil-to-globule transition: a sigmoi-

dal change in the global

dimensions of a polymer from a

maximally expanded state to a minimally

expanded state (Figure 2B).

Conformational biases: local and

long-range intramolecular interactions

(attractive or repulsive) that deviate from

those expected for an inert, flexible

polymer (Box 1).

Conformational ensembles: the

collection of accessible conformations

assumed by the IDR in a solution (Box 1).

Conformational heterogeneity: a

measure of the range of different

conformational states observed. Folded

proteins have limited conformational

heterogeneity, such that they are often

well described by a single reference

structure. Disordered regions have

extensive conformational heterogeneity,

necessitating their description in terms of

average properties of a conformational

ensemble.

Global dimensions: properties of an

IDR’s conformational ensemble that

relate to the overall volume being

occupied by the ensemble. Typically

reported in terms of the radius of

gyration, the hydrodynamic radius, or

the end-to-end distance. Global

dimensions are the measured

observable for most experimental

methods (SAXS, ensemble FRET,

smFRET, SEC, and others).

Intrinsically disordered regions

(IDRs): proteins or protein regions that

are poorly described by a single 3D

structure and instead exist in a

conformational ensemble.

IDR sensitivity: the degree to which

the conformational biases of an IDR

change due to changes in the
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Figure 1. Disordered regions exist in an ensemble that is inherently sensitive to the physicochemical

environment. (A) Protein conformational heterogeneity exists on a continuum, whereby well-folded domains are at

one extreme and fully disordered regions with no strong conformational biases are at the other. Regions that are highly

conformationally heterogeneous contain fewer intramolecular bonds and are more solvent-exposed, and hence, in

general, are more sensitive to even modest changes in the physicochemical environment. Here, the x-axis represents

conformational heterogeneity while the y-axis represents some change in solution chemistry. (B) Scheme showing some

examples of how changes in the physicochemical environment can alter IDR conformational biases. Changes in solution

chemistry (salt, osmolytes, pH) may weaken (or strengthen) intramolecular interactions leading to a decrease (or increase)

in transient intramolecular interactions. The presence (or loss) of ligands, including specific ions, small molecules, second

(Figure legend continued at the bottom of the next page.)
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physicochemical environment. Different

sequences can display sensitivity to

different environments (see also

chemical orthogonality).

Physicochemical environment: the

physical and chemical environment

surrounding an IDR, including but not

limited to the solution chemistry, as well

as physical parameters such as

temperature and pressure.

Physicochemical sensor: in the

context of IDRs, an IDR that reproducibly

changes its conformational ensemble

(Box 1) in response to a specific change

in its physicochemical environment.

Solution chemistry: the chemical

identity and composition of a solution,

including pH, water activity, and osmotic

pressure, and the identity and

concentration of solutes: ions,

osmolytes, metabolites, other small

solutes, and macromolecules (including

other proteins).



concentration of the two domains with respect to each other, and therefore the extent of their

interactions, can be tuned by changing the end-to-end distance of the IDR tether [30,31]. Re-

cent work has highlighted the importance of effective concentration to function by revealing

that IDR dimensions – without conservation of a specific amino acid sequence – can be

under evolutionary selection to ensure optimal linker lengths in a model termed ‘conformational

buffering’ [32]. In short, an emerging model suggests that the relationship between sequence

and ensemble can be critical for the biological function of IDRs.

The importance of conformational ensembles to IDR function, coupled to the inherent sen-

sitivity of IDRs to their physicochemical environment, gives rise to the possibility of IDRs acting

as molecular sensors of their surrounding physicochemical environment (Box 1). The broad

palette of chemistry available through the 20 natural amino acids (plus their post-translational

modifications) makes possible the evolution of chemically orthogonal IDRs that are differentially

sensitive to a variety of distinct physicochemical changes [19,20,33,34]. Sensing based on IDR

ensemble changes would bring obvious advantages to the cell. In contrast to, for example,

kinase signaling, IDR ensemble changes require no expenditure of ATP. Also, given that

IDRs undergo conformational rearrangement on timescales of 50–200 ns, sensing based on

IDR ensemble changes could occur extremely rapidly [35]. These features position IDRs to

be exceptionally efficient protein-based sensors.

This perspective focuses on the molecular mechanisms governing how IDRs sense and respond to

changes in their physicochemical environment and on biomolecular systems where IDR sensitivity

could be the mechanism underlying regulation and function. We will first discuss the conceptual and

biophysical determinants of IDR sensing. Following this brief overview, wewill consider how sensing

can be measured, followed by examples where IDRs have been identified as playing a putative or

demonstrable role in sensing their physicochemical environment.

The molecular basis of physicochemical sensing

For an IDR to act as a physicochemical sensor, it must reproducibly respond to changes in its

physicochemical environment (Figure 1B). These responses may take the form of global changes

in ensemble conformations, changes in specific long-range intramolecular interactions, or

changes in local transient structure. Although these are often coupled, for simplicity we will con-

sider them independently in our discussion later.

The solution dependence of global conformational biases in IDRs

Changes in global IDR dimensions can be viewed through the lens of polymer physics [3,36]. If

we represent an IDR as a homopolymer, its global dimensions depend on the balance between

attractive and repulsive intramolecular interactions. This balance can be quantified as a single in-

teraction energy that reflects the average overall attraction (or repulsion) of the polymer units

(monomers) for one another, that is, the mean-field self-interaction energy (ε) (Figure 2A).

The mean-field self-interaction energy is inherently dependent on the solution environment. In a

solution of polymer and solvent, increasing solvent–monomer repulsion is equivalent, in a

mean-field sense, to increasing monomer–monomer attraction. Moving from a solution in

which the mean-field self-interaction is repulsive to one in which it is attractive can manifest as

messengers, and other biomacromolecules, can lead to the gain (or loss) of structure upon binding (or unbinding). Changes in

physical parameters such as temperature or pressure can lead to the enhancement (or suppression) of intramolecular inter-

actions, which can drive the acquisition (or loss) of secondary or even tertiary structure. These are just a handful of examples

of how changes in physicochemistry can be sensed by IDRs.
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a coil-to-globule transition [36] (Figure 2B). The sharpness of this transition depends on the

chain length and the magnitude of the change in self-interaction energy.

For homopolymers, only a single type of monomer unit is present, so there exists only a single

type of pairwise interaction energy (εi,i) (Figure 2A). For heteropolymers (like IDRs), chemically dis-

tinct monomers give rise to a matrix of pairwise interaction strengths (E ≡ [εi,i,εi,j,...,εk,n]) (Figure

2CD). These pairwise interactions strengths are also modulated by their local sequence context.

A key concept in IDR sensitivity is that each of these individual pairwise interaction strengths may

be modulated differently by changes in the physicochemical environment, that is, they may be

chemically orthogonal (Figure 2D). As a specific example, attractive pairwise interactions driven

by electrostatics may be sensitive to salt, while attractive pairwise interactions driven by hydrogen

bonding may be less so (Figure 2D,E).

Two central conclusions emerge from this framework. First, IDR global dimensions must depend

on amino acid sequence, as has been established by prior work [2,3,7,9,10,12,22,37]. Second,

an IDR’s sensitivity – that is, how much global dimensions change as a function of the changing

physicochemical environment – depends on (i) the underlying IDR sequence, that is, where on the

coil-to-globule curve an ensemble begins (Figure 2E); and (ii) how the intramolecular interactions

encoded in this sequence respond to their environment, that is, how much the overall mean-field

pairwise interaction energy changes in response to physicochemical changes [19] (Figure 3A).
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Figure 2. Physical principles that underlie sequence-specific IDR sensitivity to changes in physicochemistry.

(A) Homopolymers are defined by a single interaction strength between each polymer unit, which also defines the mean-field self-

interaction energy (ε). (B) If ε is repulsive, a homopolymer behaves as an extended coil with large chain dimensions, whereas if ε is

attractive, a homopolymer behaves as a compact globule. The mean-field interaction energy can be varied by changing the

chemical identity of the polymer unit, but can also be varied by altering the physicochemical environment the polymer finds itself

in (temperature, pH, solutes, etc.). (C) Unlike homopolymers, heteropolymers consist of many chemically distinct units. A

complete description of a heteropolymer requires knowledge of how each unique inter-residue interaction behaves, and the

mean-field self-interaction energy (ε) is now defined in terms of the composition-weighted and context-dependent integral over all

possible interactions. (D) The various types of interactions that may occur between residues in a heteropolymer can be, to first

order, described by an interaction matrix. The strengths of these interactions depend on solution conditions. (E) The response of

a heteropolymer to changes in the solution environment depends on the heteropolymer’s chemistry. For example, a highly

charged IDR with blocks of oppositely charged residues will be compact at low salt due to strong intramolecular electrostatic

interactions. However, under high-salt conditions, those attractive interactions are screened, leading to an expanded ensemble

driven by the substantial solvation free energies associated with charged groups. By contrast, a charge-depleted heteropolymer

may be relatively salt-insensitive and is relatively compact compared with the blocky IDR in the high-salt limit.
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For IDR ensembles that begin near one of the baselines (either coil or globule), large changes in

the mean-field energy can have a relatively small impact on chain dimensions, making them

less sensitive (Figure 3A, left) [19]. Analogously, for ensembles that begin in the middle of the

coil-to-globule transition, relatively small changes in the mean-field interaction energy drive

large changes in global dimensions, making them more sensitive (Figure 3A, right). One could

consider folded domains to be at the globular extreme of this transition, illustrating their lack of

solution sensitivity. The upshot of this is that chain sensitivity peaks at the midpoint of the coil-

to-globule transition (Figure 3B). Indeed, prior work has shown that this conceptual framework

is able to quantitatively normalize the solution dependence of IDRs across a wide range of differ-

ent cosolutes (Figure 3C) [19].

In short, baseline conformational behavior and sensitivity to environmental change, both

of which depend on sequence, combine to determine an IDR’s global dimensions

(Figure 2E). Together, these two features offer a quantitative framework through which IDR

sensitivity can be interpreted and, looking forward, used as a design principle for the develop-

ment of novel sensors.

The solution dependence of local conformational biases in IDRs

Local conformational biases, such as the gain or loss of transient secondary structure (especially

transient helicity), can also be tuned by the environment [38,39] (Figure 4). Importantly, the ability

of ensemble conformations to change locally and not just globally means that ensembles can

have different structural features even though global dimensions are the same [12,40,41]. This
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Figure 3. An IDR’s sensitivity to the physicochemical environment depends on its intrinsic conformational

biases. (A) The extent of change in chain dimensions (gray-shaded region) in response to a change in mean-field self-

interaction strength tuned by the physicochemical environment (green-shaded region) depends on both the underlying

sequence and the polymer’s behavior prior to the change. From equivalent changes in interaction strength, very different

changes in polymer dimensions can emerge. (B) Chains at the midpoint of the coil-to-globule transition are most sensitive

to changes in the solution environment. (C) Comparison of experimental data and analytical theory demonstrating the

broad applicability of this framework. Adapted from [19].
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poses an additional challenge to experiments which often measure only a single global dimen-

sion, as discussed later.

Cellular sensing through IDR-mediated phase transitions

IDRs can also contribute to the formation of biomolecular condensates through intracellular

phase transitions, although we emphasize that IDRs are not necessary for phase transition to

occur [10,42]. The same physical and chemical logic ascribed to IDR coil-to-globule transitions

can and will tune phase behavior, meaning that changes in solution conditions can enhance or

suppress biomolecular condensate formation [37,43–46].

Yoo et al. have made a compelling case that intracellular phase transitions offer a general class of

sensing that benefits from the sharpness of a first-order phase transition [47]. Whereas coil-to-

globule transitions of real chains are finitely-cooperative transitions with cooperativity depen-

dent on sequence and solution (Figure 2), first-order phase transitions are infinitely coopera-

tive. This means phase transitions offer digital (on/off) sensors, while individual IDRs provide

analog (dimmer switch) sensors. Depending on the scenario, digital or analog sensing may

be preferable.

Measuring IDR sensitivity

In folded domains, chemical sensing can be facilitated through specific, evolutionarily optimized

binding sites that enable picomolar-affinity binding to small molecules. In contrast, IDRs generally

cannot form well-defined binding pockets in their disordered state but instead can sense the

chemical environment through changes in IDR–solvent interactions (Figure 1). Because of this,

sensing low concentrations (nM and below) of specific small molecules can be difficult to achieve

unless IDRs engage in coupled folding-upon-binding with a ligand. Instead, IDRs sense the aver-

age physicochemical environment of their surroundings and respond with changes in ensemble

structure – a holistic, integrated response to the environment that is difficult for well-folded pro-

teins to achieve. Here, we highlight experimental methods that probe how IDRs act as physico-

chemical sensors.

In vitro measurements of IDR ensemble sensitivity

Small-angle X-ray scattering (SAXS), single-molecule Förster resonance energy transfer (FRET),

NMR, and other biophysical methods provide a rich toolkit with which to study IDR ensembles

in vitro. Such studies can measure the sensitivity of IDRs through changes in ensemble-

average properties as a function of changes in solution physicochemistry [19,34,48].

Several groups have used changes in solution chemistry to elicit a structural response

from IDRs. Perhaps the most well-studied examples are denaturants, which by weakening

intramolecular interactions drive ensemble expansion [21,22,41,49]. To broadly explore the

relationship between IDR sequence sensitivity and solution chemistry, recent work applied

so-called solution-space scanning to assess how different IDRs respond to a panel of dif-

ferent cosolutes. In this approach, an IDR of interest is sandwiched between a FRET pair,

and the IDR’s dimensions as a function of osmolyte concentration and identity can be re-

corded [19]. This work showed that IDR sensitivity in vitro depends on the amino acid se-

quence and the specific changes in the physicochemical environment, strengthening the

argument for IDRs as sensors and actuators of the cellular environment [19]. The impor-

tance of sequence to sensitivity was highlighted by the finding that an ensemble can be

made more or less sensitive by scrambling its sequence while retaining the same amino

acid composition, further supporting the idea that IDRs may be finely tuned to respond to

environmental changes [34].
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Solution-dependent changes in IDR dimensions have been examined in additional contexts. IDRs

linked to desiccation tolerance undergo structural rearrangement upon dehydration and/or

changes in solution composition [50–54]. IDR ensembles and their intermolecular interactions

can also be tuned by ion concentration and identity [39,55,56]. Macromolecular crowding also

modulates IDR ensembles, with the size and concentration of a crowding molecule key determi-

nants of its ability to compact IDR ensembles [57,58]. In summary, in almost all in vitro systems

examined, with a few notable exceptions, IDRs appear responsive to their environment, albeit

to different degrees [12].

In-cell measurements of IDR sensitivity

In contrast to aqueous buffers, the cellular environment is constantly changing, causing spatial and

temporal variations in crowding, pH, ion and osmolyte concentrations, and other solution properties

[59]. These changes occur during routine cellular events such as cell cycle progression (e.g., entry into

mitosis), due to external stress such as osmotic pressure or starvation, or due to pathology (e.g., the

Warburg effect inmost cancer cells) [60–63]. Given the sensitivity of IDRs, intracellular solution dynam-

ics may be expected to alter IDR ensembles more than what is observed in vitro. To assess this, sev-

eral methods, including NMR [64,65] and single-molecule FRET [48], have been used to study IDR

ensembles in live cells. Despite some outliers that are more structured in the cell than in vitro [66],

all IDRs studied to date remain disordered in the cell [34,65,67,68]. Despite the great differences be-

tween an aqueous buffer solution and the cellular environment, recent work has shown that confor-

mational biases observed in vitro tend to persist in the cell [34,68].

Measuring IDR sensitivity in cells requires the ability to precisely and reproducibly change the

cellular environment and measure the resulting response of the IDR ensemble. This makes in-

ionic strengthionic strength

hydrophilic hy
dr

op
ho

bic

he
lix

-in
du

ci
ng

(A)

(B)

(C) (D)

TrendsTrends inin BiochemicalBiochemical Sciences Sciences

Figure 4. Examples of physicochemically-driven changes in IDR ensembles. (A) Promotion of secondary structural

elements such as residual helicity (shown by the tube on the right) can form or dissolve binding motifs, modulating binding

affinities. By prepaying an entropic cost for binding, the effective concentration of binding motifs can be rapidly enhanced

or suppressed without the need to alter the protein copy number. (B) Amphipathic sequences with patches of

hydrophobic or hydrophilic residues can compact or expand locally in different solutions, tuning accessibility of specific

regions. (C) Sequences with high net charge (positive or negative) can compact when an increase in ionic strength

screens out repulsive interactions. (D) Charged sequences with sequestered, opposite charges can expand at high ionic

strength due to screening of attractive interactions.
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cell experiments tricky to interpret: cells have well-established active mechanisms to maintain ho-

meostasis and mitigate physicochemical perturbations. As a result, induced ensemble changes

must be distinguished from changes driven by cellular pathways [69]. Rapid, laser-induced tem-

perature jumps offer one route to produce high-speed perturbations, an approach that has been

used to measure intracellular IDR dimensions as a function of temperature [70]. Several groups

also have used rapid osmotic perturbations that occur in a matter of seconds. When studied

using in-cell single-molecule FRET, the fully disordered protein prothymosin alpha was found to

compact under hyperosmotic stress, an effect quantitatively explained by changes in molecular

crowding [48]. More recently, ensemble FRET measurements revealed that the osmotic sensitiv-

ity of IDRs inside the cell is often dramatically different from what is measured in vitro [34]. This

highlights the ability to elicit different structural responses from the same IDR to the same pertur-

bation depending on the IDR’s surroundings.

IDRs as physicochemical and biological sensors

Recognition that proteins exist in a complex, spatially and temporally dynamic cellular environ-

ment has driven research into how cellular perturbations influence protein structure and function

[71]. While folded domains are often robust to small physicochemical perturbations, IDRs can be

much more sensitive to these changes [33,72]. The inherent flexibility of IDRs, together with the

exposure of their residues to the surrounding environment, makes them ideal candidates to

serve as sensors and actuators of physicochemical changes in the cellular environment

[39,57,73]. However, whether this physicochemical sensing modality elicits a function can be

hard to verify. An IDR is only a genuine biological sensor if it responds to a stimulus and then

elicits a downstream biological response. Presented later and in Table 1 are examples of IDRs

that mediate downstream function when exposed to physicochemical changes in the cellular

environment. Despite clear links between IDR sensitivity and downstream function, whether

this function is achieved through environmentally mediated changes to ensemble or some

other mechanism (e.g., post-translational modification or binding to other proteins) remains to

be tested. Nonetheless, we expect that, at least for some of these examples, mechanistic

studies will point to environmentally mediated ensemble changes as underlying the production

of downstream function.

Chemical perturbations

Early studies exploring the relationship between IDR–solvent interactions and IDR dimensions fo-

cused on the impact of denaturants [21,41,49]. Following this, a corpus of work showed that highly

charged IDRs could be extremely sensitive to changes in salt conditions, further illustrating how the

solution environment can tune ensemble dimensions [7,56,57,74,75]. This work has paved the

way for a growing appreciation that IDRs can and do respond to their chemical environment.

IDRs as sensors of cellular chemistry

If IDRs can sense their environment, are there examples where this enables biological regulation?

One such example is CO2 sensing enabled by a large IDR within the Ptc2 phosphatase in

Candida albicans [76]. Here, a serine-rich IDR enables CO2 sensing by driving the formation of bio-

molecular condensates upon elevated CO2 levels, which in turn drives phenotypic (white-opaque)

switching. Although CO2 sensing is conserved in functionally orthologous PP2C-family phospha-

tase IDRs, the primary sequence of the CO2-sensing IDR varies substantially across species. Con-

servation of function, even with poor sequence conservation, is gaining attention as a distinctive

feature of IDRs, as highlighted in recent work across a range of organisms [32,77,78].

IDRs have also emerged as important participants in pH sensing [79,80]. Considering that pH

changes can alter the ionization states of titratable side chains, and given the important role
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Table 1. IDRs showing functional response to physicochemical changes

Change Protein Function/observation Refs

CO2 Ptc2 phosphatase Drives phenotypic (white-opaque)

switching in C. albicans

[76]

Water availability/deficit Hydrophilins, LEA proteins Protection from water stress [51,88]

LEA proteins Sensing of osmotic stress [33]

CAHS D Desiccation protection in tardigrades;

acquires helical structure and forms

hydrogels upon desiccation

[52–54,89]

FLOE1 Undergoes phase separation under

hydration; signals A. thaliana to

suppress germination in unfavorable

environments

[90]

SEUSS Stress tolerance in A. thaliana; drives

localization to condensates in

response to hyperosmotic conditions

[91]

Macromolecular crowding YAP Transcriptional coactivator in human

cell growth that localizes in

condensates in response to cell

volume decrease and alters

expression patterns

[121]

ASK3 Kinase that forms condensates upon

cell volume decrease and regulates

volume recovery

[122]

WNK1 Kinase that forms condensates upon

sensing crowding and regulates cell

volume

[92]

Redox state CP12 Regulates the

Calvin–Benson–Bassham cycle

[95]

NPR1 Regulates the ubiquitylation of stress

response machinery through

biomolecular condensates

[96]

TMF Gene control during flower

development

[97]

TDP-43 Proposed to function as intracellular

redox sensor

[98]

Ataxin-2 Proposed to function as intracellular

redox sensor

[99]

pH Snf5 Enables transcriptional rewiring in

budding yeast

[80]

Sup35 May tune local pKa values into the

physiological range in yeast

[45]

HSF1 pH-responsive element involved in

yeast stress response

[79]

G3BP1 Mammalian stress granule formation [86]

Ions and metals ASK3 Na+ regulates the liquidity of ASK3

condensates

[123]

SK Disordered regions that fold upon

Ca2+ binding

[100]

SilE Disordered bacterial protein that folds

upon silver binding

[102]

PrPC Binds copper via octa-repeat motifs in

its disordered N-terminal IDR. This

region may also bind other metals

[103]
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charged residues play in IDR ensembles, IDRs are well poised to function as pH sensors [81,82].

In budding yeast, a glutamine-rich low-complexity domain in the transcriptional regulator Snf5

possesses a handful of histidine residues that enable large-scale pH-dependent transcriptional

rewiring [80]. For Snf5, simulations predict that histidine protonation leads to an increase in IDR

global dimensions. Similar IDR-based pH sensing in yeast has also been reported in HSF1 and

Sup35, where the local sequence context may tune local pKa values into the physiological

range [45,83–85]. These insights also offer a mechanistic explanation for the pH-dependent con-

formational rearrangement observed in G3BP1, a highly disordered mammalian protein essential

for mammalian stress granule formation [86]. Taken together, pH-dependent conformational

switching offers a mechanism through which IDRs can respond to intracellular changes or enable

context-specific functionality.

Another situation in which large-scale intracellular physicochemical changes arise is desiccation.

Responding to changing water availability is crucial, especially for sedentary or single-cell organ-

isms. The precise physicochemical cues being sensed in response to changing water availability

are unavoidably a convolution of many different factors (including dielectric constant, osmolyte

concentrations, water potential, oxidative stress, etc.). However, organisms from all branches

of the tree of life have evolved IDRs that can sense and/or protect them from water stress, high-

lighting the generality of this phenomenon [87]. The quintessential family of such protectants are

hydrophilins – a family of largely disordered proteins that are accumulated under water deficit in

bacteria, archaea, and eukaryotes [88]. Biophysical studies of subfamilies, including the late-

embryogenesis abundant (LEA) and the tardigrade-specific CAHS proteins, show that these pro-

teins undergo ensemble-wide change upon exposure to water stress, often adopting a helical

conformation [51–53,89]. This observation has enabled the design of novel water-sensing pro-

teins, demonstrating the power of a biophysical understanding of IDR sensitivity [33]. Recent

Table 1. (continued)

Change Protein Function/observation Refs

Granulins Small cysteine-rich disordered

proteins that can sequester copper

[104]

Mms6 Bacterial protein whose C-terminal

IDR coordinates iron in the context of

magnetosome formation

[105]

ProTα Highly charged IDR that can bind zinc;

this binding has been proposed to act

as an entropic switch

[106]

Insulin SIRT1 An insulin binding motif in the

N-terminal IDR leads

insulin-dependent structural

acquisition

[124]

Temperature Pab1 Tunes stress granule assembly during

heat stress in S. cerevisiae via the

P-domain (however, P-domain is not

required for condensation)

[44]

ELF3 A polyglutamine tract in the ELF3

prion-like domain tunes temperature

sensing in Arabidopsis

[117]

FRIGIDA C-terminal IDR contributes to

cold-dependent condensate

formation in Arabidopsis

[118]

Phytochrome B Encodes molecular timer to tune

phytochrome revision in Arabidopsis

[120]
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studies also highlight the role of condensate formation by IDRs under water stress. The highly dis-

ordered protein FLOE1 in arabidopsis (Arabidopsis thaliana) seeds reversibly undergoes phase

separation under hydration, and the biophysical states of FLOE1 condensates signal the plant

to suppress germination when the environment becomes unfavorable [90]. IDR-dependent con-

densation of another Arabidopsis protein, SEUSS, drives localization to condensates in response

to hyperosmotic conditions and is indispensable for water stress tolerance [91]. Indeed, the ability

of IDRs to sense osmotic challenges and respond through condensation has been highlighted as

a common feature and observed in other systems [37,92,93].

Cellular redox state is another facet of the intracellular environment that can change substantially

[94]. Sensing and responding to changes in redox states is vital for normal cellular function. How-

ever, like desiccation, changes in redox state often coincide with additional changes such that it

may be impossible to deconvolve the relative contributions of related physicochemical changes.

Nevertheless, recent studies have implicated IDRs as redox sensors in several different systems.

In the context of CO2 assimilation in algae, redox-dependent conditional disorder in chloroplast

protein of 12 kDa (CP12) regulates the Calvin–Benson–Bassham cycle in a redox- and light-

dependent manner [95]. In plants, cell survival during pathogen response depends on three

cysteine-containing redox-sensitive IDRs in NPR1 (NONEXPRESSER OF PR GENES1), which

regulate the ubiquitylation of stress response machinery through biomolecular condensates [96].

Similarly, in plant shoot apical meristems, the production of reactive oxygen species promotes

phase separation of transcription factor TMF (TERMINATING FLOWER). Cysteine oxidation paired

with the cooperation of N- and C-terminal IDRs in TMF enables redox-tunable transcriptional

condensation and direct gene control during flower development in plants [97]. In humans,

evolutionarily conserved methionine-rich IDRs in TAR DNA-binding protein 43 (TDP-43) and

Ataxin-2 have been proposed to function as intracellular redox sensors [98,99]. Both TDP-43

and Ataxin-2 undergo self-assembly into redox-sensitive gel-like condensates, with implica-

tions for the dysregulation of redox homeostasis in human disease.

Ions andmetals can influence IDR conformational biases in various ways. Changes in monovalent

salt concentrations may screen attractive or repulsive electrostatic interactions, rewiring intramo-

lecular and intermolecular interactions [22,74]. Beyond nonspecific electrostatic screening, direct

binding of ions, metals, and even small organic molecules also represents a key mechanism by

which IDRs can act as sensors [7,22,39]. As an example, a disorder-to-order transition upon

Ca2+ binding may couple calcium sensing and ion channel opening in small-conductance

calcium-activated potassium channels [100]. More generally, a growing number of IDRs appear

to possess calcium-binding motifs, which may enable Ca2+ sequestration and Ca2+-dependent

changes in ensemble behavior [101]. Beyond calcium, IDRs have been found to bind copper

(PrPC, granulins), zinc (ProTα), silver (SilE), and ferric iron (Mms6) [102–106]. Ions can also tune

IDR-mediated assembly with anion and cation specificity driven by charge density, ion solvation

effects, and preferential interaction coefficients [107]. Regulatory logic involving ion-dependent

changes in IDR properties (e.g., in developmental biology during calcium waves or neuronal ac-

tion potentials) offers a potential mechanism for adaptive intracellular function. While the cellular

consequences of metal binding are often unclear, these studies suggest that IDRs are poised

to enable specific and tunable metal sensing.

Other intracellular IDR sensors

In addition to sensing their chemical environment, IDRs can act as physicochemical sensors

through other means. Sequence-dependent effects, namely sequence chemistry and length,

can influence how IDRs sense or exert mechanical force [29,108]. Emerging data suggests

IDRs may be central to sensing membrane curvature: mechanistically by negatively charged
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IDRs electrostatically binding lipids, and entropically driven by preferential partitioning to convex

surfaces of membranes [28,109,110].

IDRs may also function as sensors of intracellular crowding. Prior work combining experiments,

theory, and simulations revealed that IDRs can show complex and sometimes unintuitive re-

sponses to crowders depending on IDR sequence and crowder size, shape, and chemistry

[19,57,58,111,112]. Using single-molecule FRET, the impact of crowding on IDR function has

also been examined as a potential means through which IDRs could – indirectly – enable sensing

through crowding-dependent attenuation of molecular recognition [57,58,113]. Additionally, re-

cent work on synthetic condensates indicates that crowding-induced condensate formation en-

ables novel phosphorylation events to occur if those condensates recruit kinases [114]. The ability

to encode mechanical-to-chemical signal transduction via intracellular phase transitions has

broad implications for cell fate, human disease, and molecular evolution.

As a final note, IDRs are inherently temperature sensitive, owing to the fact that the mean-

field self-interaction energy has an unavoidable entropic component that comes from solva-

tion effects [115,116]. Perhaps unsurprisingly, this temperature dependence depends on the

solution environment, setting the stage for IDRs to act as tunable temperature sensors. As

one example, the hydrophobic P domain of Pab1 in Saccharomyces cerevisiae functions

as a finely tuned temperature sensor that tunes stress granule assembly during heat stress

[44]. Similar temperature-sensitive IDRs have been identified in plants [117,118], while ratio-

nally designed IDRs could enable novel thermosensors [119]. In addition to acting via self-

assembly, IDRs have also been shown to encode short-lived molecular timers whose refrac-

tory period depends on the temperature, as is the case in the plant photoreceptor phyto-

chrome B [120].

Concluding remarks

IDRs are inherently sensitive to their physicochemical environment. Here, we have considered

physical bases of that sensitivity, biochemical explanations of how sensitivity manifests in IDR

ensemble structure, and functional consequences of IDR-dependent sensing mechanisms.

While this emerging paradigm of disordered sensors has the potential to enable new insights

into cellular regulation, it also raises many questions, some of which are listed in the outstanding

questions box (see Outstanding questions).

A central challenge in studying IDRs in the context of cellular sensing is distinguishing between an

effect that unavoidably happens versus one that reports on a bona fide sensor or actuator. We

highlight this in our precise word choice, differentiating between a physicochemical sensor and

a biological sensor (Box 1). Verifying biological responses as being due to physicochemically

induced changes in IDRs remains a key challenge.

A second challenge is a corollary of the first. We reported heremany examples in which IDRs have

been shown to mediate cellular sensing, yet the actual mechanism through which this is achieved

remains opaque in most – if not all – cases. Enabling molecular insights into how these IDRs

actually work is an ongoing challenge, both in the context of IDR sensors and, more broadly, in

understanding IDR function.

In summary, we propose that IDRs represent ubiquitous sensors of intracellular state, where they

provide ameans for complex integrative regulation.While studying IDRs is technically challenging,

their biophysical plasticity and propensity for weak multivalent interactions make them ideal tun-

able cellular sensors. As we develop new methodologies to study links between sequence,
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Outstanding questions

How do changes in IDR ensembles

propagate to drive downstream

effects?

How is chemical specificity for sensing

encoded in IDR sequence?

Can IDR-based sensors decouple re-

lated chemical signals (e.g., desiccation

and oxidative stress)?

Can IDR sensitivity cause malfunction

in a dysregulated cellular environment

(e.g., the Warburg effect in cancer

cells)?



environment, and function of IDRs, we expect the discovery of exciting new mechanisms by

which they regulate biology.
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