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auditory and visual tasks

e Epochs of optimal performance are selectively maintained for
extended durations

e Correlations between movement and pupil diameter are
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e Moderate levels (and reduced variability) of pupil and
movement predict optimal state
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In brief

Performance during auditory and visual
discrimination tasks fluctuates, often with
abrupt shifts in stimulus-response
relationships. Hulsey et al. demonstrate
that these fluctuations coincide with
changes in pupil diameter and movement
levels, with optimal performance
occurring during moderate, stable
arousal. Their results suggest differential
regulation of arousal across task-
engagement states.
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SUMMARY

During sensory-guided behavior, an animal’s decision-making dynamics unfold through sequences of
distinct performance states, even while stimulus-reward contingencies remain static. Little is known about
the factors that underlie these changes in task performance. We hypothesize that these decision-making dy-
namics can be predicted by externally observable measures, such as uninstructed movements and changes
in arousal. Here, using computational modeling of visual and auditory task performance data from mice, we
uncovered lawful relationships between transitions in strategic task performance states and an animal’s
arousal and uninstructed movements. Using hidden Markov models applied to behavioral choices during
sensory discrimination tasks, we find that animals fluctuate between minutes-long optimal, sub-optimal,
and disengaged performance states. Optimal state epochs are predicted by intermediate levels, and reduced
variability, of pupil diameter and movement. Our results demonstrate that externally observable uninstructed
behaviors can predict optimal performance states and suggest that mice regulate their arousal during

optimal performance.

INTRODUCTION

Behavioral and neural responses are notoriously variable across
task trials in animals, including humans.’ Recent studies have
demonstrated that this variability is not random but rather arises
from changes in neural and physiological states.'~ For example,
arousal levels fluctuate on a moment-to-moment basis, and a
significant fraction of neural and behavioral variability can be
predicted by pupil diameter, which is tightly linked to arousal.”
Uninstructed movements also influence neural dynamics, as
shown in the visual system®~° and reported ubiquitously across
the cerebral cortex.'®"'? Methods for studying behavioral varia-
tions in relation to arousal vary but can lead to cohesive views
of the nervous system and its function.”® For instance, the
Yerkes-Dodson law, first proposed in 1908 and developed and
modified through the years since, outlines an inverted-U relation-
ship between arousal and performance on difficult tasks, with
optimal performance occurring at intermediate arousal.'”

While some studies have successfully demonstrated a lawful
inverted-U-shaped relationship between behavioral perfor-
mance and arousal, others have failed to achieve similar find-
ings.*'® Uncovering the mechanisms of behavior is highly
dependent upon detecting and understanding these behavioral-
and neural-state-dependent processes. One possible reason for
this inter-study variability is that certain sub-states of behavior
were undetected or non-occurring. Further, these prior studies
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on the impact of arousal and movement consider moment-to-
moment fluctuations but do not address structured variations
across time during task performance. Therefore, developing a
robust strategy for detecting variations in behavioral strategy,
and understanding how they interact, is an essential prerequisite
to revealing the underlying neural mechanisms of behavior. A
recent study'® showed that mice and humans alike express a
handful of discrete strategies during decision-making tasks
and switch between them within the same experimental session.
These results advance classical models of performance by ac-
counting for structured fluctuations in engagement strategies.
However, the precise relationship between arousal, movements,
and discrete strategic performance states is not known.

Here, we address this fundamental relationship by linking
transitions between decision-making strategies to changes in
arousal (as measured by pupil diameter) and uninstructed
movements (as measured by the motion energy of a video of
the face [face motion energy] and locomotion speed). We identi-
fied epochs of optimal task performance and showed that trained
animals maintain them for longer durations when compared to
periods of sub-optimal strategic engagement. Consistent with
the Yerkes-Dodson law, we found a striking inverted-U relation-
ship between the likelihood of optimal state occupancy and
both pupil diameter and uninstructed movement in auditory and
visual discrimination tasks. Similarly, we found a U-relationship
between the probability of task disengagement and pupil
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diameter/uninstructed movement. Furthermore, reduced vari-
ability in pupil diameter and movement measures signaled transi-
tions into the optimal state and could be used to predict the onset
and offset of decision-making states. Our results reveal that a sig-
nificant fraction of behavioral variability can be accounted for by
modeling variations in sustained behavioral state/strategy, which
can be predicted by shifts in a subject’s arousal and uninstructed
movements, and further suggest that controlled arousal is key to
maintaining optimal performance.

RESULTS

Mice switch between several performance states during
auditory and visual decision-making

To identify performance states/strategies explored by an
animal during perceptual decision-making, we trained mice for
extended sessions on either an auditory or a visual stimulus
discrimination task (Figures 1A-1C). Both versions of the task
required mice to lick a left or right reward port to categorize
the stimulus. For the auditory discrimination task, tone clouds
were differentiated by the concentration of frequencies in high-
or low-frequency bands, while in the visual task, the angle of a
drifting Gabor patch was categorized as closer to a vertical or
horizontal orientation (Figure 1B). We specifically sought to
explore a broad range of arousal in our mice, from drowsy to
highly aroused. Two factors of the task design were chosen spe-
cifically to promote this broad range of arousal during perfor-
mance. First, mice were trained on a running wheel to allow
high levels of arousal, such as those that occur with sustained
running. Second, long inter-trial intervals (5 + 2 s, which reset
upon licking; Figure 1C) were used to prevent arousal responses
of each trial from influencing subsequent trials (Figure S1), which
allows a reduction of arousal between stimuli, facilitating access
to lower arousal levels such as those occurring during prolonged
quiescence. Mice had three options available in each trial: to lick
left, lick right, or not respond. Indeed, we found that subjects
sometimes did not respond following a stimulus, so we consid-
ered every stimulus presentation during analysis, including trials
with no response (Figure 1D).

Examining the behavior during single sessions revealed that
mice switch rapidly between epochs of varying stimulus-
response contingencies (Figure 1E, top). During the first 5 min,
the subject shown in this figure responded predominately to
both left- and right-target stimuli by licking to the left—thus ex-
hibiting a strong left response bias. After several (30) trials of
this left-bias behavior, the animal abruptly stopped responding
to either left- or right-target stimuli and therefore was disen-
gaged from the task (Figure 1E, top). This 14-trial-long period
of disengagement was followed by another period of left bias
that lasted 29 trials. Suddenly, the animal started responding
accurately to both left- and right-target stimuli, in what we term
the optimal state. The subject remained in this state for a pro-
longed period of time (~20 min). The remainder of this behavioral
session could be roughly described as transitions between
states characterized by either left-bias, right-bias, disengaged,
optimal, or intermediate (indeterminate) states (Figure 1E, top).

To more accurately and automatically capture these dynamics
in performance, we used hidden Markov models with general-
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ized linear model emissions (GLM-HMMs; Figure 1F). Each
HMM state (further referred to as a strategic or performance
state) corresponds to a psychometric curve, captured by a
GLM. GLM-HMMs have been previously used on two-alternative
forced-choice tasks with only two possible outcomes (L and R
choices), leading to Bernoulli emissions.'® Here, we extended
this model to include multinomial emissions representing the
three possible choices (L, R, no response). This proved crucial
to capturing the full range of performance states, including
disengagement. The model parameters include a transition
probability matrix capturing the transition rates between different
states, as well as GLM observation parameters representing the
stimulus weights and bias of the psychometric curve in each
state (Figure 1F). The number of performance states for the
model was determined for each mouse using cross-validation.
For the example mouse shown in Figure 1G, this method yielded
4 discrete states. A final model was fit to all available data for a
subject. The models yield posterior probabilities for each deci-
sion-making state in each trial, revealing long-lived states de-
tected with high confidence and lasting for tens of consecutive
trials (Figure 1E, bottom). Most transitions between states were
abrupt, but some were slower, resulting in periods with low pos-
terior probabilities across HMM states. In order to assess the
prevalence of such indeterminate periods and study truly distinct
states, we set a minimum posterior probability threshold of 0.8
for inclusion of a trial within a discrete state.

Psychometrics generated from trials of each performance
state yielded clearly interpretable and distinct task-engagement
profiles. For the representative subject presented in Figure 1, de-
cision-making performance alternates between a state contain-
ing optimal performance, where responses were lawfully guided
by the sensory stimulus; a disengaged state, with no response
following stimuli; and sub-optimal left- and right-bias states,
where the subject responded predominately in one direction
regardless of the stimulus identity (Figure 1H). From here on,
we refer to the state in which the animal is responsive and the
resulting psychometric curves indicate that responses are
correctly guided by the stimulus, without significant leftward or
rightward bias, as the optimal state (see Figure 1H).

To compare the accuracy of this GLM-HMM technique to a
model that assumes an animal does not switch between perfor-
mance states, we use each model to predict the choices of the
mouse on each trial. We again used cross-validation and gener-
ated models trained on 80% of trials from each session, with-
holding blocks of 20% of trials as a test set. The state of each
test-set trial was inferred using the posterior probability of state
occupancy of the preceding trials and the state transition matrix,
and a choice was predicted using the GLM for the inferred state.
A one-state GLM-HMM, equivalent to assuming stationary per-
formance during training, correctly predicted the choice of the
example mouse on 70% of trials, while the best-fit 4-state
GLM-HMM correctly predicted 78% of choices (Figure 1G).

To examine the generality and robustness of these observa-
tions, we fit GLM-HMMs separately to each of the 13 mice that
reached proficiency on the sensory discrimination task (8 auditory
and 5 visual task performers). While there was diversity in the best
number of states across subjects (3-5 states; Figure S2), six ste-
reotypical performance states emerged as follows. Each subject
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Figure 1. GLM-HMM reveals epochs of optimal performance amid periods of sub-optimal strategies and complete disengagement

(A) During task performance, mice were head fixed above a running wheel in front of a screen and speaker.

(B) Mice were trained to categorize the angle of a drifting Gabor patch as mostly vertical vs. horizontal or the concentration of pure tones in a tone cloud as mostly
high vs. low frequency. Negative stimulus values are associated with left-target stimuli and positive values with right-target stimuli.

(C) Stimuli were presented after a random duration (5 + 2 s) of licking quiescence. Subsequently licking the corresponding (L/R) reward port resulted in water
reward delivery. See also Figure S1.

(D) Performance of an example mouse during the visual task, presented as the probability of each choice type (left [<], right [>], no response [0]) given each
possible stimulus.

(E, top) Structured fluctuations appear in trial outcomes during example session. Stimulus values for each trial are represented by marker size and color (size
increases with ease of discrimination). (E, bottom) GLM-HMM state posterior probabilities capture fluctuations in performance dynamics. A confidence criterion
of 80% was set for inclusion of a trial in a state for further analyses.

(F) GLM-HMM, with GLMs of psychometric performance for each hidden Markov state, and state-transition probabilities.

(G) An appropriate number of states, denoted here by a red square, was determined using cross-validated test-set log likelihood. Cross-validated choice
prediction accuracy continues to increase with number of states. Log-likelihood values are plotted as change in relation to a one-state model. See also Figure S2
for all individual subjects.

(H) Performance of example mouse during trials sorted by GLM-HMM states. Some states occurred in only a sub-set of sessions (indicated by n sessions). Data
represent the mean + SEM across sessions.

exhibited both optimal (state 1) and disengaged (state 2) states, ure 2A). Subjects spent the largest proportion of trials in the
along with at least one additional sub-optimal performance state.  optimal performance state (Figure 2B; optimal state (opt.) vs. dis-
In sub-optimal states, subjects either responded predominantlyto  engaged state (dis.) p = 2.4 x 104, opt. vs. sub-optimal state
the left (or right) regardless of stimulus value (yielding states 3and  (sub.) p = 2.4 x 107%, opt. vs. indeterminate state (inde.) p =
4, left or right biased) or responded correctly to left-target (right- 2.4 x 1074, Wilcoxon signed-rank tests), and only 13.1% =
target) stimuli while withholding responses to right-target (left- 1.6% of trials were in an indeterminate state. Additionally, epochs
target) stimuli (yielding states 5 and 6, avoid right or avoid left; Fig-  of the optimal state lasted longer than those of sub-optimal states
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Figure 2. GLM-HMMs converge on six stereotypical performance states across mice

(A) Probability of hit, error, or no response for each mouse in each performance state. Each mouse had an optimal (L/R choice guided by stimulus) and disengaged
(non-responsive to stimuli) state, along with one or more sub-optimal performance states. Sub-optimal states could be classified into four categories —bias left or
right, where the mouse responds to the opposite stimulus with an error, and avoid left or right, where a stimulus of one direction was not responded to, while the

other was responded to with a lick to the correct side. Data are represented as mean + SEM across states in available subjects.

(B) Mice were in the optimal state in around half of all trials.

(C) Cumulative probability of performance state dwell times, averaged across individual mice. Inset: upon each entry into an optimal state, mice remained in the

optimal state for longer periods compared to other performance states.

(D) Accounting for strategic shifts in behavior with GLM-HMMs significantly increases model choice prediction accuracy.
In (B)~(D), the box extends between the lower and upper quartiles, with a line at the median, and whiskers extend to the last data point within 1.5 times the inter-
quartile range. N = 13 mice. Statistics are only shown for discrete state comparisons in (B) and (C). **p < 0.01 and ***p < 0.001 using Wilcoxon signed-rank tests in

(B) and (C) and rank-sum tests in (D).

(Figure 2C; opt. vs. dis. p = 2.4 x 107%, opt. vs. sub. p = 2.4 x
104, Wilcoxon signed-rank tests), and the median transition
time between discrete states (dwell time in indeterminate states)
was 3.4 + 0.3 trials. Finally, we determined the choice prediction
accuracy of the models for each mouse and found that the
best-fit GLM-HMM correctly predicted 75.7% + 1.7% of choices,
a significant 10.8% =+ 1.3% improvement over the classical static-
performance assumption (Figure 2D; p = 2.4 x 10~*, Wilcoxon
signed-rank tests). These observations demonstrate that multino-
mial GLM-HMMs describe task performance better than classical
static-performance models and that these models can be
used to identify epochs of optimal performance. These models
also revealed that trained mice selectively maintain optimal stra-
tegic states longer than sub-optimal strategies during task
performance.
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Arousal and uninstructed movement are regulated
during optimal performance

How do arousal and uninstructed movement relate to strategic
states and their transitions? We hypothesized that there would
be lawful relationships between discrete strategic performance
states and both arousal and movement measures. To examine
this idea, we monitored measures of pupil diameter, face motion
energy, and locomotion speed of mice during task performance.
Our analyses used the value of each measure at the time point
sampled immediately before the onset of a stimulus to determine
their influence on variations in the subject’s response (Figure 3A).
A comparison between the time course of these arousal measure
values and the HMM state dynamics within single sessions re-
vealed precise relationships between these variables, providing
support for our hypothesis (Figure 3B). To quantify these



Cell Reports

relationships, we examined how differences in pupil diameter
and movements measures (i.e., face motion energy and locomo-
tion speed) affected the probability of state occupancy (e.g.,
probability of being in the optimal state). Interestingly, we found
a striking inverted-U relationship between the probability of
optimal state occupancy and pupil diameter, where the likeli-
hood of being in the optimal state is highest at intermediate pupil
diameters (Figure 3C). The inverted-U relationship was found in
nearly all subjects, and the pupil diameter that gave the highest
probability for being in the optimal state was calculated for each
(Figure S3). Subjects performing the auditory task had signifi-
cantly smaller optimal pupil sizes than those performing the vi-
sual task (even though illumination conditions were the same
during both tasks), suggesting that optimal arousal levels may
be task-modality dependent (Figure 3D; p = 0.008, Wilcoxon
rank-sum test).

To visualize the relationship between pupil diameter and per-
formance states across mice, we normalized the x axis (pupil
diameter) to the “difference from the optimal pupil diameter”
for each subject to account for individual differences in the
optimal pupil diameter (Figure 3E). Similar to the inverted-U rela-
tionship between pupil diameter and the probability of being in
the optimal state, we found a prominent U relationship between
the probability of being in the disengaged state and pupil diam-
eter. At either low or high pupil diameters, there was a dramatic
increase in the probability of mice being in the disengaged state
and a consequent large decrease in the probability of the animal
being in the optimal state (Figure 3E). These relationships were
maintained when considering only trials where the mice were
stationary. Similar analysis of individual movement measures re-
veals more heterogeneous relationships across subjects. While
some subjects’ face motion energy forms an inverted-U relation-
ship with optimal state occupancy, many mice have a monoton-
ically increasing relationship (Figure S4). Similarly, locomotion
speed forms an inverted-U relationship for some mice but has
a flat or monotonically decreasing relationship in others (Fig-
ure S4). These observations are reflected by significantly
reduced second-order cross-validated regression fits of the
probability of optimal state occupancy against face motion en-
ergy and locomotion speed when compared to pupil diameter
(pupil diameter: r? = 0.72 + 0.03; face motion energy: P =
0.49 + 0.08, Wilcoxon signed-rank test vs. pupil: p = 0.04, loco-
motion speed: r? = 0.44 + 0.07, Wilcoxon signed-rank test vs. pu-
pil: p = 0.002).

Locomotion and facial movements are inter-related but
convey information at differing magnitudes of movement (i.e.,
face motion energy measurements are sensitive to small move-
ments but lose fidelity during locomotion when they are ubiqui-
tous, while locomotion speed provides a continuous measure
of high-magnitude body movements but no information while
a subject is stationary). Owing to this, we combined these
two measures into a single continuous measure of uninstructed
movement levels termed the “movement index,” which is
equally correlated with each measure (see STAR Methods
and Figure S5). Using this combined movement index, a clear
inverted-U pattern emerged, showing that optimal performance
state occupancy peaked at intermediate levels of uninstructed
movement, similar to that of pupil diameter (regression of
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movement index vs. optimal state, cross-validated r? = 0.63 =
0.06; Wilcoxon signed-rank test vs. pupil diameter: p = 0.34;
Figures 3F and S5). These correlations translate to a significant
decrease in the absolute difference from the calculated optimal
pupil diameter during optimal state occupancy as compared to
sub-optimal or disengaged states (optimal: 7% + 0.3%, disen-
gaged: 12.6% =+ 1%, sub-optimal: 9% + 0.5%; opt. vs. dis. p =
2.4 x 1074, opt. vs. sub. p=4.8 x 10~4, Wilcoxon signed-rank
tests) and a trend toward larger raw face motion energy during
optimal state occupancy (optimal: 0.48 + 0.02 a.u., disen-
gaged: 0.43 + 0.3 a.u., sub-optimal: 0.44 + 0.03 a.u.; opt. vs.
dis. p = 0.06, opt. vs. sub. p = 0.04, Wilcoxon signed-rank
tests) but no significant differences in raw locomotion speed
(optimal: 0.14 + 0.02 m/s, disengaged: 0.14 + 0.2 m/s, sub-
optimal: 0.14 + 0.02 m/s; opt. vs. dis. p = 0.84, opt. vs. sub.
p = 1, Wilcoxon signed-rank tests).

We further hypothesized that performance states would
differ not only in the values of pupil and movement measures
but also in the variability of these values over the past ten tri-
als. For all arousal measures recorded —pupil diameter, face
motion energy, and locomotion speed —we found significantly
reduced variability during optimal performance state occu-
pancy as compared to sub-optimal or disengaged states (Fig-
ure 4A). Strikingly, this decrease in variability predicts transi-
tions into and out of the optimal state (Figures 3B and 4B).
Pupil diameter generally follows fluctuations in movement
(Figure S1), but their relationship changes during task perfor-
mance. During optimal state epochs, the correlation between
pupil diameter and the movement index is significantly
reduced across subjects (Figures 4C and 4D). This decrease
in correlation is also seen when considering individual mea-
sures of face motion energy and locomotion speed (Figure S6).
These results suggest that arousal levels may be differentially
regulated during task engagement to maintain optimal levels
for performance.

Arousal measures predict optimal performance state

To quantify the extent to which different performance states can
be predicted based on the recorded arousal and movement
measures, we implemented a cross-validated state classifica-
tion analysis. For each subject, we trained a classifier to discrim-
inate between optimal performance state and disengaged or
sub-optimal states using the value and variability of each mea-
sure as features. Figure 5A shows an example of such a classifier
using the value and trial-to-trial variability of pupil diameter. We
found that for all subjects, performance states could be signifi-
cantly predicted using the recorded arousal measures with
high accuracy (opt. vs. dis. = 88.2% + 1.8%; opt. vs. sub. =
77.7% = 2%; Figures 5B and 5C; statistical significance was as-
sessed by comparing empirical classification accuracy to surro-
gate datasets obtained by shuffling class labels in the training
set). To assess the contributions of individual arousal measures
to performance state decoding, sub-sets of measures were
shuffled in the training sets of the classifiers. Pupil diameter
(value and trial-to-trial variability) was the best individual
raw measure for state classification (Figure S7; pupil vs. face mo-
tion energy p = 3.9 x 10~2, pupil vs. locomotion p = 0.106, Wil-
coxon signed-rank tests over optimal state classifications).
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Figure 3. Optimal performance state is characterized by intermediate levels of both pupil diameter and uninstructed movement

(A) Pupil diameter, face motion energy, and locomotion speed before stimulus presentation are used for further analysis.

(B) Example session from a mouse performing the visual task shows shifts in arousal measures that coincide with GLM-HMM state changes. Note restricted
variance and range of measures in optimal state as compared to disengaged or sub-optimal states.

(C) Probability of GLM-HMM states across pupil diameters for an example mouse. Optimal state probability is fit with a polynomial function to estimate optimal
pupil diameter for each mouse. See Figure S3 for all individual subjects.

(D) Optimal pupil diameter is significantly larger in mice performing the visual task (N = 5) when compared to those performing the auditory task (N = 8).

(E) Average probability of GLM-HMM states across all mice as a function of distance from optimal pupil reveals a robust inverted-U relationship with optimal state
occupancy.

(F) Amovement index, combining face motion energy and locomotion speed, also has an inverted-U relationship with optimal state probability. There is a marked
U-shaped relationship between both pupil diameter and movement index and the probability of being in the disengaged state. See also Figures S4 and S5 for
analysis of individual movement measures and movement index for individual subjects.

(D) **p < 0.01 using Wilcoxon rank-sum test. Plots in (E) and (F) represent the mean + SEM across mice (N = 13).

Interestingly, we found that the best predictor of performance
state was the computed movement index incorporating face mo-
tion energy and locomotion speed, which encoded more infor-
mation about states compared to pupil diameter (Figure 5C; pu-
pil vs. movement index p = 0.024, Wilcoxon signed-rank tests
over optimal state classifications). To understand the contribu-
tion of individual measures, we visualized classifier decision
functions using individual measures (Figures 5A and S7C), which
were consistent with the state probability relationships for indi-
vidual measures (Figures 3E, 3F, and S4).
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To further quantify the unique relationships between each
measure and performance state probabilities, we fit linear re-
gressions to state probabilities for each mouse using features
of the individual measures (pupil, face motion energy, and loco-
motion speed values per trial), along with their ten-trial standard
deviations, second-order polynomials, and interaction terms.
Consistent with other analyses, weights for the quadratic terms
fit to predict optimal state probability were negative for pupil
diameter across mice, indicating an inverted-U-shape relation-
ship, and the weights were positive when fit to disengaged state
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Figure 4. Pupil diameter and movement measures have lower trial-to-trial variability and are decoupled during optimal performance

(A) Variability across the past ten trials for all recorded measures is reduced during optimal state occupancy.

(B) Variability of all recorded measures shift concurrent with state transitions, decreasing upon entering the optimal state and increasing when exiting the optimal
state. Plotted data represent the change in the standard deviation of each measure across the previous ten trials for trials surrounding optimal state transitions.
Data were averaged across state transitions for each subject. Dashed line represents no change.

(C) Data from an example subject showing movement and pupil diameter are correlated while disengaged from the task but are decoupled during optimal
engagement. See also Figure S6 for correlations with individual movement measures.

(D) Pupil-movement correlations are significantly lower in optimal state across mice.

In (A) and (D), boxes extend between the lower and upper quartiles, with a line at the median, and whiskers extend to the last data point within 1.5 times the inter-
quartile range. *p < 0.05, **p < 0.01, and ***p < 0.001 using Wilcoxon signed-rank tests. (B) plots represent the mean + SEM across mice (N = 13). Lines in
(C) represent linear regression fits, and r values are Pearson correlation coefficients.

probabilities, indicating a U-shaped relationship (Figure S8A).
This was also true for quadratic terms of locomotion speed, while
face motion energy had weights centered around zero across
subjects. Consistent with previous analyses, the weights for
the standard deviations of pupil diameter and locomotion speed
across trials were consistently negative when fit to optimal state
probability and positive when fit to the disengaged state; howev-
er, weights were centered around zero for variability of face
motion energy. We also fit regressions using the combined
movement index instead of individual movement measures.
The movement index had the most consistent weights across
mice, also exhibiting inverted-U dynamics in relation to optimal
state probability, with negative weights for the second-order
polynomial term (Figure S8B). Interestingly, the only consistently
weighted feature across fits to sub-optimal state probabilities
was the interaction between pupil diameter and the movement
index (Figure S8B; 0.42 + 0.11), which was also significantly
different than weights fit to optimal state probability (—0.95 +
0.21;p=34 x 1078, Wilcoxon rank-sum test).

DISCUSSION

In this study, we provide evidence that a significant fraction of
behavioral variability arises from rapid transitions between identifi-

able substates, that pupil diameter and uninstructed movements
can accurately predict these substates and their transitions
(including epochs of optimal performance), and that controlled
arousal is key to maintaining optimal performance. First, using
GLM-HMM modeling of task performance, we show that well-
trained mice alternate between discrete strategic performance
states and that accounting for these states significantly improves
the accuracy of behavioral modeling. Our methods, including trials
where the subject does not respond, allowed us to go beyond pre-
vious reports'® and identify disengaged and other low perfor-
mance states in addition to optimal performance states. Interest-
ingly, we found that mice selectively maintained optimal states
for longer durations than sub-optimal and disengaged states
(Figures 1D and 2C). Second, consistent with the classical
Yerkes-Dodson law, we demonstrate that optimal task perfor-
mance occurs at intermediate arousal levels during sensory
discrimination tasks (Figures 3E and S3). While previous reports
demonstrated this relationship during auditory detection,” it
has not been reported during visual tasks.'® Here, we find an
inverted-U relationship during both auditory and visual discrimina-
tion task performance. There was a significant difference in
optimal pupil diameters between sensory modalities, suggesting
modality-specific modulation of arousal during optimal perfor-
mance. Third, we found significantly lower trial-to-trial variability
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Figure 5. Pupil diameter and movement index predict optimal state occupancy
(A) Example decision function of a support vector machine (SVM) classifier with a radial basis function kernel using pupil measures of diameter and trial-to-trial
variability to predict performance states. One of five cross-validated folds is shown. Color bar represents decision function confidence, with white representing

the decision boundary. Small circles: training set; large circles: test set.

(B) Example of Z scoring test set accuracy of performance state decoder trained on empirical data (blue line; 1-fold from A, Z scored against classifiers trained

with state-identity-shuffled data [gray distribution]).

(C) SVM classifications were made for each available state against the optimal state per mouse (i.e., disengaged vs. optimal, bias left vs. optimal, etc.). Data points
represent average performance state classification accuracy across test sets and Z scores against test-set accuracy of classifiers trained on state-shuffled data.
The blue star represents the classification from (A) and (B). Shuffling all features except movement index or pupil variables (both value and 10-trial standard
deviation) reveals the individual contribution of each measure to state classification. Crosshairs represent mean + SEM across all state classifications (n = 32; 13
optimal vs. disengaged, 19 optimal vs. sub-optimal). See also Figures S7 and S8 for further analysis of individual measure contributions.

in both pupil diameter and movement measures during optimal
performance, with rapid shifts in variability at transitions into and
out of the optimal state (Figures 3B and 4B). Finally, we found
that arousal measures, taken prior to stimulus presentation, can
be used to accurately predict the discrete task performance
states produced by GLM-HMM modeling (Figure 5C). By using
GLM-HMMs, we extend the analysis of arousal measures beyond
average characterizations of a moment-to-moment performance-
arousal relationship in mice and suggest strategic regulation of
arousal levels during optimal performance.

Here, we used recently implemented GLM-HMMs and
advanced their utility to account for stimuli not responded to
by the subject. This extended model accounts for additional
behavioral states present during decision-making in mice, in
particular revealing states of disengagement and selective
avoidance of a particular stimulus category (i.e., left or right
target). Using an individual model for each subject accounted
for differences in individual psychometric response patterns
and state-transition probabilities, and cross-validated model se-
lection prevented overfitting of models. Despite individual differ-
ences, when comparing across subjects, a consistent view of
task performance emerged, with a limited number of easily clas-
sifiable, congruent strategies in the population. With the trial-
wise state probability confidence threshold of 0.8 used, across
mice, over 85% of trials were classified in a discrete state, and
the median transition time between states was under 4 trials,
significantly shorter than the average dwell times of 37 trials in
the optimal state and of ~15 in disengaged and sub-optimal
states. While this does not exclude the possibility of continuous
dynamics during decision-making behavior, GLM-HMMs pro-
vide a powerful tool for studying distinct task performance
states. In the current study, we observed arousal-related differ-
ences between optimal and sub-optimal strategic states, but
different performance states may additionally have markedly

16,17
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different neural activity and/or functional connectivity correlates.
Studying neural data regarding decision-making could benefit
from comparing not only hits and errors but also differences be-
tween similar trial outcomes during various strategic perfor-
mance states.

Arousal and movement can be indexed by numerous, often
correlated measures.’ Here, we use simple and accessible mea-
sures of pupil diameter, face motion energy, and locomotion
speed. Head-fixed mice on a running wheel can exhibit a broad
range of arousal and movement, from sleep to rapid locomotion.
To promote a broad range of arousal in our mice, we both al-
lowed mice to locomote rapidly on a running wheel during task
performance (therefore allowing access to higher levels of
arousal and uninstructed movement) and used long inter-trial in-
tervals to promote periods of behavioral quiescence and task
disengagement. Preliminary results indicated that short inter-
trial intervals typically resulted in a lack of lower levels of arousal
(e.g., smaller pupil diameter during behavioral quiescence)
and biased our results toward intermediate to high arousal
levels. Trials were also delivered at random intervals and were
not self-initiated, preventing constraints on the subject’s state
before a trial. These factors were crucial for observations of an
inverted-U relationship between optimal state probability and
pupil diameter (Figure 3E).

We additionally saw an inverted-U relationship between a
movement index combining face motion energy and locomotion
speed with optimal state probability, similar to that of pupil
diameter (Figure 3F). The measurement of face motion energy
individually showed a monotonically increasing relationship
with optimal performance state occupancy. Onset of facial
movements tracks rapid shifts in intracellular®'®'® and neuro-
modulatory neural dynamics'®" but lacks fidelity during pro-
longed bouts of movement and locomotion, when face move-
ment is ubiquitous. Conversely, locomotion speed does not
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capture the onset of whisking and movement but provides a
continuous measure of high-energy movements. Thus, our
face motion energy measure is well suited for detecting both
lower levels of uninstructed movements (e.g., movements that
do not include the large skeletal muscles of the limbs and
body), while locomotion speed is better suited for detecting
higher levels of these movements. While some mice had an
inverted-U relationship between these individual measures and
optimal performance state, combining the two movement mea-
sures allowed for one index to account for a wide range of move-
ment levels and resulted in an inverted-U relationship with
optimal performance state across all mice. Based on these fac-
tors, we consider pupil diameter to be the best easily accessible,
individual measure of arousal. While complex analysis of video
data could lead to more precise measures of unique movement
profiles for individual subjects, the simple movement index used
here is sufficient to make accurate predictions of task perfor-
mance state and corroborates a long-standing physiological
phenomenon first described by Yerkes and Dodson.'*

What factors contribute to the inverted-U phenomenon during
task performance? In the auditory cortex, membrane potential dy-
namics at intermediate arousal levels are ideal for stimulus detec-
tion.* Task engagement also influences auditory processing in
multiple brain regions, and changes are congruent and often over-
lapping with pupil-linked effects.?? In this case, maintaining an in-
termediate arousal level could directly improve discriminability of
neural representations and task performance. However, in the vi-
sual system, locomotion increases neural responses along with
stimulus-decoding accuracy using neural activity at the population
level.>?*2° How this relates to behavioral performance is not clear,
as performance on visual tasks generally lags behind population-
level neural decoding potentials in the visual cortex.”® While indi-
vidual neural responses in the visual system vary in their relation-
ship to locomotion speed,®’**® decoding accuracy has often only
been tested with a binary classification of states (stationary vs. lo-
comoting). Binary classification of locomotion in some instances
indicates that locomotion is beneficial for task performance, while
others have found it to be detrimental.'>2° In the present study, the
probability of both task disengagement and sub-optimal strategic
statesincreased at higher levels of both the continuous pupil diam-
eter and movement indexes, leading to decreased performance at
high arousal/movement levels across both auditory and visual mo-
dalities. Crucial to this observation is that movement is measured
on a continuous scale. In addition, effects on stimulus-decoding
accuracy have only been performed in passive contexts and are
restricted to the visual cortex. While arousal-dependent cortical
decoding capacities may contribute to behavioral performance,
other brain regions receiving their signals may have different
arousal-dependent dynamics, where heightened arousal may
inhibit optimal performance.

Regulation of arousal to maintain ideal levels for decision-
making may lead to increased performance. During difficult
tasks, external feedback based on optimal neural activity in hu-
mans can increase performance and decrease arousal as
measured by decreases in pupil diameter and increases in heart
rate variability,® consistent with the right half of the Yerkes-
Dodson relationship. Internal factors may also regulate arousal.
Development during childhood and adolescence leads to self-

¢ CellP’ress

OPEN ACCESS

regulation of arousal, contributing to executive function in
humans.®'~*3 This developmental phenomenon is not unique to
humans—in mice, projections from the prefrontal cortex (PFC)
to the serotonergic dorsal raphe nucleus (DRN) increase through
adolescence, and their emergence coincides with increases in
persistence during active foraging.>* Recent work has shown
that humans can gain volitional control of pupil size through
training, systematically regulating neural structures related to
arousal.®® In the present study, in addition to finding an ideal
range of pupil diameters for optimal task performance, we report
a decrease in trial-to-trial variability of all recorded arousal mea-
sures during epochs of optimal performance states and differing
optimal pupil diameters based on sensory modality (Figures 4A
and 3D). Additionally, the correlation between movement and
pupil diameter seen during disengagement is degraded during
optimal performance epochs, suggesting a context-dependent
selective decoupling of arousal from movement. While we do
not present direct evidence of volitional control of arousal in
mice, the arousal regulation shown during optimal engagement
states opens questions regarding the mechanisms that
contribute to this effect. While strategic control of movements
may account for some of the arousal changes, further study
into the use and development of regulatory mechanisms and
contextual control of arousal is warranted.

What is the neural mechanism underlying performance state
switching and its arousal-induced regulation? Fluctuations in pupil
diameter are correlated with activity in arousal-linked neuromodu-
latory centers in mice, non-human primates, and humans.?%-¢-%7
The PFC is well situated to be an orchestrator of neuromodulatory
centers linked to arousal and pupil size. In mice, PFC projections
target both serotonergic and GABAergic populations in the DRN,
and electrical stimulation of the PFC modulates DRN activity.>*°
Direct activation of serotonergic cells in the DRN sustains arousal,
slowing pupil constriction.*” Similarly, direct stimulation of the
noradrenergic locus coeruleus (LC) leads to increases in pupil
diameter, and stimulation of PFC projections to inhibitory popula-
tions surrounding the LC leads to pupil constriction.*? PFC projec-
tions can act as dynamic regulators for key arousal-linked neuro-
modulatory centers, and their coordination could maintain optimal
arousal levels during task engagement. Further work is necessary
to determine the activity and influence of such projections during
various task-engagement states.

Limitations of the study

The current study utilizes GLM-HMMs of behavior, which as-
sume discrete transitions between performance states. While
GLM-HMMs have been shown to fit similar datasets better
than models with continuous dynamics,'® continuous transitions
between performance states may occur. We account for this us-
ing a confidence threshold on state posterior probabilities for in-
clusion within a discrete state. Further model development could
account for both discrete and continuous transitions in decision-
making dynamics.

When making comparisons of optimal pupil diameter across
the auditory and visual tasks, distinct mice were used. This re-
quires comparison of a relative measure across sessions and
mice. To account for this, we normalize pupil diameter to the
maximum within each session, as detailed in the STAR Methods.
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For the significance of the comparison to be erroneous under this
scheme, auditory-task-performing mice would need to have sys-
tematically reached higher arousal levels than visual-performing
mice each session, which we assert is implausible, as subjects
were handled by the same experimenters and run inter-leaved
in time in the same training rigs.
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Materials availability
This study did not generate new unique reagents or mouse lines.

Data and code availability
o Neurodata without borders files (.nwb) with all task and physiological measure data have been deposited on DANDI and are
publicly available at https://doi.org/10.48324/dandi.000678/0.231004.2146.
® Analysis code is deposited at Zenodo and is publicly available at https://doi.org/10.5281/zenodo.10306018.
® Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon
request.

EXPERIMENTAL MODEL DETAILS

Mice

All procedures were carried out with approval from the University of Oregon Institutional Animal Care and Use Committee. Animals
(female and male mice, 8-15 weeks at time of surgery) were of C57BL/6J background purchased from Jackson Laboratory and bred
in-house, including wild-type C57BL/6J, transgenic Cre and tTA driver lines (CaMK2-Cre, Jax #005359; CaMK2-tTA, Jax #007004),
and fluorescent reporter lines (tetO-GCaMP®6, Jax #024742; TIGRE2.0 GCaMP6s Jax #31562). Crosses of drivers and reporters
yielded in usable double heterozygous mice (CaMKIl (+/—) x GCaMP6s (+/—)). The mice were kept on a reverse light cycle and
had ad-libitum access to food and water until time of behavioral training. A total of 31 mice were used in this study, with 13 reaching
performance criterion for inclusion in final analysis. We did not assess the influence of sex on the results of this study. This is limitation
of the study.

METHOD DETAILS

Headplate implantation

All surgical procedures were performed in an aseptic environment with mice under 1-2% isoflurane anesthesia with an oxygen flow
rate of 1.5 L/min, and homeothermic maintenance at 36.5°C. Mice were administered systemic analgesia (Meloxicam SR: 6 mg/kg,
Buprenorphine SR: 0.5 mg/kg) and a fluid supplement (1 mL lactated ringer’s solution) subcutaneously. Fur was removed across the
dorsal and right temporal surfaces of the skull, and the skin was sterilized with povidone/iodine solution followed by isopropyl alcohol
three times over. The skin, connective tissue, and part of the right temporalis muscle were removed, and the exposed skull was
cleaned. A custom-designed headplate® was affixed to the skull using dental cement (RelyX Unicem Aplicap, 3M), and skin was
affixed to the outside edge of the headpost as necessary (Vetbond, 3M). The exposed skull was covered using cyanoacrylate
(Slo-zap, Zap), and protected with a silicone elastomer (Kwik-Sil, World Precision Instruments). Mice recovered for three days in
an incubator recovery chamber, and lactated ringer’s solution was administered as necessary.

Task details

Data collection and stimulus presentation was conducted using custom LabView (National Instruments) scripts. Mice were headfixed
on a running wheel and trained on either an auditory or a visual stimulus discrimination task to receive water rewards. Mice made a
binary classification of stimuli, and reported their choice by licking one of two reward ports (left and right) spaced 500 um apart.

For the auditory task, stimuli consisted of tone clouds with three concurrent streams of tones, where each tone lasted 30 ms and
had a frequency selected between 5 and 40 kHz. Tone clouds were differentiated by selecting a varied proportion of tone frequencies
in either the bottom (5-10 kHz) or top (20-40 kHz) octave of the range. The remaining tones were randomly distributed across the rest
of the frequency range. Auditory stimulus values are defined based on the proportion of tones in the right-target octave (e.g., high
frequency) minus the proportion of tones in the left-target octave (e.g., low frequency), such that —1 represents a tone cloud with
all tones in the left-target octave, 1 represents a tone cloud with all right-target octave tones, and 0 represents a stimulus with an
equal number of tones in each target octave. Tones were calibrated to 60 dB SPL and waveforms were generated (NI PXI-4461, Na-
tional Instruments) at 200 kHz sampling rate, conditioned (ED1, Tucker Davis Technologies), and transduced by electrostatic
speakers (ES1, Tucker Davis Technologies).

For the visual task, stimuli consisted of drifting Gabor patches displayed on an LED screen with a refresh rate of 30 Hz. Stimulihad a
constant mean luminance, matched to the static gray background displayed between stimuli. Each Gabor had 0.08 cycles per degree
of visual field and drifted at 1.5 cycles per second. Gabor angles were between 0 and 90°, and differentiated by being closer to a
horizontal (e.g., 0, 18, or 36°) or vertical (e.g., 90, 72, or 54°) orientation. Visual stimulus values were defined between 0 and 1 by
the normalized difference of their angle from 45°, and signed in accordance with their directional representation (negative if left, pos-
itive if right).

Stimuli (high/low tone cloud or horizontal/vertical gabor) were randomly assigned to left or right identities for each subject at the
beginning of training. In both tasks stimuli lasted 1.2 s and were presented with an inter trial interval (ITl) of 5 + 2 s, which was reset to
licking prior to stimulus presentation. Licking of reward ports was electrically monitored at 1 kHz (USB-6008, National Instruments). If
mice responded to stimuli by licking the appropriate reward port during the stimulus or within 1 s of the stimulus offset, the trial was

Cell Reports 43, 113709, February 27, 2024 13



https://doi.org/10.48324/dandi.000678/0.231004.2146
https://doi.org/10.5281/zenodo.10306018

¢ CelPress Cell Reports

OPEN ACCESS

considered a hit and a 3 uL reward was delivered through the port by a syringe pump (NE-500, Pump Systems Inc.). If the incorrect
port was licked first during the stimulus or response period the trial was considered an error. If no response was made the trial was
considered to have no response.

Training and inclusion criteria

After postoperative recovery, mice were weighed for three days to establish a baseline weight before beginning a water regulation
protocol. After 3-5 days, mice had reached a steady weight on water regulation and began behavioral training. Mice were habituated
to human handling, head fixation, locomotion on the wheel and collecting water from the reward ports. Reward port position was
adjusted by a manual xyz manipulator. To ensure consistent lick spout positioning, a 3D printed jig was made for each mouse
and used to align reward ports at the beginning of each training session.

Behavioral training was conducted using the following stages and progression criteria:

Stage 1 - To encourage licking and associate left and right ports with the appropriate directional stimuli, the left or right port was
randomly ‘armed,’ so a lick would prompt appropriate (value —1 if left, 1 if right) stimulus presentation, and water reward delivery. The
stimulus and reward were spontaneously delivered after 20 s if the subject did not lick the armed port. The ITl was set to 2 s to pro-
mote consistent licking. After 75 such trials in a session, stimuli were presented without a reward, and a reward was delivered if the
subject licked the correct port within the response period. If subjects achieved 1500 total licks to each port, and >150 hits in a ses-
sion, they progressed to stage 2 in their next training session.

Stage 2 - To promote licking only following stimulus presentation, the ITI was extended to 5 + 2 s, and was reset following aberrant
licking for all following stages. Only the easiest stimulus values were used (—1 or 1), and a reward was delivered following any lick to
the correct port during the response period. If subjects failed to respond to 10 consecutive trials, a free reward was delivered with the
stimulus. If subjects achieved >50% hit rate on both ports, with no less than 30% of licks to each port and >150 hits, they progressed
to stage 3.

Stage 3 - To refine choice behavior, a reward was only delivered if the first lick following stimulus presentation was to the correct
reward port. To prevent mice from only responding at one reward port, probabilistic bias correction was added, so that more target
stimuli of one direction would be presented if that port was being neglected. If subjects achieved >60% hit rate on both ports
and >150 hits, with no less than 33% of hits at each port they progressed to stage 4.

Stage 4 - More difficult stimuli were introduced, and probabilistic bias correction was reduced. If subjects achieved >60% hit rate
on both ports and >200 hits, with no less than 33% of hits at each port, they progressed to stage 5.

Stage 5 - Bias correction was removed and three difficulties of stimuli are presented per direction. A subset of mice were advanced
to stage 6 after at least 10 consecutive stage 5 training sessions.

Stage 6 - Half of the stimuli were of the un-trained sensory modality, presented as distractors. There was no discernible change in
task performance, and response rates to the distractors were <10%.

If subjects failed to meet the advancement criteria of a lower training stage for consecutive sessions, they were returned to that
training stage. For further analysis we included sessions from stages 5 and 6 with at least 100 rewards delivered, balanced such
that no less than 20% of rewards were delivered in each of the left and right ports. Using our 5-fold cross-validation method for model
selection (see below) on synthetically generated data required 8-10 sessions to reliably recover the ground truth parameters of the
model. Therefore, a minimum of 10 sessions per subject was required for inclusion in further analysis. 13 of 31 mice met inclusion
criteria, with a total of 381 of their 500 stage 5 and 6 training sessions included for further analysis. Mice that reached proficiency
took 21 + 8 training sessions to reach stage 5.

Modeling task performance

To test the hypothesis that animals switch between discrete decision-making states within single sessions, we developed a hidden
Markov model with multinomial Generalized Linear Model observations (GLM-HMM) using a modified version of the SSM python
package.”® The multinomial GLM observation, parameterized as,

exp {Wcut+bc(k)]

S exp [wc/ U+be (“)]
=

is the set of three psychometric curves representing the probability of choosing actions ¢ = Left, Right, No response in each trial t,
given stimulus and the hidden state. Each hidden state represents a different performance state, including one optimal, and several
sub-optimal or disengaged states. A model with K hidden states is described by the following parameters: a KxK transition probability
matrix, representing the probability of switching between different states at each trial t; a K-dimensional vector representing the initial
state probabilities; and the observation parameters comprising weights and biases for each of three multinomial categories c=L,R,Nr,
the latter corresponding to three choices Left, Right, and No response, available to the subject in each trial. We fit a multinomial GLM-
HMM to trials from individual subjects using the Expectation Maximization (EM) algorithm to maximize the log-posterior and obtain
the optimized parameters.
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Model selection for the number of states was performed using 5-fold cross-validation across sessions of an individual subject.
When fitting data generated synthetically with GLM-HMMs, these methods consistently recover the ground truth number of states
used to generate the data. Models with up to seven states were fit to the concatenated trials of the training set, and the log-posterior
of the test set was estimated (normalized by the number of trials per test set). Because the EM may lead to local maxima of the log-
posterior, for each choice of number of states, the EM algorithm was performed 10 times starting from random initial conditions. We
performed model selection in two alternative ways: either by maximum likelihood estimation (MLE); or by maximum a posteriori (MAP,
including a Gaussian prior on the weights with mean zero and variance equals to 2, and Dirichlet prior on transition probabilities with
alpha = 2, see ref. 16 for details on the procedure). The best number of states was chosen as the maximum of the plateau of the test
MLE or test MAP log likelihoods. We then fit a single model to the time series of the observations and inputs concatenating all ses-
sions from a subject, optimizing the model parameters using MLE.

For all further analysis we set an 80% state probability criterion for inclusion of a trial within a performance state and consider all
other trials as in an indeterminate state. Performance states from the final models were distinct and clearly interpretable, and clas-
sified as one of six stereotypic states: optimal (responses congruent with stimulus identity), left bias (leftward licks regardless of stim-
ulus), avoid right (left lick to left-target, no response to right-target stimuli), right bias (rightward licks regardless of stimulus), avoid left
(right lick to right-target, no response to left-target stimuli), or disengaged (no response to any stimuli).

The choice prediction accuracy measure was calculated using 5-fold cross validated models. For each test-set trial the GLM-HMM
state was inferred using the posterior probabilities calculated from the preceding trials and the state transition matrix. The weights of
the inferred state were then used to predict the choice, which is compared to the empirical data to determine model prediction
accuracy.

Recording arousal measures

All data collection was conducted using custom LabView scripts. While headfixed, subjects were free to locomote on top of a cylin-
drical wheel with a 15 cm diameter and 20 cm width. The axle of the wheel was connected to a rotary encoder (Model 15T/H, Encoder
Products Company), which was used to calculate locomotion speed.

A CMOS camera (Teledyne G3-GM11-M2020, or Basler ace acA780-75gm) with an affixed lens (TEC-M55MPW, or Navitar NMV-
50M23) and infrared (IR) filter (MIDOPT BN810-46, or Thorlabs FGL780) was pointed at the face of the subject. The face was illumi-
nated with an IR LED (Digi-Key TSHG8200, 830 nm), and with a white LED (RadioShack 5 mm 276-0017). Prior to each recording
session, illumination conditions were optimized with live feedback and online pupil fitting. IR lighting was adjusted to provide
even illumination of the face and eye without shadows, and the ambient light intensity adjusted so the pupil would have a large dy-
namic range, while not being obscured by the eyelid when maximally dilated. Images of the face were acquired at 30 Hz throughout
task performance, and time stamps for each frame were saved at time of acquisition.

Online pupil diameter and face motion energy estimates were made using LabView software, and post-hoc analysis was done us-
ing custom python scripts. Face motion energy was calculated within a rectangular ROI anterior to the eye (Figure 3A). The absolute
value of the frame-to-frame change in pixel intensity was averaged within the ROl and normalized to the maximum within a session.
To calculate pupil diameter post-hoc, first an ROl around the eye was selected and the area displayed at regular intervals throughout
the session, so an appropriate binarization threshold could be manually selected. The contour of the pupil was extracted for each
frame, and the long axis of a fit ellipse was recorded as the pupil diameter. The quality of the pupil values was verified for each session
by viewing the dynamics of the full session traces for online and post hoc calculations along with images of the pupil fit at the time of
the maximum and minimum calculated values within a session. This allowed rapid identification and exclusion of anomalous frames.
If dropped frames resulted in gaps less than 200 ms, pupil data were interpolated. To allow comparison across sessions and mice, all
pupil diameters were normalized to the maximum within a training session. This method assumes similar maximal levels of arousal
are reached each session, but accounts for differences in anatomy and illumination.

All measures were smoothed with second order Savitzky Golay filters with 200 ms (face energy and locomotion speed) or 500 ms
(pupil diameter) windows and upsampled to 1 kHz. In order to determine the influence of tonic arousal and movement on perfor-
mance, the value of each measure at the time point sampled immediately before stimulus presentation began was used for further
analysis. In addition to the raw values, the standard deviation and coefficient of variation of the measures’ values over the past 10
trials were calculated for each trial.

The measures of face motion energy and locomotion speed individually account for qualitatively distinct magnitudes of movement
in mice during head fixation. Face motion energy effectively captures change in low-medium ranges of movement while the subject is
stationary (not walking), and locomotion speed effectively differentiates medium-high output movements. In order to create a single
value representative of a broad range of movement, the values of face motion energy and locomotion speed were z-scored and
summed to create a single continuous movement index. The same was done for the past 10 trial standard deviation values.

Determining optimal pupil diameters

Probability of a performance state was calculated in relation to each arousal measure by binning trials by measure values and deter-
mining the proportion of trials in each performance state. In order to determine the optimal pupil diameter for each subject, polyno-
mial functions were fit to the optimal state occupancy probability across pupil diameters. Polynomial degree for a fit was selected by
determining the elbow of the test set r? increase function with 5-fold cross validation. A final polynomial was fit to all data, and
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the optimal pupil diameter was determined for each subject as the maximum of the fit curve within the range of the true data. The
unique optimal pupil value for each subject was used to align pupil values for visualization, and to calculate the absolute difference
from the optimal pupil diameter for each ftrial.

Performance state classification

We used cross-validated classifiers (support vector machines with a radial basis function kernel) to discriminate trials from the
optimal performance states against trials of each of the disengaged and sub-optimal states (binary classifications) using six features:
the 3 recorded behavioral measures and their variability over the 10-past-trials. Classification was performed on a randomly selected
equal number of trials of each performance state using 5-fold cross-validation. Accuracy is reported as the mean accuracy of test set
classification across five such folds. To test the significance of the reported accuracies, we z-scored the empirical accuracy against
1000 classifiers trained on surrogate data obtained by randomly permuting class labels.*® To determine the contribution of features to
classification accuracy, we compared the performance of the classifiers trained on the empirical data to those trained on surrogate
data obtained by shuffling the labels for a subset of features across trials within the training set.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using SciPy1.5.2 (Python). Sample sizes were not predetermined with statistical methods but are
similar to other studies in the field. Statistical details can be found in each figure legend and associated results sections. Data and
statistics are reported as the mean + standard error of the mean unless otherwise noted. Boxplots represent the first and third quar-
tiles, with the median represented as a bar., and whiskers representing 1.5 times the interquartile range. Two-tailed Wilcoxon signed
rank (paired) or rank sum (unpaired) statistical tests were used to avoid assumptions regarding the normality of data distribution. All
comparisons were made over mice unless otherwise noted. Individual data points are shown when possible.
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