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ARTICLE INFO ABSTRACT

Keywords: The ability to label proteins by fusion with genetically encoded fluorescent proteins is a powerful tool for un-
Zebrafish derstanding dynamic biological processes. However, current approaches for expressing fluorescent protein fu-
CRISPR-Cas

sions possess drawbacks, especially at the whole organism level. Expression by transgenesis risks potential
overexpression artifacts while fluorescent protein insertion at endogenous loci is technically difficult and, more
importantly, does not allow for tissue-specific study of broadly expressed proteins. To overcome these limita-
tions, we have adopted the split fluorescent protein system mNeonGreen2.19,11 (split-mNG2) to achieve tissue-
specific and endogenous protein labeling in zebrafish. In our approach, mNG2;.1¢ is expressed under a tissue-
specific promoter using standard transgenesis while mNG2;; is inserted into protein-coding genes of interest
using CRISPR/Cas-directed gene editing. Each mNG2 fragment on its own is not fluorescent, but when co-
expressed the fragments self-assemble into a fluorescent complex. Here, we report successful use of split-
mNG2 to achieve differential labeling of the cytoskeleton genes tubb4b and krt8 in various tissues. We also
demonstrate that by anchoring the mNG2;.19 component to specific cellular compartments, the split-mNG2
system can be used to manipulate protein localization. Our approach should be broadly useful for a wide
range of applications.

Protein tagging
Split fluorescent protein

1. Introduction of producing overexpression artifacts, in which proteins may not func-

tion or localize correctly when expressed at higher than wild-type levels

Protein labeling by fusion with genetically encoded fluorescent
proteins has been a powerful tool for studying biological processes,
allowing scientists to visualize and track proteins of interest in live cells.
Fluorescent protein labeling has been especially useful for investigating
the dynamic processes that occur during embryonic development.
However, traditional methods for generating and expressing fluorescent
fusion proteins, especially in multicellular organisms, have several
drawbacks. In zebrafish and other model organisms, expression of fusion
proteins can be achieved by injection of in vitro transcribed mRNA
(Rosen et al., 2009), which is ubiquitous, or by transgenesis, which
utilizes gene regulatory elements to drive spatiotemporal restricted
expression (Clark et al., 2011). These approaches, however, run the risk

(Simiczyjew et al., 2014). An alternative approach is to knock in fluo-
rescent protein coding sequences into the genetic locus of that protein of
interest (Albadri et al., 2017; Auer and Del Bene, 2014; Kimura et al.,
2014). Although this approach has the advantage of preserving endog-
enous regulation of that protein’s expression, many proteins are
expressed broadly; issues arise when there is a need to study a broadly
expressed protein in a specific tissue. Thus, there is a need for
tissue-specific and endogenous tagging of proteins.

Split fluorescent proteins (split-FPs) are self-complementing protein
fragments that only fluoresce when bound together. Split-FPs have been
successfully used to visualize and quantify cell-cell interactions (Fein-
berg et al., 2008), signaling pathway activation (Harvey and Smith,
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2009), and subcellular protein localization (Cho et al., 2022). One
commonly used split-FP system is based on the yellow-green fluorescent
protein monomeric NeonGreen2 (mNG2) in which strands 1-10 of the
mNG2 beta-barrel (mNG2;.1¢) and strand 11 (mNG21;) are expressed as
independent protein fragments (Feng et al., 2017). On their own, the
fragments are nonfluorescent, but when present in the same cell, they
will self-assemble into a bimolecular complex with similar spectral
properties to the intact, full-length fluorescent protein. The split-mNG2
system has been demonstrated to function in several different organisms
and cell types (Cho et al., 2022; Kesavan et al., 2021; O’Hagan et al.,
2021). Here, we adapt it for use in zebrafish to achieve tissue-specific
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and endogenous protein labeling. In our approach, mNG2;.i is
expressed under the control of a tissue-specific promoter using standard
zebrafish transgenesis techniques. Because the mNG21; fragment is only
16 amino acids long, its short sequence can be easily inserted into
endogenous genetic loci by CRISPR/Cas-directed gene editing. In this
way, the mNG2,;-tagged protein will continue to be expressed at
endogenous levels, but fluorescent signal will only be detected in tissues
in which mNG2;.1¢ is co-expressed (Fig. 1A).
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Fig. 1. Split fluorescent protein fragments are functional in zebrafish embryos. A. Schematic illustrating our protein labeling strategy using a split fluorescent
protein. Transgenic (Tg) mNG2,.1¢ is expressed under the control of a tissue-specific promoter (tsp) while mNG2;; is inserted into protein-coding genes by CRISPR/
Cas-directed gene editing. Fluorescence (green) is only generated in tissues co-expressing mNG2;_1o and the mNG2;;-tagged protein of interest. B-E. Embryos were
injected with GFP;.1¢ and GFP;;-H2B (split-GFP, B) or mNG2; .19 and mNG2;;-H2B (split-mNG2, C-E) mRNAs then imaged at 6 h post-fertilization (hpf) on a confocal
microscope (B, C) or at 24 hpf on a fluorescence stereomicroscope (D, E). Confocal images are displayed as maximum z-projections. Scale bars in B and C, 50 pm.
Scale bar in E, 200 pm.

110



G.D. Ligunas et al.

2. Results

2.1. mNG2;.;9 and mNG2;1; can assemble fluorescent complexes in
zebrafish embryos

To assess the viability of our protein labeling strategy, we first
determined if split-FP fragments could self-assemble in zebrafish em-
bryos to form functional fluorescent complexes (Fig. 1B-D). We tested
two different FP;.1¢,/11-type systems, split-GFP (Kamiyama et al., 2016)
and split-mNG2 (Feng et al., 2017). We injected mRNAs encoding
GFP1.10 and GFP11-H2B (GFP;; fused to histone 2B) or mNG21.1¢ and
mNG2;;-H2B (mNG2;; fused to histone 2B) into zebrafish embryos. For
both systems, expression of the FPy.1 or FPy; fragments alone did not
produce fluorescence. However, when both fragments were
co-expressed, we could detect nuclear-localized fluorescent signals by 6
h post-fertilization (hpf) using confocal fluorescence microscopy
(Fig. 1B and C). We observed that embryos expressing split-mNG2
fragments (Fig. 1C) were brighter than those expressing the split-GFP
fragments (Fig. 1B). Over time, split-mNG2 fluorescence remained
brighter than split-GFP, which is consistent with a previous study
showing that split-mNG2 can produce stronger fluorescence with less
background compared to split-GFP (Feng et al., 2017). By 24 hpf
split-mNG2 fluorescence was bright enough to be detected by a fluo-
rescence stereomicroscope (Fig. 1D and E). Split-mNG2 fluorescence
could still be detected after paraformaldehyde fixation even with some
loss of brightness (Fig. S1). Based on these observations, we only used
the split-mNG2 system for further experiments.
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2.2. Generating mNG2;.3¢9 transgenic lines

We next determined whether transgene-driven expression of mNG2;.
10 could be used to spatially restrict fluorescence (Fig. 2). We generated
multiple transgenic zebrafish lines that express mNG2;.1o under control
of various promoters representing a broad range of tissue types
including fezf2 (brain and eye) (Berberoglu et al., 2009), myl7
(myocardium) (Huang et al., 2003), and ubb (ubiquitous expression)
(Mosimann et al., 2011). To verify that these transgenic lines were
functional, we injected transgenic embryos with mNG2;;-H2B mRNA,
which would be distributed ubiquitously, and qualitatively assessed
fluorescence patterns at 24 or 48 hpf. We found that uninjected
mNG2;.1¢ transgenic embryos exhibited no detectable fluorescence
(Fig. S2). In contrast, transgenic embryos injected with mNG2;;-H2B
mRNA exhibited fluorescence in spatially restricted patterns consistent
with the promoter used to drive mNG2;.1¢ expression (Fig. 2A-F).
Compared to embryos expressing full-length, intact GFP under control of
the same tissue-specific promoters, we found that GFP and split-mNG2
fluorescence were present in the same tissues and regions (Fig. 2G-L).
In some cases, we observed minor differences in brightness that may be
due to slight differences in staging or insertion-specific differences in
transgene expression, but the overall pattern of tissue restriction was
comparable between split-mNG2 and intact GFP lines.

2.3. mNG2;; tagging by CRISPR/Cas-directed gene editing

We next determined whether proteins of interest could be tagged
with mNG2;; at their endogenous genetic loci by CRISPR/Cas-guided
homology directed repair (Fig. 3). Previous reports have suggested
that split-FP tagging works best for highly expressed genes (Goudeau
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Fig. 2. Split fluorescent protein labeling can be spatially restricted by transgenic expression of mNG2;.1o. A-F. Transgenic embryos expressing mNG2;.1o
under control of the fezf2 (A-B), myl7 (C-D), or ubb (E-F) promoters and injected with mNG2;;-H2B mRNA. A’ shows the boxed region in A with brightness rescaled
to demonstrate fluorescence is localized to nuclei. G-L. Transgenic embryos expressing GFP under control of the fez1 (G-H), myl7 (I-J), or ubb (K-L) promoters.
Images were acquired at 24 h post-fertilization. Fluorescence images are maximum projections of confocal z-stacks. Scale bars in B, F, H, and L, 200 pm. Scale bars in

D, J, 50 pym.
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Fig. 3. mNG2;; tagging by CRISPR/Cas-directed gene editing. A. Schematic of CRISPR/Cas-directed mNG2;; insertion into target genes. Purple, endogenous
exon sequence. Green, mNG2;. Yellow, linker (LK). ATG, start codon. Arrows denote primers used in B. B. mNG2, insertion was assessed by PCR. The primers used
correspond to the arrows shown in A. bp, base pairs. C. Amino acid sequences of wild-type, predicted mNG2,; fusions, and recovered alleles for Tubb4b and Krt8.
Mismatches between the predicted and recovered sequences are highlighted in red. Asterisks, stop codons. D-I. Representative images of mNG2;;-tubb4b (D-F) and
krt8-mNG2;; (G-1) embryos injected with mNG2;_1o mRNA (D-E, G-H) or uninjected (F, I). Maximum projections of confocal z-stacks. Images were acquired at 24 h
post-fertilization. Images in F and I have been overexposed to emphasize lack of fluorescence. Scale bars, 50 pm.

et al., 2021; O'Hagan et al., 2021). Therefore, we targeted three genes
that are highly expressed with relatively broad patterns — tubb4b, which
codes for Beta-tubulin 4b; krt8, which codes for Keratin 8; and h2az2b,
which codes for histone H2A. We designed guide RNAs (gRNAs) tar-
geting each gene just downstream of the start (tubb4b) or upstream of the
stop (krt8, h2aza2b) codon to generate, respectively, N- or C-terminal
mNG2;; tags. We injected gRNAs together with Cas9 mRNA and a repair
template that contained the coding sequence for mNG2;; and a short
linker (Fig. 3A); the repair template consisted of double-stranded DNA
with single-stranded homology arms of 30 bp at each end (Liang et al.,
2017). To verify that the knock-in was successful, we pooled injected
embryos and performed insert-specific PCR that amplified the mNG2;;
insertion but not the unedited wild-type (Fig. 3B).

For tubb4b, we estimated the knock-in efficiency using quantitative
PCR. To determine mNG21; prevalence, we pooled and extracted DNA
from 30 injected Fo embryos at 24 hpf. We amplified mNG2;; using
insert-specific primers and amplified the untargeted, single-copy gene
proxla for comparison; we obtained a ACt of 5 cycles between the two.
As zebrafish are diploid, prox1a is present in two copies per cell, but each
mNG2;; knock-in likely occurred only in one tubb4b allele per cell. We
thus estimated that roughly 1 in every 16 cells in our pooled sample
carried the knock-in allele, corresponding to a knock-in efficiency of
about 6%, although not necessarily in-frame nor equally distributed
among embryos. This knock-in efficiency is on par with other reports of
CRISPR-guided knock-in in zebrafish (Auer and Del Bene, 2014; Zhang
et al., 2023).

To establish stable, germline-transmitted lines for the mNG2;; in-
sertions, we raised injected Fy fish to adulthood and identified several
founders representing multiple alleles for each gene. Some alleles con-
tained indel mutations at the insertion junctions or within the insertion
itself. For example, both alleles recovered for h2az2b contained muta-
tions within the mNG2;; sequence and produced very dim fluorescence
(Fig. S3). Therefore, we chose to propagate only alleles with precise
integration of the mNG2;; sequence, resulting in establishment of one
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line each for tubb4b (tubb4b“™ 3! referred to here as mNG2;;-tubb4b)
and krt8 (krt8“™32, referred to here as krt8-mNG2;;).

To confirm that the mNG2;; tag is functional and does not alter
endogenous expression patterns, we injected embryos with mNG2;.1¢
mRNA and qualitatively assessed fluorescence. For mNG2;;-tubb4b, we
observed strong fluorescence at 24 hpf that was especially prominent in
the eye and brain (Fig. 3D) and along the neural tube (Fig. 3E). For krt8-
mNG2;;, fluorescence appeared restricted to the skin epidermis at 24 hpf
(Fig. 3G and H). These fluorescence patterns are consistent with the
reported expression patterns for both tubb4b (Thisse and Thisse, 2008;
Zhuo et al., 2012) and krt8 (Fischer et al., 2014; Thisse and Thisse,
2008). At the subcellular level, we observed that fluorescence for both
genes was enriched at the cell periphery and excluded from the nucleus,
which would be expected for cytoskeletal filaments. For both genes, we
observed no fluorescence in uninjected embryos (Fig. 3F-I)

2.4. Combinatorial expression of tissue-specific mNG2;.79 and mNG2;;-
tagged proteins

After successfully generating mNG2;.1¢ transgenic lines and mNG21,
insertions, we next determined whether these lines could be combined
to achieve tissue-specific protein labeling (Fig. 4A). We crossed each of
our mNG2;;-tagged lines — mNG2;;-tubb4b and krt8-mNG2;; — with
each of our mNG2;.1¢ transgenic lines — fezf2:mNG2;.19, myl7:mNG2;.
10, and ubb:mNG21.;9. For mNG2;;-tubb4b, crossing to ubb:mNG2; 19
produced fluorescence broadly throughout the head (Fig. 4B-B),
enabling timelapse analysis of tubulin dynamics in the otic vesicle and
surrounding region (Video 1). This fluorescence pattern is similar to
mNG2;.19p mRNA injection and to the reported expression pattern for
tubb4b (Thisse and Thisse, 2008; Zhuo et al., 2012). In contrast, crossing
to fezf2:mNG2;.1¢ resulted in fluorescence restricted to the brain and eye
(Fig. 4C-C), consistent with the known expression pattern for fezf2
(Jeong et al., 2006). Finally, crossing to myl7:mNG2;.1¢ resulted in no
observable fluorescence (Fig. 4D). This result is consistent with the
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Fig. 4. Combinatorial expression of tissue-specific mNG2;_1o and mNG2;;-tagged proteins. A. Schematic of crossing strategy. tsp, tissue-specific promoter. poi,
protein of interest. B-D. Representative images of embryos obtained from crossing mNG2;;-tubb4b and ubb:mNG2;_;o (B-B'), fez2f:mNG2; .19 (C-C), or myl7:mNG2;.1¢
(D). B’ and C' show boxed regions in B and C, respectively. E-H. Representative images of embryos obtained by crossing krt8-mNG2;; to ubb:mNG2;.19 (E-F), fez2f:
mNG2;. 19 (G), or myl7:mNG2; ;0 (H). E' shows boxed region in E. Maximum projections of confocal z-stacks. Images were acquired at 24 h post-fertilization (hpf)
unless otherwise noted. Image in D has been overexposed to emphasize lack of fluorescence. Autofluorescent speckles (yolk, pigment cells, and debris) are colored

blue for display purposes. Scale bars, 50 pm.

reported expression pattern for tubb4b, which has not been reported to
be expressed in the heart.

The results we obtained for krt8-mNG2;; similarly demonstrated
retention of endogenous expression patterns. Crossing to ubb:mNG2; 19
resulted in fluorescence primarily in the skin at 24 hpf (Fig. 4E-E),
similar to mNG2;.19 mRNA injection. We also observed fluorescence in

cells of the enveloping layer at 10 hpf (Fig. 4F), consistent with the re-
ported expression pattern for krt8 (Fischer et al., 2014; Thisse and
Thisse, 2008). Crossing krt8-mNG2;; to fezf2:mNG2;.;90 or myl7:
mNG2;_1p resulted in no observable fluorescence (Fig. 4G and H), which
is expected as krt8 has not been reported to be expressed in either car-
diac or neural tissues.
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Fig. 5. Directing protein localization with split-mNG2. A. Schematic illustrating use of the split-mNG2 system to sequester proteins of interest on mitochondria.
B-G. Representative images of krt8-mNG2;; embryos injected with mNG2;.19 (B-D) or mito-mNG2;.19 (E-G) mRNA and stained with MitoTracker dye to label
mitochondria. Maximum projections of confocal z-stacks. Arrows indicate colocalization between split-mNG2 and MitoTracker fluorescence. Images were acquired

from the tail fin epidermis at 48 h post-fertilization (hpf). Scale bars, 50 pm.
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Altogether, our results show that combining transgenic mNG2;.1¢
expression and mNG2;; tagging can achieve tissue-specific fluorescent
protein labeling that preserves endogenous expression patterns.

2.5. Directing protein localization with split-mNG2

Given that split-mNG2 fragments self-assemble, it may be possible to
use mNG2;.1¢ as a “bait” to direct mNG2;-tagged proteins to specific
subcellular locations. To determine the feasibility of this application, we
fused mNG2;.10 to a localization signal for the outer mitochondrial
membrane (mito-mNG2;.19) (Bear et al., 2000) (Fig. 5A). We then
injected mRNA for mito-mNG2;.1p into krt8-mNG2;; embryos.
Compared to control embryos injected with untagged mNG2;.1q
(Fig. 5B-D), embryos injected with mito-mNG2;.1¢ exhibited qualita-
tively different fluorescence localization patterns that co-localized with
the mitochondrial dye MitoTracker (Fig. 5E-G). These results suggest
that mito-mNG2;.;¢ is indeed directing mNG2;-tagged Keratin 8 to the
mitochondria. Thus, by anchoring mNG2;._1¢ to specific cellular com-
partments, the split-mNG2 system can be used to manipulate protein
localization.

3. Discussion

In this study, we describe using the mNG2;.10,11 split fluorescent
protein system to achieve tissue-specific fluorescent labeling of endog-
enous proteins in zebrafish embryos. We further demonstrate that the
split-mNG2 system can be used to control protein localization by
anchoring the mNG21-10 fragment to specific cellular compartments.

Similar FPy.1¢/11 systems are now commonly used as endogenous
protein labeling tools in cell lines (Cho et al., 2022; Feng et al., 2017;
Kamiyama et al., 2016; Leonetti et al., 2016). The popularity of these
systems is primarily due to the ease with which the short FP;; sequences
can be inserted into gene loci. The general utility of split-FP systems for
protein labeling has also been demonstrated in multicellular organisms
including zebrafish (Kesavan et al., 2021) and mouse embryos (O’Hagan
et al., 2021), but in these studies the corresponding FP;_1( fragment was
delivered constitutively. Tissue specificity has been achieved in
C. elegans (Goudeau et al., 2021; He et al., 2019; Hefel and Smolikove,
2019; Noma et al., 2017) and Drosophila (Kamiyama et al., 2021) and
now in zebrafish (this study). The ability to spatially restrict fluorescent
labeling is especially advantageous for studying the tissue-specific
function of an otherwise broadly expressed protein. In such cases,
constitutive protein labeling would obscure the area under study due to
competing signals coming from surrounding tissues, which cannot be
easily removed without advanced microscopy or image processing
methods. In contrast, our split-mNG2-based approach can achieve
tissue-specific labeling using relatively straightforward and conven-
tional techniques.

In this study, we demonstrated a novel application of the split-mNG2
system to control of protein localization via tethering Keratin 8 to
mitochondria (Fig. 5). There are several potential applications for using
the split-mNG2 system to experimentally manipulate protein localiza-
tion. For example, mNG2;;-tagged proteins could be sequestered away
from their normal site of function to achieve a loss-of-function effect.
The same approach could also be used to achieve gain-of-function effects
by constitutively anchoring a protein to its site of action or to an ectopic
location. This approach could also be used to manipulate the properties
of specific organelles or subcellular compartments through recruitment
of mNG2;;-tagged enzymes. An advantage of the split-mNG2 approach
is that successful (mis)localization can easily be confirmed because the
reconstituted mNG21-10/11 complexes retain their fluorescence. When
combined with transgenic expression of mNG2; .1, this approach can be
applied to specific tissues of interest for even broadly expressed proteins.

Previous reports have suggested that not all proteins can be easily
labeled with the split-mNG2 system (Cho et al., 2022; Leonetti et al.,
2016; O’Hagan et al., 2021). Fluorescent labeling may fail because the
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target protein does not tolerate mNG2,; tagging. Thus, mNG2;; fusion
proteins should be designed using the same considerations as with any
epitope tag. Fluorescence brightness might also be a challenge. Split-FP
systems are known to be dimmer than their intact counterparts; for
example, split-mNG2 is about 60% as bright as intact mNeonGreen
(Feng et al., 2017). Thus, even if tagging is tolerated, some proteins may
not be expressed at high enough levels to produce a detectable fluo-
rescent signal (Leonetti et al., 2016; O’Hagan et al., 2021). This chal-
lenge could be overcome by inserting multiple repeats of the mNG2;;
sequence to increase fluorescent signal as has been demonstrated for
split-GFP (He et al., 2019; Hefel and Smolikove, 2019; Kamiyama et al.,
2016, 2021; Noma et al., 2017). Additionally, a third generation
split-mNG system was recently developed and reported to have
improved spectral properties (Zhou et al., 2020), which may extend the
use of split-FP labeling to low or moderately expressed proteins. A
challenge specific to working with multicellular organisms is the diffi-
culty of detecting fluorescence in very thick samples, such as late larval
and older zebrafish stages. However, our demonstration that split-mNG2
fluorescence is preserved after paraformaldehyde fixation (Fig. S1)
suggests that our method is compatible with tissue sectioning protocols.

In this study, we focused on the use of split-mNG2 as a protein la-
beling tool. However, the ability to control expression of these protein
fragments independently, paired with their ability to self-assemble,
could be leveraged for other applications. For example, they could be
used as coincidence detectors to monitor cell states or signaling pathway
activation. And because fluorescence is only produced when the two
fragments bind, they could be used to visualize interactions at multiple
length scales, i.e., between proteins, organelles, cells, or adjacent
tissues.

4. Conclusions

In summary, we have demonstrated that the split-mNG2 system can
function in zebrafish to endogenously label proteins in a tissue-specific
manner, with other potential applications that make it broadly useful
to many areas of investigation.

5. Materials and methods
5.1. Zebrdfish strains

Adult Danio rerio zebrafish were maintained under standard labo-
ratory conditions. Zebrafish in an outbred AB, TL, or EKW background
were used as wild-type strains. Strains generated in this study are: Tg
(fezf2mMNG27.19)" ™20, Tg(myl7:mNG21.10)"™ 2%,  Tg(ubb:mNG2;.
1)V ert8UmI32: and tubb4b“™32, This study was performed with
the approval of the Institutional Animal Care and Use Committee
(IACUCQ) of the University of California Merced (Protocol #2023-1144).

5.2. mRNA expression

All expression plasmids for in vitro mRNA synthesis were generated
in a pCS2 backbone. To generate pCS2-GFP;.19, GFP1.190 was PCR
amplified from pACUH- GFP;_1¢ (Bo Huang, University of California San
Francisco) and cloned into pCS2 by enzymatic assembly (Gibson et al.,
2009). To generate pCS2-mNG2;.19, mNG2;.19 was PCR amplified from
pSFFV- mNG21.19 (Bo Huang, University of California San Francisco)
and cloned into pCS2 by enzymatic assembly. To generate
pCS2-GFP11-H2B and pCSZ—mNG211—H2B, GFPll (5'—CGTGACCA-
CATGGTCCTTCATGAGTATGTAAATGCTGCTGGGATTACA-3") and
mNG2;; (5-ACCGAGCTCAACTTCAAGGAGTGGCAAAAGGCCTTTACC-
GATATGATG-3") were directly synthesized by Integrated DNA Tech-
nologies and H2B was PCR amplified from GFP-H2B (Hesselson et al.,
2009); fragments were fused and cloned into pCS2 by enzymatic as-
sembly. To generate pCS2-mito-mNG2;.1p, the outer mitochondrial
membrane signal sequence was PCR amplified from pMSCV-FPPPP-mito
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(Bear et al., 2000) and cloned into pCS2-mNG2;.19 by enzymatic as-
sembly. Capped messenger RNA was synthesized using the mMESSAGE
mMACHINE kit (Ambion), and 500 pg of each mRNA was injected at the
one- or two-cell stage.

5.3. Generation of mNG2;.3¢ transgenic lines

All transgene plasmids were generated in a puTol2 backbone
(LaBelle et al., 2021). mNG2;.19 and promoter sequences for fezf2
(Berberoglu et al., 2009), myl7 (Huang et al., 2003), or ubb (Mosimann
et al., 2011) were PCR amplified then fused and cloned into ppuTol2 by
enzymatic assembly to generate ppTol2-fezzmNG2;.19, ppTol2-myl7:
mNG2; .19, and ppTol2-ubb:mNG2; ¢, respectively. The constructs were
used to generate Tg(fezzmNG2;.10)"™%; Tg(myl7:mNG2;.10)"™?!; Tg
(ubb:mNG2;.19)"*“™17 using standard transgenesis protocols (Clark et al.,
2011; Kawakami, 2004).

5.4. CRISPR/Cas-directed insertion of mNG2;;

Guide RNAs (gRNAs) were designed using CRISPRscan (Mor-
eno-Mateos et al., 2015) and synthesized as previously described (Var-
shney et al., 2016). The double-stranded DNA template for homology
directed repair was assembled from two oligomers synthesized by In-
tegrated DNA Technologies. Each oligomer contained the sequence for
mNG2;;, a 10-amino acids-encoding linker sequence (5-
GGAGCTGGTGCAGGCGCTGGAGCCGGTGCC-3'), and a homology arm.
Oligomers were hybridized to obtain a double-stranded template with
single-stranded, 30 bp-long homology arms at each end (Liang et al.,
2017). gRNAs, donor DNA, and Cas9 mRNA were injected at the one-cell
stage as previously described (Gagnon et al., 2014).

To verify insertion, we pooled 40 injected embryos at 24 hpf, isolated
genomic DNA, and performed PCR using two sets of primer pairs per
gene covering the 5" and 3’ insertion sites. The same primer sets were
used for quantitative PCR (qPCR) to estimate knock-in efficiency. Each
gPCR reaction contained 2X PerfeCTa® SYBR Green FastMix (Quanta-
bio), five-fold diluted genomic DNA, and 325 nM of each primer. Re-
actions were carried out on a QuantStudio3 (Applied Biosystems) real-
time PCR machine using the following program: initial activation at
95 °C for 10 min, followed by 40 cycles of 30 s at 95 °C, 30 s at 60 °C, and
1 min at 72 °C. Once the PCR was completed, a melt curve analysis was
performed to determine reaction specificity. The gene proxla was used
as a reference. Primers used in this study (presented 5-3"):

5 h2az2b-mNG211 forward: TTGTGTGTTTGTGCGTCCGC.

5" h2az2b-mNG211 reverse: GCCACTCCTTGAAGTTGAGC.

3' h2az2b-mNG211 forward: GCTCAACTTCAAGGAGTGGC.

3' h2az2b-mNG211 reverse: ACGAAGCCCCGAAAGCACAC.

5 mNG211-krt8 forward: ATACAGCGGCGGATACAGCG.

5 mNG211-krt8 reverse: GCCACTCCTTGAAGTTGAGC.

3’ mNG211-krt8 forward: GCTCAACTTCAAGGAGTGGC.

3’ mNG211-krt8 reverse: AAGGCACGACAAGAGCGGTG.

5 mNG211-tubb4b forward: CACATCTCGAATTACGACCTCA.

5 mNG211-tubb4b reverse: GCCTTTTGCCACTCCTTGAAG.

3' mNG211-tubb4b forward: GCTCAACTTCAAGGAGTGGC.

3’ mNG211-tubb4b reverse: AAAACAAGCAAGGATTAGCGTC

proxla forward: TGTCATTTGCGCTCGCGCTG proxla

reverse: ACCGCAACCCGAAGACAGTG.

To verify germline transmission and establish stable lines, injected Fy
embryos were raised to adulthood then outcrossed to wild-type zebra-
fish. We pooled 40 of the resulting F; embryos at 24 hpf, isolated
genomic DNA, and performed PCR using the same primer sets as above.
PCR fragments were cloned into pGEM-T (Promega), and the inserts
were sequenced by Sanger sequencing (University of California Berkeley
DNA Sequencing Facility). Only clutches containing precise insertion of
the mNG2;; plus linker sequence were kept for propagation. At adult-
hood, individual F; zebrafish were genotyped by fin clipping using the
same primer sets as described above. Only animals containing precise
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insertion of the mNG2;; sequence were kept for line propagation.
5.5. Microscopy and image processing

Dechorionated embryos or larvae were embedded in 1.5% low-
melting agarose (ISC BioExpress) containing 0.01% tricaine (Sigma-
Aldrich) within glass-bottom Petri dishes (MatTek Corporation). For
mitochondria labeling, embryos were incubated in 50 nM MitoTracker
Red CMXRos (Invitrogen) for 30 min prior to agarose embedding. For
paraformaldehyde fixation, embryos were incubated in 4% para-
formaldehyde (Sigma-Aldrich) overnight at 4 °C, washed three times for
10 min in 1X phosphate buffered saline with 0.1% Tween-20 (Sigma-
Aldrich) at room temperature, then embedded in agarose for imaging.
Identical image acquisition settings were used for all embryos from the
same set of experiments.

Widefield fluorescence and brightfield images were acquired on an
Olympus SZX16 stereomicroscope equipped with a DP23 monochrome
camera and cellSens software (Evident). Brightfield images were ac-
quired with transmitted light from an LED diascopic base (Evident). GFP
or mNG2 fluorescence was excited with an LED light source (X-Cite) and
470/40 nm excitation filter (Chroma) and acquired with a 500 nm long-
pass emission filter (Chroma).

Confocal images were acquired on an Olympus IX83 microscope
(Evident) equipped with a spinning disk confocal unit (CSU-WI;
Andor). Brightfield images were acquired using a transmitted LED light
source. GFP or mNG2 fluorescence was excited with a 488 nm 150 mW
solid state laser (Visitron Systems) and collected with a 525/50 nm
emission filter. Images were acquired with a Prime 95b sCMOS camera
(Teledyne Photometrics) controlled with MicroManager software
(Edelstein et al., 2014). Z-stack optical sections were collected with a
10x/0.4NA objective lens (Evident) with a step-size of 5 pm or with a
30x/1.05 NA objective lens (Evident) with a step-size of 2 pm using a
Piezo focus motor (ASI). For time-lapse experiments, z-stacks with a
step-size of 4 pm were collected with a 30x/1.05 NA objective lens every
5 min, using an exposure time of 200 ms and 1 x 1 camera binning. All
z-stacks are displayed as maximum z-projections.

Images were processed identically for each set of experiments using
Fiji software (Schindelin et al., 2012) as follows: denoised using the
Non-local Means Denoise plugin (Buades et al., 2005), brightness and
contrast levels adjusted, converted to 8-bit depth, and cropped. In cases
where the region of interest extended beyond the microscope’s field of
view, multiple images were stitched together using the pairwise stitch-
ing plugin. Brightfield and fluorescence images were merged in Photo-
shop software (Adobe). Illustrations were created with BioRender (htt
ps://biorender.com).
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