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Abstract

Richardson-Gaudin (RG) states are employed as a variational wavefunction ansatz

for strongly correlated isomers of H4 and H10. In each case a single RG state describes

the seniority-zero sector quite well. Simple natural orbital functionals offer a cheap

and reasonable approximation of the outstanding weak correlation in the seniority-

zero sector, while systematic improvement is achieved by performing a configuration

interaction (CI) in terms of RG states. Other pair theories (e.g. generalized valence

bond and pair-coupled-cluster doubles) can provide a good description of many of the

geometries considered, but, at short distances, the wavefunctions for the 2D and 3D

structures of H10 take the form of an RG state that cannot be described by these other

theories.
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1 Introduction

Many problems in electronic structure theory can be treated as systems of weakly correlated

electrons. In such cases, a single Slater determinant provides a qualitative description of the

wavefunction and a short expansion in Slater determinants provides quantitative accuracy.

For weakly-correlated systems Kohn-Sham density functional theory (DFT) and coupled-

cluster (CC) theory1–4 with singles and doubles5 can be expected to predict physically correct

results.

Strongly-correlated systems are another story. The wavefunction has no single dominant

Slater determinant, and even a qualitative description of the system can become complicated.

The standard approach for dealing with strong correlation is the complete active space

self-consistent field (CASSCF) approach6–9 which works well if a compact active space of

chemically important orbitals can be identified. Even then, active spaces beyond 22 electrons

in 22 orbitals10 are intractable, which has led to the development of a large number of

configuration interaction (CI) based schemes as approximate CASSCF solvers,11–19 as well

as alternative representations of the electronic structure of the active space that abandon

the CI framework altogether.20–26

It has long been understood27 that two-electron functions, called geminals, describing

pairs of weakly-interacting electrons, can provide a better basis for strongly-correlated elec-

trons than Slater determinants of single-particle orbitals. For systems of paired electrons, an

excellent description is obtained with the antisymmetrized product of interacting geminals

(APIG), but this treatment is completely intractable in practice.28–34 For attractive pairing

interactions, such as in the Bardeen-Cooper-Schrieffer (BCS) mechanism35–37 and in nuclear

structure, the antisymmetrized geminal power (AGP) gives qualitatively correct results for a

meagre cost.38–46 For repulsive interactions, as arise in chemistry, AGP is qualitatively incor-

rect and requires the use of Jastrow factors to be size-consistent.47–49 Correct understanding

of repulsive systems is possible with the antisymmetrized product of strongly-orthogonal

geminals (APSG)50,51 and in particular generalized valence bond/perfect pairing (GVB).52–68
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These last two approaches require splitting the orbitals into disjoint subspaces, which can

be done quite easily by looking at the corresponding unrestricted Hartree-Fock (UHF) or-

bitals.69 Finally, the antisymmetrized product of 1-reference orbital geminals (AP1roG),70

which is equivalent to pair-coupled-cluster doubles (pCCD)71 has shown good results for

ground state properties,72–87 and even excited state energies provided the orbitals are cor-

rectly optimized.88,89 However, AP1roG/pCCD is not a variational theory, so its wavefunc-

tion parameters must be solved by projection in a state-specific manner.

The eigenvectors of the reduced BCS Hamiltonian, which we call Richardson-Gaudin

(RG)90–93 states, have shown excellent results for 1-dimensional strongly-correlated model

systems. RG states are mean-field geminal wavefunctions that can be optimized with mean-

field cost. What sets RG states apart from GVB, APSG, and AP1roG/pCCD is that they

form a basis for the Hilbert space. Thus, to account for the missing weak correlation, single-

reference methods can be built from RG states in the same manner as for weakly-correlated

systems in terms of Slater determinants.

Previous applications94,95 of RG states have been limited to small linear chains of hy-

drogen atoms, which are well described by GVB, and therefore APSG and AP1roG/pCCD.

Hence, a natural next step in validating the efficacy of RG states is to consider more chal-

lenging model systems that remain small enough for an exact treatment. For this purpose,

we consider a classic family of multi-reference systems, the Paldus H4 isomers,96 as well as

more recently studied97 isomers of H10, which resemble finite-sized Hubbard models with

different connectivity patterns.

This paper is outlined as follows. In section 2 we summarize the structure of the reduced

BCS Hamiltonian and RG states. In particular, the non-linear equations to be solved for

each RG state, their reduced density matrix (RDM) elements, and transition density matrix

(TDM) elements between RG states are presented. In section 3 we demonstrate that the

Paldus isomers of H4 and the Stair-Evangelista isomers of H10 can, for the most part, be

described qualitatively by orbital-optimized (OO) doubly-occupied configuration interaction
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(DOCI). In each case, a single RG state is energetically similar to OO-DOCI, while a config-

uration interaction (CI) (pair-) singles expansion in terms of RG states matches OO-DOCI

with quantitative accuracy. Simple functionals of the occupation numbers are tested on top

of a single RG state, and the results are not bad considering how computationally inexpensive

they are.

2 Theory

In this section we will briefly summarize the minimum of information required to compute

with RG states. The development of the matrix elements is not complicated, but rather long

and irrelevant for the present purpose. We refer the interested reader to refs.34,98–102 where

exhaustive detail is presented.

2.1 Reduced BCS Hamiltonian and RG States

Starting from second quantized operators a†i↑ and a†i↓ which create up and down spin electrons

in spatial orbital i, pairs of electrons are described by the objects

S+
i = a†i↑a

†
i↓, S−

i = ai↓ai↑, Sz
i =

1

2

(︂
a†i↑ai↑ + a†i↓ai↓ − 1

)︂
(1)

which locally have the structure of the Lie algebra su(2)

[S+
i , S

−
j ] = 2δijS

z
i (2a)

[Sz
i , S

±
j ] = ±δijS

±
i . (2b)

With N spatial orbitals, there are N copies of these objects. It is convenient to use the

number operator

n̂i = 2Sz
i + 1, (3)
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which counts the number of individual electrons in the spatial orbital i. The vacuum |θ⟩ is

destroyed by the pair removal operators

S−
i |θ⟩ = 0, ∀i. (4)

With these objects, the reduced BCS Hamiltonian is written

ĤBCS =
1

2

∑︂
i

εin̂i −
g

2

∑︂
ij

S+
i S

−
j (5)

and describes a system in which there is competition between filling the spatial orbitals

(with single-particle energies {ε}) and a constant-strength pair-scattering g between them.

The interaction is attractive when g is positive and repulsive when g is negative, and this

Hamiltonian is exactly solvable in all cases. RG states (6) are wavefunctions representing

weakly-correlated pairs of electrons

|{u}⟩ = S+(u1)S
+(u2) . . . S

+(uM) |θ⟩ , (6)

with the pair creators

S+(u) =
∑︂
i

S+
i

u− εi
(7)

defined by a set of complex numbers {u} called the rapidities. RG states are eigenvectors

of the reduced BCS Hamiltonian provided that their rapidities are solutions of Richardson’s

equations

2

g
+
∑︂
i

1

ua − εi
+
∑︂
b(̸=a)

2

ub − ua

= 0, ∀a = 1, . . . ,M. (8)

The eigenvalue problem for the Hamiltonian (5) is thus reduced to solving the non-linear

equations (8). Solving Richardson’s equations for the rapidities is possible, but difficult
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and expensive as they possess divergent critical points where rapidities coincide with single-

particle energies {ε}.103–106 In terms of the eigenvalue-based variables (EBV),

Ui =
∑︂
a

1

εi − ua

, (9)

Richardson’s equations are equivalent to the non-linear equations

U2
i − 2Ui − g

∑︂
k ̸=i

Uk − Ui

εk − εi
= 0, ∀i = 1, . . . , N, (10)

which are much easier to solve numerically.107,108 Rapidities could then be found with a

root-finding procedure, but this is now completely unnecessary: all of the required RDM

and TDM elements can be computed directly from the EBV.102 However, the RG states do

not have a direct representation in terms of the EBV so we will continue to label them as

|{u}⟩.

The EBV equations (10) decouple at g = 0, where the eigenvectors of the reduced BCS

Hamiltonian are Slater determinants. These states are thus well-defined by sites that are

occupied and sites that are empty: they may be represented by a string of 1s and 0s that we

have referred to as a bitstring. At non-zero g, the RG states are not Slater determinants, but

evolve continuously and uniquely from the g = 0 states. It is therefore unambiguous to label

RG states at any g as a bitstring based on the Slater determinant from which it evolves at

g = 0. At any g the ground state of the reduced BCS Hamiltonian is always represented by

the bitstring of M 1s followed by (N −M) 0s, and the highest excited state of the reduced

BCS Hamiltonian is always the bitstring of (N − M) 0s followed by M 1s. The other RG

states can and do cross, but the evolution from g = 0 is unique. Note that, for Coulomb

Hamiltonians, which are the Hamiltonians we would ultimately like to treat, the ground

state of the reduced BCS Hamiltonian is not necessarily the variationally optimal state.

At g = 0 we can solve the equations (10) explicitly. The solution is then evolved iteratively

to a final target g. First, a step in g toward the target is defined, and a fourth-order Taylor
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update to the EBV is computed. The EBV equations are then solved at the new g by a

Newton-Raphson procedure. If the terms in the Taylor series grow, or if the Newton-Raphson

procedure causes a change in the norm of the EBV by more than 25%, the step is rejected

and reattempted with half the step-size. We have seen that if we begin by attempting as

large a step as possible, the number of steps required seems to scale logarithmically with

the pairing strength g. The Taylor update allows much larger steps to be taken with no

drawback. For details of the procedure, see refs.95,107–109

The Coulomb Hamiltonians we wish to solve are written

ĤC =
∑︂
ij

hij

∑︂
σ

a†iσajσ +
1

2

∑︂
ijkl

Vijkl

∑︂
στ

a†iσa
†
jτalτakσ (11)

with spin labels σ and τ and a set of integrals computed in a given orbital basis {ϕ}

hij =

∫︂
drϕ∗

i (r)

(︄
−1

2
∇2 −

∑︂
I

ZI

|r−RI |

)︄
ϕj(r) (12)

Vijkl =

∫︂
dr1dr2

ϕ∗
i (r1)ϕ

∗
j(r2)ϕk(r1)ϕl(r2)

|r1 − r2|
. (13)

RG states can be used as a variational ansatz by minimizing

ERG = min
{ε},g

⟨{u}|ĤC |{u}⟩
⟨{u}|{u}⟩

(14)

with respect to {ε} and g. Our first study of RG states in chemical problems,94 in particular

dissociations of linear hydrogen chains and molecular nitrogen, showed quite conclusively

that the RG ground state 1...10...0 is not representative of bond-breaking correlation. The

RG ground state provided an acceptable description near the equilibrium geometry, and

an exact description at dissociation, but the intermediate re-coupling region was not at all

well described. In a later study,95 we found that another RG state, specifically one labelled

1010...10 which we have referred to as the Néel RG state, was actually the variationally
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optimal state. For linear H8, for example, the optimal single-particle energies {ε} arranged

themselves in a 2-2-2-2 pattern: they form four sets of two {ε} that are close in energy.

The energy difference between each set of two {ε} is much larger than the pairing strength

g. The bitstring 10101010 places one rapidity in between each of the near-degenerate pairs

of {ε} so that each pair S+(u) is dominated by two sites. This can be summarized in the

geminal coefficient matrix

Gai =
1

ua − εi
≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 0 0 0 0 0 0

0 0 ∗ ∗ 0 0 0 0 0 0

0 0 0 0 ∗ ∗ 0 0 0 0

0 0 0 0 0 0 ∗ ∗ 0 0

0 0 0 0 0 0 0 0 ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (15)

in which each row represents a pair while each column represents an orbital. The elements

marked with zeroes in equation (15) are not numerically zero, but they are much smaller

than those marked with asterisks. In the dissociation limit, the Néel RG state explicitly

becomes the GVB state

|GVB⟩ = (S+
1 − S+

2 )(S
+
3 − S+

4 ) . . . (S
+
2N−1 − S+

2N) |θ⟩ . (16)

For the dissociation of molecular nitrogen, we found the optimal RG state to be 1111101010

with {ε} arranged in a 1-1-1-1-2-2-2 pattern: there were four individual {ε} along with three

pairs of near-degenerate {ε}.

A single RG state optimized as described above will provide a reasonable, but not exact,

description of the seniority-zero sector of the true wavefunction. For an improved descrip-

tion of this sector, we can perform a CI in the basis of RG states. For Slater determi-

nants, the Slater-Condon rules ensure that a given reference only couples with single- and

double-excitations through the Coulomb Hamiltonian. For RG states however, there are
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unfortunately no such rules. On paper, each RG state will couple with each other RG state.

Fortunately, we have found numerically that these couplings go to zero quite rapidly.100 With

a given reference bitstring, we will call a single-pair excitation one that differs from the ref-

erence by a single 1 and a single 0, a double-pair excitation one the differs from the reference

by two 1s and two 0s, etc. Magnitudes of couplings decrease with excitation level, and are

negligible past doubles. Thus, we will variationally optimize a single RG state, then solve

the CI problem with its singles (RGCIS), and singles and doubles (RGCISD). In particular,

for a variationally optimized set of {ε} and g for a particular RG bitstring, we will compute

the EBV for the M(N −M) singles and
(︁
M
2

)︁(︁
N−M

2

)︁
doubles. The Coulomb Hamiltonian is

built in this basis and diagonalized. This procedure requires both RDM elements for each

RG state and transition density matrix (TDM) elements between RG states.

2.2 RDMs and TDMs

Evaluating the energy of (11) with an RG state yields only seniority-zero contributions

ERG[{ε}, g] = 2
∑︂
k

hkkγk +
∑︂
kl

(2Vklkl − Vkllk)Dkl +
∑︂
kl

VkkllPkl. (17)

The 1-RDM γk is diagonal

γk =
1

2

⟨{u}|n̂k|{u}⟩
⟨{u}|{u}⟩

, (18)

and there are only O(N2) non-zero elements from the 2-RDM arranged in what we call the

diagonal-correlation function Dkl

Dkl =
1

4

⟨{u}|n̂kn̂l|{u}⟩
⟨{u}|{u}⟩

, (19)
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and the pair-correlation function Pkl

Pkl =
⟨{u}|S+

k S
−
l |{u}⟩

⟨{u}|{u}⟩
. (20)

In the pair representation, the diagonal elements Pkk and Dkk refer to the same matrix

element, so to avoid double-counting we assign it to Pkk = γk and set Dkk = 0.

Expressions for the density matrix elements of RG states are known in terms of ra-

pidities,98,99,110,111 and more recently directly in terms of EBV.102 We will present only the

results as the development is incredibly tedious. TDM elements are presented first as RDM

elements are a special case.

The expressions for the 1- and 2-TDM elements require the 1st and 2nd co-factors of the

matrix J ,

Jij =

⎧⎪⎪⎨⎪⎪⎩
Ui + Vi − 2

g
+
∑︁

k( ̸=i)
1

εk−εi
, i = j

1
εi−εj

, i ̸= j

(21)

where {U} and {V } are the EBV for the two RG states. First co-factors are understood

A[J ]i,j = (−1)i+j det J i,j (22)

where J i,j is the matrix J without the ith row and jth column. To correctly account for the

sign, second co-factors require using a Heaviside function

h(x) =

⎧⎪⎪⎨⎪⎪⎩
1 x > 0

0 x ≤ 0

(23)
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in their definition

A[J ]ij,kl = (−1)i+j+k+l+h(i−j)+h(k−l) det J ij,kl. (24)

Here J ij,kl is the matrix J without the ith and jth rows, and the kth and lth columns.

For two distinct RG states, the non-normalized elements of the 1-TDM are

γUV
k :=

1

2
⟨{u}|n̂k|{v}⟩ = η

∑︂
l

VlA[J ]
l,k (25)

where the pre-factor is

η = (−1)N−M
(︂g
2

)︂N−2M

. (26)

With

Kkl = VkVl +
Vk − Vl

εk − εl
, (27)

the non-normalized elements of the 2-TDM are

1

η
DUV

kl : =
1

η

1

4
⟨{u}|n̂kn̂l|{v}⟩ (28)

= KklA[J ]
kl,kl +

∑︂
i(̸=k,l)

KilA[J ]
il,kl +

∑︂
i(̸=k,l)

KikA[J ]
ki,kl

+
∑︂

i<j(̸=k,l)

(εk − εi)(εl − εj) + (εk − εj)(εl − εi)

(εk − εl)(εj − εi)
KijA[J ]

ij,kl, (29)
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and

1

η
PUV
kl : =

1

η
⟨{u}|S+

k S
−
l |{v}⟩ (30)

= (Vl + (εk − εl)(VlVl − VlJll))A[J ]
l,k +

∑︂
i(̸=k,l)

εi − εk
εi − εl

ViA[J ]
i,k

− 2
∑︂

i(̸=k,l)

εk − εi
εl − εi

KilA[J ]
il,kl − 2

∑︂
i<j

(̸=k,l)

(εk − εi)(εk − εj)

(εk − εl)(εj − εi)
KijA[J ]

ij,kl. (31)

In this contribution we evaluated the TDM elements by first computing the
(︁
N
2

)︁(︁
N
2

)︁
second

co-factors of the matrix J for each pair of states. Such an approach is quite expensive and

certainly could be improved by further studying the matrix elements. However, one of the

points of the present contribution is to determine whether it is worth working it out.

The square of the norm of an RG state is

⟨{u}|{u}⟩ = η det J̄ (32)

where J̄ is the matrix J where both sets of EBV are the same. Normalized RDM elements of

RG states are particularly simple to compute: scaled second co-factors are writeable directly

as a 2× 2 determinant of first co-factors

A[J̄ ]ij,kl

det J̄
=

A[J̄ ]i,k

det J̄

A[J̄ ]j,l

det J̄
− A[J̄ ]i,l

det J̄

A[J̄ ]j,k

det J̄
. (33)

This extends generally as a theorem of Jacobi112 states that a kth-order scaled co-factor is

a k × k determinant of scaled first co-factors. Next, the adjugate formula for the matrix

inverse gives the elements of the inverse as

J̄
−1
ij =

A[J̄ ]j,i

det J̄
. (34)

The 1- and 2-RDMs can therefore easily be computed once the matrix J̄ is inverted. We
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have seen,102 that so long as the set of {ε} is non-degenerate, J̄ is well-conditioned and it is

reasonable to invert numerically. The normalized 1-RDM elements are

γk =
∑︂
l

UlJ̄
−1
kl (35)

while the 2-RDM elements are

Dkl = Kkl(J̄
−1
kk J̄

−1
ll − J̄

−1
lk J̄

−1
kl ) +

∑︂
j(̸=l)

Kjk(J̄
−1
kk J̄

−1
lj − J̄

−1
lk J̄

−1
kj ) +

∑︂
j(̸=k)

Kjl(J̄
−1
kj J̄

−1
ll − J̄

−1
lj J̄

−1
kl )

+
∑︂
i<j

(̸=k,l)

(εk − εi)(εl − εj) + (εk − εj)(εl − εi)

(εk − εl)(εj − εi)
Kij(J̄

−1
ki J̄

−1
lj − J̄

−1
li J̄

−1
kj ) (36)

and

Pkl =

⎛⎝2Ul +
∑︂

i( ̸=k,l)

εi − εk
εi − εl

Ui −
2M

g

⎞⎠ J̄
−1
kl

+
∑︂

i(̸=k,l)

εi − εk
εi − εl

(UiJ̄
−1
ki − 2Kil(J̄

−1
ki J̄

−1
ll − J̄

−1
li J̄

−1
kl ))

− 2
∑︂
i<j

(̸=k,l)

(εk − εi)(εk − εj)

(εk − εl)(εj − εi)
Kij(J̄

−1
ki J̄

−1
lj − J̄

−1
li J̄

−1
kj ). (37)

Unless it turns out to be possible to compute the RDM elements without linear algebra

operations, these expressions are optimal: for each RG state, its 2-RDM can be constructed

with O(N4) cost.

2.3 Weak correlation functionals

The natural orbital functionals of Piris are closely related to geminal wavefunctions. In par-

ticular, PNOF568 is equivalent to APSG,113 while PNOF7114–118 can be roughly understood

as intra-pair contributions treated as APSG and inter-pair treated like AGP. Both are treat-

ments of strong correlation in the seniority-zero channel. More recently, GNOF119,120 tries
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to include weak correlation by updating the Pkl elements with the “dynamical” part of the

occupation number di. The energy of the update is of the form

EWC = −
∑︂
ij

′√︁
didjViijj (38)

where the primed summation leaves out: i) diagonal terms, ii) terms arising from the same

APSG subspace, iii) terms for which γi and γj are both near 1. Piris suggests an ansatz

for di as the occupation number γi scaled by a Gaussian function. In this contribution, we

considered a few variants applied only to the Néel RG state. This means in particular that

each pair is considered to be dominated by 2 spatial orbitals. The same three conditions are

used to omit terms.

One can include either only contributions from occupation numbers near zero (dh) or

contributions from occupations near zero and one (dhp)

dhi = γif(γi) (39)

dhpi = γif(γi) + (1− γi)f(1− γi) (40)

while also considering other decaying functions f . We considered both a Gaussian and a

Slater decay

fG(γi) = exp

(︄
−
(︃

γi

0.02
√
2

)︃2
)︄

(41)

fS(γi) = exp
(︂
−
(︂ γi
0.02

)︂)︂
(42)

with maxima at 0.02. Thus, four possible functionals were considered and we refer to them

as: EGh
WC , EGhp

WC , ESh
WC , and EShp

WC . We also considered the same group of four functionals

with maxima at 0.01, but they were nearly always inferior to the functionals with maxima

at 0.02.
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3 Numerical Results

3.1 Preliminaries

Potential energy curves for the Paldus isomers of H4 and the Stair-Evangelista isomers of H10

were computed in the minimal basis STO-6G. Full CI (FCI) results were computed for the

Paldus systems using the Psi4 quantum chemistry package,121 while for the H10 isomers the

results were taken from Ref.97 RG states are strictly variational approximations to OO-DOCI

so the results are computed in the basis of OO-DOCI orbitals. OO-DOCI calculations were

performed using the implementation in hilbert,122 which is a plugin to the Psi4 package.

It is well known that the seniority-zero orbital landscape is prone to many local minima,

so multiple OO-DOCI calculations were performed at each geometry with different initial

starting conditions for the orbitals, and the lowest-energy solutions obtained are reported

here.

The variational RG optimization remains proof of principle: the variables {ε} and g

are pre-conditioned with the covariance matrix adaptation evolution strategy (CMA-ES)123

before being optimized with the Nelder-Mead124 simplex algorithm. Three consistency con-

ditions are verified at each iteration of the variational optimization. First, γk and Dkl satisfy

the sum rules

∑︂
k

γk = M, (43)

∑︂
kl

Dkl = M(M − 1). (44)

Ordinarily, the trace of Dkl would be M2, but the choice to assign Dkk = 0 reduces it by M .

A sum rule for Pkl can be deduced by computing the energy of the reduced BCS Hamiltonian
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in two ways: the energy can be evaluated as

EBCS =
∑︂
k

εkγk −
g

2

∑︂
kl

Pkl (45)

but it may be computed directly in terms of the EBV

EBCS =
g

2
M(M −N − 1) +

g

2

∑︂
k

εkUk. (46)

Simply rearranging gives an expression for the trace

∑︂
kl

Pkl =
∑︂
k

εk

(︃
2

g
γk − Uk

)︃
+M(N −M + 1). (47)

A violation of one of these conditions by 10−6 is judged to be unacceptable and causes the

point to be rejected. In the optimized results, the conditions are respected nearly to machine-

precision. Loss of precision appears when the single-particle energies {ε} become too close to

one another and could be foreseen by checking the condition number of the matrix J̄ before

numerical inversion. When J̄ is ill-conditioned, the single-particle energies must be treated

as explicitly degenerate, leading to a different construction we will report separately.

In the CI stage of the problem, we check conditions (43) and (47) for each computed RG

state as well as off-diagonal conditions for each pair of states. In particular, for each pair of

states the traces of the n̂k correlations will vanish

∑︂
k

γUV
k = 0 (48)

∑︂
kl

DUV
kl = 0, (49)
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and a similar condition for the pair-transfer elements can be deduced

∑︂
kl

PUV
kl =

2

g

∑︂
k

εkγ
UV
k (50)

by projecting the RG state ⟨{u}| against the Schrödinger equation for the reduced BCS

Hamiltonian

ĤBCS |{v}⟩ = EBCS[{v}] |{v}⟩ (51)

acting on the RG state |{v}⟩. In all computations, the largest violation of these consistency

conditions observed is on the order of 10−10, and is usually on the order of 10−13.

In nearly every case, it is very difficult to visually discern the RG state energies from the

OO-DOCI energies (not to mention RGCIS and RGCISD) so the RG energy curves will not

be presented on top of the OO-DOCI results. We will instead plot their respective errors

∆RG = ERG − EOO−DOCI (52a)

∆RGCIS = ERGCIS − EOO−DOCI (52b)

∆RGCISD = ERGCISD − EOO−DOCI . (52c)

3.2 H8 chain

We first looked at the linear H8 chain to test the weak correlation functionals and RGCI

on a system we have studied previously with RG states.34,94,95 The optimal RG state is the

Néel state 10101010. The best performing weak correlation functionals are EGh
WC and ESh

WC ,

though EShp
WC with a maximum at 0.01 is also reasonable. These results are shown in Figure

1. Functionals of the type (38) are always negative so their absolute values are plotted in
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Figure 1: Weak correlation functionals for H8 chain: (a) |EWC | compared with ∆RG. (b)
Difference between ∆RG and |EWC |. 10101010 is the optimal RG state.

Figure 1 to compare with ∆RG. The remaining error,

∆RG+WC = ERG + EWC − EOO−DOCI = ∆RG − |EWC | (53)

is plotted in Figure 1 (b). The other tested functionals either substantially over- or under-

correlated (see supporting information). Of these three functionals, ESh
WC appears to be the

best behaved. All three under-correlate at short H–H distances. E
Shp(0.01)
WC is the best at

short H–H distances, but over-correlates at longer H–H separations, as does EGh
WC . ESh

WC is

the worst of the three at short H–H distances, but never over-correlates, has an error that

decays monotonically, and is the best at longer H–H distances. All three functionals are

reasonable given how they are essentially free to evaluate.

The RGCIS results in Figure 2 (a) seem to match the results obtained for APIG,34

|APIG⟩ =
M∏︂
a=1

N∑︂
i=1

GaiS
+
i |θ⟩ (54)

for which the geminal coefficients Gai are variationally optimized. For HF Slater determi-

nants, Brillouin’s theorem ensures that the optimal state does not couple with its CI singles.

For RG states there is no Brillouin theorem, but the optimal state in terms of two-particle
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Figure 2: RGCIS and RGCISD treatment of H8 chain: (a) ∆RGCIS for the 10101010 RG
state compared with similar results for APIG from ref.34 (b) ∆RGCISD for the 10101010 RG
state. All results computed with the STO-6G basis set in the basis of OO-DOCI orbitals.

clusters would be APIG, which appears to be equivalent to RGCIS except at compressed

geometries. The RGCISD results, in Figure 2 (b) are very close to DOCI. Occasionally

RGCISD is found to be very slightly below DOCI, which must be attributed to loss of

precision on the order of 10−12.

3.3 Paldus systems

In ref.96 Paldus and co-workers presented four isomers of H4, see Figure 3, that are multi-

reference in terms of Slater determinants. S4 is a square of hydrogen atoms whose side

length α is increased to the dissociated limit. P4 and D4 consist of two H2 subunits with

a fixed “bond-length” a and a variable distance between subunits, α. As a is increased, the

HOMO/LUMO pairs of each H2 subunit get closer in energy, which increases the multi-

reference character of the problem. Thus, following ref.,96 three values of a are considered:

a = 1.2 a0, a = 1.6 a0, and a = 2.0 a0. The quoted FCI value for the H2 bond is 1.667 a0, so

these three choices represent a shortened bond-length, a near-equilibrium bond-length, and

a stretched bond-length. H4 represents a square that opens to a line with fixed bond-lengths

a. Again, the three values a = 1.2 a0, a = 1.6 a0, and a = 2.0 a0 are considered.

Figure 4 depicts FCI and OO-DOCI energies for S4 for a range of α = [1.0 a0, 8.0 a0].
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Figure 3: Paldus isomers of H4. Solid lines have fixed length a while dotted lines have
variable length α.

OO-DOCI provides near-quantitative accuracy with respect to FCI-derived energies. The

maximum error in the OO-DOCI energy is only ≈ 0.014 Eh, around 2.8 a0. Variationally
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Figure 4: OO-DOCI treatment of Paldus S4: (a) FCI and OO-DOCI energies. (b) Error of
OO-DOCI with respect to FCI. All results computed with the STO-6G basis set in the basis
of OO-DOCI orbitals.

optimized 1010 RG states, shown in Figure 5, are energetically similar to OO-DOCI, never

displaying more than 2 ×10−3 Eh error. Hence, the single RG state 1010 is similar to the

OO-DOCI wavefunction throughout the potential energy curve. Figure 5 (b) shows that
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RGCIS built from the 1010 RG state is near-exact, with respect to OO-DOCI; maximum

errors are only on the order of 10−6 Eh. Variational RG calculations were also performed for

a 1100 RG state (see supporting information), but these states were found to be much too

high in energy in the re-coupling region. Whereas for the 1010 RG state the {ε} arrange

themselves in a 2-2 pattern, for the 1100 RG state all the {ε} are near-degenerate, which

substantially increases the computational cost of solving the EBV equations (10). RGCISD

results for the H4 isomers are reported in the supporting information as the number of RG

states included is the same as the number of Slater determinants in OO-DOCI. In these cases

the RGCISD and OO-DOCI results agree on the order of 10−12.
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Figure 5: Variational RG and RGCI treatment of Paldus S4: (a) ∆RG for the 1010 RG state.
(b) ∆RGCIS for the 1010 RG state. All results computed with the STO-6G basis set in the
basis of OO-DOCI orbitals.

We also considered energy corrections from weak correlation functionals, applied to the

1010 RG reference, and the resulting data are shown in Figure 6. In general, we observe the

same pattern as for linear H8: the error for EGh
WC has some oscillatory behavior while the

error for ESh
WC decays monotonically and should therefore be preferred.

FCI and OO-DOCI results were computed for P4 with a = 1.2 a0, 1.6 a0, 2.0 a0 for a

range of α = [1.0 a0, 8.0 a0] and the results are presented in Figure 7. Generally OO-DOCI

agrees with FCI, though there are visible gaps between the respective energies for both

a = 1.6 a0 and a = 2.0 a0. This gap arises since the long and short sides of the rectangle
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Figure 6: Weak correlation functionals for Paldus S4: (a) |EWC | compared with ∆RG. (b)
Difference between ∆RG and |EWC |. 1010 is the optimal RG state. All results computed
with the STO-6G basis set in the basis of OO-DOCI orbitals.

switch, and hence the dominant Slater determinant the FCI expansion changes. Valence

bonds form along the short sides of the rectangle, and for the square geometry two valence

bond descriptions are degenerate. Figure 8 depicts deviations between energies from RG
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Figure 7: OO-DOCI treatment of Paldus P4 with a = 1.2 a0, 1.6 a0, 2.0 a0: (a) FCI and
OO-DOCI energies. Past α = 3.0 a0 the curves become indiscernible. (b) Error of OO-
DOCI with respect to FCI. All results computed with the STO-6G basis set in the basis of
OO-DOCI orbitals.

(1010) and RGCIS (built from 1010) states and the those from OO-DOCI. The correct RG

state is 1010 for all values of a and α. The 1100 state was also variationally optimized,

but it was found to have much too large an energy (see supporting information). RGCIS is
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near-exact, with errors with respect to OO-DOCI never exceeding 1.2× 10−5 Eh. The weak
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Figure 8: Variational RG and RGCI treatment of Paldus P4 with a = 1.2 a0, 1.6 a0, 2.0 a0:
(a) ∆RG for the 1010 RG state. (b) ∆RGCIS for the 1010 RG state. All results computed
with the STO-6G basis set in the basis of OO-DOCI orbitals.

correlation functionals do not provide any noticeable improvement upon the 1010 RG state

(see supporting information). All of them under-correlate at small α and over-correlate at

large α.

FCI and OO-DOCI results were computed for D4 with a = 1.2 a0, 1.6 a0, 2.0 a0 for a

range of α = [1.0 a0, 8.0 a0] and the results are presented in Figure 9. The agreement between

OO-DOCI and FCI is comparable to the case of P4, with maximum deviations between the

methods being roughly twice as large (≈ 0.03 Eh at 1.6 a0) This gap occurs for a similar

reason as for P4: when α < a, the bonding pattern should be centred between the second

and third hydrogen atoms as they are closest. Contributions from the seniority two and four

sectors are required for quantitative agreement with FCI.

Variational RG calculations capture the transition in the bonding pattern explicitly.

When α < a, the correct RG state is 1100 with a set of {ε} arranged in a 1-2-1 energetic

pattern: 1 small ε, 2 near-degenerate ε, and 1 large ε. This arrangement corresponds to

one doubly-occupied orbital, two partially-occupied valence orbitals, and one empty virtual

orbital. Once α ≥ a, the correct RG state is 1010 with a set of {ε} in two sets of near-

degenerate pairs. With the correct RG reference, the RGCIS results never differ from OO-
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Figure 9: OO-DOCI treatment of Paldus D4 with a = 1.2 a0, 1.6 a0, 2.0 a0: (a) FCI and
OO-DOCI energies. (b) Error of OO-DOCI with respect to FCI. All results computed with
the STO-6G basis set in the basis of OO-DOCI orbitals.

DOCI by more than 2×10−6Eh. As was the case for P4, the weak-correlation functionals do
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Figure 10: Variational RG and RGCI treatment of Paldus D4 with a = 1.2 a0, 1.6 a0, 2.0 a0:
(a) ∆RG for the 1010 and 1100 RG states. (b) ∆RGCIS for the 1010 and 1100 RG states.
1100 is only optimal at short distances and quickly jumps off the scale once α > a. All
results computed with the STO-6G basis set in the basis of OO-DOCI orbitals.

not provide any useful improvement (see supporting information). At short distances they

all under-correlate substantially and at long distances they all over-correlate substantially.

Figure 11 depicts FCI and OO-DOCI potential energy curves for the H4 model with

a = 1.2 a0, 1.6 a0, 2.0 a0. The OO-DOCI and FCI curves are qualitatively similar though the

agreement is not quantitative, which indicates the need for weak correlation contributions
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from higher seniority sectors.
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Figure 11: OO-DOCI treatment of Paldus H4 with a = 1.2 a0, 1.6 a0, 2.0 a0: (a) FCI and
OO-DOCI energies. (b) Error of OO-DOCI with respect to FCI. All results computed with
the STO-6G basis set in the basis of OO-DOCI orbitals.

Variational RG calculations, presented in Figure 12, show that a 1010 RG state recov-

ers OO-DOCI energies to within roughly 1.6 ×10−3 Eh throughout the curve, and several

orders of magnitude of improvement can be obtained with RGCIS. In this case, the relative
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Figure 12: Variational RG and RGCI treatment of H4 with a = 1.2 a0, 1.6 a0, 2.0 a0: (a)
∆RG for the 1010 RG state. (b) ∆RGCIS for the 1010 RG state. All results computed with
the STO-6G basis set in the basis of OO-DOCI orbitals.

performance of the weak correlation functionals is less clear: for each choice of a, a different

functional was found to be optimal (Figure 13). At a = 1.2 a0 EGhp
WC performs the best, at

a = 1.6 a0 EShp
WC with a maximum at 0.01 is best, while at a = 2.0 a0 the best performing
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functional is EGh
WC . Results for all eight tested functionals are included in the supporting

information.
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Figure 13: Weak correlation functionals for Paldus H4 with a = 1.2 a0, 1.6 a0, 2.0 a0: Differ-
ence between ∆RG and |EWC |. 1010 is the optimal RG state. All results computed with the
STO-6G basis set in the basis of OO-DOCI orbitals.

3.4 H10 isomers

Recently, Stair and Evangelista presented four isomers of H10, shown in Figure 14, to assess

not only the accuracy of some common quantum chemistry approaches, but also their ability

to provide compact representations of the electronic structure of these complex systems. Each

isomer can be thought of as a proxy for a finite-size Hubbard model: the single variable is

the inter-atomic distance which modulates on-site repulsion. The chain and the ring are

similar to 1-dimensional Hubbard models without and with periodic boundary conditions,

respectively. In the sheet system, the hydrogen atoms are arranged in a 3-4-3 pattern, with

all of the nearest-neighbours being equidistant. The pyramid is a tetrahedron with four

hydrogen atoms at the vertices and the six remaining hydrogen atoms at the midpoint of

each of the edges.

Figure 15 depicts potential energy curves for the four H10 isomers computed at the OO-

DOCI / STO-6G level of theory. FCI results computed the same basis, which were taken

from Ref.,97 are also provided. As expected, OO-DOCI does a reasonable job of reproducing
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Figure 14: Isomers of H10 considered in this work. The dashed lines are of equivalent distance.

the overall shapes of the FCI curves for both of the 1D structures. As can be seen in Fig.

16, the maximum deviations between OO-DOCI and FCI are ≈ 0.67 Eh and ≈ 0.97 Eh for

the 1D chain and ring structures respectively. For the 2D and 3D structures, the largest

deviations between OO-DOCI and FCI energies are somewhat larger; moreover, for these

systems, we also begin to see some qualitative differences in the shapes of the respective

curves. For the 2D sheet, the curvature at intermediate H–H distances is different than that

from FCI. For the 3D pyramid, OO-DOCI predicts only a shallow minimum at roughly the

correct H–H distance, after which it exhibits a small hump before it appears to approach

the correct dissociation limit. Even so, when considering additional correlation treatments,

OO-DOCI should be a much better starting point than restricted Hartree-Fock (RHF). We

now show that OO-DOCI can itself be very well approximated by a single RG state in all

cases.

3.4.1 1D structures

The linear chain is exactly the same as those we have already studied, except that the chain

is one GVB pair longer. Hence, the optimal RG state is the Néel RG state (1010101010).

The error in the RG energy with respect to that from OO-DOCI is shown in Figure 17

(a). The maximum deviation from the OO-DOCI energy (≈4 ×10−3 Eh) occurs at the
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Figure 15: OO-DOCI treatment of H10 isomers: RHF, OO-DOCI and FCI energies for (a)
1-dimensional chain. (b) 1-dimensional ring. (c) 2-dimensional sheet. (d) 3-dimensional
pyramid. OO-DOCI results computed with the STO-6G basis set in the basis of OO-DOCI
orbitals. RHF and FCI results are from ref.97
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Figure 16: OO-DOCI error with respect to FCI for H10 isomers. All results computed with
the STO-6G basis set in the basis of OO-DOCI orbitals.
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most compressed geometry considered, and the RG state effectively recovers the OO-DOCI

energy at stretched geometries. As seen in Fig. 17 (b), the additional correlation provided by

RGCIS brings the error with respect to OO-DOCI down several orders of magnitude in the

equilibrium region. The errors in the RGCIS energy are all less than 4 ×10−6 Eh throughout

the entire curve. To the precision we can trust our results, RGCISD is essentially indiscernible

from OO-DOCI (see supporting information).

The ring is a finite size “periodic” 1D structure. We expect that the relative performance

of RG and OO-DOCI should be of similar quality to the case of the chain structure, and,

indeeed, it is: the optimal RG state is the Néel RG state and the error in its energy with

respect to OO-DOCI, shown in Figure 17 (a), is only slightly larger than for the chain

at compressed geometries and quite similar at stretched geometries. Again, the additional

correlation afforded by RGCIS brings the error down by several orders of magnitude (Fig.

17 (b)).
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Figure 17: Variational RG and RGCIS treatment of H10 chain and ring: (a) ∆RG for the
1010101010 RG state. (b) ∆RGCIS for the 1010101010 RG state. All results computed with
the STO-6G basis set in the basis of OO-DOCI orbitals.

Corrections from the weak correlation functionals, shown in Figure 18, follow the same

pattern as for linear H8: EGh
WC and ESh

WC are both reasonable, though ESh
WC should be preferred

as it never over-correlates and its error with respect to OO-DOCI decays monotonically.
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Figure 18: Weak correlation functionals for 1D H10 isomers: (a) Difference between ∆RG

and |EWC | for 1D chain. (b) Difference between ∆RG and |EWC | for 1D ring. 1010101010
is the optimal RG state. All results computed with the STO-6G basis set in the basis of
OO-DOCI orbitals.

3.4.2 Sheet and pyramid

The sheet is the first case where there is an appreciable qualitative difference between OO-

DOCI and FCI. We also found that the optimal variational RG states change in this case.

As can be seen in Fig. 19 (a), the Néel RG state is optimal everywhere except at compressed

geometries. For H–H distances less than or equal to 1.0 Å, we found that the optimal RG
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Figure 19: Variational RG and RGCIS treatment of H10 sheet and pyramid: (a) ∆RG for the
1010101010, 1100110010 (sheet) and 1100111000 (pyramid) RG states. (b) ∆RGCIS for the
1010101010, 1100110010 (sheet) and 1100111000 (pyramid) RG states. Past 1.1, the curves
for 1100110010 (sheet) and 1100111000 (pyramid) jump off the graph. All results computed
with the STO-6G basis set in the basis of OO-DOCI orbitals.
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state is instead 1100110010, for which the single-particle energies {ε} arrange themselves in

a 4-4-2 pattern: there are 4 orbitals that contain 2 pairs, another 4 orbitals that contain

another 2 pairs, and 2 orbitals that contain 1 pair. This structure is perhaps more clear from

the corresponding geminal coefficient matrix

Gai =
1

ua − εi
≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 ∗ ∗ ∗ ∗ 0 0

0 0 0 0 0 0 0 0 ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(55)

which is block diagonal. Again, the elements in the off-diagonal blocks are not numerically

zero, but they are much smaller than those in the diagonal blocks. Remarkably, this state

does not seem to be describable as GVB/APSG, for which the matrix Gai is (15), nor

AP1roG/pCCD, for which Gai is

Gai =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 ∗ ∗ ∗ ∗ ∗

0 1 0 0 0 ∗ ∗ ∗ ∗ ∗

0 0 1 0 0 ∗ ∗ ∗ ∗ ∗

0 0 0 1 0 ∗ ∗ ∗ ∗ ∗

0 0 0 0 1 ∗ ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (56)

For GVB/APSG and AP1roG/pCCD, the elements marked “0” in Gai are identically zero.

As for the 1D chain and ring structures, RGCIS improves upon the single, optimal RG

state, decreasing the energy error by several orders of magnitude (Fig. 19 (b)). However,

in this case, the RGCIS error is somewhat larger at compressed geometries. The maximum

error is ≈ 2 × 10−4 Eh, at an H–H distance of 1.3 Å, but this error decreases rapidly (as

does that for the single RG state) at larger H–H distances. RGCISD, with the correct RG

reference, has a maximum error of ≈ 1× 10−6 Eh at 1.3 Å (see supporting information).
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Variational RG minimization for the 3D pyramid, shown in Figure 19 (a), again found

the Néel RG state to be optimal, except at short H–H distances where the optimal RG state

found was 1100111000. In this case, the single-particle energies {ε} arrange themselves in a

4-6 pattern: there are 4 sites that contain 2 pairs and 6 sites that contain the remaining 3.

The corresponding geminal coefficient matrix has the form

Gai =
1

ua − εi
≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (57)

Again, the elements labelled “0” are not numerically zero, but they are much smaller than

those labelled “*”. This state also does not appear to be describable as GVB/APSG nor

AP1roG/pCCD. As seen in the other systems, the energies obtained from RGCIS improve

significantly upon those from a single RG state, although the RGCIS error is somewhat

larger for the pyramid than for the sheet at short H–H distances. Nonetheless, the RGCIS

error never exceeds 7× 10−4 Eh, and the error decreases rapidly (as does that for the single

RG state) at larger distances. RGCISD, with the correct RG reference, has a maximum

error of ≈ 3× 10−6 Eh at 1.0 Å(see supporting information).

The best performing weak correlation functionals, shown in Figure 20, are different than

for the 1D structures. EGhp
WC and EShp

WC are now the best for both the 2D sheet and the 3D

pyramid. EShp
WC should be preferred as its error with respect to OO-DOCI is much better

behaved.

A discussion of the correct choice of RG state is warranted. Given that there are
(︁
10
5

)︁
possible RG states for 5 pairs in 10 orbitals, how can we be sure we have the correct one?

With a few observations we can reduce this number to one that is completely manageable.

First, we have observed that the single-particle energies {ε} tend to separate into partitions
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Figure 20: Weak correlation functionals for H10 sheet and pyramid: (a) Differences between
∆RG and |EWC | for 2D sheet. (b) Differences between ∆RG and |EWC | for 3D pyramid.
Results are only computed for the region where 1010101010 is the optimal RG state. All
results computed with the STO-6G basis set in the basis of OO-DOCI orbitals.

of 2k elements for k pairs. Second, within a partition we always want the 1s listed first, as

otherwise the pairs will be placed principally in higher energy orbitals which leads to much

higher energies. Third, the order of the partitions in a bitstring does not matter, e.g. the

bitstrings 1100111000 and 1110001100 refer to different RG states for a given set of {ε} and

g, but when optimized will find equivalent solutions. In this contribution we found results

for 1100111000 first. Thus, the only RG states that must be considered are in one-to-one

correspondence with the partitions of the number of pairs:

(5) ↦→ 1111100000

(4, 1) ↦→ 11110000 10

(3, 2) ↦→ 111000 1100

(3, 1, 1) ↦→ 111000 10 10

(2, 2, 1) ↦→ 1100 1100 10

(2, 1, 1, 1) ↦→ 1100 10 10 10

(1, 1, 1, 1, 1) ↦→ 10 10 10 10 10. (58)
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Finally, symmetry arguments can reduce this list to a few possible candidates. In the pyra-

mid, the four vertices are equivalent and the six edges are equivalent, so it is not surprising

that 1100111000 is the optimal RG state at short distances. In the sheet, the two inner

hydrogen atoms are equivalent and the four corners are equivalent. It is not obvious whether

the other four hydrogen atoms are equivalent or not, and, thus it is necessary to try all

bitstrings containing partitions (2,1). These rules are meant to rationalize our results. In

this study many more possible RG states were tested, but none fell outside of these obser-

vations. These arguments notwithstanding, our experience is that, at large H–H separations

distances, the Néel RG state is always optimal.

4 Conclusion

We have computed OO-DOCI wavefunctions and RG states for hydrogen clusters containing

four, eight, and ten hydrogen atoms. With the exception of the pyramid structure for

H10, OO-DOCI captures the correct qualitative behavior of the energy as a function of H–

H distance in all cases. OO-DOCI itself has been shown to be well approximated by a

single RG state, while RGCIS significantly improves this approximation. RGCISD states

are effectively indiscernible from OO-DOCI states, in terms of the energy. Hence, when

the electronic structure of these systems is represented in terms of RG states, rather than

Slater determinants, these systems all appear to be effectively single-reference. Given the

good performance of RGCIS and RGCISD, it is worth pursuing improved expressions of the

TDM elements, as the expressions reported herein are expensive to evaluate but are certainly

improvable.

As an alternative to RGCIS or RGCISD, we explored the utility of weak correlation func-

tionals within the seniority-zero channel, which are computationally inexpensive to evaluate.

For 1D structures we found that the best performance was obtained for the ESh
WC functional,

while for 2D and 3D structures we best-performing functional was EShp
WC . In general, the
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Slater type functionals we considered are to be preferred over Gaussian type as their error

with respect to OO-DOCI is better behaved. The exception is the Paldus ring-opening sys-

tem (H4) for which EGhp
WC was the best for a = 1.2a0 while EGh

WC was the best at longer bond

lengths.

Regardless of the route chosen to recover the full energy within the seniority-zero sector,

quantitative agreement with FCI will ultimately require contributions from the seniority-

two and seniority-four channels. Such contributions can be included post-hoc in a number

of ways.57,73,80,125,126

Finally, we reiterate that the optimal RG state for the H10 isomers is the Néel state except

for the 2D sheet and the 3D pyramid at short distances. There, the single particle energies

{ε} arrange into larger clusters that accommodate more than one pair. This behavior is not

allowed by the geminal coefficients of GVB/APSG, nor AP1roG/pCCD.
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