Single reference treatment of strongly
correlated H,; and H;j isomers with

Richardson-Gaudin states

Paul Andrew Johnson*T and A. Eugene DePrince III*

TDépartement de chimie, Université Laval, Québec, Québec, Canada
T Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL
32306-4390

E-mail: paul.johnson@chm.ulaval.ca

Abstract

Richardson-Gaudin (RG) states are employed as a variational wavefunction ansatz
for strongly correlated isomers of Hy and Hig. In each case a single RG state describes
the seniority-zero sector quite well. Simple natural orbital functionals offer a cheap
and reasonable approximation of the outstanding weak correlation in the seniority-
zero sector, while systematic improvement is achieved by performing a configuration
interaction (CI) in terms of RG states. Other pair theories (e.g. generalized valence
bond and pair-coupled-cluster doubles) can provide a good description of many of the
geometries considered, but, at short distances, the wavefunctions for the 2D and 3D
structures of Hig take the form of an RG state that cannot be described by these other

theories.
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1 Introduction

Many problems in electronic structure theory can be treated as systems of weakly correlated
electrons. In such cases, a single Slater determinant provides a qualitative description of the
wavefunction and a short expansion in Slater determinants provides quantitative accuracy.
For weakly-correlated systems Kohn-Sham density functional theory (DFT) and coupled-
cluster (CC) theory™™ with singles and doubles® can be expected to predict physically correct
results.

Strongly-correlated systems are another story. The wavefunction has no single dominant
Slater determinant, and even a qualitative description of the system can become complicated.
The standard approach for dealing with strong correlation is the complete active space
self-consistent field (CASSCF) approach®® which works well if a compact active space of
chemically important orbitals can be identified. Even then, active spaces beyond 22 electrons
in 22 orbitals®” are intractable, which has led to the development of a large number of
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configuration interaction (CI) based schemes as approximate CASSCF solvers, as well

as alternative representations of the electronic structure of the active space that abandon

the CI framework altogether, 00

It has long been understood“” that two-electron functions, called geminals, describing
pairs of weakly-interacting electrons, can provide a better basis for strongly-correlated elec-
trons than Slater determinants of single-particle orbitals. For systems of paired electrons, an
excellent description is obtained with the antisymmetrized product of interacting geminals
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(APIG), but this treatment is completely intractable in practice. For attractive pairing

39537 and in nuclear

interactions, such as in the Bardeen-Cooper-Schrieffer (BCS) mechanism
structure, the antisymmetrized geminal power (AGP) gives qualitatively correct results for a
meagre cost.**4% For repulsive interactions, as arise in chemistry, AGP is qualitatively incor-
rect and requires the use of Jastrow factors to be size-consistent.** ¥ Correct understanding
of repulsive systems is possible with the antisymmetrized product of strongly-orthogonal

geminals (APSG)%¥ and in particular generalized valence bond /perfect pairing (GVB).24 08



These last two approaches require splitting the orbitals into disjoint subspaces, which can
be done quite easily by looking at the corresponding unrestricted Hartree-Fock (UHF) or-
bitals.®” Finally, the antisymmetrized product of 1-reference orbital geminals (AP1roG),™
which is equivalent to pair-coupled-cluster doubles (pCCD)™ has shown good results for

2787 and even excited state energies provided the orbitals are cor-

ground state properties,
rectly optimized.®®*¥ However, AP1roG/pCCD is not a variational theory, so its wavefunc-
tion parameters must be solved by projection in a state-specific manner.

The eigenvectors of the reduced BCS Hamiltonian, which we call Richardson-Gaudin
(RG)™W 4 gtates, have shown excellent results for 1-dimensional strongly-correlated model
systems. RG states are mean-field geminal wavefunctions that can be optimized with mean-
field cost. What sets RG states apart from GVB, APSG, and AP1roG/pCCD is that they
form a basis for the Hilbert space. Thus, to account for the missing weak correlation, single-
reference methods can be built from RG states in the same manner as for weakly-correlated
systems in terms of Slater determinants.

Previous applications® of RG states have been limited to small linear chains of hy-
drogen atoms, which are well described by GVB, and therefore APSG and AP1roG/pCCD.
Hence, a natural next step in validating the efficacy of RG states is to consider more chal-
lenging model systems that remain small enough for an exact treatment. For this purpose,
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we consider a classic family of multi-reference systems, the Paldus Hy isomers,
more recently studied®” isomers of Hjy, which resemble finite-sized Hubbard models with
different connectivity patterns.

This paper is outlined as follows. In section [2| we summarize the structure of the reduced
BCS Hamiltonian and RG states. In particular, the non-linear equations to be solved for
each RG state, their reduced density matrix (RDM) elements, and transition density matrix
(TDM) elements between RG states are presented. In section |3] we demonstrate that the

Paldus isomers of Hy and the Stair-Evangelista isomers of Hig can, for the most part, be

described qualitatively by orbital-optimized (OO) doubly-occupied configuration interaction



(DOCI). In each case, a single RG state is energetically similar to OO-DOCI, while a config-
uration interaction (CI) (pair-) singles expansion in terms of RG states matches OO-DOCI
with quantitative accuracy. Simple functionals of the occupation numbers are tested on top
of a single RG state, and the results are not bad considering how computationally inexpensive

they are.

2 Theory

In this section we will briefly summarize the minimum of information required to compute
with RG states. The development of the matrix elements is not complicated, but rather long
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and irrelevant for the present purpose. We refer the interested reader to refs. where

erhaustive detail is presented.

2.1 Reduced BCS Hamiltonian and RG States

Starting from second quantized operators aZTT and (IL which create up and down spin electrons

in spatial orbital 7, pairs of electrons are described by the objects

St = a%a;&, S, =ajai, S;=

(2 3 (3

(a}Tan +alja; — 1> (1)

DO | —

which locally have the structure of the Lie algebra su(2)

[SiF, 851 = 2045} (2a)

With N spatial orbitals, there are N copies of these objects. It is convenient to use the

number operator

n; =257 + 1, (3)



which counts the number of individual electrons in the spatial orbital i. The vacuum |6) is

destroyed by the pair removal operators
S;|0) =0, Vi (4)

With these objects, the reduced BCS Hamiltonian is written

A 1 . _
Hpes = 3 E il — g E Si°S; (5)
i i

and describes a system in which there is competition between filling the spatial orbitals
(with single-particle energies {¢}) and a constant-strength pair-scattering g between them.
The interaction is attractive when ¢ is positive and repulsive when ¢ is negative, and this
Hamiltonian is exactly solvable in all cases. RG states @ are wavefunctions representing

weakly-correlated pairs of electrons
{u}) = ST (u)S " (uz) ... ST (uar) |0) (6)

with the pair creators

Stu) =Y S (7)

—~ U —&;

7

defined by a set of complex numbers {u} called the rapidities. RG states are eigenvectors
of the reduced BCS Hamiltonian provided that their rapidities are solutions of Richardson’s

equations

9 1 P
§+;ua_€i+b§)ub_ud=0, Ya=1,..., M. (8)

The eigenvalue problem for the Hamiltonian is thus reduced to solving the non-linear

equations . Solving Richardson’s equations for the rapidities is possible, but difficult



and expensive as they possess divergent critical points where rapidities coincide with single-

particle energies {e}.1931% Tn terms of the eigenvalue-based variables (EBV),

=3 ——. )

Richardson’s equations are equivalent to the non-linear equations
Up —U; .
U?—2U;i—gy ———— =0, Vi=1,.. N, (10)

which are much easier to solve numerically. " Rapidities could then be found with a
root-finding procedure, but this is now completely unnecessary: all of the required RDM
and TDM elements can be computed directly from the EBV.1Y2 However, the RG states do
not have a direct representation in terms of the EBV so we will continue to label them as
{u}).

The EBV equations decouple at g = 0, where the eigenvectors of the reduced BCS
Hamiltonian are Slater determinants. These states are thus well-defined by sites that are
occupied and sites that are empty: they may be represented by a string of 1s and Os that we
have referred to as a bitstring. At non-zero g, the RG states are not Slater determinants, but
evolve continuously and uniquely from the g = 0 states. It is therefore unambiguous to label
RG states at any ¢ as a bitstring based on the Slater determinant from which it evolves at
g = 0. At any g the ground state of the reduced BCS Hamiltonian is always represented by
the bitstring of M 1s followed by (N — M) 0s, and the highest excited state of the reduced
BCS Hamiltonian is always the bitstring of (N — M) 0s followed by M 1s. The other RG
states can and do cross, but the evolution from g = 0 is unique. Note that, for Coulomb
Hamiltonians, which are the Hamiltonians we would ultimately like to treat, the ground
state of the reduced BCS Hamiltonian is not necessarily the variationally optimal state.

At g = 0 we can solve the equations explicitly. The solution is then evolved iteratively

to a final target ¢g. First, a step in g toward the target is defined, and a fourth-order Taylor



update to the EBV is computed. The EBV equations are then solved at the new ¢ by a
Newton-Raphson procedure. If the terms in the Taylor series grow, or if the Newton-Raphson
procedure causes a change in the norm of the EBV by more than 25%, the step is rejected
and reattempted with half the step-size. We have seen that if we begin by attempting as
large a step as possible, the number of steps required seems to scale logarithmically with
the pairing strength ¢g. The Taylor update allows much larger steps to be taken with no
95110709

drawback. For details of the procedure, see refs.

The Coulomb Hamiltonians we wish to solve are written

Hp = Z hij Z a;, 0o + = Z Vijki Z awa]TalTaka (11)

z]kl

with spin labels 0 and 7 and a set of integrals computed in a given orbital basis {¢}

hij _/drgb;k( <__V2 Z |I‘—R[’) ( ) (12>

“(r1)ok(r r r
Vi = /drldrg@( 1)9;5 ( 2)¢k( 1) 2)‘ (13)
T — raf
RG states can be used as a variational ansatz by minimizing
Pt A) "

{ehe - ({upl{u})

with respect to {e} and g. Our first study of RG states in chemical problems,** in particular
dissociations of linear hydrogen chains and molecular nitrogen, showed quite conclusively
that the RG ground state 1...10...0 is not representative of bond-breaking correlation. The
RG ground state provided an acceptable description near the equilibrium geometry, and
an exact description at dissociation, but the intermediate re-coupling region was not at all
well described. In a later study,”” we found that another RG state, specifically one labelled

1010...10 which we have referred to as the Néel RG state, was actually the variationally



optimal state. For linear Hg, for example, the optimal single-particle energies {¢} arranged
themselves in a 2-2-2-2 pattern: they form four sets of two {¢} that are close in energy.
The energy difference between each set of two {e} is much larger than the pairing strength
g. The bitstring 10101010 places one rapidity in between each of the near-degenerate pairs
of {e} so that each pair ST (u) is dominated by two sites. This can be summarized in the

geminal coefficient matrix

*
*
(e}
o
e}
(e}
) ) jen) )
[an}
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in which each row represents a pair while each column represents an orbital. The elements
marked with zeroes in equation are not numerically zero, but they are much smaller
than those marked with asterisks. In the dissociation limit, the Néel RG state explicitly

becomes the GVB state

|GVB> = (Sfr - 5;)(5; - SI) S (S;_N—l - S;_N) |9> : (16)

For the dissociation of molecular nitrogen, we found the optimal RG state to be 1111101010
with {¢} arranged in a 1-1-1-1-2-2-2 pattern: there were four individual {¢} along with three
pairs of near-degenerate {c}.

A single RG state optimized as described above will provide a reasonable, but not exact,
description of the seniority-zero sector of the true wavefunction. For an improved descrip-
tion of this sector, we can perform a CI in the basis of RG states. For Slater determi-
nants, the Slater-Condon rules ensure that a given reference only couples with single- and

double-excitations through the Coulomb Hamiltonian. For RG states however, there are



unfortunately no such rules. On paper, each RG state will couple with each other RG state.
Fortunately, we have found numerically that these couplings go to zero quite rapidly.**? With
a given reference bitstring, we will call a single-pair excitation one that differs from the ref-
erence by a single 1 and a single 0, a double-pair excitation one the differs from the reference
by two 1s and two 0s, etc. Magnitudes of couplings decrease with excitation level, and are
negligible past doubles. Thus, we will variationally optimize a single RG state, then solve
the CI problem with its singles (RGCIS), and singles and doubles (RGCISD). In particular,
for a variationally optimized set of {¢} and ¢ for a particular RG bitstring, we will compute
the EBV for the M (N — M) singles and (1\24 ) (N ;M ) doubles. The Coulomb Hamiltonian is

built in this basis and diagonalized. This procedure requires both RDM elements for each

RG state and transition density matrix (TDM) elements between RG states.

2.2 RDMs and TDMs

Evaluating the energy of with an RG state yields only seniority-zero contributions

Ergl{e}, 9] =2 Z ey + Z(kalkl — Vi) Dt + Z Viekt P (17)
! Kl Kl

The 1-RDM ~y;, is diagonal

1 (fudll{ud)
S ] ) (18)

and there are only O(N?) non-zero elements from the 2-RDM arranged in what we call the

diagonal-correlation function Dy,

_ T{uderu{u})
= )



and the pair-correlation function Py

(ISt ST )
P ="y (20)

In the pair representation, the diagonal elements Py, and Dy, refer to the same matrix
element, so to avoid double-counting we assign it to Pir = 7% and set Dy = 0.
Expressions for the density matrix elements of RG states are known in terms of ra-

RO and more recently directly in terms of EBV.4%4 We will present only the

pidities,
results as the development is incredibly tedious. TDM elements are presented first as RDM
elements are a special case.
The expressions for the 1- and 2-TDM elements require the 1st and 2nd co-factors of the
matrix J,
Uit Vi= 24+ Yy srmer 1=

g

s i#J

where {U} and {V'} are the EBV for the two RG states. First co-factors are understood

A[J]" = (1) det J* (22)

where J%I is the matrix J without the sth row and jth column. To correctly account for the

sign, second co-factors require using a Heaviside function

10



in their definition

A[J]z‘j,kl _ (_1)i+j+k+l+h(i—j)+h(k—l) det Jikl

Here J¥* is the matrix J without the ith and jth rows, and the kth and /th columns.

For two distinct RG states, the non-normalized elements of the 1-TDM are

{u}lnl{v}) = n Z ViAlJ

l\DIH

where the pre-factor is

N—-2M
-
n=(-1) 5
With
Vi — WV,
Ky = ViV + =&
k—€z

the non-normalized elements of the 2-TDM are

1 11 o
= KklA[J]kl,kl + Z KilA[J]il,kl + Z KikA[J]k:i,kl
i(F#k,l) i(#k,0)

N Z (ex — &) — f—:]) + (Ek; _.Ej)(EZ - Ei)KijA[(]]ij,kl7
o (er —e)(e; — <)
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and

1 1 _
—PyY == ({u}|SFS {v}) (30)
7 n
E; — €& i
= (Vi + (ex — ) (Wi = Vidu) AT + Y VAL
iRp ST
€k — & il kl (e —ei)(ex — Ej) ikl
-2 K A[J)ERE — 9 K A[J]9H 31
i(;l) £ — & l [ ] ; (5k_5l)<5j_5i) J [ } ( )
’ (#k,1)

N

In this contribution we evaluated the TDM elements by first computing the (];7 ) (2

) second
co-factors of the matrix J for each pair of states. Such an approach is quite expensive and
certainly could be improved by further studying the matrix elements. However, one of the

points of the present contribution is to determine whether it is worth working it out.

The square of the norm of an RG state is

({u}{u}) = ndet J (32)

where J is the matrix J where both sets of EBV are the same. Normalized RDM elements of
RG states are particularly simple to compute: scaled second co-factors are writeable directly
as a 2 X 2 determinant of first co-factors

A[J)IHE AL AP AT AL
detJ  detJ detJ detJ detJ '

(33)

U2 states that a kth-order scaled co-factor is

This extends generally as a theorem of Jacobi
a k x k determinant of scaled first co-factors. Next, the adjugate formula for the matrix

inverse gives the elements of the inverse as

a1 _ AP
1o = e T (34

The 1- and 2-RDMs can therefore easily be computed once the matrix J is inverted. We
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have seen, 1% that so long as the set of {¢} is non-degenerate, .J is well-conditioned and it is

reasonable to invert numerically. The normalized 1-RDM elements are
w= Uy (35)
!
while the 2-RDM elements are

- 1-=_1 ——1==-1 ——1—5-1 ——15-1 —15—1 5—15-1
Dkl = Kkl(Jklel — ‘]lk ‘]kl ) -+ Z Kjk(l]kkjlj - Jlk ‘]k_y>+ Z K]l(‘]k] ‘]ll - Jl' Jkl )

J

3D J(#k)
(5k—€i>(5l —€j>+(€k—€j)(gl _gi) -1 e
+ Ki(Jy Iy — J Jhs 36
;j (ex —e&)(ej — i) (i i i i) (36)
(#k,1)

and

E; — €k 2M -1

P = 2Ul+’z 5i_5lUi_ p I
i(#k,l)
Ei — €&k -1 S—15-1 5—15-1
+ Z e — & Uidy = 2Ka(Jys Ju = Ju Tia))
i#hy)
(ex —&i)(er — &) - 1=-1 =-1=-1
—2 Ky(Jo T — J5 I ). 37
;j (5k_5l)(5j_5i) J( k lj l k]) ( )
(#k,1)

Unless it turns out to be possible to compute the RDM elements without linear algebra

operations, these expressions are optimal: for each RG state, its 2-RDM can be constructed

with O(N?) cost.

2.3 Weak correlation functionals

The natural orbital functionals of Piris are closely related to geminal wavefunctions. In par-
ticular, PNOF5% is equivalent to APSG,™ while PNOF7H48 can be roughly understood
as intra-pair contributions treated as APSG and inter-pair treated like AGP. Both are treat-

ments of strong correlation in the seniority-zero channel. More recently, GNOFM%120 trieg
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to include weak correlation by updating the Pj; elements with the “dynamical” part of the

occupation number d;. The energy of the update is of the form
Ewe ==Y 'Vdid;Viy; (38)
ij

where the primed summation leaves out: i) diagonal terms, ii) terms arising from the same
APSG subspace, iii) terms for which v; and 7; are both near 1. Piris suggests an ansatz
for d; as the occupation number ~; scaled by a Gaussian function. In this contribution, we
considered a few variants applied only to the Néel RG state. This means in particular that
each pair is considered to be dominated by 2 spatial orbitals. The same three conditions are
used to omit terms.

One can include either only contributions from occupation numbers near zero (d") or

contributions from occupations near zero and one (d")

di' = 7:f () (39)

A =i f () + (1= 7) f(1 — %) (40)

while also considering other decaying functions f. We considered both a Gaussian and a

Slater decay

£ = exp (— (5o ﬁ)> ()

f5(n) = exp (— (0.76'2)) (42)

with maxima at 0.02. Thus, four possible functionals were considered and we refer to them
as: EGL, EVGVhé), Egh. and Eﬁfg We also considered the same group of four functionals
with maxima at 0.01, but they were nearly always inferior to the functionals with maxima

at 0.02.

14



3 Numerical Results

3.1 Preliminaries

Potential energy curves for the Paldus isomers of Hy and the Stair-Evangelista isomers of Hyg
were computed in the minimal basis STO-6G. Full CI (FCI) results were computed for the
Paldus systems using the PS14 quantum chemistry package,™* while for the H;, isomers the
results were taken from Ref.®” RG states are strictly variational approximations to OO-DOCI
so the results are computed in the basis of OO-DOCI orbitals. OO-DOCI calculations were
performed using the implementation in hilbert,*® which is a plugin to the Psi4 package.
It is well known that the seniority-zero orbital landscape is prone to many local minima,
so multiple OO-DOCI calculations were performed at each geometry with different initial
starting conditions for the orbitals, and the lowest-energy solutions obtained are reported
here.

The variational RG optimization remains proof of principle: the variables {¢} and g¢
are pre-conditioned with the covariance matrix adaptation evolution strategy (CMA-ES)*%3
before being optimized with the Nelder-Mead®#* simplex algorithm. Three consistency con-
ditions are verified at each iteration of the variational optimization. First, v, and Dy, satisfy

the sum rules

Z’Yk =M, (43)

> Du=M(M -1). (44)

Ordinarily, the trace of Dj; would be M2, but the choice to assign Dy = 0 reduces it by M.

A sum rule for Py, can be deduced by computing the energy of the reduced BCS Hamiltonian

15



in two ways: the energy can be evaluated as

Epcs = Z&c% - g Z P (45)
K Kl

but it may be computed directly in terms of the EBV
Epes = SM(M - N-1)+ 23«0, (46)
2 2 <

Simply rearranging gives an expression for the trace

> Pu=) e Gyk — Uk> + M(N —M+1). (47)

A violation of one of these conditions by 107% is judged to be unacceptable and causes the
point to be rejected. In the optimized results, the conditions are respected nearly to machine-
precision. Loss of precision appears when the single-particle energies {e} become too close to
one another and could be foreseen by checking the condition number of the matrix J before
numerical inversion. When J is ill-conditioned, the single-particle energies must be treated
as explicitly degenerate, leading to a different construction we will report separately.

In the CI stage of the problem, we check conditions and for each computed RG
state as well as off-diagonal conditions for each pair of states. In particular, for each pair of

states the traces of the n; correlations will vanish

d W =0 (48)

> Dy =o, (49)
kl
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and a similar condition for the pair-transfer elements can be deduced

2
P =23 gV (50)
kl g k

by projecting the RG state ({u}| against the Schrodinger equation for the reduced BCS

Hamiltonian

Hpos {v}) = Epes[{v}] [{v}) (51)

acting on the RG state |[{v}). In all computations, the largest violation of these consistency
conditions observed is on the order of 107!°, and is usually on the order of 10713,

In nearly every case, it is very difficult to visually discern the RG state energies from the
OO-DOCI energies (not to mention RGCIS and RGCISD) so the RG energy curves will not

be presented on top of the OO-DOCI results. We will instead plot their respective errors

Are = Erc — Eoo-pocr (52a)
Arcers = Eracrs — Eoo—pocr (52b)
Arcersp = Ercersp — Eoo-poct. (52¢)

3.2 Hjg chain

We first looked at the linear Hg chain to test the weak correlation functionals and RGCI
on a system we have studied previously with RG states.®#%9% The optimal RG state is the
Néel state 10101010. The best performing weak correlation functionals are E$%, and E5h.,
though Eg,hg with a maximum at 0.01 is also reasonable. These results are shown in Figure

. Functionals of the type are always negative so their absolute values are plotted in
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Figure 1: Weak correlation functionals for Hg chain: (a) |Ewc| compared with Agg. (b)
Difference between Agrg and |Ew¢|. 10101010 is the optimal RG state.

Figure [I] to compare with Agg. The remaining error,

Agciwe = Erc + Ewe — Eoo-poct = Ara — |Ewc| (53)

is plotted in Figure [1| (b). The other tested functionals either substantially over- or under-
correlated (see supporting information). Of these three functionals, Ej%, appears to be the
best behaved. All three under-correlate at short H-H distances. E;S*th(o.m) is the best at
short H-H distances, but over-correlates at longer H-H separations, as does EG%,. Eglt, is
the worst of the three at short H-H distances, but never over-correlates, has an error that
decays monotonically, and is the best at longer H-H distances. All three functionals are
reasonable given how they are essentially free to evaluate.

The RGCIS results in Figure [2| (a) seem to match the results obtained for APIG,"*
|APIG) = H Z GaiSt16) (54)
a=1 i=1

for which the geminal coefficients G,; are variationally optimized. For HF Slater determi-
nants, Brillouin’s theorem ensures that the optimal state does not couple with its CI singles.

For RG states there is no Brillouin theorem, but the optimal state in terms of two-particle
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Figure 2: RGCIS and RGCISD treatment of Hg chain: (a) Agrgcrs for the 10101010 RG
state compared with similar results for APIG from ref.** (b) Agrgeorsp for the 10101010 RG
state. All results computed with the STO-6G basis set in the basis of OO-DOCI orbitals.

clusters would be APIG, which appears to be equivalent to RGCIS except at compressed

geometries. The RGCISD results, in Figure [2| (b) are very close to DOCI. Occasionally

RGCISD is found to be very slightly below DOCI, which must be attributed to loss of

precision on the order of 10712

3.3 Paldus systems

In ref.”% Paldus and co-workers presented four isomers of Hy, see Figure , that are multi-

reference in terms of Slater determinants. S4 is a square of hydrogen atoms whose side

length « is increased to the dissociated limit. P4 and D4 consist of two Hy subunits with
a fixed “bond-length” a and a variable distance between subunits, a. As a is increased, the
HOMO/LUMO pairs of each Hy subunit get closer in energy, which increases the multi-
reference character of the problem. Thus, following ref.,”® three values of a are considered:
a=12ag, a=1.6ag, and a = 2.0 ag. The quoted FCI value for the Hy bond is 1.667 ag, so
these three choices represent a shortened bond-length, a near-equilibrium bond-length, and
a stretched bond-length. H4 represents a square that opens to a line with fixed bond-lengths
a. Again, the three values a = 1.2 ag, a = 1.6 ag, and a = 2.0 ag are considered.

Figure [4| depicts FCI and OO-DOCI energies for S4 for a range of a = [1.0 ag, 8.0 ag.
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84 D4

Figure 3: Paldus isomers of Hy. Solid lines have fixed length a while dotted lines have
variable length a.

OO-DOCI provides near-quantitative accuracy with respect to FCI-derived energies. The

maximum error in the OO-DOCI energy is only ~ 0.014 E;, around 2.8 ay. Variationally
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Figure 4: OO-DOCI treatment of Paldus S4: (a) FCI and OO-DOCI energies. (b) Error of
OO-DOCI with respect to FCI. All results computed with the STO-6G basis set in the basis
of OO-DOCIT orbitals.

optimized 1010 RG states, shown in Figure [5] are energetically similar to OO-DOCI, never
displaying more than 2 x10=2 E, error. Hence, the single RG state 1010 is similar to the

OO-DOCI wavefunction throughout the potential energy curve. Figure [5| (b) shows that

20



RGCIS built from the 1010 RG state is near-exact, with respect to OO-DOCI; maximum
errors are only on the order of 107¢ E,,. Variational RG calculations were also performed for
a 1100 RG state (see supporting information), but these states were found to be much too
high in energy in the re-coupling region. Whereas for the 1010 RG state the {¢} arrange
themselves in a 2-2 pattern, for the 1100 RG state all the {e} are near-degenerate, which
substantially increases the computational cost of solving the EBV equations . RGCISD
results for the Hy isomers are reported in the supporting information as the number of RG
states included is the same as the number of Slater determinants in OO-DOCI. In these cases

the RGCISD and OO-DOCI results agree on the order of 10712
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Figure 5: Variational RG and RGCI treatment of Paldus S4: (a) Agg for the 1010 RG state.
(b) Aggers for the 1010 RG state. All results computed with the STO-6G basis set in the
basis of OO-DOCI orbitals.

We also considered energy corrections from weak correlation functionals, applied to the
1010 RG reference, and the resulting data are shown in Figure[6] In general, we observe the
same pattern as for linear Hg: the error for EG%, has some oscillatory behavior while the
error for F3, decays monotonically and should therefore be preferred.

FCI and OO-DOCIT results were computed for P4 with a = 1.2 ag, 1.6 ag, 2.0 a¢ for a
range of oo = [1.0 ag, 8.0 ap] and the results are presented in Figure . Generally OO-DOCI
agrees with FCI, though there are visible gaps between the respective energies for both

a = 1.6 ap and a = 2.0 ap. This gap arises since the long and short sides of the rectangle
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Figure 6: Weak correlation functionals for Paldus S4: (a) |Ewc| compared with Agg. (b)
Difference between Aggs and |Ewc|. 1010 is the optimal RG state. All results computed
with the STO-6G basis set in the basis of OO-DOCI orbitals.

switch, and hence the dominant Slater determinant the FCI expansion changes. Valence
bonds form along the short sides of the rectangle, and for the square geometry two valence

bond descriptions are degenerate. Figure [§ depicts deviations between energies from RG
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Figure 7: OO-DOCI treatment of Paldus P4 with a = 1.2 ag, 1.6 ag,2.0 ap: (a) FCI and
OO-DOCT energies. Past a = 3.0 a¢ the curves become indiscernible. (b) Error of OO-
DOCIT with respect to FCI. All results computed with the STO-6G basis set in the basis of
O0O-DOCI orbitals.

(1010) and RGCIS (built from 1010) states and the those from OO-DOCI. The correct RG
state is 1010 for all values of @ and . The 1100 state was also variationally optimized,

but it was found to have much too large an energy (see supporting information). RGCIS is
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near-exact, with errors with respect to OO-DOCI never exceeding 1.2 x 107° E;,. The weak
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Figure 8: Variational RG and RGCI treatment of Paldus P4 with a = 1.2 ag, 1.6 ag, 2.0 ag:
(a) Agg for the 1010 RG state. (b) Aggers for the 1010 RG state. All results computed
with the STO-6G basis set in the basis of OO-DOCI orbitals.

correlation functionals do not provide any noticeable improvement upon the 1010 RG state
(see supporting information). All of them under-correlate at small o and over-correlate at
large a.

FCI and OO-DOCI results were computed for D4 with a = 1.2 ag, 1.6 ag, 2.0 a¢ for a
range of o = [1.0 ag, 8.0 ao] and the results are presented in Figure |§| The agreement between
OO-DOCIT and FCI is comparable to the case of P4, with maximum deviations between the
methods being roughly twice as large (= 0.03 Ey, at 1.6 ag) This gap occurs for a similar
reason as for P4: when a < a, the bonding pattern should be centred between the second
and third hydrogen atoms as they are closest. Contributions from the seniority two and four
sectors are required for quantitative agreement with FCI.

Variational RG calculations capture the transition in the bonding pattern explicitly.
When a < a, the correct RG state is 1100 with a set of {¢} arranged in a 1-2-1 energetic
pattern: 1 small €, 2 near-degenerate ¢, and 1 large €. This arrangement corresponds to
one doubly-occupied orbital, two partially-occupied valence orbitals, and one empty virtual
orbital. Once a > a, the correct RG state is 1010 with a set of {¢} in two sets of near-

degenerate pairs. With the correct RG reference, the RGCIS results never differ from OO-
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Figure 9: OO-DOCI treatment of Paldus D4 with a = 1.2 ag, 1.6 ag,2.0 ap: (a) FCI and
OO-DOCI energies. (b) Error of OO-DOCI with respect to FCI. All results computed with
the STO-6G basis set in the basis of OO-DOCI orbitals.

DOCI by more than 2 x 1075E},. As was the case for P4, the weak-correlation functionals do
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Figure 10: Variational RG and RGCI treatment of Paldus D4 with a = 1.2 ag, 1.6 ag, 2.0 ag:
(a) Agg for the 1010 and 1100 RG states. (b) Agrgers for the 1010 and 1100 RG states.
1100 is only optimal at short distances and quickly jumps off the scale once @ > a. All
results computed with the STO-6G basis set in the basis of OO-DOCI orbitals.

not provide any useful improvement (see supporting information). At short distances they

all under-correlate substantially and at long distances they all over-correlate substantially.
Figure depicts FCI and OO-DOCI potential energy curves for the H4 model with

a=1.2agp, 1.6 ag, 2.0 ag. The OO-DOCI and FCI curves are qualitatively similar though the

agreement is not quantitative, which indicates the need for weak correlation contributions
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from higher seniority sectors.
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Figure 11: OO-DOCI treatment of Paldus H4 with a = 1.2 ag, 1.6 ag,2.0 ap: (a) FCI and
OO-DOCI energies. (b) Error of OO-DOCI with respect to FCI. All results computed with
the STO-6G basis set in the basis of OO-DOCI orbitals.

Variational RG calculations, presented in Figure show that a 1010 RG state recov-
ers OO-DOCI energies to within roughly 1.6 x10~% E; throughout the curve, and several

orders of magnitude of improvement can be obtained with RGCIS. In this case, the relative
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Figure 12: Variational RG and RGCI treatment of H4 with a = 1.2 ag, 1.6 ag, 2.0 ap: (a)
Apg for the 1010 RG state. (b) Agrgeors for the 1010 RG state. All results computed with
the STO-6G basis set in the basis of OO-DOCI orbitals.

performance of the weak correlation functionals is less clear: for each choice of a, a different
functional was found to be optimal (Figure . At a =1.2 qg E‘?V}g performs the best, at

a=1.6 ag Eﬁ,hop with a maximum at 0.01 is best, while at a = 2.0 a¢ the best performing

25



functional is EG. Results for all eight tested functionals are included in the supporting

information.
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Figure 13: Weak correlation functionals for Paldus H4 with a = 1.2 ag, 1.6 ag, 2.0 ag: Differ-
ence between Agg and |Eyc|. 1010 is the optimal RG state. All results computed with the
STO-6G basis set in the basis of OO-DOCI orbitals.

3.4 H,, isomers

Recently, Stair and Evangelista presented four isomers of Hyo, shown in Figure [T4] to assess
not only the accuracy of some common quantum chemistry approaches, but also their ability
to provide compact representations of the electronic structure of these complex systems. Each
isomer can be thought of as a proxy for a finite-size Hubbard model: the single variable is
the inter-atomic distance which modulates on-site repulsion. The chain and the ring are
similar to 1-dimensional Hubbard models without and with periodic boundary conditions,
respectively. In the sheet system, the hydrogen atoms are arranged in a 3-4-3 pattern, with
all of the nearest-neighbours being equidistant. The pyramid is a tetrahedron with four
hydrogen atoms at the vertices and the six remaining hydrogen atoms at the midpoint of
each of the edges.

Figure |15 depicts potential energy curves for the four Hyg isomers computed at the OO-
DOCI / STO-6G level of theory. FCI results computed the same basis, which were taken

97
fl,

from Re are also provided. As expected, OO-DOCI does a reasonable job of reproducing
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Figure 14: Isomers of Hyy considered in this work. The dashed lines are of equivalent distance.

the overall shapes of the FCI curves for both of the 1D structures. As can be seen in Fig.
[16], the maximum deviations between OO-DOCI and FCI are ~ 0.67 E, and ~ 0.97 E,, for
the 1D chain and ring structures respectively. For the 2D and 3D structures, the largest
deviations between OO-DOCI and FCI energies are somewhat larger; moreover, for these
systems, we also begin to see some qualitative differences in the shapes of the respective
curves. For the 2D sheet, the curvature at intermediate H-H distances is different than that
from FCI. For the 3D pyramid, OO-DOCI predicts only a shallow minimum at roughly the
correct H-H distance, after which it exhibits a small hump before it appears to approach
the correct dissociation limit. Even so, when considering additional correlation treatments,
OO-DOCI should be a much better starting point than restricted Hartree-Fock (RHF). We
now show that OO-DOCI can itself be very well approximated by a single RG state in all

cases.

3.4.1 1D structures

The linear chain is exactly the same as those we have already studied, except that the chain
is one GVB pair longer. Hence, the optimal RG state is the Néel RG state (1010101010).
The error in the RG energy with respect to that from OO-DOCI is shown in Figure

(a). The maximum deviation from the OO-DOCI energy (=4 x107% E;) occurs at the
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Figure 15: OO-DOCI treatment of Hjy isomers: RHF, OO-DOCI and FCI energies for (a)
1-dimensional chain. (b) 1-dimensional ring. (c) 2-dimensional sheet. (d) 3-dimensional
pyramid. OO-DOCI results computed with the STO-6G basis set in the basis of OO-DOCI
orbitals. RHF and FCI results are from ref. "

0.14 4

0.121

o
o
o

Apoci (En)
)
&

g
o
=

1 —&— Chain
—=— Ring

—e— Sheet
—e— Pyramid

0.04 4

T T T T T T
0.8 1.0 12 1.4 1.6 1.8 2.0

r (&)

Figure 16: OO-DOCI error with respect to FCI for Hyg isomers. All results computed with
the STO-6G basis set in the basis of OO-DOCI orbitals.
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most compressed geometry considered, and the RG state effectively recovers the OO-DOCI
energy at stretched geometries. As seen in Fig. [17](b), the additional correlation provided by
RGCIS brings the error with respect to OO-DOCI down several orders of magnitude in the
equilibrium region. The errors in the RGCIS energy are all less than 4 x10~¢ E;, throughout
the entire curve. To the precision we can trust our results, RGCISD is essentially indiscernible
from OO-DOCI (see supporting information).

The ring is a finite size “periodic” 1D structure. We expect that the relative performance
of RG and OO-DOCI should be of similar quality to the case of the chain structure, and,
indeeed, it is: the optimal RG state is the Néel RG state and the error in its energy with
respect to OO-DOCI, shown in Figure (a), is only slightly larger than for the chain
at compressed geometries and quite similar at stretched geometries. Again, the additional

correlation afforded by RGCIS brings the error down by several orders of magnitude (Fig.
(b)).
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Figure 17: Variational RG and RGCIS treatment of Hyjy chain and ring: (a) Agg for the
1010101010 RG state. (b) Agrgers for the 1010101010 RG state. All results computed with
the STO-6G basis set in the basis of OO-DOCI orbitals.

Corrections from the weak correlation functionals, shown in Figure [I8] follow the same
pattern as for linear Hg: ES%, and Ej%. are both reasonable, though E3%, should be preferred

as it never over-correlates and its error with respect to OO-DOCI decays monotonically.
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Figure 18: Weak correlation functionals for 1D H;q isomers: (a) Difference between Agg
and |Ewc| for 1D chain. (b) Difference between Agg and |Ew¢| for 1D ring. 1010101010
is the optimal RG state. All results computed with the STO-6G basis set in the basis of
OO-DOCIT orbitals.

3.4.2 Sheet and pyramid

The sheet is the first case where there is an appreciable qualitative difference between OO-
DOCI and FCI. We also found that the optimal variational RG states change in this case.
As can be seen in Fig. (a), the Néel RG state is optimal everywhere except at compressed

geometries. For H-H distances less than or equal to 1.0 A, we found that the optimal RG
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Figure 19: Variational RG and RGCIS treatment of Hyq sheet and pyramid: (a) Agg for the
1010101010, 1100110010 (sheet) and 1100111000 (pyramid) RG states. (b) Aggers for the
1010101010, 1100110010 (sheet) and 1100111000 (pyramid) RG states. Past 1.1, the curves
for 1100110010 (sheet) and 1100111000 (pyramid) jump off the graph. All results computed
with the STO-6G basis set in the basis of OO-DOCI orbitals.
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state is instead 1100110010, for which the single-particle energies {} arrange themselves in
a 4-4-2 pattern: there are 4 orbitals that contain 2 pairs, another 4 orbitals that contain
another 2 pairs, and 2 orbitals that contain 1 pair. This structure is perhaps more clear from

the corresponding geminal coefficient matrix

Gazz_IQOOOO****OO (55)

which is block diagonal. Again, the elements in the off-diagonal blocks are not numerically
zero, but they are much smaller than those in the diagonal blocks. Remarkably, this state
does not seem to be describable as GVB/APSG, for which the matrix G,; is (15), nor
AP1roG/pCCD, for which G,; is

—
@]
o ] o
=)
*
*
*
*
*

0 * % x * *|. (56)

o o o O

For GVB/APSG and AP1roG/pCCD, the elements marked “0” in G,; are identically zero.
As for the 1D chain and ring structures, RGCIS improves upon the single, optimal RG
state, decreasing the energy error by several orders of magnitude (Fig. (b)). However,
in this case, the RGCIS error is somewhat larger at compressed geometries. The maximum
error is &~ 2 x 1074 E,, at an H-H distance of 1.3 A, but this error decreases rapidly (as
does that for the single RG state) at larger H-H distances. RGCISD, with the correct RG

reference, has a maximum error of ~ 1 x 1070 Ey, at 1.3 A (see supporting information).
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Variational RG minimization for the 3D pyramid, shown in Figure (a), again found
the Néel RG state to be optimal, except at short H-H distances where the optimal RG state
found was 1100111000. In this case, the single-particle energies {e} arrange themselves in a
4-6 pattern: there are 4 sites that contain 2 pairs and 6 sites that contain the remaining 3.

The corresponding geminal coefficient matrix has the form

Again, the elements labelled “0” are not numerically zero, but they are much smaller than
those labelled “*”. This state also does not appear to be describable as GVB/APSG nor
AP1roG/pCCD. As seen in the other systems, the energies obtained from RGCIS improve
significantly upon those from a single RG state, although the RGCIS error is somewhat
larger for the pyramid than for the sheet at short H-H distances. Nonetheless, the RGCIS
error never exceeds 7 x 107 Ey, and the error decreases rapidly (as does that for the single
RG state) at larger distances. RGCISD, with the correct RG reference, has a maximum
error of &~ 3 x 1076 Ey, at 1.0 A(see supporting information).

The best performing weak correlation functionals, shown in Figure 20 are different than
for the 1D structures. E‘E;V}g and Efvhg are now the best for both the 2D sheet and the 3D
pyramid. Eﬁfg should be preferred as its error with respect to OO-DOCI is much better
behaved.

A discussion of the correct choice of RG state is warranted. Given that there are (150)
possible RG states for 5 pairs in 10 orbitals, how can we be sure we have the correct one?

With a few observations we can reduce this number to one that is completely manageable.

First, we have observed that the single-particle energies {¢} tend to separate into partitions
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Figure 20: Weak correlation functionals for Hyg sheet and pyramid: (a) Differences between
Aprc and |Ewc| for 2D sheet. (b) Differences between Age and |Ew | for 3D pyramid.
Results are only computed for the region where 1010101010 is the optimal RG state. All
results computed with the STO-6G basis set in the basis of OO-DOCI orbitals.

of 2k elements for k pairs. Second, within a partition we always want the 1s listed first, as
otherwise the pairs will be placed principally in higher energy orbitals which leads to much
higher energies. Third, the order of the partitions in a bitstring does not matter, e.g. the
bitstrings 1100111000 and 1110001100 refer to different RG states for a given set of {¢} and
g, but when optimized will find equivalent solutions. In this contribution we found results
for 1100111000 first. Thus, the only RG states that must be considered are in one-to-one

correspondence with the partitions of the number of pairs:

(5) — 1111100000

(4,1) — 11110000 10
(3,2) — 111000 1100
(3,1,1) — 111000 10 10
(2,2,1) — 1100 1100 10
(2,1,1,1) — 1100 10 10 10

(1,1,1,1,1) — 10 10 10 10 10. (58)

33



Finally, symmetry arguments can reduce this list to a few possible candidates. In the pyra-
mid, the four vertices are equivalent and the six edges are equivalent, so it is not surprising
that 1100111000 is the optimal RG state at short distances. In the sheet, the two inner
hydrogen atoms are equivalent and the four corners are equivalent. It is not obvious whether
the other four hydrogen atoms are equivalent or not, and, thus it is necessary to try all
bitstrings containing partitions (2,1). These rules are meant to rationalize our results. In
this study many more possible RG states were tested, but none fell outside of these obser-
vations. These arguments notwithstanding, our experience is that, at large H-H separations

distances, the Néel RG state is always optimal.

4 Conclusion

We have computed OO-DOCI wavefunctions and RG states for hydrogen clusters containing
four, eight, and ten hydrogen atoms. With the exception of the pyramid structure for
Hig, OO-DOCI captures the correct qualitative behavior of the energy as a function of H—
H distance in all cases. OO-DOCI itself has been shown to be well approximated by a
single RG state, while RGCIS significantly improves this approximation. RGCISD states
are effectively indiscernible from OO-DOCI states, in terms of the energy. Hence, when
the electronic structure of these systems is represented in terms of RG states, rather than
Slater determinants, these systems all appear to be effectively single-reference. Given the
good performance of RGCIS and RGCISD, it is worth pursuing improved expressions of the
TDM elements, as the expressions reported herein are expensive to evaluate but are certainly
improvable.

As an alternative to RGCIS or RGCISD, we explored the utility of weak correlation func-
tionals within the seniority-zero channel, which are computationally inexpensive to evaluate.
For 1D structures we found that the best performance was obtained for the E%, functional,

while for 2D and 3D structures we best-performing functional was Eﬁfg In general, the
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Slater type functionals we considered are to be preferred over Gaussian type as their error
with respect to OO-DOCI is better behaved. The exception is the Paldus ring-opening sys-
tem (H4) for which ES" was the best for a = 1.2ap while ES", was the best at longer bond
lengths.

Regardless of the route chosen to recover the full energy within the seniority-zero sector,
quantitative agreement with FCI will ultimately require contributions from the seniority-
two and seniority-four channels. Such contributions can be included post-hoc in a number
of ways FTTE0IZ5I2G

Finally, we reiterate that the optimal RG state for the Hyq isomers is the Néel state except
for the 2D sheet and the 3D pyramid at short distances. There, the single particle energies

{e} arrange into larger clusters that accommodate more than one pair. This behavior is not

allowed by the geminal coefficients of GVB/APSG, nor AP1roG/pCCD.
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