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In any given situation, the environment can be parsed in different ways to
yield decision variables (DVs) defining strategies useful for different tasks.

Itis generally presumed that the brain only computes a single DV defining
the current behavioral strategy. Here to test this assumption, we recorded
neural ensembles in the frontal cortex of mice performing a foraging task
admitting multiple DVs. Methods developed to uncover the currently
employed DV revealed the use of multiple strategies and occasional switches
in strategy within sessions. Optogenetic manipulations showed that the
secondary motor cortex (M2) is needed for mice to use the different DVsin
the task. Surprisingly, we found that regardless of which DV best explained
the current behavior, M2 activity concurrently encoded a full basis set of
computations defining areservoir of DVs appropriate for alternative tasks.
This form of neural multiplexing may confer considerable advantages for
learning and adaptive behavior.

An adaptive strategy to control behavior is to take actions that lead
to good outcomes given that the environment is in a particular state.
Yet, environmental states are often complex, with manifold sources
of potentially relevant information, some that are directly observable
and others that can only be revealed through a process of inference.
Therefore, an agent typically also faces the problem of selecting the
environmental variables on which to base a decision and how must
these variables be processed algorithmically to reveal the appropriate
‘decision variable’ (DV). The problem of selecting a DV is likely a more
difficult computational problem faced by a decision maker thanthe deci-
sionitself, but how itisaccomplished has received scant investigation'.

Apossibility isthat an agent need not commit toa particular DVbut
may entertain several in parallel. The ability to parallelize operations
of decision processing, such as temporal integration, would permit
adaptationto changesintask contingencies withoutimplementation of
new computations, and could therefore potentially speed learning and
provide flexibility in combining and switching strategies. However, lit-
tleisknownabout the limitations and possibilities for multiplexing the
algorithms used to derive DVs from sensory evidence. Onthe one hand,

behavioral studies in humans suggested that two streams of sensory
evidence canonlybeincorporatedintoaDV oneatatime, necessitating
serial processing®*. On the other hand, it has been shown that there
exist neurons integrating evidence about a single sensory event with
diverse timescales’, and that diverse timescales are presentin neurons
withinlocal circuits®, which could reflect a simple form of algorithmic
multiplexing. It thus remains unclear whether various computations
canbe carried outin parallel on different streams of evidence to form
abroad range of simultaneously available DVs.

Tostudy the possibility of multiplexing computations on sequen-
tialinputsinthebrain, we leveraged aforaging task based on process-
ing a stream of binary outcomes to inform a decision of whether to
leave or stay”®. This task admits multiple strategies for processing the
series of outcomes that are associated with different precisely quantifi-
able DVs. Evaluation of these DVs allows the experimenter to infer the
implementation of ‘counterfactual’ strategies, that is, strategies that
are potentially applicable, but unused. If such counterfactual strate-
gies could be decoded from the brain, it would be evidence for parallel
processing of serial information.
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Fig.1|Multiple DVs predict foraging behavior. a, A head-fixed mouse placed on
atreadmill chooses to exploit one of the two foraging sites (two movable arms on
each side of the treadmill). A bout of behavior consists of a series of rewarded

(1 pl consumedinasingle lick) and unrewarded licks at one of the sites. The
switch from active to inactive state only happened once while the mouse was
atthesite, so if it left the site before the switch, no rewards were delivered
attheother site (and it had to return to the original site and restart licking).
Independently from state transition, animals can choose to switch between sites
atany time by running a set distance on the treadmill. During site-switching,

the spoutin front moves away and the distal one movesinto place.b, The DV

that the mouse needs to compute to infer the hidden state of the resource site.

¢, Alternative DV supporting a stimulus-bound strategy—the ‘negative value’.

d, Example sequences of observable events during different behavior bouts.

e, Histogram of bout duration (mean + s.e.m. across sessions; n = 42). f, Probability
ofleaving the foraging site as a function of the number of consecutive failures
after the last reward (mean + s.d. across mice). g, Consecutive failures before
leaving as a function of reward number (mean + s.d.) in example sessions

from two different mice. h, Distribution of the slope coefficients of an LM that
predicted the number of consecutive failures before leaving as a function of

the number of prior rewards. For visualization, pink are the slope coefficients
close to zero (coefficient < 0.5, arbitrary threshold), while blue are sessions with
positive slope coefficients. i, Slope coefficients from h between two consecutive
sessions (1and 2) for different mice. Sessions between which the coefficient
values vary by more than 0.5 (arbitrary threshold) are highlighted in black.

Jj, llustration of the logistic regression model for predicting the switching
decision of the mouse from the two different DVs. k, Deviance explained from
the logistic regression that predicts choice behavior based on the DVs (gray
box) and from simulated data where the behavior is truly inference-based (white
box). On each box, the central mark indicates the median across behavioral
sessions (n =42 sessions from 21 mice), and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the
most extreme data points. I, Explained variance from the logistic regression that
predicts choice behavior based on the DVs. Sessions where ‘consecutive failures’
are dominant (var. exp. consec. failures > var. exp. neg. value) are labeled in pink,
while sessions where ‘negative value isdominant’ are labeled in blue (var. exp.
consec. failures < var. exp. neg. value). Var., variance; exp., explained; consec.,
consecutive; neg., negative.

Here using population recordings and optogenetic silencing in
the frontal cortex of mice performing the foraging task, we identified
a brain region (the secondary motor cortex M2) where the multiple
DVs used by the mice could be decoded simultaneously. Critically, we
found that the extent to which each DV was represented in the cortex
didnotdepend onthe strategy used by eachmouse. These observations
suggest that mice use analgorithm for decision-making that relies on
the parallel computation of multiple DVsin the frontal cortex.

Results

Multiple DVs predict switching decision

In our task, a head-fixed mouse collected probabilistically delivered
rewards at a virtual foraging site by licking from a spout (Fig. 1a and
Extended DataFig.1). Atany time, the mouse could choose to continue
licking or give up and explore anew site by starting to run. There were
two virtual foraging sites, only one of which was active at a given time
and would deliver areward witha probability of 0.9 after each lick. The
activessite also had a probability of 0.3 of switching once per bout after
eachlick®. Therefore, the best strategy to time the switching decision
was to infer the latent state corresponding to which site was currently
active®. Thisinference-based strategy was supported by a particular DV

that consisted of temporally accumulating consecutive failures with
acomplete reset upon receiving areward (Fig. 1b). This is because a
failuretoreceive reward provides only partial evidence that the active
state had switched, whereas a reward always signaled the active state
with certainty. Using this strategy, mice would leave the current site
when the ‘consecutive failures’ DV reaches a given threshold®. Yet, in
principle, mice could time their decision to leave by using any number
of alternative strategies based on the sequence of rewarded and unre-
warded licks regardless of the true causal structure of the task. In fact,
early onduringtraining when learning the task, mice do notappear to
calculate the inference-based DV®. Their behavior is better described
by a strategy that does not contemplate discrete transitions to a fully
depleted state, and instead relies on a running estimate of the ‘value’
ofthe currentsite based on the difference between recently observed
rewards and failures (Fig. 1c). Using this strategy, mice decide to aban-
don aforaging site when its value is sufficiently low (or its negative
valueissufficiently high). We refer to this as astimulus-bound strategy
becauseit treats observable outcomes (the stimuli) as direct—although
probabilistic—reporters of the valence of current environmental states,
without further assumptions or models about environmental dynamics.
For our present purposes, the essential aspect of these two strategies
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Fig.2|Neural activity related to the switching decision. a, Schematic target
location of probe insertion and an example histology of electrode track (1 of

10 example brain). Vertical insertions were performed within a1-mm diameter
craniotomy centered around +2.5-mm anterior and +1.5-mm lateral from Bregma.
b, Example raster plot of 140 simultaneously recorded neurons from M2. Lick-
outcome times are indicated by the green (reward) and purple (failure) dashes.
¢, Binned response profile of an example neuron. For all analyses, otherwise
noted, we averaged for each neuron the number of spikes into bins by
considering a200 ms window centered around each lick. d, Histogram of
outcome selectivity of all neurons recorded M2 (left), OFC (middle) and OLF
(right). We used ROC analysis to assign a preference index to each neuron. In
brief, anideal observer measures how well the modulation of neuronal firing can
classify the outcome (reward or failure) on alick-by-lick basis. We derived the
outcome preference from the area under the ROC curve as PREFy ; = 2(ROC yze(fz,
fy)—0.5), where f; and f; are the firing rate distributions for trials where outcomes
arereward and failure, respectively. This measure ranges from -1to 1, where
-lindicates preference for F (failure), 1 means preference for R (reward) and O
represents no selectivity. The statistical significance of the preference index
(P<0.001, one-sided) was assessed via bootstrapping (1,000 iterations). Violet
and green barsindicate neurons where the index was significantly different

from 0. Inall regions, we found neurons significantly modulated by rewards

and failures. e, Illustration of the logistic regression method for predicting the
switching decision (gray right, thatis, the probability that each lick was the lastin
the bout, n=2,533 +1,524 licks per session; mean + s.d. across 11 sessions) from
the principal components of neurons (left—M2,n=31+17; OFC,n=29 + 9; OLF,
n=16 +13).f, Deviance explained from the logistic regression in each region.
Two stars indicate a significant difference between regions (two-sided Wilcoxon
signed rank test, P=0.0068 between M2 and OFC; P= 0.0049 between M2 and
OLF; P=0between OFCand OLF). On each box, the central mark indicates the
median across recording sessions (n = 11sessions), and the bottom and top edges
ofthe box indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points. NS, not significant; ROC, receiver
operator characteristic.

isthat they use the same observable outcomes (series of rewarded and
unrewarded licks) in qualitatively different ways to update their cor-
responding DV—afull reset versus a quantitative incremental increase
incurrentvalue. This allows us tounambiguously identify the two DVs,
their behavioral consequences and their neural representations.
After several days of interaction with this setup (n=13+5d;
mean +s.d.), mice (n =21) learned to exploit each site for several sec-
onds (Fig. 1d,e). Considering the last two sessions of training (n=42

sessions total), we examined which strategy mice used to time their
leaving decisions. As demonstrated previously®, for all mice, the prob-
ability of leaving increased with the number of consecutive failures
(Fig. 1f). Yet not all mice treated rewards equally. For some mice, the
number of previous rewards did not affect the probability of leav-
ing after a set number of failures (Fig. 1g, pink), consistent with the
inference-based strategy. In contrast, for some other mice, the number
offailed attemptsthat they tolerated before leaving the site correlated
with the number of previous rewards (Fig. 1g, blue), consistent with
the stimulus-bound strategy. We quantified these effects using a lin-
ear regression model (LM) that predicted the number of consecutive
failures before leaving as a function of the number of prior rewards
inthe current bout (Fig. 1h). We found that the regression coefficient
varied strongly within our cohort, consistent with the just-described
behavioral heterogeneity across sessions. The distribution across
sessions showed signs of bimodality with a dip close to 0.5. Using this
criterion, the behavior was more consistent with the inference-based
strategy in n =23 sessions (coefficient < 0.5) and more consistent
with the stimulus-bound strategy in the remaining n =19 sessions
(coefficient > 0.5). To check if the heterogeneity in strategy was due
to variability from session-to-session, mouse-to-mouse or both, we
examined whether the regression coefficients of each mouse varied
across consecutive sessions (Fig. 1i). Overall, we observed that most
mice kept the same dominant strategy across consecutive sessions
(Fig. 1i, gray; but see also Fig. 7), but some mice (n =4) also switched
strategy from one session to the next (Fig. 1i, black).

These observations indicate that mice vary in their foraging
strategies across individuals and sessions but do not directly indicate
how well the mice’s behavior is described by the DVs. Therefore, we
next quantified how well the different DVs could predict the precise
moment (lick) when anindividual mouse would switch sites on agiven
trial. Specifically, we used regularized logistic regression to model the
probability thateach lick (n =2,882 + 1,631licks per session; mean + s.d.
across 42 sessions) was the last one in the bout, considering simulta-
neously the two DVs as predictors (Fig. 1j; Methods). We estimated
the goodness of fit of the two models using the ‘deviance explained’,
where ‘0’ meant chance level and ‘1’ meant perfect predictions. We
found a median deviance explained of 0.16, a value significantly bet-
ter than chancelevel for all mice (Fig. 1k, gray box; Wilcoxon rank test,
P <107%). To provide a reference for the meaning of deviance of this
magnitude, we used the same logistic regression model to predict the
leaving decisions of a simulated agent in which the ‘ground truth’ was
known. For this, we simulated behavioral sessions of an agent making
decisions using a logistic function and the DV of the inference-based
strategy with equal numbers of bouts as in the real sessions. We found
thatthe model recovered the ground truth parameters with high accu-
racy (Extended Data Fig. 2a-d) and performed better than a model
attemptingto fit the same data using the stimulus-bound DV, whichis
distinctbut correlated with the DV of the inference strategy (Extended
data Fig. 2e). Furthermore, the deviance explained by the simulated
data (median = 0.25; Extended DataFig. 2f,g) was only slightly greater
than that of the real data (Fig. 1k), indicating that the model with DVs
performed close to the maximum that could be expected given the
statistical nature of the task. This multivariate approach also confirmed
that the two DVs were used to different extents across sessions (Fig. 11)
and, compared to the univariate regression (Fig. 1h), provided even
clearer indication of changes in dominant strategy across sessions
(Fig. 11and Extended data Fig. 2h). Finally, the bias term of the model
(or intercept) reflected the baseline probability to leave the site (the
larger the bias the more impulsive the switching decision) but did not
correlate with the use of either DV (Pearson correlation between bias
termand explained variance of consecutive failures: r=-0.12, P= 0.44;
negative valuer=-0.18, P=0.25).

The logistic regression confirmed that the two DVs describe the
switching decisionrelatively well. Yet, alternative strategies not directly

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-023-01305-8

a b c »
Decoupling licking @2 0.6 ok
and running 3
Q NS
: Last lick P g 04
JUUUULARK ° g <
P <1s 2 22 02
Early run i, € 8%
n >
: 0]
Laterun W >1S < o 1 100
Time to run (s) M2 OFC OLF
d Neurons
POV S T
[ NN
N | W]
Tewr/ R ad |
S O Switching decision == Neural projection on ‘switch’ axis
*AAANAS M Running initiation = Neural projection on ‘run’ axis
ok f M2 decoding weights Switch versus run
5 03 * °
= ~ 90
® 5 NS o) T B
é g 02 S 60 ﬁ
O .= Q
0] 0.1 e
~§§ é 2 30
a9 0 <
£ 0
@ 9 O« g O &
Y o Switch Y& o

Fig. 3| Switching decision and running initiation are dissociable. a, Last lick
always precedes running initiation. Running initiation may occurimmediately
after the last lick of about (<1's; ‘early run’) or mice may remain still for several
seconds after the last lick and before running initiation (>1s; ‘late run’in

red). b, Bimodal distribution of time between last lick and running initiation
(mean t s.e.m. across recording sessions). ¢, The deviance explained from
models that predict the switching decision (last lick) from the neural activity
from M2 (dark gray), OFC (light gray) and OLF (white), in ‘late run’ conditions
when thelast lick is fully decoupled from running initiation. Two stars indicate
asignificant difference between regions (two-sided Wilcoxon signed rank test,
P=0.002between M2 and OFC; P=0.002 between M2 and OLF). d, Illlustration of
thelogistic regression method for predicting the switching decision (gray dash
line) and the running initiation (red dash line) using neural activity from first
lick to running initiation (black, left) in bouts when running occurred at least 1s
after the last lick. Red and black solid lines are examples of neural projections
onto the two different axes. e, Difference in values of the neural projection onto
the switch axis at the time of switching and the time of running. The larger the
difference, the more dissociable the two events. Two stars indicate a significant
difference between regions (two-sided Wilcoxon signed rank test, P= 0.027
between M2 and OFC; P=0.002 between M2 and OLF; P= 0 between OFC and
OLF). f, Decoding weights of each M2 neuron (gray dots) for the two different
axes. g, Angles between the two different axes. In all regions, the angle is close to
90°indicating that the two axes are close to orthogonal. On each box of ¢, e and
g, the central mark indicates the median across recording sessions (n =11 sessions),
and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the most extreme data points.

relying on combinations of action outcomes could also explain well the
mice’s behavior. Thus, we used the logistic regression model to further
explore the space of strategies beyond the two main DVs (Extended
Data Fig. 3a). We found that whereas alternative strategies explained
some of the behavioral variances, the ‘consecutive failures’and ‘nega-
tive value’ DVs still best predicted the switching decision in most ses-
sions (Extended Data Fig. 3b,c). Although we cannot rule out that
mice use other unexplored strategies, these results indicate that the
inference-based and stimulus-bound strategies are the best predictors
ofthe switching decision among different classes of foraging strategies.

Neural activity related to the switching decision

To examine the neural basis of DVs underlying the switching decision,
we first had to identify brain regions that predicted the switching deci-
sion. We used Neuropixels 1.0 (ref. 9), which are single shank probes with

hundreds of recording sites that allow registering the activity of large
ensembles of neurons (n =151+ 59 neurons per session; mean +s.d.) in
multipleregions of the frontal cortex during the task. We targeted M2
(n=66t37neurons persession; mean *s.d.), thought tobe important
for timing self-initiated actions', planning licking behavior" and pre-
dicting changes in behavioral strategy”, and the orbitofrontal cortex
(OFC; n=55+24neurons per session; mean + s.d.), whose inactivation
impacted the performance of inference-based decision-making in
freely moving micein the foraging task®. We also recorded in the olfac-
tory cortex (OLF; n =31+ 23 neurons per session; mean +s.d.), which
is directly ventral to the OFC (Fig. 2a,b and Extended Data Fig. 4), but
which would not be expected to be specifically involved in this task.

To examine neural responses during the evidence accumula-
tion process, we considered the momentary response patterns of
isolated neuronsin small time windows (Fig. 2c; Methods). Because we
observed heterogeneous task-related activity in many single neuronsin
allregions (Fig.2d), we focused on how population activity fromeach
single region predicted the switching decision of mice (n=11record-
ing sessions, one recording session per mouse except one mouse with
two recording sessions). Using cross-validated and regularized logis-
tic regressions, we decoded the switching decision from population
responses around each lick (200 ms window) in each session (Fig. 2e).
To allow for a fair comparison between brain regions, we controlled
for the different number of recorded neuronsin each region by using
as predictors only the first n principal components of neural activity,
whichpredicted up to 95% of its total variance (Methods for additional
controlanalyses). We found that the switching decision could be better
decoded using population activity from neuronsin M2 thanin OFC or
OLF (Fig. 2f). This suggests that, unlike OFC, which has been shown to
be important for the inference process®, M2 may be directly involved
inthe instantaneous timing of action selection.

Switching decision and running initiation are dissociable

To test that the neural activity predictive of a switching decision does
notsimply reflect running initiation, we decoded the switching decision
onasubset of behavioral bouts where the last lick and running initiation
were clearly decoupled (Fig.3a,b). We found that the last lick could still
be decoded with high accuracy, especially in M2 (Fig. 3c), suggesting
that M2 activity encodes the intention to switch sites rather than just
reflecting the initiation of running behavior.

To further test whether the switching decision and running initia-
tionare dissociable in M2, we used neural activity up to the point of run-
ninginitiation to simultaneously decode the switching decisionand the
decision toinitiate running, again using only bouts where licking and
running were decoupled intime (Fig. 3d). The neural activity projected
onto the two decoding axes (switching and running) peaked at different
times (Fig. 3d,e), and the two axes were close to orthogonal (Fig. 3f,g),
consistent with previous studies showing that M2 populations encode
preparatory activity for upcoming actions™". These results indicate
that M2 simultaneously encodes, in a separable format, the relevant
DVsusedtoguide anaction, as well asasignal associated with the time
of initiation of the action itself.

M2isinvolved in the switching decision

The above results point to M2 as a key region for timing the switching
decision by relying on specific DVs. To further test the contribution
of M2 to the implementation of DVs, we partially silenced M2 using
an optogenetic strategy (as inref. 8; Fig. 4a). Specifically, we exam-
ined 43 sessions from six mice, four of which were ChR2-expressing
and two of which were control wild-type littermates that express no
inhibitory opsin implanted and stimulated in the same manner. M2
silencing caused no gross changes in action timing (Extended data
Fig.5), but onlyaslight decreaseinlickingrate (Extended dataFig.5c),
and perhaps atrend for increasing the time spent licking (Extended
dataFig.5d). Because M2 inactivation did not substantially impair the
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optic fibers placement in the brain of VGAT-ChR2 mice, which express the
excitatory opsin channelrhodopsin-2 ininhibitory GABAergic neurons. Bilateral
photostimulation to silence M2 (5 mW power per fiber, 10 ms pulses at 75 Hz)
was triggered by the first lick in 30% of randomly selected bouts and lasted

until the last lick of the bout. b, lllustration of the logistic regression models
forindependently predicting the switching decision of the mouse based on the
DVs during photostimulation (Laser ON) and control bouts (Laser OFF) in each
session (n =43). ¢, Deviance explained from the models inb for each session
(dots) of inactivated mice (violet) and control mice (red). Dots below the identity
indicate the sessions where the model performed worse during photostimulation
of M2. Fixed effect of stimulation (‘Laser’ predictor)—inactivated: -0.04 + 0.02,
P=0.021; control: -0.03 + 0.014, P= 0.054. d, Relative variance explained of

the DVs for predicting the switching decision in ‘Laser OFF’ versus ‘Laser ON
condition. Because both DVs are used as regressors, their relative variances
explained sumto 1. Larger values of the relative variance explained of the
‘consecutive failures’ are colored in pink and indicate that the mouse mainly uses
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theinference-based strategy. Conversely, lower values of the relative variance
explained of ‘consecutive failures’ are equivalent to larger values of relative
variance explained of ‘negative value’ (colored in blue), indicating the mouse
mainly uses the stimulus-bound strategy. e, Variance explained of ‘consecutive
failures’in ‘Laser OFF’ versus ‘Laser ON’ condition. Fixed effect of stimulation—
inactivated: —0.054 + 0.025, P= 0.032; control: -0.012 + 0.009, P=0.22.

f, Variance explained of ‘negative value’ in ‘Laser OFF’ versus ‘Laser ON’ condition.
Fixed effect of stimulation—inactivated: -0.011 + 0.012, P= 0.35; control:

-0.032 £ 0.045, P=0.49.g, Bias term of the logistic regression (intercept) in
‘Laser OFF’ versus ‘Laser ON’ condition. Fixed effect of stimulation—inactivated:
-0.45+0.078, P<107%; control: 0.092 + 0.075, P=0.24. c,e-g, Filled dots indicate
that the effect of photostimulation is significant within single sessions (P < 0.05,
two-sided, estimated using bootstrapping; Methods). To estimate the effect of
photostimulation on the deviance explained across mice and session, we used
the following mixed model (Methods): Dev.Exp. ~1+ Laser + (1+ Laser|Mouse)
+(1+Laser|Session). Dev. Exp., Deviance explained.

motor behavior, we tested if silencing M2 affected the use of the DVs
to time the leaving decision (Fig. 4b). We found that the inactivation
of M2 substantially decreased the predictive power of the DVs (Fig. 4c,
violet). The same protocol applied to control mice had no significant
effect on this behavior (Fig. 4c, red). The photostimulation decreased
the use of the DV ‘consecutive failures’ (Fig. 4d-f), aswell as the leaving
bias (Fig. 4g), making animals lessinference-based and lessimpulsive.
These results suggest that M2 is part of the neural pathway through
which the DVs shape the behavior of the mice.

Neural representation of DVs
The inactivation experiments suggest that one might be able to read
out the DV used by the mouse from M2 neural activity and that M2
mightrepresent this DV better than other cortical regions that afford
less accurate predictions of foraging decisions. To test these ideas,
we used regression-based generalized linear models (GLM; Methods)
to decode the instantaneous magnitude of the DV associated with
the behaviorally dominant strategy (that is, the DV most predictive
of behavior; Fig. 5a,b). The example data from Fig. 5a,b, which are
from a single recording session during which the dominant strategy
of the mouse was the inference (var. exp. consec. fail. = 0.164 versus
var. exp. neg. value = 0.004), show that the related DV ‘consecutive
failures’ could be decoded with high accuracy from M2 activity. In
fact, the dominant DV could be well decoded from M2 activity in all
sessions (n =11) from the different mice (Fig. 5c, black). The decodabil-
ity of dominant DVs was substantially lower in other cortical regions
(Fig. 5¢c, gray and white), consistent with the poorer decoding of leaving
time in other areas (Fig. 2f).

Because we have shown that different mice can rely on different
DVsandindividual mice can change decision strategies across sessions

(Fig.1), we next asked whether session-by-session heterogeneity in deci-
sion strategy could be explained by the degree to which M2 neurons
reflected the DVs in each session. Here we used the GLM to compare
the decoding of the dominant and the alternative DVs from M2 neurons
in eachrecording session (Fig. 5a,d). Contrary to our expectation, we
found that decoding was similar between the dominant and alternative
decision strategies. For instance, inthe example session of Fig. 5a,b,d,
despite the selectivity of the behavior for inference-based decisions,
the DV supporting the stimulus-bound strategy could also be well
decoded from M2. This finding was consistent across our experiments—
inall sessions, the DVs could both be read out from M2 activity (Fig. Se
and Extended DataFig. 6). Onaverage, the ‘consecutive failures’ DV was
somewhat better represented than the ‘negative value’ (Fig. 5e). This
average difference could stem from the fact that the majority of mice
(8 of 11) used the inference-based strategy that relies on the ‘consecu-
tive failures’. Thus, to test whether the DV that was most predictive of
the switching decision was also the one that was better decoded from
M2 on a session-by-session basis, we predicted the decision to switch
sites fromeach DV (Fig. 4f) and compared the accuracy of this predic-
tion to the accuracy of the neural representations of the DVs (Fig. 5g).
There was no correlation between how M2 represented each DV in a
session and how well the DV predicted behavior in the same session
(P=0.9). Together these analyses suggest that whereas M2 neural
activity isimportant to the execution of a decision strategy (Fig.4), the
patternof neuralactivity in M2 is not adapted to represent specifically
the DV executed by the mouse, and instead reflects abroader range of
decision strategies even when they are not currently used.

To further characterize the multiplexing of DVs in M2, we asked
whether different variables are supported by distinct or overlapping
populations. We examined the weights assigned to each neuron when
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Fig. 5| Neural representation of DVs. a, The regression models take as
predictors the activity of simultaneously recorded neurons (black traces) and
derive aset of decoding weights to predict the DV. The method is applied during
eachbout (n =223 + 119 bouts per session; mean + s.d.) on a lick-by-lick basis—
from the responses of neurons (the putative single units) in each recorded brain
region. b, Predictions of the model (black trace is the weighted sums of neural
activity) overlaid onto the ‘consecutive failures’ DV (pink trace). ¢, Deviance
explained across sessions (n = 11 sessions, median + 25th and 75th percentiles,
the whiskers extend to the most extreme data points) from the modelinaandb
ineach cortical region. The stars indicate the significance of two-sided Wilcoxon
signed rank tests (P=0.00098 between M2 and OFC; P= 0.00098 between M2
and OLF; P=0between OFC and OLF). d, Predictions of the model (black trace is
the weighted sums of neural activity) overlaid onto the ‘negative value’ DV (blue
trace). e, Deviance explained across sessions (n = 11 sessions, median +25th and
75th percentiles, the whiskers extend to the most extreme data points) predicted
from M2 neurons for each DV. Two-sided Wilcoxon signed rank test: P=0.00098.
f, lllustration of the logistic regression methods for predicting the switching
decision of the mouse from each DV separately. g, Correlation between the
neural representations of different DVs (color-coded asinb and d) and how well
each DV predicts behavior. Each dot corresponds to a particular DV from a given
recording session. The linear regression is reported in black. h, Decoding weights
of each M2 neuron (gray dots; total across recording n = 778) for the two different
DVs. Pairwise linear correlation—Pearson coefficient = 0.56, P<10™.

decoding the two DVs (Fig. 5h). We found that decoding weights for
both DVswere strongly correlated, indicating a considerable overlap
between the populations of M2 neurons that supported each DV,
as opposed to compartmentalization into distinct populations for
eachvariable.

Independent representations of DVs

Apossible concernwith theinterpretation that M2 multiplexes used and
unused DVsis that alternative DVs might be decodable only by virtue of
being like the one reflected behaviorally. Although the computations
underlying the two DVs are different, for the sequences of rewards and
failures experienced by the mice, the DVs themselves are correlated
overall (Pearson coefficient: 0.79 + 0.15; mean + s.d.).

As a first strategy to overcome this limitation, we took advan-
tage of the fact that the two different DVs differ in the way that they
treat rewards: while the ‘negative value’ requires negative integra-
tion of rewards, the ‘consecutive failures’ requires a complete reset
by a single reward (Fig. 6a). Analysis of subsets of sequences that
consist of multiple consecutive rewards should therefore reveal the

differences between the two DVs (Fig. 6b). To test this, we sub-selected
lick sequences and sorted them according to the relative number
of rewards and failures. This produced subsequences with varying
degrees of correlation between the two decision variables (Fig. 6¢). We
thenranthe same decoding analyses as before on these subsequences
of M2 activity. We found that the ability to decode the subsequences
was independent of their degree of correlation (Fig. 6d). Our second
approachwastoinvestigate whether we could decode the component
of each DV thatisuncorrelated with the other one, that s, its residual.
Indeed, we could decode the residuals from both DVs from the activity
of M2 populations (Fig. 6e,f). Together, these results establish that the
ability to decode an alternative DV does not arise from the correlation
of that variable with the dominant DV. Interestingly, this approach
revealed that OFC better represented the ‘consecutive failures’, con-
sistent with previous work suggesting that OFC is important for the
inference-based strategy®.

Using only the sequences of trials in which the DVs were fully
decorrelated (Pearson correlation between DVs: 0.03 + 0.02; median
+MAD across session), we again tested the possibility that the DVs that
were best decoded from M2 were the most predictive of behavior (as
in Fig. 5e,g,h). Here the ‘consecutive failures’ remained better rep-
resented than the ‘negative value’ (Fig. 6h). Like the results with the
intact DVs, there was no correlation between how M2 represented each
decorrelated subset of DVs and how well the DV predicted behavior
(Fig. 6i). Thiswas the case evenif the populations of M2 neurons that
supported each decorrelated subset of DVs were nearly orthogonal, as
indicated by the small correlation between decoding weights (Fig. 6j).

DV multiplexing does not reflect strategy switching

While one interpretation of multiplexing is true simultaneous rep-
resentation of multiple DVs, our interpretation is relying on decod-
ing analyses carried out over entire sessions of behavior. Could it be
that multiplexing of DVs results from sequential switching between
the two strategies within a session? To investigate this, we first exam-
ined whether there was any evidence that mice switched strategies
within a session using a framework based on hidden Markov models
(HMM) combined with LM (Methods; ref. 14). The resulting ‘LM-HMM’
framework modeled the number of consecutive failures that the ani-
mal bears before switching sites using the following two inputs: (1)
the total number of rewards, which allows distinguishing between
inference-based (that is reward independent) and stimulus-bound
(that is reward dependent) strategies, as in Fig. 1g, and (2) a constant
bias, which reflects the level of impulsivity of the animal. Each hid-
denstatein the model captures aspecific dependence of consecutive
failures on the total rewards and the bias, characterizing a particular
decision-making strategy.

A model with three states best described the switching decision
and yielded interpretable and persistent states (Fig. 7a and Extended
Data Fig. 7a). One of the states had a large weight on the number of
rewards, indicative of a stimulus-bound strategy, while the other
two had negligible weights on rewards, consistent with the inference
(Fig. 7b and Extended Data Fig. 7b,c). To visualize the temporal struc-
ture of the foraging decision within a session, we computed the pos-
terior probability over the latent states across all behavioral bouts
(Fig. 7¢,d), which revealed that mice mostly remained in discrete
states (average probability of the dominant strategies over all bouts:
0.91+ 0.06; median + MAD across 11 sessions) for many bouts in a
row (average duration of states: 56 + 41 bouts; median + MAD across
sessions), but tended to switch states at least once per session (state
transitionin 8 of 11 sessions; Extended Data Fig. 7d).

Because mice alternated between states of inference-based and
stimulus-bound strategies within the course of their recording session,
we examined whether we could decode better from M2 activity the ‘con-
secutive failures’ DV during the inference-based states than during the
stimulus-bound states (Fig. 7e, pink dots), and vice versa for ‘negative
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value’ DV (Fig. 7e, blue dots). Consistent with the whole-session analysis
(Fig.5g), there were no significant differences between how well agiven
DV could be decoded when the mice’s behavior relied on it or when it
did not. The residual signals after the DVs, which are orthogonalized,
were also decodablein their respective alternate states (Fig. 7f). These
analyses suggest that multiplexing of strategy is not due to the switch
of strategies within a session.

M2 represents foraging algorithms

Giventhat M2 appears to multiplex different DVs, we wondered whether
this might reflect ageneric capacity to represent any signal with similar
temporal characteristics as the DVs in the task, as predicted by the
reservoir computing framework™™". Decoding analyses of artificial
signals with matched temporal statistics revealed this not to be the case
(Extended Data Fig. 8). Therefore, we next considered that the space
of signalsencoded in M2 might be restricted to potentially meaningful
variables generated fromacommon set of essential computations. Here
the two DVs we have been considering could both be conceptualized

Fig. 6 | Independent representations of DVs. a, Two different sequences
relying on different computations involving reset (top) and accumulations
(bottom) of rewards. b, Three example bouts (columns) of population activity
(black traces) projected onto the dimensions that best predict the trajectory
ofthe different sequences (color traces). Only subsequences of consecutive
rewards followed by consecutive failures were selected to visualize the different
computationsina (-5% of bouts). ¢, Selecting subsets of action outcomes

where the total number of failures changes relative to the number of rewards
(abscissa) alters the correlation between sequences generated with the
computationsin a (ordinates). Black dots for each value of the number of failures
represent arecording session. d, How well the sequences relying on the two
different computations can be decoded from M2 (ordinates) as a function of

the correlation between them (median + median absolute deviation or MAD,
across sessions, one-way ANOVA for each sequence across correlation values
followed by multiple pairwise comparison tests, all Pvalues > 0.05). Pink are
sequences that accumulate failures and reset with rewards (equivalent to
‘consecutive failures’). Blue are sequences that accumulate failures upward and
rewards downward (equivalent to ‘negative value’). e, Schematic description of
our strategy to linearly regress each of the two DVs on the other. This approach
allowed us to express DV1 (for example, ‘consecutive failures’) as the sum of
atime series proportional to DV2 (for example, ‘negative value’) plus a time
series orthogonal (uncorrelated) to DV2, which we denote as its residual. Here
the ‘consecutive failures residual’ (gray) is orthogonal to the ‘negative value’
(blue). The same procedure was used to generate the ‘negative value residual’
orthogonal to the ‘consecutive failures’. Both residuals were then fit by M2
neurons. f, Deviance explained across sessions (n = 11 sessions, median + MAD) of
the modelin e. Pink, residual consecutive failures; blue, residual negative value.
Theresiduals relative to each DV were both significantly represented in M2 (two-
sided Wilcoxon rank sum test, P= 0.00098 for both, indicated by the stars). The
size of the pink bar measures how well one can decode the part of ‘consecutive
failure’ orthogonal to ‘negative value’ (residual consecutive failures) and the
size of the blue bar measures how well one can decode the part of ‘negative
value’ orthogonal to ‘consecutive failure (residual negative value)’. If only
‘consecutive failures’ were represented, the residual consecutive failures should
be represented, but the residual negative value would not be represented. On
the other hand, if both DVs are represented, both residuals should be decodable,
asshown herein M2. g, Same as in fbut with OFC neurons. The residuals
‘consecutive failures’ were decodable from OFC ensembles (pink; two-sided
Wilcoxon rank sum test, P= 0.0029), but the residuals ‘negative values’ were not
(pink; Wilcoxon rank sum test, P= 0. 52). h, Deviance explained across sessions
(n=11sessions, median +25th and 75th percentiles, the whiskers extend to the
most extreme data points) predicted from M2 neurons for each decorrelated
subsets of DVs (two-sided Wilcoxon signed rank test: P=0.00098).1i, Correlation
between the neural representations of decorrelated subsets of DVs (color-coded
asinb,dand e) and how well each DV predicts behavior. Each dot corresponds
to aparticular DV subset from a given recording session. The linear regression is
reportedinblack (r*=0.02, P=0.6).j, Decoding weights of each M2 neuron (gray
dots; total across recording n = 778) for the decorrelated different subsets of DVs
(two-sided Pearson coefficient between decoding weights = 0.20, P<107).

asanadaptive, outcome-dependent feedback gain onarunning count.
Forinstance, if werefer to the running count after the t-th lick as x,and
to the outcome of the next lick as o,,; (equal 1 or O if the outcome is a
reward or afailure, respectively), then we can write the update rule
compactly as

Xey1 = 8 (0p41) X + € (0441)

With g(0p41 = 1) = 0, §(0p41 = 0) = 1and € (041 = 1) = € (041 = 0) = 1
for the inference-based DV, and g (0,4, =1) =g(0,4; =0)=1 and
€ (041 = 0) = —c (041 = 1) = Ifor the stimulus-bound DV. This realiza-
tion suggests that a common generative model, which we named the
‘INTEGRATE-AND-RESET model’, can produce these two different DVs
by adjusting certain model parameters (Fig. 8a). The
INTEGRATE-AND-RESET model describes, within asingle algorithmic
framework, the computations necessary to generate, not only the two
DVs considered so far but also other DVsrelevant for avariety of other
commonly studied behavioral tasks. Forinstance, a ‘global count’ (accu-
mulated number of outcomes) DV is related to counting or timing
tasks'™". Similarly, matching tasks involving randomly timed cached
rewards are optimally solved by integrating the difference between
rewards and failures with an exponential decay”. Sequential foraging
in patchy environments is also solved by integrating the difference
betweenrewards and failures, equivalent to tracking the relative ‘neg-
ative value’ of aforaging site”. Other integration tasks, like the ‘Poisson
clicks’ task?*, require perfect integration of two variables. Thus, the
space of DVs generated by the INTEGRATE-AND-RESET model covers
alarge space of tasks that have been studied in the lab and might be
useful in different behavioral contexts.

Allnontrivial time series produced by the INTEGRATE-AND-RESET
model can be expressed as linear combinations of four basis sequences
(Fig.8a; Methods). The two sequencesinvolving reset describe integra-
tion of failures and reset by rewards (‘consecutive failures’) and vice
versa (‘consecutive rewards’). The two sequences for accumulation
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Fig.7|Simultaneous representations of DVs. a, lllustration of the LM-HMM,
with three different states corresponding to different decision-making strategies
(labeled ‘stimulus-bound’, ‘persistent inference’ and ‘impulsive inference’).

The high self-transition probabilities of 0.94, 0.97 and 0.98 indicate that states
typically persist for many consecutive bouts. The transition probabilities are
indicated by the arrows between states. b, LM weights for the three-state model
fit to all sessions simultaneously. ¢, Posterior state probabilities (computed with
Gaussian prior on the weights and Dirichlet prior on transition probabilities) for
an example session showing that states typically persisted for many consecutive
bouts with high model confidence but transitioned once or twice over the course
ofasession. d, Behavioral dataand model parameters of the example session.
The gray line indicates the number of consecutive failures (that is, observations
of LMs). The shaded color background indicates the high confidence state

(P (state) > 0.75). Dash black lines indicate the LMs bias and weights in each state.

e, Deviance explained from models that fit M2 neurons to the DVs (pink dots,
consecutive failures; blue dots, negative value) in different states (high model
confidence, indicated by the color background). High confidence intervals were
defined as P (state) > 0.75 for at least 25 consecutive bouts. Each dotis arecording
session. Comparisons between pairs of states were made with two-sided
Wilcoxon rank sum test (P> 0.05 for all comparisons). f, Deviance explained
across sessions (n = 11 sessions, median + 25th and 75th percentiles, the whiskers
extend to the most extreme data points) from models that fit M2 neurons to

the residual DVs in their respective alternate states of high certainty. Left is the
residual consecutive failures (the signal that is orthogonal to the negative value
DV) in the stimulus-bound state. Right is the residual negative value (the signal
thatis orthogonal to the consecutive failure DV) in the inference-based states.
Starsindicate that the deviance explained is significantly different from zero
(two-sided Wilcoxon rank sum test; left, P= 0.031; right, P= 0.016).

without reset are upwards integration of both rewards and failures
(equivalent to‘count’) and integration upwards of rewards and down-
wards of failures (equivalent to ‘negative value’). We already know
that M2 simultaneously represents two of these basis elements (‘con-
secutive failures” and ‘negative value’). Thus, we tested whether M2
also represented the two additional basis sequences. We found that,
indeed, ‘consecutive reward’and ‘count’ could be decoded from the M2
population (Fig. 8b) and remained decodable from the M2 population
when using the subsequences that decorrelate the variables (Fig. 8c).

The INTEGRATE-AND-RESET model can be extended, through
analog values of ‘g’, to produce sequences with different dynamics and
various time constants (Fig. 8d, left). Note that adjusting analog param-
eter values can directly relate the INTEGRATE-AND-RESET model to
frameworks of reinforcement learning with differential learning, where
the ‘reset’is equivalenttoavery large negative rate of decay. Therefore,
we further tested the richness of the actual INTEGRATE-AND-RESET
model family instantiated by M2 by decoding sequences generated
with analog ‘g’. We found that M2 could also represent leaky integra-
tionof rewards and failures, and even amplification with small positive
feedback (g(o..,) <1.2 (Fig. 8d, right). Comparing across this param-
eter space (Fig. 8e), we observed that M2 had a preferred mode of
integration that consisted of mostly perfect integration of failures
(0.85<g(0,,,=0) <1) and integration of rewards with a variety of time
constants (g(o,,; =1) <1). Altogether, our results show that M2 simulta-
neously represents arelatively large repertoire of computations that
embody avariety of foraging DVs, potentially spanning aset of optimal
strategies for environments with different dynamics for the latent state.

Discussion

We explored the capacity of several regions of the cortex to deploy dif-
ferent algorithms for generating a diversity of DVs. We studied this in
the context of aforaging task whose solution required mice to process

streams of successful and unsuccessful foraging attempts executed
over several seconds. We found that mice could use not one but aset of
discrete processing strategies to time their decision to switch between
foraging sites, and the LM-HMM framework revealed that mice often
change strategies withinasession. All the decision strategies could be
wellread out from populations of neurons in M2. Moreover, we found
the set of potentially relevant DVs was implemented in parallel within
the same neural populations in M2. Conversely, OFC did not appear
to multiplex DVs, consistent with the idea that it may be specifically
involved in the computations of the inference-based strategy®.

While ‘causal’ manipulations of M2 using optogenetic inac-
tivation showed that M2 was important to the deployment of the
inference-based strategy, we found that the neural availability of alter-
native DVs was nearly independent of the actual behaviorally deployed
DV. Functionally, the ability of M2 to multiplex the computation of
several DVs could allow the mice to rapidly explore and adapt behav-
ior to dynamically changing environmental contingencies by simply
modifying linear readouts of M2 neural populations?*?* without the
need toimplement new computations.

The different DVs in M2 were ‘mixed’ but could be recovered
through linear decoding. Although multiplexed neural codes have
been observed previously in other cortical regions™®*2%, our results
establish that the kind of information thatis multiplexed is not limited
to representations of instantaneously observable events in premo-
tor regions but also includes temporally extended computations
spanning several seconds. While the observation of multiplexed DVs
is reminiscent of the framework of ‘reservoir’ computing'>"7?°, we
found that M2’s coding capacity was not universal, and instead imple-
mented asubstantial but circumscribed pool of potentially meaning-
ful computations. One computation is accumulation of evidence,
which, through its intimate relationship with posterior beliefs***,
constitutes an essential computation for statistical inference and
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INTEGRATE-AND-RESET model parameters:
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Fig.8|M2represents foraging algorithms. a, The INTEGRATE-AND-RESET
model with four parameters generates different time series by accumulating,
resetting or ignoring each possible event (reward or failure). In the simplest
instantiation of this model, the two outcome-dependent parameters are discrete:
oneis again factor (g) that specifies whether the running count should be reset
or accumulated by each outcome—a nonlinear operation—and the other (c)
specifies how each outcome linearly contributes to the resulting running count,
whichin general could be positive, negative or zero (leaving it unaffected; see
Methods for more details). Each specification of these two discrete parameters
leads to a different DV example set of parameters yielding example DVs on the
right. b, Four example bouts (columns) of population activity (black traces)
projected onto the dimensions that best predict the trajectory of the ‘consecutive
rewards’ (green) and ‘count’ (yellow). Only subsequences of consecutive rewards
followed by consecutive failures were selected to highlight the computations
underlying the different variables. ¢, Deviance explained across sessions (n =11
sessions, median + 25th and 75th percentiles, the whiskers extend to the most
extreme data points) of the four basis sequences decoded from M2 population
activity. The sequences were decorrelated using the same method as in Fig. 6¢,d.
Two-sided Wilcoxon signed rank test: P= 0.002 for ‘consecutive reward’ and
P=0.00098for ‘count’.d, Left, example sequences (gray) produced by analog
parameters (convergent: c(0,,, = 0) =c(0,,,=1) =land g(0,,,= 0) =g(0,,,=1) = 0.5;
divergent: c(o,., = 0) =c(0,,,; =1) =1and g(0,,; = 0) = g(0,,, =1) = 1.15). Black traces
are the neural projection from M2 population activity. Right, deviance explained
from decoding convergent and divergentintegrations by M2 population activity
(n=11sessions, median + MAD). Here we show an example where the parameters
of the INTEGRATE-AND-RESET model are as follows: c(0,.; = 0) = c(0,,;=1) =1and
8(0,,,=0)=g(0,,=1).e,Matrix of deviance explained from decoding sequences
with different time constants (corresponding to different values of g) of integ-
rations of rewards (columns) and failures (rows) with M2 population activity.
The basis sequences are indicated by the color-coded squares.

has therefore been implicated in a variety of decision-making and
reasoning tasks”>**°, Accumulation (possibly temporally discounted)
of action outcomes also underlies several reinforcement-learning
algorithms®*°, Although less attention has been devoted to reset-like
computations (but see ref. 41), they are also essential for inference
when certain observations specify a state unambiguously®.

The two strategies that we describe in the context of foraging
representaparticular example of amore general phenomenon. In com-
plex environments, agents can adapt their behavior in different ways
depending on how accurately they can infer and specify the relevant
causal structure®, a process that can be described as finding the cor-
rect ‘task representation’. Even if unable to apprehend the true causal
model, agents can display reasonably well-adapted behavior by lever-
aging the predictive power of salient environmental events. However,
because the task representationis not correct, the association between
these events and outcomes will necessarily be more probabilistic from
the point of view of the agent. Such agentsincorrectly model outcome

variance arising from incomplete task representations as unexplain-
able, and often resort to exploratory strategies that are adaptive in
what they construe as highly volatile environments* . Our results
suggest that, at least in the case of foraging, the computations neces-
sary toimplement strategies lying along this continuumare computed
simultaneously and available, which might facilitate the process of
‘insight’ necessary to switch between them.

Our finding also speaks to the debate on the nature of serial pro-
cessing limitationsin the brain. While it has been shown that limitations
apply insome kinds of evidence accumulation tasks>**¢, here we show
inadifferent, but ethologically important, setting that some forms of
evidence accumulation can proceed in parallel. An important differ-
ence between our task and standard behavioral paradigms that study
cognitive bottlenecks is that our mice do not need to simultaneously
compute two DVs to perform the task successfully. Nevertheless, we
show that neural populations in the premotor cortex of mice using a
strategy where asingle reward resets a counter of failures, reveal both
this reset and simultaneously the updating of a reward counter. Our
findings are thus consistent with proposals favoring parallel integra-
tion*”** and with models that place serial constraints on behavior close
to the specification of the timing of action*"*’.

Online content
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References

1. Niv, Y. Learning task-state representations. Nat. Neurosci. 22,
1544-1553 (2019).

2. Kang, Y. H. et al. Multiple decisions about one object involve
parallel sensory acquisition but time-multiplexed evidence
incorporation. eLife 10, 63721 (2021).

3. Pashler, H. Processing stages in overlapping tasks: evidence for
a central bottleneck. J. Exp. Psychol. Hum. Percept. Perform. 10,
358-377(1984).

4. Sigman, M. & Dehaene, S. Parsing a cognitive task: a
characterization of the mind’s bottleneck. PLoS Biol. 3,
e37(2005).

5. Scott, B. B. et al. Fronto-parietal cortical circuits encode
accumulated evidence with a diversity of timescales. Neuron 95,
385-398 (2017).

6. Bernacchia, A., Seo, H., Lee, D. & Wang, X.-J. A reservoir of time
constants for memory traces in cortical neurons. Nat. Neurosci.
14, 366-372 (2011).

7. Cazettes, F., Reato, D., Morais, J. P., Renart, A. & Mainen, Z. F.
Phasic activation of dorsal raphe serotonergic neurons increases
pupil size. Curr. Biol. 31,192-197 (2021).

8. Vertechi, P. et al. Inference-based decisions in a hidden state
foraging task: differential contributions of prefrontal cortical
areas. Neuron 106, 166-176 (2020).

9. Jun, J. J. etal. Fully integrated silicon probes for high-density
recording of neural activity. Nature 551, 232-236 (2017).

10. Murakami, M., Vicente, M. |., Costa, G. M. & Mainen, Z. F. Neural
antecedents of self-initiated actions in secondary motor cortex.
Nat. Neurosci. 17,1574 (2014).

1. Li,N., Chen, T.-W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor
cortex circuit for motor planning and movement. Nature 519,
51-56 (2015).

12. Siniscalchi, M. J., Phoumthipphavong, V., Ali, F., Lozano, M.

& Kwan, A. C. Fast and slow transitions in frontal ensemble
activity during flexible sensorimotor behavior. Nat. Neurosci. 19,
1234-1242 (2016).

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01305-8

Article

https://doi.org/10.1038/s41593-023-01305-8

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Recanatesi, S., Pereira-Obilinovic, U., Murakami, M., Mainen, Z. &
Mazzucato, L. Metastable attractors explain the variable timing of
stable behavioral action sequences. Neuron 110, 139-153 (2022).
Ashwood, Z. C. et al. Mice alternate between discrete strategies
during perceptual decision-making. Nat. Neurosci. 25, 201-212
(2022).

Enel, P, Procyk, E., Quilodran, R. & Dominey, P. F. Reservoir
computing properties of neural dynamics in prefrontal cortex.
PLoS Comput. Biol. 12, e1004967 (2016).

Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science
304, 78-80 (2004).

Sussillo, D. & Abbott, L. F. Generating coherent patterns

of activity from chaotic neural networks. Neuron 63,

544-557 (2009).

Mello, G. B. M., Soares, S. & Paton, J. J. A scalable

population code for time in the striatum. Curr. Biol. 25,

1113-1122 (2015).

Simen, P., Balci, F., deSouza, L., Cohen, J. D. & Holmes, P. A model
of interval timing by neural integration. J. Neurosci. 31, 9238-9253
(20Mm).

Sugrue, L. P, Corrado, G. S. & Newsome, W. T. Matching behavior
and the representation of value in the parietal cortex. Science
304, 1782-1787 (2004).

Hayden, B. Y., Pearson, J. M. & Platt, M. L. Neuronal basis of
sequential foraging decisions in a patchy environment. Nat.
Neurosci. 14, 933-939 (2011).

Brunton, B. W., Botvinick, M. M. & Brody, C. D. Rats and humans
can optimally accumulate evidence for decision-making. Science
340, 95-98 (2013).

Xiong, Q., Znamenskiy, P. & Zador, A. M. Selective corticostriatal
plasticity during acquisition of an auditory discrimination task.
Nature 521, 348-351(2015).

Drugowitsch, J., Mendonga, A. G., Mainen, Z. F. & Pouget, A.
Learning optimal decisions with confidence. Proc. Natl Acad. Sci.
USA 116, 24872-24880 (2019).

Kobak, D. et al. Demixed principal component analysis of neural
population data. eLife 5, 10989 (2016).

Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T.
Context-dependent computation by recurrent dynamics in
prefrontal cortex. Nature 503, 78-84 (2013).

Raposo, D., Kaufman, M. T. & Churchland, A. K. A category-free
neural population supports evolving demands during
decision-making. Nat. Neurosci. 17, 1784-1792 (2014).

Rigotti, M. et al. The importance of mixed selectivity in complex
cognitive tasks. Nature 497, 585-590 (2013).

Tanaka, G. et al. Recent advances in physical reservoir computing:
a review. Neural Netw. 115, 100-123 (2019).

Wald, A. Sequential Analysis (John Wiley & Sons, 1947).
Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M.
N. & Pouget, A. The cost of accumulating evidence in perceptual
decision making. J. Neurosci. 32, 3612-3628 (2012).

Gold, J. I. & Shadlen, M. N. Banburismus and the brain: decoding
the relationship between sensory stimuli, decisions, and reward.
Neuron 36, 299-308 (2002).

Glaze, C. M., Kable, J. W. & Gold, J. I. Normative evidence
accumulation in unpredictable environments. eLife 4,

e08825 (2015).

34. Krajbich, I. & Rangel, A. Multialternative drift-diffusion model
predicts the relationship between visual fixations and choice
in value-based decisions. Proc. Natl Acad. Sci. USA 108, 13852~
13857 (2011).

35. Yang, T. & Shadlen, M. N. Probabilistic reasoning by neurons.
Nature 447,1075-1080 (2007).

36. Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural
circuits in the frontal cortex. Science 364, eaav8911 (2019).

37. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An
Introduction (MIT Press, 1998).

38. Kaelbling, L. P, Littman, M. L. & Cassandra, A. R. Planning and
acting in partially observable stochastic domains. Artif. Intell. 101,
99-134 (1998).

39. Rao, R. P.N. Decision making under uncertainty: a neural model
based on partially observable Markov decision processes. Front.
Comput. Neurosci. 4,146 (2010).

40. Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty and
value in prefrontal and cingulate cortex. Nat. Neurosci. 11,
389-397 (2008).

41. Hermoso-Mendizabal, A. et al. Response outcomes gate the
impact of expectations on perceptual decisions. Nat. Commun.
11,1057 (2020).

42. Gershman, S. J. & Niv, Y. Learning latent structure: carving nature
at its joints. Curr. Opin. Neurobiol. 20, 251-256 (2010).

43. Thompson, W. R. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples.
Biometrika 25, 285-294 (1933).

44. Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y.
Orbitofrontal cortex as a cognitive map of task space. Neuron 81,
267-279 (2014).

45. Pisupati, S., Chartarifsky-Lynn, L., Khanal, A. & Churchland, A.

K. Lapses in perceptual decisions reflect exploration. eLife 10,
55490 (2021).

46. Zylberberg, A., Ouellette, B., Sigman, M. & Roelfsema, P. R.
Decision making during the psychological refractory period. Curr.
Biol. 22,1795-1799 (2012).

47. Cisek, P. Cortical mechanisms of action selection: the affordance
competition hypothesis. Philos. Trans. R. Soc. B Biol. Sci. 362,
1585-1599 (2007).

48. Gallivan, J. P, Logan, L., Wolpert, D. M. & Flanagan, J. R. Parallel
specification of competing sensorimotor control policies for
alternative action options. Nat. Neurosci. 19, 320-326 (2016).

49. Klapp, S.T., Maslovat, D. & Jagacinski, R. J. The bottleneck of the
psychological refractory period effect involves timing of response
initiation rather than response selection. Psychon. Bull. Rev. 26,
29-47 (2019).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2023

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-023-01305-8

Methods

Data and processing

Animal subjects. A total of 27 adult male and female mice (24 C57BL/6)
and 6 VGAT, 2-9 months old) were used in this study. All experimental
procedures were approved and performed in accordance with the
Champalimaud Centre for the Unknown Ethics Committee guidelines
and by the Portuguese Veterinary General Board (Direco-Geral de Veter-
inria, approval 0421/000/000/2016). Mice were housed inindividually
ventilated cagesunderanormal12 hlight/12 hdark cycle, temperature
was maintained between 19 °C and 23 °C and humidity between 50%
and 65%. During training and recording, mice were water-restricted
(starting 5-10 d after head-barimplantation), and sucrose water (10%)
was available to themonly during the task. Mice were given1 ml of water
or 1g of hydrogel (clear H,0) on days when no training or recording
occurred or if they did not receive enough water during the task.

Surgery and head fixation. All surgeries used standard aseptic proce-
dures. Mice were deeply anesthetized with 4% isoflurane (by volume
in O,) and mounted in a stereotaxic apparatus (Kopf Instruments).
Mice were kept on a heating pad and their eyes were covered with
eye ointment (Vitaminoftalmina A). During the surgery, the anesthe-
sia levels were adjusted between 1% and 2% to achieve 1s™ breath-
ing rate. The scalp was shaved and disinfected with 70% ethanol and
betadine. Carprofen (nonsteroidal anti-inflammatory and analgesic
drug, 5 mg kg™) was injected subcutaneously. A flap of skin (less than
1cm?) was removed from the dorsal skull with a single cut and the
skull was cleaned and dried with sterile cotton swabs. The bone was
scraped withadelicate bone scraper tool and covered with a thin layer
of cement (C&B Super-Bond). Four small craniotomies were drilled
(HM1 005 Meisinger tungsten) between Bregma and Lamba (around
-0.5and -1 AP; +1 ml) and four small screws (Antrin Miniature Speciali-
ties, 000-120 x 1/16) previously soaked in 90% ethanol, were inserted
in the craniotomies to stabilize the implant. The head bar (stainless
steel,19.1 x 3.2 mm), previously soaked in 90% ethanol, was positioned
directly ontop of the screws. Dental cement (Tab2000 Kerr) was added
tofixtheheadbarinpositionandtoformawellaroundthe frontalbone
(from the head bar to the coronal suture). Finally, an external ground
for electrophysiological recording (a male pin whose one extremity
touched the skull) was cemented onto the head bar.

Behavioral apparatus. Head-fixed mice were placed on alinear tread-
mill with a 3D-printed plastic base and a conveyor belt made of Lego
small tread links. The running speed on the treadmill was monitored
with amicrocontroller (Arduino Mega 2560), which acquired the trace
of an analog rotary encoder (MAE3 Absolute Magnetic Kit Encoder)
embedded in the treadmill. The treadmill could activate two mov-
able arms via coupling with two motors (Digital Servo motor Hitec
HS-5625-MG). A lick-port, made of a cut and polished 18G needle, was
glued at the extremity of each arm. Water flowed to the lick-port by
gravity through water tubing and was controlled by calibrated solenoid
valves (Lee Company). Licks were detected in real-time with acamera
(Sony PlayStation 3 Eye Camera or FLIR Chameleon-USB3) located on
the side of the treadmill. Using BONSAI*°, an open-source visual pro-
gramming language, a small, squared region of interest was defined
around the tongue. To detect the licks, a threshold was applied to
the signal within the region of interest. The behavioral apparatus was
controlled by microcontrollers (Arduino Mega 2560) and scientific
boards (Champalimaud Hardware platform), whichwere responsible
forrecording the time of the licks and the running speed on the tread-
mill, and for controlling water-reward delivery and reward depletion
according to the statistics of the task.

Task design. Inthe foraging task, two reward sites, materialized by two
movable arms, could be exploited. Mice licked at a given site to obtain
liquid reward and decided when to leave the current site to explore the

other one. Eachsite could bein one of the following two states:‘ACTIVE,
which is delivering probabilistic reward, or INACTIVE’, which is not
delivering any reward. If one of the sites was ‘ACTIVE’, the other one
was automatically INACTIVE'. Eachlick at the sitein the ‘ACTIVE’ state
yielded reward with a probability of 90% and could cause the state to
transition to INACTIVE’ with a probability of 30%. Licks could trigger
the state of the exploited site to transition from ‘ACTIVE’ to ‘INACTIVE,,
but never the other way around. Notably, this transition was hidden
from the animal. Therefore, mice had to infer the hidden state of the
exploitedsite from the history of rewarded and unrewarded licks (that
is, rewards and failures). We defined ‘behavioral bout’ as the sequence
of consecutive licks at one spout. A tone (150 ms, 10 kHz) was played
when one of the arms moved into place (that is, in front of the mouse)
to signal that a bout could start. At the tone, the closed loop between
the motors and the treadmill decoupled during 1.5 s or until the first
valid lick was detected. During this time, mice had to ‘STOP’, that is,
decrease their running speed for more than 250 ms below a threshold
for movement (6 cms™). Licks were considered invalid if they hap-
pened before ‘STOP’ or at any moment after ‘STOP’ if the speed was
above the threshold. If amouse failed to ‘STOP’, ‘LEAVE’ was triggered
by reactivating the closed loop after 1.5 s, which activated the move-
ment of the arms (the one in front moved away and the other moved
into place). Mice typically took around 200 ms to ‘STOP’ and initiate
valid licking. During the licking periods, each lick was rewarded in a
probabilistic fashion by a small drop of water (1 pl). The small reward
size ensured that there was no strong differencein licking rate between
rewarded and unrewarded licks. To ‘LEAVE’, mice had torestart running
above the threshold for movement for more than 150 ms and travel a
fixed distance on the treadmill (around 16 cm) toreach the other arm.
We defined as correct bouts the ones in which mice stopped licking
after the states transitioned from ‘ACTIVE’ to ‘INACTIVE'. Error bouts
were ones in which mice stopped licking before the state transition
occurred. In this case, mice had to travel double the distance to get
backtothearmin‘ACTIVE’ state. Missed bouts were ones in which mice
alternated between arms without any valid lick. These ‘missed bouts’
were excluded from our analysis.

Mouse training. Mice were handled by the experimenter from3to7d,
starting from the beginning of the water restriction and before the first
training session. At the beginning of the training, mice were acclima-
tized tothe head fixation and to thearm movement and received liquid
reward simply by licking at the lick-port. The position of the lick-ports
relative to the snout of the mouse had an important effect on behav-
ioral performances. Thus, to ensure that the position of the lick-ports
remained unchanged across experimental sessions, it was carefully
adjusted on the first session and calibrated before the beginning of
every other session. There were no explicit cues that allow discriminat-
ingbetween the two arms, and it was not even necessary that the animal
be fully aware of the two different arms to perform the task. After mice
learnedtolick for water reward (typically after one or two sessions), the
next sessions consisted of an easier version of the task (with alow prob-
ability of state transition, typically 5% or 10%, and high probability of
reward delivery, 90%),and both armsin‘ACTIVE' state. That way, if mice
alternated between arms before the states of the sites transitioned, the
otherarm would sstill deliver reward and animals would not receive the
travel penalty. Occasionally, during the early phase of training, manual
water delivery was necessary to motivate the mice to lick or stop run-
ning. Alternatively, it was sometimes necessary to gently touch the tail
ofthe animals, such that they started to run and gradually associated
running with the movement of the arms. The difficulty of the following
sessions was progressively increased by increasing the probability of
state transition if the performance improved. Performance improve-
mentwas indicated by anincrease in the number of bouts and licking
rate, and by adecrease in the average time of different events within a
bout. Mice were then trained for at least five consecutive days on the
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final task (90% reward delivery, 30% chance of state transition) before
the recording sessions. The reason for choosing these statistics is
that they correspond to a level of environmental uncertainty that is
relatively low. This allows the mice to learn the task faster than at a
high level of uncertainty and to remain highly motivated during the
recording sessions, thus yielding alarge number of behavioral bouts.

Electrophysiology. Recordings were made using electrode arrays
with 374 recording sites (Neuropixels ‘Phase3A’). The Neuropixels
probes were mounted on a custom 3D-printed piece attached to a
stereotaxic apparatus (KopfInstruments). Before each recording ses-
sion, the shank of the probe was stained with red-fluorescent dye (Dil
Vybrant; Thermo Fisher, V22885) to allow later track localization. Mice
were habituated to the recording setup for a few days before the first
recording session. Before the first recording session, mice were briefly
anesthetized withisoflurane and administered a nonsteroidal analgesic
(carprofen) before drilling one small craniotomy (1 mm diameter) over
the secondary motor cortex. The craniotomy was cleaned with a sterile
solution and covered with silicone sealant (Kwik-Sil, World Precision
Instruments). Mice were allowed to recover in their home cages for
several hours before the recording. After head fixation, the silicone
sealant wasremoved, and the shank of the probe was advanced through
the duraandslowly lowered toits final position. The craniotomies and
the ground pin were covered with a sterile cortex buffer. The probe
was allowed to settle for 10-20 min before starting recording. Record-
ings were acquired with SpikeGLX Neural recording system (https://
billkarsh.github.io/SpikeGLX/) using the external reference setting
and again of 500 for the AP band (300 Hz high passfilter). Recordings
were made from either hemisphere. The target location of the probe
corresponded to the coordinates of the anterior lateral motor cortex;
aregion of the secondary motor cortex important for motor planning
of licking behavior™. The probe simultaneously traversed the OFC,
directly ventral to the secondary motor cortex and the probetip ended
inthe OLF, ventral to the OFC.

Histology and probe localization. After the recording session, mice
were deeply anesthetized with ketamine/xylazine and perfused with 4%
paraformaldehyde. The brain was extracted and fixed for 24 hin para-
formaldehyde at 4 °C, and then washed with 1% phosphate-buffered
saline. The brain was sectioned at 50 pm, mounted on glass slides and
stained with DAPI. Images were taken at x5 magnifications for each
section using a Zeiss Axiolmager at two different wavelengths (one
for DAPland one for Dil). To determine the trajectory of the probe and
approximate the location of the recording sites, we used SHARP-Track™,
anopen-source tool for analyzing electrode tracks fromslice histology.
First, aninitial visual guess was made to find the coordinates fromthe
Allen Mouse Brain Atlas (3D Allen CCF, http://download.alleninstitute.
org/informatics-archive/current-release/mouse_ccf/annotation/)
for each Dil mark along the track by comparing structural aspects of
the histological slice with features in the atlas. Once the coordinates
wereidentified, sliceimages wereregistered to the atlas using manual
input and a line was fitted to the Dil track 3D coordinates. As a result,
the atlas labels along the probe track were extracted and aligned to
the recording sites based on their location on the shank. Finally, we
alsoused characteristic physiological features torefine the alignment
procedure (that s, clusters of similar spike amplitude across cortical
layers, low spike rate between frontal and olfactory cortical boundaries
or LFPsignatures in deep olfactory areas).

Optogenetic stimulation. To optically stimulate ChR2-expressing
VGAT-expressing GABAergic interneurons, we used blue light from
a473-nm laser (LRS-0473-PFF-00800-03, Laserglow Technologies,
Toronto, Canada, or DHOM-M-473-200, UltraLasers, Newmarket,
Canada). Light was emitted from the laser through an optical fiber
patch-cord (200 um, 0.22 NA, Doric lenses), connected to a second

fiber patch-cord with a rotatory joint (FRJ 1x1, Doric lenses), which in
turn was connected to the chronically implanted optic fiber cannulas
(M3 connector, Doric lenses). The cannulas were inserted bilaterally
inside small craniotomies performed on top of M2 (+2.5 mm anterior
and 1.5 mm lateral of bregma) and barely touched the dura (as to avoid
damaging superficial cortical layers). Structural glue (Super-bond
C&B kit) was used to fix the fiber to the skull. The power of the laser
was calibrated before every session using an optical power meter kit
(Digital Console with Slim Photodiode Sensor, PM100D, Thorlabs).
During the foraging task, the optical stimulation (10-ms pulses, 75s7,
5mW)wasturned on during 30% of randomly interleaved bouts. Light
delivery started when the first lick was detected and was interrupted
if the animal did not lick for 500 ms (which was in 98% of bouts after
thelastlick of the bouts).

Preprocessing neural data. Neural data were preprocessed as
described previously*?. Briefly, the neural data were first automati-
cally spike-sorted with Kilosort2 (https://github.com/MouseLand/
Kilosort) using MATLAB (MathWork). To remove the baseline offset
ofthe extracellular voltage traces, the median activity of each channel
was subtracted. Then, to remove artifacts, traces were ‘common aver-
age referenced’ by subtracting the median activity across all channels
at each time point. Second, the data were manually curated using an
open-source neurophysiological data analysis package (Phy: https://
github.com/kwikteam/phy). This step consisted in categorizing each
cluster of events detected by a particular Kilosort template into agood
unitoranartifact. There were several criteriatojudge acluster as noise
(nonphysiological waveform shape or pattern of activity across chan-
nels, spikes with inconsistent waveform shapes within the same cluster,
very low-amplitude spikes and high contamination of the refractory
period). Units labeled as artifacts were discarded in further analyses.
Additionally, each unit was compared to spatially neighboring units with
similar waveforms to determine whether they should be merged, based
on cross-correlogram features and/or drift patterns. Units passing all
these criteriawere labeled as good and considered toreflect the spiking
activity ofasingle neuron. For allanalyses, otherwise noted, we averaged
foreachneuronthe number of spikesinto bins by consideringa200 ms
window centered around eachlick. Thebin vectors were then z-scored.
Because the interval between each lick was on average around 150 ms,
there was little overlap between two consecutive bins and each bin
typically contained the number of spikes associated with only one lick.

Statistics and reproducibility

No statistical method was used to predetermine the sample size. The
number of mice (n =27 total) was chosen based on the current standard
used for mice inneuroscience for sufficient statistical power. Randomi-
zation was used for stimulus presentation in all the experiments. The
experimenter was blind to the genotype of the mice when performing
opticfiberimplantations and running the optogenetics experiments.
For other experiments, no comparison across groups was made, there-
fore blinding was not necessary.

Statistical analysis of optogenetic manipulations. The statisti-
cal analysis of optogenetics was performed using generalized linear
mixed-effect models, allowing us to pool different sessions of different
miceinthe same model. Our Nis thus the number of mice multiplied by
the number of sessions and conditions (Laser OFF/ON). The different
groups (control versusinactivated) had different numbers of mice and
sessions, which arereported in the results section. For each group, we
fitted models with fixed effects of stimulation and random intercepts
and effects of stimulation depending on mouse identity and session.
For each mixed model, we report the coefficient of the fixed effect of
the stimulation predictor (Laser) +s.d. of the estimate. We also report
the Pvalue that corresponds to the ¢-statistic for a hypothesis test that
the coefficient of the ‘Laser’ predictor is equal to O.
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To describe mixed models, we use the Wilkinson notation, with |
denoting random effects. For example, the formula:

TimeLicking ~ 1 + Laser + (1 + Laser|[Mouse) + (1 + Laser|Session),

uses as predictors for the time spent licking at aforaging site a constant
intercept, a coefficient for ‘Laser ON’ condition that is different from
‘Laser OFF condition, whichis considered as baseline, arandom inter-
ceptacross mice and arandom intercept across sessions.

To test the strength of the effect of stimulation on the DVsineach
single session, we generated 1,000 resamples of behavioral bouts in
each ‘Laser OFF’ versus ‘Laser ON’ condition and used independent
GLMsto predict the switching decision fromthe DVs for eachresample.
We compared the deviance explained of the models and the explained
variance by each DV in ‘Laser OFF’ versus ‘Laser ON’ condition and
estimated the significance of the differences. In the plot in Fig. 3, the
sessions where Pvalue < 0.05 are indicated by filled dots.

Predicting choice from DVs. All data analyses were performed with
custom-written software using MATLAB. We used logistic regression™
to estimate how DVs predicted the choice of the animal (that is, the
probability that the current lick is the lastin the bout). Using GImnet for
Matlab (http://www.stanford.edu/~hastie/glmnet_matlab/) with bino-
mial distribution, model fits were performed with DVs as predictors.
We used fivefold nested cross-validation and elastic net regularization
(a=0.5). To assess a metric of model fit, we calculated the deviance
explained (as implemented by the devianceTest function in Matlab).
The deviance explainedis aglobal measure of fit thatis ageneralization
ofthe determination coefficient (rsquared) for GLM. Itis calculated as

residual deviance

Deviance explained =1 — -
null deviance

Theresidual deviance is defined as twice the difference between
the log-likelihoods of the perfect fit (that s, the saturated model) and
the fitted model. The null devianceis the residual deviance of the worst
fit (thatis, the modelthat only contains anintercept). Thelog-likelihood
of the fitted model is always smaller than the log-likelihood of the
saturated model, and always larger than the log-likelihood of the null
model. Therefore, if the fitted model does better than the null model at
predicting choice, theresulting deviance explained should be between
0 and1. When the fitted model does not predict much better than the
null model, the deviance explained is close to zero.

Simulated behavior sessions. To test the logistic regression model,
we simulated behavioral sessions of an agent making decisions using
alogistic function and the DV of the inference strategy (consecutive
failures). For each simulated session, the slope and the intercept of
the logistic regression in the ground truth model were chosen to fit
the distribution of the total number of licks in each bout from the real
data. To estimate the parameters of the ground truth model (slope and
intercept), we thenfitalogisticregression model to predict theleaving
decisions of this simulated agent using the consecutive failures DVs.

Predicting DVs from neural population. We used a generalized LM
for Poisson response’® to predict each DV given the activity of the
neural population (or facialmotion, or both). Specifically, we predicted
the DV A given the neural activity x, by learning a model with param-
eters, B,suchas A =exp(8, + fx). The Poisson regression with log-link is
appropriateto model count datalike the DVs studied here. To enforce
the positivity of the count responses, we shifted all the DVs to have a
minimum value of one. Model fits were performed on each session
separately. We employed elastic net regularization with parameter
a=0.5.Additionally, we performed a cross-validationimplemented by
cvglmnet using the lambda_min option to select the hyperparameter

that minimizes prediction error. To assess the predictive power of the
model, we alsoimplemented nested cross-validation. Specifically, the
model coefficients and hyperparameters were sequentially fit using
a training set consisting of four-fifths of the data, and the prediction
was evaluated on the testing set consisting of the remaining one-fifth.
The method was implemented until all the data had been used both
for training and testing. The deviance explained reported as a metric
of the goodness of fit was calculated from the cross-validated results.
The final B coefficients were estimated using the full dataset.

Comparison between brain regions. To ensure a fair comparison
between brainregions with different numbers of recorded neurons, we
excluded regions with very low numbers of recorded neurons (that is
lessthan20 neurons, n =2 recordingsin OLF excluded) and used mul-
tiple approaches to match the data from each region. One approach
was to run the principal component analysis of the neural data from
each region and select the principal components of neural activity
that predicted up to 95% of the total variance (as reported in Fig. 2). A
second approach was to select a subset of the original data to match
the lowest number of neurons per region in each recording (subsam-
pling with replacement, 100 repetitions). Both approaches yielded
qualitatively similar results.

Predicting choice from neural population. We used logistic regres-
sion” to estimate how the weighted sum of neural activity (thatis, the
neural projections onto the weights that best predict the various DVs)
predicted the probability that the current lick is the last in the bout.
The model fits each recording session separately as described above
using the glmnet package in MATLAB and implementing elastic net
regularization with a = 0.5 and a nested fivefold cross-validation to
estimate the deviance explained.

Models

Integrate-and-reset. We developed a unified theory of integration
in the setting of nonsensory decision-making tasks. In a wide vari-
ety of tasks, animals need to keep track of quickly evolving external
quantities. Here we considered tasks where the feedback that the ani-
mal receives is binary (for example reward or failure). We considered
an integrator given by x,,; = g(0,,,=1) * X, + c(0,; = 1), if the attempt is
rewarded, and x,,; = g(0,,; = 0) * x, + c(0,,; = 0), otherwise. The param-
eters of theintegrator g(o,; = 0) and g(o,,; =1) represent the computa-
tions and are bound between zero and one (g =1for anaccumulation,
g=0forareset). The parametersc(o,,; =1), c (0,,; = 0) add linearly and
can be negative, positive or null.

We consider different scenariosinvolvingacombination of compu-
tations but where the optimal solution only involves a one-dimensional
integration. Forinstance, counting tasks can be solved by alinearinte-
gration, thatis,g(0,,=0)=g(0,,=1) =c(0,,;,=0) =c(0,,;,=1) =1, where
theintegrated value increases by one after each attempt regardless of
the outcome. In a two-alternative forced choice and more generally
in an n-armed bandit task, each arm would have an integrator that
increases with rewards thatis, g(o,,, = 0) =g(0,,,=1) =1,¢c(0,;=0) =0and
c(0,,;=1) =1, and decays with failures, that s, g(o..;= 0) = g(0,,,=1) =1,
¢(0,,;=0)=-1and c(o,,; =1) = 0. Even in cognitively more complex
tasks, involving inference over hidden states, such as reversal tasks
or foraging under uncertainty, a single integrator is often sufficient.
Specifically, in the foraging task studied here, the optimal solution is
tointegrate failures but not rewards, thatis, g (0.,;=0) =c(0,,=0) =1,
andg(0,;,=1)=c(0,;=1)=0.

More generally, the model produces sequences that ramp up
with failures (thatis, g (0,,, = 0) =c(0,,; = 0) =1; such as the consecutive
failures), and the mirrorimages thatramp down (thatis, g (0,,,=0) =1,
¢(0,,;=0) =-1).Similarly, the model can produce sequences that ramp
up or down with rewards (that is, g (0,,,=1) =1, ¢ (0,,;=1) =t 1). The
model also generates sequences that accumulate one type of event and
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persist at a constant level with the other type (thatis, g (0,,=x)=1,¢
(0.1=X)=11,8(0,;=Y) =1,c (0., =y) = 0),suchas the cumulative reward
integrator or its mirror image. Finally, many sequences generated by
the model (where g (0,,; = 0) =g (0., =1) = 0) track the outcomes (that
is, reward versus failure).

There are 36 different values that the parameters of the model
can take (g (0,;=0) and g (0,,; =1) could take the values of 0 or1and ¢
(0,,,=0)and c(0,,; =1) could take the values of -1, 0 or 1). In principle,
each of these defines a different model which generates a time series
when fed with sequences of binary action outcomes. The 8 of them for
whichc (0,,=0)=c(0,;=1) = 0aretrivial (constant). Of the remaining
28, not all are linearly independent. For instance, the time series gen-
erated by the model that computes ‘count’ (g(0,.,; = 0) =g(0,,,=1) =c(o
1= 0) =c(0,;=1) =1) is equal to the sum of the time series generated
by the model that accumulates reward and is insensitive to failures
(g(0,,=0)=g(0,,=1)=1;c(0,.;,=0) = 0; c(0,,;, =1) =1) and the time series
generated by the model that accumulates failures and is insensitive to
rewards (g(0,,;=0)=g(0,,=1) =1; c(0,,;,=0) =1; c(0,,;=1) = 0). Thus,
the rank of the space of time series is 8 (two dimensions for the linear
component (c) of the model for each of the four possible combinations
ofthe gparameters, which specify the ‘computation’ the modelis per-
forming). Of these 8 dimensions, 4 come frommodels that arelessinter-
esting. Two of these are the two ‘outcome’ time series (g (0,,,=0) =g
(0,.;=1) =0), which are ‘observable’. We also only consider one time
series for each of the two models, because the value of the linear com-
ponentassociated with the outcome that is reset makes verylittle differ-
encetotheoverallshape of the time series. For instance, the time series
generated by thetwo modelsg(o,,;=0) =1;8(0,,=1) =0;c(0,,,=0)=1;
c(0,;,=1)=0andg(0,,=0)=1;8(0,,;,=1) =0; c(0,,=0)=1; c(0,,,=1) =1
arelinearly independent but almostidentical for the type of outcome
sequences of interest. The remaining 4 dimensions after these ‘trivial’
models are removed are spanned by the 4 basis elements that we focus
oninthe maintext (Fig. 8). Finally, the effective dimensionality of the
space of time series also depends on the temporal statistics of the out-
come sequences. For the particular outcome sequences experienced
by the mice (which are a function of the reward and state-transition
probabilities) the effective dimensionality was low, which motivated
ustofocus on particular subsets of outcome sequencesin Fig. 8 where
the time series generated by the 4 basis elements are clearly distinct.

LM-HMM. To test the hypothesis that animals switch between discrete
decision-making strategies within single sessions, we developed anew
HMM withinput-driven Gaussian observations modeling a time-varying
linear dependence F, = w®R, + b®of normalized consecutive failures
F,(observations) on normalized total rewards R, (inputs) across bouts
t=1...T; ¢ isi.i.d. Gaussian noise with mean zero and variance 6. For
eachsessionm, the normalized values F, = F,/F*andR, = R,/RT*were
obtained by min-maxing the raw values F,, R, on their within-session
max Fnax, Rmx This procedure allowed us to fit a single model to all
sessions where both inputs and observations were bounded between
zero and one. In this LM-HMM, the slope w®, intercept 5% and noise
variance 0¥ depend onthe hiddenstate k=1, ..., K, each state represent-
ing a different decision-making strategy. For example, states with
w® =0orw® > 0representinference-based and stimulus-bound strate-
gies, respectively. Large (small) values of the bias b* represent persis-
tent (impulsive) behavior, respectively. Other model parameters
include transition probabilities A,,between hidden states and the initial
state probabilities m®. We fitan LM-HMM to bouts from all mice using
the Expectation-Maximization (EM) algorithm to maximize the
log-posterior and obtain the optimized parameters
0 ={w®,b®, o®); 4,10} . Model selection for the number of states
was performed using threefold cross-validation by concatenating all
bouts from all sessions. A model was fit to the training set, and the
log-posterior of the test set was estimated (normalized by the number
of bouts per test set). Because the EM may lead to local maxima of the

log-posterior, for each choice of number of states, the EM algorithm
was performed five times starting from random initial conditions. We
performed model selection using maximum a posteriori (MAP, includ-
ing Gaussian prior on the weights with variance equals to 2, and Dir-
ichlet prior on transition probabilities with a = 2; see ref. 14 for details
ontheprocedure). The best number of states was chosen at the plateau
of the maximum of the test MAP, leading to three states. We then fita
single model to the normalized observations and inputs F,, R, concat-
enating all bouts from all sessions, optimizing the model parameters
O using MLE. Single-session values of weights and biases w®, 5 were
then obtained from these normalized parameters w®, b%® as
w® = o pmaxjgmax - p® _ pk pmax The model was developed using
Python3.8.

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The preprocessed electrophysiological and behavioral data col-
lected for this study are publicly and can be accessed at: https://doi.
org/10.6084/m9.figshare.20449089.

Raw electrophysiological dataaretoolarge to be shared onapub-
licly available repository and are therefore available from the authors
uponreasonable request.

The Allen Mouse Brain Atlas used in this study is publicly avail-
able: https://alleninstitute.github.io/AllenSDK/reference_space.html.

Code availability
All analyses were performed using custom code written in MATLAB
and available uponrequest.

The code used for the central GLM analyses is publicly available
at: https://hastie.su.domains/glmnet_matlab/.

The code developed for the LM-HMM can be accessed at:
https://github.com/mazzulab/ssm/blob/master/notebooks/2c%20
Input-driven%20linear%20model%20(LM-HMM).ipynb.
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Extended Data Fig. 1| Task apparatus and behavioral properties. (a) The
behavioral apparatus consists of a treadmill, coupled to two motors. Rotating
the treadmill activates in a closed-loop fashion the movement of the arms via
the motors. Amouse placed on the treadmill with its head fixed canlick at the
spout from the arm in front. A camera placed on the side of the animal allows
on-line video detection of the licks. (b) View from the lick detector camera. A
region of interest is defined around the tongue of the animal. To detect the licks
athresholdis applied to the signal within the region of interest. (c) The task
consists of behavioral bouts and traveling epochs. Within abehavioral bout, the
outcomes of the licks are classified into three types: reward, failure and invalid.
Rewards and failures occur when the mouse slows down its running speed
below an arbitrary threshold after the ‘STOP event’. The ‘STOP event’is signaled
by an auditory tone when an arm comes into place. Any lick above the running
threshold is considered as invalid and always unrewarded. The traveling epoch
starts after the ‘LEAVE event’ when the mouse initiates the run. (d, e, f) The licking

behavior of the animals is stereotyped. (d) Histogram of the time between each
lick. (e) Examples of lick raster of consecutive failures (top) and consecutive
rewards (bottom). Licks are aligned at the onset of a rewarded lick and sorted
based on the following events. (f) The licking frequency that corresponds to

the two different examples in (e) (series of consecutive rewards in green and
series of consecutive failuresin purple). (g, h, i,j) Time distributions of different
behavioral events (mean  s.e.m.; n =21 mice). The time spent licking was much
greater than the time toinitiate licking (between STOP event and first lick) or the
time toinitiate running (between the last lick and LEAVE event). Notably, engaged
mice took less than half a second after the last licks to leave the site in most bouts
(Median time to run=0.46 s). The running time is comparable to the licking time.
(k) Monotonic relationship between the number of consecutive failures after
thelast reward and the time licking after the last reward (each dot represents the
means across bouts for each session).
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Extended DataFig. 2| Ground truth model. (a,b) The slope (a) and intercept
(b) estimates as a function of the ground truth for simulated sessions where

the number of bouts matched that of real sessions. The ground truth can be
recovered (R*=0.99 for the slope; R? = 0.91 for the intercept) from the logistic
regression. (¢, d) The slope (c) and intercept (d) estimates as a function of the
ground truth for simulated sessions with varying number of bouts. Overall, the
ground truth can be precisely recovered for sessions with more than 100 bouts.
(e) Deviance explained from alogistic regression model that fits simulated
sessions of an inference-based agent using the correct model (‘Consecutive
failures’), awrongbut correlated model (‘Negative value’) and arandom model
(where both rewards and failures are arbitrarily accumulated or reset). The
deviance explained by the consecutive failures represents the upper-bound of
the model performance. The deviance explained by the consecutive failures
being smaller thanlindicates that, although the ground truth can be recovered,
the switching decision is not deterministic and involves some stochasticity (here

the variability was matched to that of the data). However, the deviance explained
by the consecutive failures is significantly greater than the deviance explained
by the correlated model and the random model (two-sided Wilcoxon signed
rank test, 3 starsindicate p <107, p = 0.00005 between Consec. fail. and Neg.
value; p <107 between Consec. fail. and Random). On each box the central mark
indicates the median across simulated sessions (n = 42 sessions), and the bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points. (f) lllustration of a logistic
regression model for predicting the switching decision of an inference-based
simulated agent from the two different DVs (‘Consecutive failures’ and ‘Negative
value’) simultaneously. (g) Deviance explained from the modelin (f) as a
function of the number of bouts in each session. (h) For all simulated sessionsin
(e), the variance explained by the ‘consecutive failures’ DV was greater than the
variance explained by the ‘negative value’ DV, indicating that the model inferred
the true DV.
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Extended Data Fig. 3| Testing alternative foraging strategies. (a) lllustration
ofthe logistic regression model for predicting the switching decision of mice
using acombination of the two main DVs, ‘Consecutive failures’and ‘Negative
value’, as well as additional DVs. Specifically, we tested 3 classes of additional
DVs:1) those relying on absolute time, 2) those relying on average reward rates,
and 3) those that weigh recent evidence more strongly. The design matrix of the
model thus consisted of the two main DVs, the time of each lick relative to the first
lick of each bout (class 1), the average reward rate over 1,3 and 10 previous bouts
(class 2) and a version of the negative value DV that weighs recent evidence more
heavily than the past ones (for class 3), such as: X.,; = (1 - @)*g(0.,)*X, + a-C(0yy),
witha=0.8. (b) Deviance explained froma logistic regression model that
predicts choice behavior based only on the 2 main DVs (left) and from the full
model that also includes the additional DVsin (a). The central mark indicates

the median across behavioral sessions (n =42 sessions), and the bottom and
top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points. There was no significant
difference between the deviance explained of the two models (two-sided
Wilcoxon signed rank test: p = 0.22), indicating that the additional DVs do not
improve the performance of the model. (c) Relative variance explained by each
predictor of the full model for each behavioral session (n = 42 sessions across 21
mice, 2 sessions per mice). The dominant DV (the one with the maximum relative
variance explained) was most often the ‘Consecutive failures’ (18 sessions),
followed by the ‘Negative value’ (17 sessions), and finally the additional DVs

(2 session for the absolute time, 2 sessions for average reward rate, 3 sessions
for the weighted negative value).
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Extended Data Fig. 4 | Pipeline for extracellular electrophysiology, data
processing and cluster mapping. (a) Data collection from the Neuropixels
probe. (b) Kilosort2 is used to automatically match spike templates to raw data.
(c) Example of voltage data input to Kilosort2. Prior to the automatic sorting,

the raw datais preprocessed with offset subtraction, median subtraction, and
whitening steps. (d) Manual quality control is done on the outputs of Kilosort2
using PHY to remove units with nonphysiological waveforms (e), contaminated
refractory periods, low amplitude (less than 50 pV) or low spiking units (less than
0.5 spike-s™). (f) For further quality control, visualization of peri-event spike

histograms (g, top; examples histogram aligned to first lick) or scatter plots

(g, bottom; example scatter plot aligned to first lick) of single neurons are made
with custom-written scriptin MATLAB. (h, i) Example scatter plot of all neurons
recorded simultaneously along the shank of the probe. This visualization

helps delimitate landmarks based on electrophysiological signatures to map
cluster locations. (j, k, ) Landmarks derived from electrophysiological responses
are validated with estimates from histology using an open-source software
(SHARP-Track).
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ontheinter-lickinterval: Inactivated: -0.003 + 0.0009, p = 0.001; Control:
0.005+0.004, p = 0.24. (d) Fixed effect of stimulation (‘Laser’ predictor) on the
time licking: Inactivated: 0.45 + 0.26, p = 0.08; Control: -0.078 + 0.22, p=0.72.
(e) Fixed effect of stimulation (‘Laser’ predictor) on the time to run: Inactivated:
-0.075+0.25,p = 0.76; Control: 0.014 + 0.14, p = 0.92. (f) Fixed effect of

stimulation (‘Laser’ predictor) on the time running: Inactivated: —0.079 + 0.063,
p=0.22; Control: -0.061+0.052, p=0.28.

linear mixed effect models to evaluate the effect of stimulation (‘Laser’ predictor)
on each action timing (see Methods). The models were fit separately for
inactivated and control mice (number of observations: Inactivated = 68; Control
=20). (c-f) Median timing across bouts in Laser OFF vs. Laser ON condition for
each session (dots) of inactivated mice (violet) and control mice (red) mice. The
p-value corresponding to the ¢-statistic for a two-sided null hypothesis test that
the coefficient of the ‘Laser’ predictor is equal to O (p,,) is reported for each
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Extended DataFig. 6 | Properties of decision variables in M2. (a) lllustration
of amodel to estimate the time constant of the reset at the end of the bout from
M2 neurons. Example consecutive failures (pink) and neural projections (black
right) of the neural activity (left, example neural traces) including the activity
during 2 s after the end of each bout (dashed line). The projection of the neural
activity on the decoding weights for the consecutive failure slowly ramps down
until the beginning of the next bout. (b) To quantify the time constant of the
reset at the end of the bout, the consecutive failures with an additional reset
atthe end of the bout were decoded from the neural activity. We considered

the decoding projection at different times after the end of the last lick of bout
‘n”and before the start of bout ‘n +1"and plotted the difference between the
number of the consecutive failures (dashed pink) and the neural projection
(dashed black) at the end of each bout across recording sessions (median +
MAD; n =11) as a function of the time after the last lick. The neural activity can
reset at the end of the bouts with a time constant of around 200 ms. (¢) Deviance
explained across sessions (n =11 sessions, median + 25th and 75th percentiles,
the whiskers extend to the most extreme data points) predicted from M2
neurons for ‘Consecutive failures’ (left) and ‘Negative value’ (right) on ipsilateral
vs. contralateral bouts. If the recording is performed in the right hemisphere,
ipsilateral bouts are those when mice exploit the right foraging site (the right

motorized arm), while contralateral bouts are those when mice exploit the left
foraging site (and vice versa for recordings in the left hemisphere). We observed
no significant differences in the model performance as a function of the side of
the DVs (two-sided Wilcoxon signed rank test; p > 0.05). (d) This panel shows the
deviance explained across sessions (n = 11 sessions, median + MAD) for DVs (Pink:
‘consecutive failures’; Blue: ‘negative value’) as a function of window sizes. In all
previous analyses, the window used to count the spikes was 200 ms centered
around eachlick (indicated by the black rectangle), which was a good tradeoff
forincluding a significant number of spikes while mainly considering signals
related to asingle lick (since the average time between each lick was around

150 ms; Fig. 2b & Extended Data Fig. 1d). Yet, a few spikes linked to the preceding
or the following events could still be included in the 200 ms window, making it
more difficult to evaluate the contribution of momentary evidence. Therefore,
we tested whether both DVs remained decodable in M2 even when we strictly
excluded all spikes from neighboring events by using smaller analysis windows.
We found that the decodability of the DVs in M2 did not depend on the size of
the window for widths larger than 20 ms (one-way ANOVA followed by multiple
pairwise comparison tests, all p-values > 0.05 for windows size > 20 ms, both for
‘consecutive failures’ and ‘negative value’), indicating that the results are not
overly sensitive to the choice of parameters.
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Extended Data Fig. 7| LM-HMM analysis of switch decision. (a) To determine
the number of states that best capture the decision-making of mice, we fit the
LM-HMM with a varying number of states and then performed model comparison
using cross-validation (see Methods for details). Training and test sets maximum
aposteriori (MAP, with gaussian prior on the weights and Dirichlet prior on
transition probabilities) are reported in units of bits per bout (median + MAD).
The dash-line rectangle highlights the log probability for the three-state model,
which we used for all subsequent analyses. A single model was fit to all mice,
where for each session the consecutive failures and prior rewards were
min-maxed (thatis, divided by their max Fj;**, R;'®), obtaining normalized
weights w® and biases b¥. Single-sessions weights and biases were then obtained
from these normalized parameters as w = w(®) pmax/gmax, & — p0 pmax ()
Weights wS,’f) ontotal reward (left) and biases bf,',‘) (right) across sessions m (n =11

sessions, median + 25th and 75th percentiles, the whiskers extend to the most
extreme data points) in the different states k=1, 2, 3. (c) Consecutive failures
beforeleaving as a function of total reward number across behavioral bouts
(median + MAD) in an example session from two different states (state 1, blue;
state 2, pink). The slope coefficients of a linear regression model that predicted
the number of consecutive failures before leaving as a function of the number of
prior rewardsin each state are shown on the right (n = 6 sessions for state1,n=7
sessions for state 2, median + 25th and 75th percentiles across sessions, the
whiskers extend to the most extreme data points). This result is consistent with
the classification of stimulus-bound and inference-based strategies used in Fig. 1.
(d) Posterior state probabilities for each recording session. Mice often start of f
the session with the stimulus-bound strategy and later switch to the inference-
based strategies (in 6 out of 11sessions).
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Extended DataFig. 8| M2 does not represent arbitrary sequences. (a) A ‘near
universal’ representational capacity is a feature of acomputational framework
known as ‘reservoir computing’ that exploits a potential functional capacity of
recurrent networks to represent combinations of current inputs with previous
evidence, even arbitrary ones. Thus, to test whether M2 also represented
arbitrary signals, we examined whether sequences with similar temporal
structure as the DVs but with no obvious relevance to the task could be decoded
from M2. Here are examples of random sequences (gray) generated from one

of the DVs (pink, here consecutive failures). The DV can lead to a shifted version
(topright), aflipped version (middle right) or arandom signal with equal power
spectra. Each random signal is then decoded from M2 population activity (black
traces). (b) Deviance explained (ordinate) by M2 neurons from decoding the
DVs shifted by a given number of licks (abscissa). On each box, the central mark
indicates the median across recording sessions (n = 11sessions), and the bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points. The dash black line
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indicates chance level (Dev. Exp. = 0). Shifting the DVs by a delay greater than
their temporal autocorrelation greatly impaired their decodability (one-way
ANOVA, F =62.81, p <107). (c) Same as in (b) but for DVs flipped across sessions.
None of the flipped signals were decodable from M2 population activity. (d)
Same asin (c¢) but for random signals with power spectra that match each DV.
None of the random signals were decodable from M2 population activity. (e)
Since any signal can be approximated by sums of periodic functions (Fourier
analysis), we also probed the capacity of M2 to represent arbitrary temporal
sequences by testing whether we could decode from M2 a basis set of cosine
functions with wavelengths in the dynamic range of what we observed with
integration and reset of rewards (example top gray trace; wavelength = 4 licks,
phase = 0 rad). Overall, the decoding quality of the periodic function (example
neural projection, top trace in black, Dev. Exp. = —0.002) was close to chance
level (Dev. Exp.=0.024 + 0.028, median + MAD) as seen in the matrix of deviance
explained from decoding sequences with different wavelengths and phases with
M2 population activity.
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group (n = 10) of animals was then trained for the electrophysiology and also included in the behavioral datasets. A third group of animal
(n=6) was used for the optogenetics experiments. The number of mice (n= 27 total) was chosen based on the on the current
standard used for mice in neuroscience for sufficient statistical power.

Data exclusions  For the electrophysiological datasets, sessions were included only if all the Neuropixels probe was located in the target regions by post-hoc
histological analysis. Single units (neurons) spike clustering quality were assessed manually using Phy. Units were only included if firing rate
did not drift over the recording session, and spikes did not violate absolute refractory period (see Method).

Replication All relevant behavioral effects were replicated in 3 sets of independently trained animals (n =11, n = 10 and n = 6). Effects reported in neural
data were consistent across animals.

Randomization  Randomization was used for stimulus presentation. The task statistics were similar across sessions but probabilistic. Thus, the sequences of
events during behavior bouts were naturally randomized by the probabilities and the length of behavior bouts depended on individual

behavioral responses. Therefore, each session had a unique sequence of behavior bouts.

Blinding The experimenter was blind to the genotype of the mice when performing optic fiber implantations and running the optogenetics
experiments. For other experiments, no comparison across groups was made, therefore blinding was not necessary.
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Laboratory animals Male and female C57BL/6J and VGAT mice (2-9 months old) were used in this study. Mice were housed in individually ventilated
cages under a normal 12 hour light/dark cycle, temperature was maintained between 19-23°C and humidity between 50-65%.

Wild animals This study did not involve wild animals.
Reporting on sex Both male and female mice were used in this study.
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