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A reservoir of foraging decision variables  
in the mouse brain

Fanny Cazettes    1  , Luca Mazzucato2, Masayoshi Murakami1,3, Joao P. Morais1, 
Elisabete Augusto1, Alfonso Renart    1,4   & Zachary F. Mainen    1,4 

In any given situation, the environment can be parsed in different ways to 
yield decision variables (DVs) defining strategies useful for different tasks. 
It is generally presumed that the brain only computes a single DV defining 
the current behavioral strategy. Here to test this assumption, we recorded 
neural ensembles in the frontal cortex of mice performing a foraging task 
admitting multiple DVs. Methods developed to uncover the currently 
employed DV revealed the use of multiple strategies and occasional switches 
in strategy within sessions. Optogenetic manipulations showed that the 
secondary motor cortex (M2) is needed for mice to use the different DVs in 
the task. Surprisingly, we found that regardless of which DV best explained 
the current behavior, M2 activity concurrently encoded a full basis set of 
computations defining a reservoir of DVs appropriate for alternative tasks. 
This form of neural multiplexing may confer considerable advantages for 
learning and adaptive behavior.

An adaptive strategy to control behavior is to take actions that lead 
to good outcomes given that the environment is in a particular state. 
Yet, environmental states are often complex, with manifold sources 
of potentially relevant information, some that are directly observable 
and others that can only be revealed through a process of inference. 
Therefore, an agent typically also faces the problem of selecting the 
environmental variables on which to base a decision and how must 
these variables be processed algorithmically to reveal the appropriate 
‘decision variable’ (DV). The problem of selecting a DV is likely a more 
difficult computational problem faced by a decision maker than the deci-
sion itself, but how it is accomplished has received scant investigation1.

A possibility is that an agent need not commit to a particular DV but 
may entertain several in parallel. The ability to parallelize operations 
of decision processing, such as temporal integration, would permit 
adaptation to changes in task contingencies without implementation of 
new computations, and could therefore potentially speed learning and 
provide flexibility in combining and switching strategies. However, lit-
tle is known about the limitations and possibilities for multiplexing the 
algorithms used to derive DVs from sensory evidence. On the one hand, 

behavioral studies in humans suggested that two streams of sensory 
evidence can only be incorporated into a DV one at a time, necessitating 
serial processing2–4. On the other hand, it has been shown that there 
exist neurons integrating evidence about a single sensory event with 
diverse timescales5, and that diverse timescales are present in neurons 
within local circuits6, which could reflect a simple form of algorithmic 
multiplexing. It thus remains unclear whether various computations 
can be carried out in parallel on different streams of evidence to form 
a broad range of simultaneously available DVs.

To study the possibility of multiplexing computations on sequen-
tial inputs in the brain, we leveraged a foraging task based on process-
ing a stream of binary outcomes to inform a decision of whether to 
leave or stay7,8. This task admits multiple strategies for processing the 
series of outcomes that are associated with different precisely quantifi-
able DVs. Evaluation of these DVs allows the experimenter to infer the 
implementation of ‘counterfactual’ strategies, that is, strategies that 
are potentially applicable, but unused. If such counterfactual strate-
gies could be decoded from the brain, it would be evidence for parallel 
processing of serial information.
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that consisted of temporally accumulating consecutive failures with 
a complete reset upon receiving a reward (Fig. 1b). This is because a 
failure to receive reward provides only partial evidence that the active 
state had switched, whereas a reward always signaled the active state 
with certainty. Using this strategy, mice would leave the current site 
when the ‘consecutive failures’ DV reaches a given threshold8. Yet, in 
principle, mice could time their decision to leave by using any number 
of alternative strategies based on the sequence of rewarded and unre-
warded licks regardless of the true causal structure of the task. In fact, 
early on during training when learning the task, mice do not appear to 
calculate the inference-based DV8. Their behavior is better described 
by a strategy that does not contemplate discrete transitions to a fully 
depleted state, and instead relies on a running estimate of the ‘value’ 
of the current site based on the difference between recently observed 
rewards and failures (Fig. 1c). Using this strategy, mice decide to aban-
don a foraging site when its value is sufficiently low (or its negative 
value is sufficiently high). We refer to this as a stimulus-bound strategy 
because it treats observable outcomes (the stimuli) as direct—although 
probabilistic—reporters of the valence of current environmental states, 
without further assumptions or models about environmental dynamics. 
For our present purposes, the essential aspect of these two strategies 

Here using population recordings and optogenetic silencing in 
the frontal cortex of mice performing the foraging task, we identified 
a brain region (the secondary motor cortex M2) where the multiple 
DVs used by the mice could be decoded simultaneously. Critically, we 
found that the extent to which each DV was represented in the cortex 
did not depend on the strategy used by each mouse. These observations 
suggest that mice use an algorithm for decision-making that relies on 
the parallel computation of multiple DVs in the frontal cortex.

Results
Multiple DVs predict switching decision
In our task, a head-fixed mouse collected probabilistically delivered 
rewards at a virtual foraging site by licking from a spout (Fig. 1a and 
Extended Data Fig. 1). At any time, the mouse could choose to continue 
licking or give up and explore a new site by starting to run. There were 
two virtual foraging sites, only one of which was active at a given time 
and would deliver a reward with a probability of 0.9 after each lick. The 
active site also had a probability of 0.3 of switching once per bout after 
each lick8. Therefore, the best strategy to time the switching decision 
was to infer the latent state corresponding to which site was currently 
active8. This inference-based strategy was supported by a particular DV 
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Fig. 1 | Multiple DVs predict foraging behavior. a, A head-fixed mouse placed on 
a treadmill chooses to exploit one of the two foraging sites (two movable arms on 
each side of the treadmill). A bout of behavior consists of a series of rewarded  
(1 µl consumed in a single lick) and unrewarded licks at one of the sites. The 
switch from active to inactive state only happened once while the mouse was 
at the site, so if it left the site before the switch, no rewards were delivered 
at the other site (and it had to return to the original site and restart licking). 
Independently from state transition, animals can choose to switch between sites 
at any time by running a set distance on the treadmill. During site-switching,  
the spout in front moves away and the distal one moves into place. b, The DV  
that the mouse needs to compute to infer the hidden state of the resource site.  
c, Alternative DV supporting a stimulus-bound strategy—the ‘negative value’.  
d, Example sequences of observable events during different behavior bouts.  
e, Histogram of bout duration (mean ± s.e.m. across sessions; n = 42). f, Probability 
of leaving the foraging site as a function of the number of consecutive failures 
after the last reward (mean ± s.d. across mice). g, Consecutive failures before 
leaving as a function of reward number (mean ± s.d.) in example sessions 
from two different mice. h, Distribution of the slope coefficients of an LM that 
predicted the number of consecutive failures before leaving as a function of 

the number of prior rewards. For visualization, pink are the slope coefficients 
close to zero (coefficient < 0.5, arbitrary threshold), while blue are sessions with 
positive slope coefficients. i, Slope coefficients from h between two consecutive 
sessions (1 and 2) for different mice. Sessions between which the coefficient 
values vary by more than 0.5 (arbitrary threshold) are highlighted in black.  
j, Illustration of the logistic regression model for predicting the switching 
decision of the mouse from the two different DVs. k, Deviance explained from 
the logistic regression that predicts choice behavior based on the DVs (gray 
box) and from simulated data where the behavior is truly inference-based (white 
box). On each box, the central mark indicates the median across behavioral 
sessions (n = 42 sessions from 21 mice), and the bottom and top edges of the box 
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the 
most extreme data points. l, Explained variance from the logistic regression that 
predicts choice behavior based on the DVs. Sessions where ‘consecutive failures’ 
are dominant (var. exp. consec. failures > var. exp. neg. value) are labeled in pink, 
while sessions where ‘negative value is dominant’ are labeled in blue (var. exp. 
consec. failures < var. exp. neg. value). Var., variance; exp., explained; consec., 
consecutive; neg., negative.
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is that they use the same observable outcomes (series of rewarded and 
unrewarded licks) in qualitatively different ways to update their cor-
responding DV—a full reset versus a quantitative incremental increase 
in current value. This allows us to unambiguously identify the two DVs, 
their behavioral consequences and their neural representations.

After several days of interaction with this setup (n = 13 ± 5 d; 
mean ± s.d.), mice (n = 21) learned to exploit each site for several sec-
onds (Fig. 1d,e). Considering the last two sessions of training (n = 42 

sessions total), we examined which strategy mice used to time their 
leaving decisions. As demonstrated previously8, for all mice, the prob-
ability of leaving increased with the number of consecutive failures 
(Fig. 1f). Yet not all mice treated rewards equally. For some mice, the 
number of previous rewards did not affect the probability of leav-
ing after a set number of failures (Fig. 1g, pink), consistent with the 
inference-based strategy. In contrast, for some other mice, the number 
of failed attempts that they tolerated before leaving the site correlated 
with the number of previous rewards (Fig. 1g, blue), consistent with 
the stimulus-bound strategy. We quantified these effects using a lin-
ear regression model (LM) that predicted the number of consecutive 
failures before leaving as a function of the number of prior rewards 
in the current bout (Fig. 1h). We found that the regression coefficient 
varied strongly within our cohort, consistent with the just-described 
behavioral heterogeneity across sessions. The distribution across 
sessions showed signs of bimodality with a dip close to 0.5. Using this 
criterion, the behavior was more consistent with the inference-based 
strategy in n = 23 sessions (coefficient < 0.5) and more consistent 
with the stimulus-bound strategy in the remaining n = 19 sessions 
(coefficient > 0.5). To check if the heterogeneity in strategy was due 
to variability from session-to-session, mouse-to-mouse or both, we 
examined whether the regression coefficients of each mouse varied 
across consecutive sessions (Fig. 1i). Overall, we observed that most 
mice kept the same dominant strategy across consecutive sessions 
(Fig. 1i, gray; but see also Fig. 7), but some mice (n = 4) also switched 
strategy from one session to the next (Fig. 1i, black).

These observations indicate that mice vary in their foraging 
strategies across individuals and sessions but do not directly indicate 
how well the mice’s behavior is described by the DVs. Therefore, we 
next quantified how well the different DVs could predict the precise 
moment (lick) when an individual mouse would switch sites on a given 
trial. Specifically, we used regularized logistic regression to model the 
probability that each lick (n = 2,882 ± 1,631 licks per session; mean ± s.d. 
across 42 sessions) was the last one in the bout, considering simulta-
neously the two DVs as predictors (Fig. 1j; Methods). We estimated 
the goodness of fit of the two models using the ‘deviance explained’, 
where ‘0’ meant chance level and ‘1’ meant perfect predictions. We 
found a median deviance explained of 0.16, a value significantly bet-
ter than chance level for all mice (Fig. 1k, gray box; Wilcoxon rank test, 
P < 10−6). To provide a reference for the meaning of deviance of this 
magnitude, we used the same logistic regression model to predict the 
leaving decisions of a simulated agent in which the ‘ground truth’ was 
known. For this, we simulated behavioral sessions of an agent making 
decisions using a logistic function and the DV of the inference-based 
strategy with equal numbers of bouts as in the real sessions. We found 
that the model recovered the ground truth parameters with high accu-
racy (Extended Data Fig. 2a–d) and performed better than a model 
attempting to fit the same data using the stimulus-bound DV, which is 
distinct but correlated with the DV of the inference strategy (Extended 
data Fig. 2e). Furthermore, the deviance explained by the simulated 
data (median = 0.25; Extended Data Fig. 2f,g) was only slightly greater 
than that of the real data (Fig. 1k), indicating that the model with DVs 
performed close to the maximum that could be expected given the 
statistical nature of the task. This multivariate approach also confirmed 
that the two DVs were used to different extents across sessions (Fig. 1l) 
and, compared to the univariate regression (Fig. 1h), provided even 
clearer indication of changes in dominant strategy across sessions 
(Fig. 1l and Extended data Fig. 2h). Finally, the bias term of the model 
(or intercept) reflected the baseline probability to leave the site (the 
larger the bias the more impulsive the switching decision) but did not 
correlate with the use of either DV (Pearson correlation between bias 
term and explained variance of consecutive failures: r = − 0.12, P = 0.44; 
negative value r = − 0.18, P = 0.25).

The logistic regression confirmed that the two DVs describe the 
switching decision relatively well. Yet, alternative strategies not directly 
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Fig. 2 | Neural activity related to the switching decision. a, Schematic target 
location of probe insertion and an example histology of electrode track (1 of 
10 example brain). Vertical insertions were performed within a 1-mm diameter 
craniotomy centered around +2.5-mm anterior and +1.5-mm lateral from Bregma. 
b, Example raster plot of 140 simultaneously recorded neurons from M2. Lick-
outcome times are indicated by the green (reward) and purple (failure) dashes.  
c, Binned response profile of an example neuron. For all analyses, otherwise 
noted, we averaged for each neuron the number of spikes into bins by 
considering a 200 ms window centered around each lick. d, Histogram of 
outcome selectivity of all neurons recorded M2 (left), OFC (middle) and OLF 
(right). We used ROC analysis to assign a preference index to each neuron. In 
brief, an ideal observer measures how well the modulation of neuronal firing can 
classify the outcome (reward or failure) on a lick-by-lick basis. We derived the 
outcome preference from the area under the ROC curve as PREFR,F = 2(ROCAREA(fR, 
fF) − 0.5), where fR and fF are the firing rate distributions for trials where outcomes 
are reward and failure, respectively. This measure ranges from −1 to 1, where 
−1 indicates preference for F (failure), 1 means preference for R (reward) and 0 
represents no selectivity. The statistical significance of the preference index 
(P < 0.001, one-sided) was assessed via bootstrapping (1,000 iterations). Violet 
and green bars indicate neurons where the index was significantly different 
from 0. In all regions, we found neurons significantly modulated by rewards 
and failures. e, Illustration of the logistic regression method for predicting the 
switching decision (gray right, that is, the probability that each lick was the last in 
the bout, n = 2,533 ± 1,524 licks per session; mean ± s.d. across 11 sessions) from 
the principal components of neurons (left—M2, n = 31 ± 17; OFC, n = 29 ± 9; OLF, 
n = 16 ± 13). f, Deviance explained from the logistic regression in each region. 
Two stars indicate a significant difference between regions (two-sided Wilcoxon 
signed rank test, P = 0.0068 between M2 and OFC; P = 0.0049 between M2 and 
OLF; P = 0 between OFC and OLF). On each box, the central mark indicates the 
median across recording sessions (n = 11 sessions), and the bottom and top edges 
of the box indicate the 25th and 75th percentiles, respectively. The whiskers 
extend to the most extreme data points. NS, not significant; ROC, receiver 
operator characteristic.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01305-8

relying on combinations of action outcomes could also explain well the 
mice’s behavior. Thus, we used the logistic regression model to further 
explore the space of strategies beyond the two main DVs (Extended 
Data Fig. 3a). We found that whereas alternative strategies explained 
some of the behavioral variances, the ‘consecutive failures’ and ‘nega-
tive value’ DVs still best predicted the switching decision in most ses-
sions (Extended Data Fig. 3b,c). Although we cannot rule out that 
mice use other unexplored strategies, these results indicate that the 
inference-based and stimulus-bound strategies are the best predictors 
of the switching decision among different classes of foraging strategies.

Neural activity related to the switching decision
To examine the neural basis of DVs underlying the switching decision, 
we first had to identify brain regions that predicted the switching deci-
sion. We used Neuropixels 1.0 (ref. 9), which are single shank probes with 

hundreds of recording sites that allow registering the activity of large 
ensembles of neurons (n = 151 ± 59 neurons per session; mean ± s.d.) in 
multiple regions of the frontal cortex during the task. We targeted M2 
(n = 66 ± 37 neurons per session; mean ± s.d.), thought to be important 
for timing self-initiated actions10, planning licking behavior11 and pre-
dicting changes in behavioral strategy12, and the orbitofrontal cortex 
(OFC; n = 55 ± 24 neurons per session; mean ± s.d.), whose inactivation 
impacted the performance of inference-based decision-making in 
freely moving mice in the foraging task8. We also recorded in the olfac-
tory cortex (OLF; n = 31 ± 23 neurons per session; mean ± s.d.), which 
is directly ventral to the OFC (Fig. 2a,b and Extended Data Fig. 4), but 
which would not be expected to be specifically involved in this task.

To examine neural responses during the evidence accumula-
tion process, we considered the momentary response patterns of 
isolated neurons in small time windows (Fig. 2c; Methods). Because we 
observed heterogeneous task-related activity in many single neurons in 
all regions (Fig. 2d), we focused on how population activity from each 
single region predicted the switching decision of mice (n = 11 record-
ing sessions, one recording session per mouse except one mouse with 
two recording sessions). Using cross-validated and regularized logis-
tic regressions, we decoded the switching decision from population 
responses around each lick (200 ms window) in each session (Fig. 2e). 
To allow for a fair comparison between brain regions, we controlled 
for the different number of recorded neurons in each region by using 
as predictors only the first n principal components of neural activity, 
which predicted up to 95% of its total variance (Methods for additional 
control analyses). We found that the switching decision could be better 
decoded using population activity from neurons in M2 than in OFC or 
OLF (Fig. 2f). This suggests that, unlike OFC, which has been shown to 
be important for the inference process8, M2 may be directly involved 
in the instantaneous timing of action selection.

Switching decision and running initiation are dissociable
To test that the neural activity predictive of a switching decision does 
not simply reflect running initiation, we decoded the switching decision 
on a subset of behavioral bouts where the last lick and running initiation 
were clearly decoupled (Fig. 3a,b). We found that the last lick could still 
be decoded with high accuracy, especially in M2 (Fig. 3c), suggesting 
that M2 activity encodes the intention to switch sites rather than just 
reflecting the initiation of running behavior.

To further test whether the switching decision and running initia-
tion are dissociable in M2, we used neural activity up to the point of run-
ning initiation to simultaneously decode the switching decision and the 
decision to initiate running, again using only bouts where licking and 
running were decoupled in time (Fig. 3d). The neural activity projected 
onto the two decoding axes (switching and running) peaked at different 
times (Fig. 3d,e), and the two axes were close to orthogonal (Fig. 3f,g), 
consistent with previous studies showing that M2 populations encode 
preparatory activity for upcoming actions11,13. These results indicate 
that M2 simultaneously encodes, in a separable format, the relevant 
DVs used to guide an action, as well as a signal associated with the time 
of initiation of the action itself.

M2 is involved in the switching decision
The above results point to M2 as a key region for timing the switching 
decision by relying on specific DVs. To further test the contribution 
of M2 to the implementation of DVs, we partially silenced M2 using 
an optogenetic strategy (as in ref. 8; Fig. 4a). Specifically, we exam-
ined 43 sessions from six mice, four of which were ChR2-expressing 
and two of which were control wild-type littermates that express no 
inhibitory opsin implanted and stimulated in the same manner. M2 
silencing caused no gross changes in action timing (Extended data 
Fig. 5), but only a slight decrease in licking rate (Extended data Fig. 5c), 
and perhaps a trend for increasing the time spent licking (Extended 
data Fig. 5d). Because M2 inactivation did not substantially impair the 
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Fig. 3 | Switching decision and running initiation are dissociable. a, Last lick 
always precedes running initiation. Running initiation may occur immediately 
after the last lick of a bout (<1 s; ‘early run’) or mice may remain still for several 
seconds after the last lick and before running initiation (>1 s; ‘late run’ in 
red). b, Bimodal distribution of time between last lick and running initiation 
(mean ± s.e.m. across recording sessions). c, The deviance explained from 
models that predict the switching decision (last lick) from the neural activity 
from M2 (dark gray), OFC (light gray) and OLF (white), in ‘late run’ conditions 
when the last lick is fully decoupled from running initiation. Two stars indicate 
a significant difference between regions (two-sided Wilcoxon signed rank test, 
P = 0.002 between M2 and OFC; P = 0.002 between M2 and OLF). d, Illustration of 
the logistic regression method for predicting the switching decision (gray dash 
line) and the running initiation (red dash line) using neural activity from first 
lick to running initiation (black, left) in bouts when running occurred at least 1 s 
after the last lick. Red and black solid lines are examples of neural projections 
onto the two different axes. e, Difference in values of the neural projection onto 
the switch axis at the time of switching and the time of running. The larger the 
difference, the more dissociable the two events. Two stars indicate a significant 
difference between regions (two-sided Wilcoxon signed rank test, P = 0.027 
between M2 and OFC; P = 0.002 between M2 and OLF; P = 0 between OFC and 
OLF). f, Decoding weights of each M2 neuron (gray dots) for the two different 
axes. g, Angles between the two different axes. In all regions, the angle is close to 
90º indicating that the two axes are close to orthogonal. On each box of c, e and 
g, the central mark indicates the median across recording sessions (n = 11 sessions), 
and the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. The whiskers extend to the most extreme data points.
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motor behavior, we tested if silencing M2 affected the use of the DVs 
to time the leaving decision (Fig. 4b). We found that the inactivation 
of M2 substantially decreased the predictive power of the DVs (Fig. 4c, 
violet). The same protocol applied to control mice had no significant 
effect on this behavior (Fig. 4c, red). The photostimulation decreased 
the use of the DV ‘consecutive failures’ (Fig. 4d–f), as well as the leaving 
bias (Fig. 4g), making animals less inference-based and less impulsive. 
These results suggest that M2 is part of the neural pathway through 
which the DVs shape the behavior of the mice.

Neural representation of DVs
The inactivation experiments suggest that one might be able to read 
out the DV used by the mouse from M2 neural activity and that M2 
might represent this DV better than other cortical regions that afford 
less accurate predictions of foraging decisions. To test these ideas, 
we used regression-based generalized linear models (GLM; Methods) 
to decode the instantaneous magnitude of the DV associated with 
the behaviorally dominant strategy (that is, the DV most predictive 
of behavior; Fig. 5a,b). The example data from Fig. 5a,b, which are 
from a single recording session during which the dominant strategy 
of the mouse was the inference (var. exp. consec. fail. = 0.164 versus 
var. exp. neg. value = 0.004), show that the related DV ‘consecutive 
failures’ could be decoded with high accuracy from M2 activity. In 
fact, the dominant DV could be well decoded from M2 activity in all 
sessions (n = 11) from the different mice (Fig. 5c, black). The decodabil-
ity of dominant DVs was substantially lower in other cortical regions  
(Fig. 5c, gray and white), consistent with the poorer decoding of leaving 
time in other areas (Fig. 2f).

Because we have shown that different mice can rely on different 
DVs and individual mice can change decision strategies across sessions 

(Fig. 1), we next asked whether session-by-session heterogeneity in deci-
sion strategy could be explained by the degree to which M2 neurons 
reflected the DVs in each session. Here we used the GLM to compare 
the decoding of the dominant and the alternative DVs from M2 neurons 
in each recording session (Fig. 5a,d). Contrary to our expectation, we 
found that decoding was similar between the dominant and alternative 
decision strategies. For instance, in the example session of Fig. 5a,b,d, 
despite the selectivity of the behavior for inference-based decisions, 
the DV supporting the stimulus-bound strategy could also be well 
decoded from M2. This finding was consistent across our experiments—
in all sessions, the DVs could both be read out from M2 activity (Fig. 5e 
and Extended Data Fig. 6). On average, the ‘consecutive failures’ DV was 
somewhat better represented than the ‘negative value’ (Fig. 5e). This 
average difference could stem from the fact that the majority of mice  
(8 of 11) used the inference-based strategy that relies on the ‘consecu-
tive failures’. Thus, to test whether the DV that was most predictive of 
the switching decision was also the one that was better decoded from 
M2 on a session-by-session basis, we predicted the decision to switch 
sites from each DV (Fig. 4f) and compared the accuracy of this predic-
tion to the accuracy of the neural representations of the DVs (Fig. 5g). 
There was no correlation between how M2 represented each DV in a 
session and how well the DV predicted behavior in the same session 
(P = 0.9). Together these analyses suggest that whereas M2 neural 
activity is important to the execution of a decision strategy (Fig. 4), the 
pattern of neural activity in M2 is not adapted to represent specifically 
the DV executed by the mouse, and instead reflects a broader range of 
decision strategies even when they are not currently used.

To further characterize the multiplexing of DVs in M2, we asked 
whether different variables are supported by distinct or overlapping 
populations. We examined the weights assigned to each neuron when 
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Fig. 4 | M2 is involved in the switching decision. a, Schematic target of 
optic fibers placement in the brain of VGAT-ChR2 mice, which express the 
excitatory opsin channelrhodopsin-2 in inhibitory GABAergic neurons. Bilateral 
photostimulation to silence M2 (5 mW power per fiber, 10 ms pulses at 75 Hz) 
was triggered by the first lick in 30% of randomly selected bouts and lasted 
until the last lick of the bout. b, Illustration of the logistic regression models 
for independently predicting the switching decision of the mouse based on the 
DVs during photostimulation (Laser ON) and control bouts (Laser OFF) in each 
session (n = 43). c, Deviance explained from the models in b for each session 
(dots) of inactivated mice (violet) and control mice (red). Dots below the identity 
indicate the sessions where the model performed worse during photostimulation 
of M2. Fixed effect of stimulation (‘Laser’ predictor)—inactivated: −0.04 ± 0.02, 
P = 0.021; control: −0.03 ± 0.014, P = 0.054. d, Relative variance explained of 
the DVs for predicting the switching decision in ‘Laser OFF’ versus ‘Laser ON’ 
condition. Because both DVs are used as regressors, their relative variances 
explained sum to 1. Larger values of the relative variance explained of the 
‘consecutive failures’ are colored in pink and indicate that the mouse mainly uses 

the inference-based strategy. Conversely, lower values of the relative variance 
explained of ‘consecutive failures’ are equivalent to larger values of relative 
variance explained of ‘negative value’ (colored in blue), indicating the mouse 
mainly uses the stimulus-bound strategy. e, Variance explained of ‘consecutive 
failures’ in ‘Laser OFF’ versus ‘Laser ON’ condition. Fixed effect of stimulation—
inactivated: −0.054 ± 0.025, P = 0.032; control: −0.012 ± 0.009, P = 0.22.  
f, Variance explained of ‘negative value’ in ‘Laser OFF’ versus ‘Laser ON’ condition. 
Fixed effect of stimulation—inactivated: −0.011 ± 0.012, P = 0.35; control: 
−0.032 ± 0.045, P = 0.49. g, Bias term of the logistic regression (intercept) in 
‘Laser OFF’ versus ‘Laser ON’ condition. Fixed effect of stimulation—inactivated: 
−0.45 ± 0.078, P < 10−6; control: 0.092 ± 0.075, P = 0.24. c,e–g, Filled dots indicate 
that the effect of photostimulation is significant within single sessions (P < 0.05, 
two-sided, estimated using bootstrapping; Methods). To estimate the effect of 
photostimulation on the deviance explained across mice and session, we used 
the following mixed model (Methods): Dev.Exp. ∼1 + Laser + (1 + Laser|Mouse)  
+ (1 + Laser|Session). Dev. Exp., Deviance explained.
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decoding the two DVs (Fig. 5h). We found that decoding weights for 
both DVs were strongly correlated, indicating a considerable overlap 
between the populations of M2 neurons that supported each DV, 
as opposed to compartmentalization into distinct populations for 
each variable.

Independent representations of DVs
A possible concern with the interpretation that M2 multiplexes used and 
unused DVs is that alternative DVs might be decodable only by virtue of 
being like the one reflected behaviorally. Although the computations 
underlying the two DVs are different, for the sequences of rewards and 
failures experienced by the mice, the DVs themselves are correlated 
overall (Pearson coefficient: 0.79 ± 0.15; mean ± s.d.).

As a first strategy to overcome this limitation, we took advan-
tage of the fact that the two different DVs differ in the way that they 
treat rewards: while the ‘negative value’ requires negative integra-
tion of rewards, the ‘consecutive failures’ requires a complete reset 
by a single reward (Fig. 6a). Analysis of subsets of sequences that 
consist of multiple consecutive rewards should therefore reveal the 

differences between the two DVs (Fig. 6b). To test this, we sub-selected 
lick sequences and sorted them according to the relative number 
of rewards and failures. This produced subsequences with varying 
degrees of correlation between the two decision variables (Fig. 6c). We 
then ran the same decoding analyses as before on these subsequences 
of M2 activity. We found that the ability to decode the subsequences 
was independent of their degree of correlation (Fig. 6d). Our second 
approach was to investigate whether we could decode the component 
of each DV that is uncorrelated with the other one, that is, its residual. 
Indeed, we could decode the residuals from both DVs from the activity 
of M2 populations (Fig. 6e,f). Together, these results establish that the 
ability to decode an alternative DV does not arise from the correlation 
of that variable with the dominant DV. Interestingly, this approach 
revealed that OFC better represented the ‘consecutive failures’, con-
sistent with previous work suggesting that OFC is important for the 
inference-based strategy8.

Using only the sequences of trials in which the DVs were fully 
decorrelated (Pearson correlation between DVs: 0.03 ± 0.02; median 
± MAD across session), we again tested the possibility that the DVs that 
were best decoded from M2 were the most predictive of behavior (as 
in Fig. 5e,g,h). Here the ‘consecutive failures’ remained better rep-
resented than the ‘negative value’ (Fig. 6h). Like the results with the 
intact DVs, there was no correlation between how M2 represented each 
decorrelated subset of DVs and how well the DV predicted behavior 
(Fig. 6i). This was the case even if the populations of M2 neurons that 
supported each decorrelated subset of DVs were nearly orthogonal, as 
indicated by the small correlation between decoding weights (Fig. 6j).

DV multiplexing does not reflect strategy switching
While one interpretation of multiplexing is true simultaneous rep-
resentation of multiple DVs, our interpretation is relying on decod-
ing analyses carried out over entire sessions of behavior. Could it be 
that multiplexing of DVs results from sequential switching between 
the two strategies within a session? To investigate this, we first exam-
ined whether there was any evidence that mice switched strategies 
within a session using a framework based on hidden Markov models 
(HMM) combined with LM (Methods; ref. 14). The resulting ‘LM-HMM’ 
framework modeled the number of consecutive failures that the ani-
mal bears before switching sites using the following two inputs: (1) 
the total number of rewards, which allows distinguishing between 
inference-based (that is reward independent) and stimulus-bound 
(that is reward dependent) strategies, as in Fig. 1g, and (2) a constant 
bias, which reflects the level of impulsivity of the animal. Each hid-
den state in the model captures a specific dependence of consecutive 
failures on the total rewards and the bias, characterizing a particular 
decision-making strategy.

A model with three states best described the switching decision 
and yielded interpretable and persistent states (Fig. 7a and Extended 
Data Fig. 7a). One of the states had a large weight on the number of 
rewards, indicative of a stimulus-bound strategy, while the other 
two had negligible weights on rewards, consistent with the inference  
(Fig. 7b and Extended Data Fig. 7b,c). To visualize the temporal struc-
ture of the foraging decision within a session, we computed the pos-
terior probability over the latent states across all behavioral bouts  
(Fig. 7c,d), which revealed that mice mostly remained in discrete 
states (average probability of the dominant strategies over all bouts: 
0.91 ± 0.06; median ± MAD across 11 sessions) for many bouts in a 
row (average duration of states: 56 ± 41 bouts; median ± MAD across 
sessions), but tended to switch states at least once per session (state 
transition in 8 of 11 sessions; Extended Data Fig. 7d).

Because mice alternated between states of inference-based and 
stimulus-bound strategies within the course of their recording session, 
we examined whether we could decode better from M2 activity the ‘con-
secutive failures’ DV during the inference-based states than during the 
stimulus-bound states (Fig. 7e, pink dots), and vice versa for ‘negative 
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Fig. 5 | Neural representation of DVs. a, The regression models take as 
predictors the activity of simultaneously recorded neurons (black traces) and 
derive a set of decoding weights to predict the DV. The method is applied during 
each bout (n = 223 ± 119 bouts per session; mean ± s.d.) on a lick-by-lick basis—
from the responses of neurons (the putative single units) in each recorded brain 
region. b, Predictions of the model (black trace is the weighted sums of neural 
activity) overlaid onto the ‘consecutive failures’ DV (pink trace). c, Deviance 
explained across sessions (n = 11 sessions, median ± 25th and 75th percentiles, 
the whiskers extend to the most extreme data points) from the model in a and b 
in each cortical region. The stars indicate the significance of two-sided Wilcoxon 
signed rank tests (P = 0.00098 between M2 and OFC; P = 0.00098 between M2 
and OLF; P = 0 between OFC and OLF). d, Predictions of the model (black trace is 
the weighted sums of neural activity) overlaid onto the ‘negative value’ DV (blue 
trace). e, Deviance explained across sessions (n = 11 sessions, median ±25th and 
75th percentiles, the whiskers extend to the most extreme data points) predicted 
from M2 neurons for each DV. Two-sided Wilcoxon signed rank test: P = 0.00098. 
f, Illustration of the logistic regression methods for predicting the switching 
decision of the mouse from each DV separately. g, Correlation between the 
neural representations of different DVs (color-coded as in b and d) and how well 
each DV predicts behavior. Each dot corresponds to a particular DV from a given 
recording session. The linear regression is reported in black. h, Decoding weights 
of each M2 neuron (gray dots; total across recording n = 778) for the two different 
DVs. Pairwise linear correlation—Pearson coefficient = 0.56, P < 10−4.
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value’ DV (Fig. 7e, blue dots). Consistent with the whole-session analysis 
(Fig. 5g), there were no significant differences between how well a given 
DV could be decoded when the mice’s behavior relied on it or when it 
did not. The residual signals after the DVs, which are orthogonalized, 
were also decodable in their respective alternate states (Fig. 7f). These 
analyses suggest that multiplexing of strategy is not due to the switch 
of strategies within a session.

M2 represents foraging algorithms
Given that M2 appears to multiplex different DVs, we wondered whether 
this might reflect a generic capacity to represent any signal with similar 
temporal characteristics as the DVs in the task, as predicted by the 
reservoir computing framework15–17. Decoding analyses of artificial 
signals with matched temporal statistics revealed this not to be the case 
(Extended Data Fig. 8). Therefore, we next considered that the space 
of signals encoded in M2 might be restricted to potentially meaningful 
variables generated from a common set of essential computations. Here 
the two DVs we have been considering could both be conceptualized 

as an adaptive, outcome-dependent feedback gain on a running count. 
For instance, if we refer to the running count after the t-th lick as xt and 
to the outcome of the next lick as ot+1 (equal 1 or 0 if the outcome is a 
reward or a failure, respectively), then we can write the update rule 
compactly as

xt+1 = g (ot+1) xt + c (ot+1)

with g (ot+1 = 1) = 0, g (ot+1 = 0) = 1 and c (ot+1 = 1) = c (ot+1 = 0) = 1 
for the inference-based DV, and g (ot+1 = 1) = g (ot+1 = 0) = 1  and 
c (ot+1 = 0) = −c (ot+1 = 1) = 1 for the stimulus-bound DV. This realiza-
tion suggests that a common generative model, which we named the 
‘INTEGRATE-AND-RESET model’, can produce these two different DVs 
by adjusting certain model parameters (Fig. 8a). The 
INTEGRATE-AND-RESET model describes, within a single algorithmic 
framework, the computations necessary to generate, not only the two 
DVs considered so far but also other DVs relevant for a variety of other 
commonly studied behavioral tasks. For instance, a ‘global count’ (accu-
mulated number of outcomes) DV is related to counting or timing 
tasks18,19. Similarly, matching tasks involving randomly timed cached 
rewards are optimally solved by integrating the difference between 
rewards and failures with an exponential decay20. Sequential foraging 
in patchy environments is also solved by integrating the difference 
between rewards and failures, equivalent to tracking the relative ‘neg-
ative value’ of a foraging site21. Other integration tasks, like the ‘Poisson 
clicks’ task22, require perfect integration of two variables. Thus, the 
space of DVs generated by the INTEGRATE-AND-RESET model covers 
a large space of tasks that have been studied in the lab and might be 
useful in different behavioral contexts.

All nontrivial time series produced by the INTEGRATE-AND-RESET 
model can be expressed as linear combinations of four basis sequences 
(Fig. 8a; Methods). The two sequences involving reset describe integra-
tion of failures and reset by rewards (‘consecutive failures’) and vice 
versa (‘consecutive rewards’). The two sequences for accumulation 

11111100000 (3x)

1111100000

1111100000

Con. fail.

11111100000 (3x)

D
ev

. e
xp

.

Correlation

C
or

re
la

tio
n

Number of failures
relative to rewards

a b c d

Neg. value 0

0.5

1

–2 0 2 4 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

h i j

0 0.1 0.2 0.3
0

0.5

1

–0.05 0 0.05
–0.1

0

0.1

0

0.4

0.8

D
ev

. e
xp

.

Con. fa
il.

Neg. val.

Decorrelated
subsets

M
2 

ne
ur

on
s 

pr
ed

ic
t

de
co

rr
el

at
ed

 s
ub

se
ts

Dev. exp.

Decision variables
predict behavior

r2 = 0.02

N
eg

. v
al

ue

Cons. failures

Decoding weights
decorrelated subsets

Projection 

...

Neurons

Residual 

e f
Cons. failuresNeg. value

Neg. val.

Con. fa
il.

M2 OFC
g

Neg. val.

Con. fa
il.

D
ev

. e
xp

.
of

 re
si

du
al

s

D
ev

. e
xp

.
of

 re
si

du
al

s

******

0

0.2

0.4

0.6

0

0.2

0.4

0.6 **

NS

∑

Fig. 6 | Independent representations of DVs. a, Two different sequences 
relying on different computations involving reset (top) and accumulations 
(bottom) of rewards. b, Three example bouts (columns) of population activity 
(black traces) projected onto the dimensions that best predict the trajectory 
of the different sequences (color traces). Only subsequences of consecutive 
rewards followed by consecutive failures were selected to visualize the different 
computations in a (~5% of bouts). c, Selecting subsets of action outcomes 
where the total number of failures changes relative to the number of rewards 
(abscissa) alters the correlation between sequences generated with the 
computations in a (ordinates). Black dots for each value of the number of failures 
represent a recording session. d, How well the sequences relying on the two 
different computations can be decoded from M2 (ordinates) as a function of 
the correlation between them (median ± median absolute deviation or MAD, 
across sessions, one-way ANOVA for each sequence across correlation values 
followed by multiple pairwise comparison tests, all P values > 0.05). Pink are 
sequences that accumulate failures and reset with rewards (equivalent to 
‘consecutive failures’). Blue are sequences that accumulate failures upward and 
rewards downward (equivalent to ‘negative value’). e, Schematic description of 
our strategy to linearly regress each of the two DVs on the other. This approach 
allowed us to express DV1 (for example, ‘consecutive failures’) as the sum of 
a time series proportional to DV2 (for example, ‘negative value’) plus a time 
series orthogonal (uncorrelated) to DV2, which we denote as its residual. Here 
the ‘consecutive failures residual’ (gray) is orthogonal to the ‘negative value’ 
(blue). The same procedure was used to generate the ‘negative value residual’ 
orthogonal to the ‘consecutive failures’. Both residuals were then fit by M2 
neurons. f, Deviance explained across sessions (n = 11 sessions, median ± MAD) of 
the model in e. Pink, residual consecutive failures; blue, residual negative value. 
The residuals relative to each DV were both significantly represented in M2 (two-
sided Wilcoxon rank sum test, P = 0.00098 for both, indicated by the stars). The 
size of the pink bar measures how well one can decode the part of ‘consecutive 
failure’ orthogonal to ‘negative value’ (residual consecutive failures) and the 
size of the blue bar measures how well one can decode the part of ‘negative 
value’ orthogonal to ‘consecutive failure (residual negative value)’. If only 
‘consecutive failures’ were represented, the residual consecutive failures should 
be represented, but the residual negative value would not be represented. On 
the other hand, if both DVs are represented, both residuals should be decodable, 
as shown here in M2. g, Same as in f but with OFC neurons. The residuals 
‘consecutive failures’ were decodable from OFC ensembles (pink; two-sided 
Wilcoxon rank sum test, P = 0. 0029), but the residuals ‘negative values’ were not 
(pink; Wilcoxon rank sum test, P = 0. 52). h, Deviance explained across sessions 
(n = 11 sessions, median ±25th and 75th percentiles, the whiskers extend to the 
most extreme data points) predicted from M2 neurons for each decorrelated 
subsets of DVs (two-sided Wilcoxon signed rank test: P = 0.00098). i, Correlation 
between the neural representations of decorrelated subsets of DVs (color-coded 
as in b, d and e) and how well each DV predicts behavior. Each dot corresponds 
to a particular DV subset from a given recording session. The linear regression is 
reported in black (r2 = 0.02, P = 0.6). j, Decoding weights of each M2 neuron (gray 
dots; total across recording n = 778) for the decorrelated different subsets of DVs 
(two-sided Pearson coefficient between decoding weights = 0.20, P < 10−7).
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without reset are upwards integration of both rewards and failures 
(equivalent to ‘count’) and integration upwards of rewards and down-
wards of failures (equivalent to ‘negative value’). We already know 
that M2 simultaneously represents two of these basis elements (‘con-
secutive failures’ and ‘negative value’). Thus, we tested whether M2 
also represented the two additional basis sequences. We found that, 
indeed, ‘consecutive reward’ and ‘count’ could be decoded from the M2 
population (Fig. 8b) and remained decodable from the M2 population 
when using the subsequences that decorrelate the variables (Fig. 8c).

The INTEGRATE-AND-RESET model can be extended, through 
analog values of ‘g’, to produce sequences with different dynamics and 
various time constants (Fig. 8d, left). Note that adjusting analog param-
eter values can directly relate the INTEGRATE-AND-RESET model to 
frameworks of reinforcement learning with differential learning, where 
the ‘reset’ is equivalent to a very large negative rate of decay. Therefore, 
we further tested the richness of the actual INTEGRATE-AND-RESET 
model family instantiated by M2 by decoding sequences generated 
with analog ‘g’. We found that M2 could also represent leaky integra-
tion of rewards and failures, and even amplification with small positive 
feedback (g(ot+1) < 1.2 (Fig. 8d, right). Comparing across this param-
eter space (Fig. 8e), we observed that M2 had a preferred mode of 
integration that consisted of mostly perfect integration of failures 
(0.85 ≤ g(ot+1 = 0) ≤ 1) and integration of rewards with a variety of time 
constants (g(ot+1 = 1) ≤ 1). Altogether, our results show that M2 simulta-
neously represents a relatively large repertoire of computations that 
embody a variety of foraging DVs, potentially spanning a set of optimal 
strategies for environments with different dynamics for the latent state.

Discussion
We explored the capacity of several regions of the cortex to deploy dif-
ferent algorithms for generating a diversity of DVs. We studied this in 
the context of a foraging task whose solution required mice to process 

streams of successful and unsuccessful foraging attempts executed 
over several seconds. We found that mice could use not one but a set of 
discrete processing strategies to time their decision to switch between 
foraging sites, and the LM-HMM framework revealed that mice often 
change strategies within a session. All the decision strategies could be 
well read out from populations of neurons in M2. Moreover, we found 
the set of potentially relevant DVs was implemented in parallel within 
the same neural populations in M2. Conversely, OFC did not appear 
to multiplex DVs, consistent with the idea that it may be specifically 
involved in the computations of the inference-based strategy8.

While ‘causal’ manipulations of M2 using optogenetic inac-
tivation showed that M2 was important to the deployment of the 
inference-based strategy, we found that the neural availability of alter-
native DVs was nearly independent of the actual behaviorally deployed 
DV. Functionally, the ability of M2 to multiplex the computation of 
several DVs could allow the mice to rapidly explore and adapt behav-
ior to dynamically changing environmental contingencies by simply 
modifying linear readouts of M2 neural populations23,24 without the 
need to implement new computations.

The different DVs in M2 were ‘mixed’ but could be recovered 
through linear decoding. Although multiplexed neural codes have 
been observed previously in other cortical regions15,25–28, our results 
establish that the kind of information that is multiplexed is not limited 
to representations of instantaneously observable events in premo-
tor regions but also includes temporally extended computations 
spanning several seconds. While the observation of multiplexed DVs 
is reminiscent of the framework of ‘reservoir’ computing15–17,29, we 
found that M2’s coding capacity was not universal, and instead imple-
mented a substantial but circumscribed pool of potentially meaning-
ful computations. One computation is accumulation of evidence, 
which, through its intimate relationship with posterior beliefs30,31, 
constitutes an essential computation for statistical inference and 
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Fig. 7 | Simultaneous representations of DVs. a, Illustration of the LM-HMM, 
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(labeled ‘stimulus-bound’, ‘persistent inference’ and ‘impulsive inference’). 
The high self-transition probabilities of 0.94, 0.97 and 0.98 indicate that states 
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of a session. d, Behavioral data and model parameters of the example session. 
The gray line indicates the number of consecutive failures (that is, observations 
of LMs). The shaded color background indicates the high confidence state  
(P (state) > 0.75). Dash black lines indicate the LMs bias and weights in each state. 

e, Deviance explained from models that fit M2 neurons to the DVs (pink dots, 
consecutive failures; blue dots, negative value) in different states (high model 
confidence, indicated by the color background). High confidence intervals were 
defined as P (state) > 0.75 for at least 25 consecutive bouts. Each dot is a recording 
session. Comparisons between pairs of states were made with two-sided 
Wilcoxon rank sum test (P > 0.05 for all comparisons). f, Deviance explained 
across sessions (n = 11 sessions, median ± 25th and 75th percentiles, the whiskers 
extend to the most extreme data points) from models that fit M2 neurons to 
the residual DVs in their respective alternate states of high certainty. Left is the 
residual consecutive failures (the signal that is orthogonal to the negative value 
DV) in the stimulus-bound state. Right is the residual negative value (the signal 
that is orthogonal to the consecutive failure DV) in the inference-based states. 
Stars indicate that the deviance explained is significantly different from zero 
(two-sided Wilcoxon rank sum test; left, P = 0.031; right, P = 0.016).
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has therefore been implicated in a variety of decision-making and 
reasoning tasks22,32–36. Accumulation (possibly temporally discounted) 
of action outcomes also underlies several reinforcement-learning 
algorithms37–40. Although less attention has been devoted to reset-like 
computations (but see ref. 41), they are also essential for inference 
when certain observations specify a state unambiguously8.

The two strategies that we describe in the context of foraging 
represent a particular example of a more general phenomenon. In com-
plex environments, agents can adapt their behavior in different ways 
depending on how accurately they can infer and specify the relevant 
causal structure42, a process that can be described as finding the cor-
rect ‘task representation’. Even if unable to apprehend the true causal 
model, agents can display reasonably well-adapted behavior by lever-
aging the predictive power of salient environmental events. However, 
because the task representation is not correct, the association between 
these events and outcomes will necessarily be more probabilistic from 
the point of view of the agent. Such agents incorrectly model outcome 

variance arising from incomplete task representations as unexplain-
able, and often resort to exploratory strategies that are adaptive in 
what they construe as highly volatile environments43–45. Our results 
suggest that, at least in the case of foraging, the computations neces-
sary to implement strategies lying along this continuum are computed 
simultaneously and available, which might facilitate the process of 
‘insight’ necessary to switch between them.

Our finding also speaks to the debate on the nature of serial pro-
cessing limitations in the brain. While it has been shown that limitations 
apply in some kinds of evidence accumulation tasks2,4,46, here we show 
in a different, but ethologically important, setting that some forms of 
evidence accumulation can proceed in parallel. An important differ-
ence between our task and standard behavioral paradigms that study 
cognitive bottlenecks is that our mice do not need to simultaneously 
compute two DVs to perform the task successfully. Nevertheless, we 
show that neural populations in the premotor cortex of mice using a 
strategy where a single reward resets a counter of failures, reveal both 
this reset and simultaneously the updating of a reward counter. Our 
findings are thus consistent with proposals favoring parallel integra-
tion47,48 and with models that place serial constraints on behavior close 
to the specification of the timing of action47,49.
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Methods
Data and processing
Animal subjects. A total of 27 adult male and female mice (24 C57BL/6J 
and 6 VGAT, 2–9 months old) were used in this study. All experimental 
procedures were approved and performed in accordance with the 
Champalimaud Centre for the Unknown Ethics Committee guidelines 
and by the Portuguese Veterinary General Board (Direco-Geral de Veter-
inria, approval 0421/000/000/2016). Mice were housed in individually 
ventilated cages under a normal 12 h light/12 h dark cycle, temperature 
was maintained between 19 °C and 23 °C and humidity between 50% 
and 65%. During training and recording, mice were water-restricted 
(starting 5–10 d after head-bar implantation), and sucrose water (10%) 
was available to them only during the task. Mice were given 1 ml of water 
or 1 g of hydrogel (clear H2O) on days when no training or recording 
occurred or if they did not receive enough water during the task.

Surgery and head fixation. All surgeries used standard aseptic proce-
dures. Mice were deeply anesthetized with 4% isoflurane (by volume 
in O2) and mounted in a stereotaxic apparatus (Kopf Instruments). 
Mice were kept on a heating pad and their eyes were covered with 
eye ointment (Vitaminoftalmina A). During the surgery, the anesthe-
sia levels were adjusted between 1% and 2% to achieve 1 s−1 breath-
ing rate. The scalp was shaved and disinfected with 70% ethanol and 
betadine. Carprofen (nonsteroidal anti-inflammatory and analgesic 
drug, 5 mg kg−1) was injected subcutaneously. A flap of skin (less than 
1 cm2) was removed from the dorsal skull with a single cut and the 
skull was cleaned and dried with sterile cotton swabs. The bone was 
scraped with a delicate bone scraper tool and covered with a thin layer 
of cement (C&B Super-Bond). Four small craniotomies were drilled 
(HM1 005 Meisinger tungsten) between Bregma and Lamba (around 
−0.5 and −1 AP; ±1 ml) and four small screws (Antrin Miniature Speciali-
ties, 000–120 × 1/16) previously soaked in 90% ethanol, were inserted 
in the craniotomies to stabilize the implant. The head bar (stainless 
steel, 19.1 × 3.2 mm), previously soaked in 90% ethanol, was positioned 
directly on top of the screws. Dental cement (Tab 2000 Kerr) was added 
to fix the head bar in position and to form a well around the frontal bone 
(from the head bar to the coronal suture). Finally, an external ground 
for electrophysiological recording (a male pin whose one extremity 
touched the skull) was cemented onto the head bar.

Behavioral apparatus. Head-fixed mice were placed on a linear tread-
mill with a 3D-printed plastic base and a conveyor belt made of Lego 
small tread links. The running speed on the treadmill was monitored 
with a microcontroller (Arduino Mega 2560), which acquired the trace 
of an analog rotary encoder (MAE3 Absolute Magnetic Kit Encoder) 
embedded in the treadmill. The treadmill could activate two mov-
able arms via coupling with two motors (Digital Servo motor Hitec 
HS-5625-MG). A lick-port, made of a cut and polished 18G needle, was 
glued at the extremity of each arm. Water flowed to the lick-port by 
gravity through water tubing and was controlled by calibrated solenoid 
valves (Lee Company). Licks were detected in real-time with a camera 
(Sony PlayStation 3 Eye Camera or FLIR Chameleon-USB3) located on 
the side of the treadmill. Using BONSAI50, an open-source visual pro-
gramming language, a small, squared region of interest was defined 
around the tongue. To detect the licks, a threshold was applied to 
the signal within the region of interest. The behavioral apparatus was 
controlled by microcontrollers (Arduino Mega 2560) and scientific 
boards (Champalimaud Hardware platform), which were responsible 
for recording the time of the licks and the running speed on the tread-
mill, and for controlling water-reward delivery and reward depletion 
according to the statistics of the task.

Task design. In the foraging task, two reward sites, materialized by two 
movable arms, could be exploited. Mice licked at a given site to obtain 
liquid reward and decided when to leave the current site to explore the 

other one. Each site could be in one of the following two states: ‘ACTIVE’, 
which is delivering probabilistic reward, or ‘INACTIVE’, which is not 
delivering any reward. If one of the sites was ‘ACTIVE’, the other one 
was automatically ‘INACTIVE’. Each lick at the site in the ‘ACTIVE’ state 
yielded reward with a probability of 90% and could cause the state to 
transition to ‘INACTIVE’ with a probability of 30%. Licks could trigger 
the state of the exploited site to transition from ‘ACTIVE’ to ‘INACTIVE’, 
but never the other way around. Notably, this transition was hidden 
from the animal. Therefore, mice had to infer the hidden state of the 
exploited site from the history of rewarded and unrewarded licks (that 
is, rewards and failures). We defined ‘behavioral bout’ as the sequence 
of consecutive licks at one spout. A tone (150 ms, 10 kHz) was played 
when one of the arms moved into place (that is, in front of the mouse) 
to signal that a bout could start. At the tone, the closed loop between 
the motors and the treadmill decoupled during 1.5 s or until the first 
valid lick was detected. During this time, mice had to ‘STOP’, that is, 
decrease their running speed for more than 250 ms below a threshold 
for movement (6 cm s−1). Licks were considered invalid if they hap-
pened before ‘STOP’ or at any moment after ‘STOP’ if the speed was 
above the threshold. If a mouse failed to ‘STOP’, ‘LEAVE’ was triggered 
by reactivating the closed loop after 1.5 s, which activated the move-
ment of the arms (the one in front moved away and the other moved 
into place). Mice typically took around 200 ms to ‘STOP’ and initiate 
valid licking. During the licking periods, each lick was rewarded in a 
probabilistic fashion by a small drop of water (1 μl). The small reward 
size ensured that there was no strong difference in licking rate between 
rewarded and unrewarded licks. To ‘LEAVE’, mice had to restart running 
above the threshold for movement for more than 150 ms and travel a 
fixed distance on the treadmill (around 16 cm) to reach the other arm. 
We defined as correct bouts the ones in which mice stopped licking 
after the states transitioned from ‘ACTIVE’ to ‘INACTIVE’. Error bouts 
were ones in which mice stopped licking before the state transition 
occurred. In this case, mice had to travel double the distance to get 
back to the arm in ‘ACTIVE’ state. Missed bouts were ones in which mice 
alternated between arms without any valid lick. These ‘missed bouts’ 
were excluded from our analysis.

Mouse training. Mice were handled by the experimenter from 3 to 7 d, 
starting from the beginning of the water restriction and before the first 
training session. At the beginning of the training, mice were acclima-
tized to the head fixation and to the arm movement and received liquid 
reward simply by licking at the lick-port. The position of the lick-ports 
relative to the snout of the mouse had an important effect on behav-
ioral performances. Thus, to ensure that the position of the lick-ports 
remained unchanged across experimental sessions, it was carefully 
adjusted on the first session and calibrated before the beginning of 
every other session. There were no explicit cues that allow discriminat-
ing between the two arms, and it was not even necessary that the animal 
be fully aware of the two different arms to perform the task. After mice 
learned to lick for water reward (typically after one or two sessions), the 
next sessions consisted of an easier version of the task (with a low prob-
ability of state transition, typically 5% or 10%, and high probability of 
reward delivery, 90%), and both arms in ‘ACTIVE’ state. That way, if mice 
alternated between arms before the states of the sites transitioned, the 
other arm would still deliver reward and animals would not receive the 
travel penalty. Occasionally, during the early phase of training, manual 
water delivery was necessary to motivate the mice to lick or stop run-
ning. Alternatively, it was sometimes necessary to gently touch the tail 
of the animals, such that they started to run and gradually associated 
running with the movement of the arms. The difficulty of the following 
sessions was progressively increased by increasing the probability of 
state transition if the performance improved. Performance improve-
ment was indicated by an increase in the number of bouts and licking 
rate, and by a decrease in the average time of different events within a 
bout. Mice were then trained for at least five consecutive days on the 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01305-8

final task (90% reward delivery, 30% chance of state transition) before 
the recording sessions. The reason for choosing these statistics is 
that they correspond to a level of environmental uncertainty that is 
relatively low. This allows the mice to learn the task faster than at a 
high level of uncertainty and to remain highly motivated during the 
recording sessions, thus yielding a large number of behavioral bouts.

Electrophysiology. Recordings were made using electrode arrays 
with 374 recording sites (Neuropixels ‘Phase3A’). The Neuropixels 
probes were mounted on a custom 3D-printed piece attached to a 
stereotaxic apparatus (Kopf Instruments). Before each recording ses-
sion, the shank of the probe was stained with red-fluorescent dye (DiI 
Vybrant; Thermo Fisher, V22885) to allow later track localization. Mice 
were habituated to the recording setup for a few days before the first 
recording session. Before the first recording session, mice were briefly 
anesthetized with isoflurane and administered a nonsteroidal analgesic 
(carprofen) before drilling one small craniotomy (1 mm diameter) over 
the secondary motor cortex. The craniotomy was cleaned with a sterile 
solution and covered with silicone sealant (Kwik-Sil, World Precision 
Instruments). Mice were allowed to recover in their home cages for 
several hours before the recording. After head fixation, the silicone 
sealant was removed, and the shank of the probe was advanced through 
the dura and slowly lowered to its final position. The craniotomies and 
the ground pin were covered with a sterile cortex buffer. The probe 
was allowed to settle for 10–20 min before starting recording. Record-
ings were acquired with SpikeGLX Neural recording system (https://
billkarsh.github.io/SpikeGLX/) using the external reference setting 
and a gain of 500 for the AP band (300 Hz high pass filter). Recordings 
were made from either hemisphere. The target location of the probe 
corresponded to the coordinates of the anterior lateral motor cortex; 
a region of the secondary motor cortex important for motor planning 
of licking behavior11. The probe simultaneously traversed the OFC, 
directly ventral to the secondary motor cortex and the probe tip ended 
in the OLF, ventral to the OFC.

Histology and probe localization. After the recording session, mice 
were deeply anesthetized with ketamine/xylazine and perfused with 4% 
paraformaldehyde. The brain was extracted and fixed for 24 h in para-
formaldehyde at 4 °C, and then washed with 1% phosphate-buffered 
saline. The brain was sectioned at 50 μm, mounted on glass slides and 
stained with DAPI. Images were taken at ×5 magnifications for each 
section using a Zeiss AxioImager at two different wavelengths (one 
for DAPI and one for DiI). To determine the trajectory of the probe and 
approximate the location of the recording sites, we used SHARP-Track51, 
an open-source tool for analyzing electrode tracks from slice histology. 
First, an initial visual guess was made to find the coordinates from the 
Allen Mouse Brain Atlas (3D Allen CCF, http://download.alleninstitute.
org/informatics-archive/current-release/mouse_ccf/annotation/) 
for each DiI mark along the track by comparing structural aspects of 
the histological slice with features in the atlas. Once the coordinates 
were identified, slice images were registered to the atlas using manual 
input and a line was fitted to the DiI track 3D coordinates. As a result, 
the atlas labels along the probe track were extracted and aligned to 
the recording sites based on their location on the shank. Finally, we 
also used characteristic physiological features to refine the alignment 
procedure (that is, clusters of similar spike amplitude across cortical 
layers, low spike rate between frontal and olfactory cortical boundaries 
or LFP signatures in deep olfactory areas).

Optogenetic stimulation. To optically stimulate ChR2-expressing 
VGAT-expressing GABAergic interneurons, we used blue light from 
a 473-nm laser (LRS-0473-PFF-00800-03, Laserglow Technologies, 
Toronto, Canada, or DHOM-M-473-200, UltraLasers, Newmarket, 
Canada). Light was emitted from the laser through an optical fiber 
patch-cord (200 μm, 0.22 NA, Doric lenses), connected to a second 

fiber patch-cord with a rotatory joint (FRJ 1×1, Doric lenses), which in 
turn was connected to the chronically implanted optic fiber cannulas 
(M3 connector, Doric lenses). The cannulas were inserted bilaterally 
inside small craniotomies performed on top of M2 (+2.5 mm anterior 
and ±1.5 mm lateral of bregma) and barely touched the dura (as to avoid 
damaging superficial cortical layers). Structural glue (Super-bond 
C&B kit) was used to fix the fiber to the skull. The power of the laser 
was calibrated before every session using an optical power meter kit 
(Digital Console with Slim Photodiode Sensor, PM100D, Thorlabs). 
During the foraging task, the optical stimulation (10-ms pulses, 75 s−1, 
5 mW) was turned on during 30% of randomly interleaved bouts. Light 
delivery started when the first lick was detected and was interrupted 
if the animal did not lick for 500 ms (which was in 98% of bouts after 
the last lick of the bouts).

Preprocessing neural data. Neural data were preprocessed as 
described previously52. Briefly, the neural data were first automati-
cally spike-sorted with Kilosort2 (https://github.com/MouseLand/
Kilosort) using MATLAB (MathWork). To remove the baseline offset 
of the extracellular voltage traces, the median activity of each channel 
was subtracted. Then, to remove artifacts, traces were ‘common aver-
age referenced’ by subtracting the median activity across all channels 
at each time point. Second, the data were manually curated using an 
open-source neurophysiological data analysis package (Phy: https://
github.com/kwikteam/phy). This step consisted in categorizing each 
cluster of events detected by a particular Kilosort template into a good 
unit or an artifact. There were several criteria to judge a cluster as noise 
(nonphysiological waveform shape or pattern of activity across chan-
nels, spikes with inconsistent waveform shapes within the same cluster, 
very low-amplitude spikes and high contamination of the refractory 
period). Units labeled as artifacts were discarded in further analyses. 
Additionally, each unit was compared to spatially neighboring units with 
similar waveforms to determine whether they should be merged, based 
on cross-correlogram features and/or drift patterns. Units passing all 
these criteria were labeled as good and considered to reflect the spiking 
activity of a single neuron. For all analyses, otherwise noted, we averaged 
for each neuron the number of spikes into bins by considering a 200 ms 
window centered around each lick. The bin vectors were then z-scored. 
Because the interval between each lick was on average around 150 ms, 
there was little overlap between two consecutive bins and each bin 
typically contained the number of spikes associated with only one lick.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. The 
number of mice (n = 27 total) was chosen based on the current standard 
used for mice in neuroscience for sufficient statistical power. Randomi-
zation was used for stimulus presentation in all the experiments. The 
experimenter was blind to the genotype of the mice when performing 
optic fiber implantations and running the optogenetics experiments. 
For other experiments, no comparison across groups was made, there-
fore blinding was not necessary.

Statistical analysis of optogenetic manipulations. The statisti-
cal analysis of optogenetics was performed using generalized linear 
mixed-effect models, allowing us to pool different sessions of different 
mice in the same model. Our N is thus the number of mice multiplied by 
the number of sessions and conditions (Laser OFF/ON). The different 
groups (control versus inactivated) had different numbers of mice and 
sessions, which are reported in the results section. For each group, we 
fitted models with fixed effects of stimulation and random intercepts 
and effects of stimulation depending on mouse identity and session. 
For each mixed model, we report the coefficient of the fixed effect of 
the stimulation predictor (Laser) ± s.d. of the estimate. We also report 
the P value that corresponds to the t-statistic for a hypothesis test that 
the coefficient of the ‘Laser’ predictor is equal to 0.
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To describe mixed models, we use the Wilkinson notation, with | 
denoting random effects. For example, the formula:

TimeLicking ∼ 1 + Laser + (1 + Laser|Mouse) + (1 + Laser|Session) ,

uses as predictors for the time spent licking at a foraging site a constant 
intercept, a coefficient for ‘Laser ON’ condition that is different from 
‘Laser OFF’ condition, which is considered as baseline, a random inter-
cept across mice and a random intercept across sessions.

To test the strength of the effect of stimulation on the DVs in each 
single session, we generated 1,000 resamples of behavioral bouts in 
each ‘Laser OFF’ versus ‘Laser ON’ condition and used independent 
GLMs to predict the switching decision from the DVs for each resample. 
We compared the deviance explained of the models and the explained 
variance by each DV in ‘Laser OFF’ versus ‘Laser ON’ condition and 
estimated the significance of the differences. In the plot in Fig. 3, the 
sessions where P value < 0.05 are indicated by filled dots.

Predicting choice from DVs. All data analyses were performed with 
custom-written software using MATLAB. We used logistic regression53 
to estimate how DVs predicted the choice of the animal (that is, the 
probability that the current lick is the last in the bout). Using Glmnet for 
Matlab (http://www.stanford.edu/~hastie/glmnet_matlab/) with bino-
mial distribution, model fits were performed with DVs as predictors. 
We used fivefold nested cross-validation and elastic net regularization 
(α = 0.5). To assess a metric of model fit, we calculated the deviance 
explained (as implemented by the devianceTest function in Matlab). 
The deviance explained is a global measure of fit that is a generalization 
of the determination coefficient (r squared) for GLM. It is calculated as

Deviance explained = 1 − residual deviance
null deviance

.

The residual deviance is defined as twice the difference between 
the log-likelihoods of the perfect fit (that is, the saturated model) and 
the fitted model. The null deviance is the residual deviance of the worst 
fit (that is, the model that only contains an intercept). The log-likelihood 
of the fitted model is always smaller than the log-likelihood of the 
saturated model, and always larger than the log-likelihood of the null 
model. Therefore, if the fitted model does better than the null model at 
predicting choice, the resulting deviance explained should be between 
0 and 1. When the fitted model does not predict much better than the 
null model, the deviance explained is close to zero.

Simulated behavior sessions. To test the logistic regression model, 
we simulated behavioral sessions of an agent making decisions using 
a logistic function and the DV of the inference strategy (consecutive 
failures). For each simulated session, the slope and the intercept of 
the logistic regression in the ground truth model were chosen to fit 
the distribution of the total number of licks in each bout from the real 
data. To estimate the parameters of the ground truth model (slope and 
intercept), we then fit a logistic regression model to predict the leaving 
decisions of this simulated agent using the consecutive failures DVs.

Predicting DVs from neural population. We used a generalized LM 
for Poisson response54 to predict each DV given the activity of the 
neural population (or facial motion, or both). Specifically, we predicted 
the DV A given the neural activity x, by learning a model with param-
eters, β, such as A = exp(β0 + βx). The Poisson regression with log-link is 
appropriate to model count data like the DVs studied here. To enforce 
the positivity of the count responses, we shifted all the DVs to have a 
minimum value of one. Model fits were performed on each session 
separately. We employed elastic net regularization with parameter 
α = 0.5. Additionally, we performed a cross-validation implemented by 
cvglmnet using the lambda_min option to select the hyperparameter 

that minimizes prediction error. To assess the predictive power of the 
model, we also implemented nested cross-validation. Specifically, the 
model coefficients and hyperparameters were sequentially fit using 
a training set consisting of four-fifths of the data, and the prediction 
was evaluated on the testing set consisting of the remaining one-fifth. 
The method was implemented until all the data had been used both 
for training and testing. The deviance explained reported as a metric 
of the goodness of fit was calculated from the cross-validated results. 
The final β coefficients were estimated using the full dataset.

Comparison between brain regions. To ensure a fair comparison 
between brain regions with different numbers of recorded neurons, we 
excluded regions with very low numbers of recorded neurons (that is 
less than 20 neurons, n = 2 recordings in OLF excluded) and used mul-
tiple approaches to match the data from each region. One approach 
was to run the principal component analysis of the neural data from 
each region and select the principal components of neural activity 
that predicted up to 95% of the total variance (as reported in Fig. 2). A 
second approach was to select a subset of the original data to match 
the lowest number of neurons per region in each recording (subsam-
pling with replacement, 100 repetitions). Both approaches yielded 
qualitatively similar results.

Predicting choice from neural population. We used logistic regres-
sion53 to estimate how the weighted sum of neural activity (that is, the 
neural projections onto the weights that best predict the various DVs) 
predicted the probability that the current lick is the last in the bout. 
The model fits each recording session separately as described above 
using the glmnet package in MATLAB and implementing elastic net 
regularization with α = 0.5 and a nested fivefold cross-validation to 
estimate the deviance explained.

Models
Integrate-and-reset. We developed a unified theory of integration 
in the setting of nonsensory decision-making tasks. In a wide vari-
ety of tasks, animals need to keep track of quickly evolving external 
quantities. Here we considered tasks where the feedback that the ani-
mal receives is binary (for example reward or failure). We considered 
an integrator given by xt+1 = g(ot+1 = 1) • xt + c(ot+1 = 1), if the attempt is 
rewarded, and xt+1 = g(ot+1 = 0) • xt + c(ot+1 = 0), otherwise. The param-
eters of the integrator g(ot+1 = 0) and g(ot+1 = 1) represent the computa-
tions and are bound between zero and one (g = 1 for an accumulation, 
g = 0 for a reset). The parameters c (ot+1 = 1), c (ot+1 = 0) add linearly and 
can be negative, positive or null.

We consider different scenarios involving a combination of compu-
tations but where the optimal solution only involves a one-dimensional 
integration. For instance, counting tasks can be solved by a linear inte-
gration, that is, g (ot+1 = 0) = g (ot+1 = 1) = c (ot+1 = 0) = c (ot+1 = 1) = 1, where 
the integrated value increases by one after each attempt regardless of 
the outcome. In a two-alternative forced choice and more generally 
in an n-armed bandit task, each arm would have an integrator that 
increases with rewards that is, g(ot+1 = 0) = g(ot+1 = 1) = 1, c(ot+1 = 0) = 0 and 
c(ot+1 = 1) = 1, and decays with failures, that is, g(ot+1 = 0) = g(ot+1 = 1) = 1, 
c(ot+1 = 0) = −1 and c(ot+1 = 1) = 0. Even in cognitively more complex 
tasks, involving inference over hidden states, such as reversal tasks 
or foraging under uncertainty, a single integrator is often sufficient. 
Specifically, in the foraging task studied here, the optimal solution is 
to integrate failures but not rewards, that is, g (ot+1 = 0) = c (ot+1 = 0) = 1, 
and g (ot+1 = 1) = c (ot+1 = 1) = 0.

More generally, the model produces sequences that ramp up 
with failures (that is, g (ot+1 = 0) = c (ot+1 = 0) = 1; such as the consecutive 
failures), and the mirror images that ramp down (that is, g (ot+1 = 0) = 1, 
c (ot+1 = 0) = −1). Similarly, the model can produce sequences that ramp 
up or down with rewards (that is, g (ot+1 = 1) = 1, c (ot+1 = 1) = ± 1). The 
model also generates sequences that accumulate one type of event and 
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persist at a constant level with the other type (that is, g (ot+1 = x) = 1, c 
(ot+1 = x) = ±1, g (ot+1 = y) = 1, c (ot+1 = y) = 0), such as the cumulative reward 
integrator or its mirror image. Finally, many sequences generated by 
the model (where g (ot+1 = 0) = g (ot+1 = 1) = 0) track the outcomes (that 
is, reward versus failure).

There are 36 different values that the parameters of the model 
can take (g (ot+1 = 0) and g (ot+1 = 1) could take the values of 0 or 1 and c 
(ot+1 = 0) and c (ot+1 = 1) could take the values of −1, 0 or 1). In principle, 
each of these defines a different model which generates a time series 
when fed with sequences of binary action outcomes. The 8 of them for 
which c (ot+1 = 0) = c (ot+1 = 1) = 0 are trivial (constant). Of the remaining 
28, not all are linearly independent. For instance, the time series gen-
erated by the model that computes ‘count’ (g(ot+1 = 0) = g(ot+1 = 1) = c(o
t+1 = 0) = c(ot+1 = 1) = 1) is equal to the sum of the time series generated 
by the model that accumulates reward and is insensitive to failures 
(g(ot+1 = 0) = g(ot+1 = 1) = 1; c(ot+1 = 0) = 0; c(ot+1 = 1) = 1) and the time series 
generated by the model that accumulates failures and is insensitive to 
rewards (g(ot+1 = 0) = g(ot+1 = 1) = 1; c(ot+1 = 0) = 1; c(ot+1 = 1) = 0). Thus, 
the rank of the space of time series is 8 (two dimensions for the linear 
component (c) of the model for each of the four possible combinations 
of the g parameters, which specify the ‘computation’ the model is per-
forming). Of these 8 dimensions, 4 come from models that are less inter-
esting. Two of these are the two ‘outcome’ time series (g (ot+1 = 0) = g 
(ot+1 = 1) = 0), which are ‘observable’. We also only consider one time 
series for each of the two models, because the value of the linear com-
ponent associated with the outcome that is reset makes very little differ-
ence to the overall shape of the time series. For instance, the time series 
generated by the two models g(ot+1 = 0) = 1; g(ot+1 = 1) = 0; c(ot+1 = 0) = 1; 
c(ot+1 = 1) = 0 and g(ot+1 = 0) = 1; g(ot+1 = 1) = 0; c(ot+1 = 0) = 1; c(ot+1 = 1) = 1 
are linearly independent but almost identical for the type of outcome 
sequences of interest. The remaining 4 dimensions after these ‘trivial’ 
models are removed are spanned by the 4 basis elements that we focus 
on in the main text (Fig. 8). Finally, the effective dimensionality of the 
space of time series also depends on the temporal statistics of the out-
come sequences. For the particular outcome sequences experienced 
by the mice (which are a function of the reward and state-transition 
probabilities) the effective dimensionality was low, which motivated 
us to focus on particular subsets of outcome sequences in Fig. 8 where 
the time series generated by the 4 basis elements are clearly distinct.

LM-HMM. To test the hypothesis that animals switch between discrete 
decision-making strategies within single sessions, we developed a new 
HMM with input-driven Gaussian observations modeling a time-varying 
linear dependence F̂t = w(k)R̂t + b(k) of normalized consecutive failures 
F̂t (observations) on normalized total rewards R̂t (inputs) across bouts 
t = 1,…T; ϵt is i.i.d. Gaussian noise with mean zero and variance σ(k). For 
each session m, the normalized values F̂t = Ft/Fmaxm  andR̂t = Rt/Rmaxm  were 
obtained by min-maxing the raw values Ft, Rt on their within-session 
max Fmaxm ,Rmaxm . This procedure allowed us to fit a single model to all 
sessions where both inputs and observations were bounded between 
zero and one. In this LM-HMM, the slope w(k), intercept b(k) and noise 
variance σ(k) depend on the hidden state k = 1, …, K, each state represent-
ing a different decision-making strategy. For example, states with 
w(k) = 0 or w(k) > 0 represent inference-based and stimulus-bound strate-
gies, respectively. Large (small) values of the bias b(k) represent persis-
tent (impulsive) behavior, respectively. Other model parameters 
include transition probabilities Akl between hidden states and the initial 
state probabilities π(k). We fit an LM-HMM to bouts from all mice using 
the Expectation–Maximization (EM) algorithm to maximize the 
l o g - p o s t e r i o r  a n d  o b t a i n  t h e  o p t i m i z e d  p a r a m e t e r s 
Θ = {w(k),b(k),σ(k);Akl,π(k)} . Model selection for the number of states  
was performed using threefold cross-validation by concatenating all 
bouts from all sessions. A model was fit to the training set, and the 
log-posterior of the test set was estimated (normalized by the number 
of bouts per test set). Because the EM may lead to local maxima of the 

log-posterior, for each choice of number of states, the EM algorithm 
was performed five times starting from random initial conditions. We 
performed model selection using maximum a posteriori (MAP, includ-
ing Gaussian prior on the weights with variance equals to 2, and Dir-
ichlet prior on transition probabilities with α = 2; see ref. 14 for details 
on the procedure). The best number of states was chosen at the plateau 
of the maximum of the test MAP, leading to three states. We then fit a 
single model to the normalized observations and inputs F̂t, R̂t concat-
enating all bouts from all sessions, optimizing the model parameters 
Θ using MLE. Single-session values of weights and biases w(k)

m ,b(k)m  were 
then obtained from these normalized parameters w(k), b(k) as 
w(k)

m = w(k)Fmaxm /Rmaxm , b(k)m = b(k)Fmaxm . The model was developed using 
Python 3.8.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The preprocessed electrophysiological and behavioral data col-
lected for this study are publicly and can be accessed at: https://doi.
org/10.6084/m9.figshare.20449089.

Raw electrophysiological data are too large to be shared on a pub-
licly available repository and are therefore available from the authors 
upon reasonable request.

The Allen Mouse Brain Atlas used in this study is publicly avail-
able: https://alleninstitute.github.io/AllenSDK/reference_space.html.

Code availability
All analyses were performed using custom code written in MATLAB 
and available upon request.

The code used for the central GLM analyses is publicly available 
at: https://hastie.su.domains/glmnet_matlab/.

The code developed for the LM-HMM can be accessed at: 
https://github.com/mazzulab/ssm/blob/master/notebooks/2c%20
Input-driven%20linear%20model%20(LM-HMM).ipynb.
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Extended Data Fig. 1 | Task apparatus and behavioral properties. (a) The 
behavioral apparatus consists of a treadmill, coupled to two motors. Rotating 
the treadmill activates in a closed-loop fashion the movement of the arms via 
the motors. A mouse placed on the treadmill with its head fixed can lick at the 
spout from the arm in front. A camera placed on the side of the animal allows 
on-line video detection of the licks. (b) View from the lick detector camera. A 
region of interest is defined around the tongue of the animal. To detect the licks 
a threshold is applied to the signal within the region of interest. (c) The task 
consists of behavioral bouts and traveling epochs. Within a behavioral bout, the 
outcomes of the licks are classified into three types: reward, failure and invalid. 
Rewards and failures occur when the mouse slows down its running speed 
below an arbitrary threshold after the ‘STOP event’. The ‘STOP event’ is signaled 
by an auditory tone when an arm comes into place. Any lick above the running 
threshold is considered as invalid and always unrewarded. The traveling epoch 
starts after the ‘LEAVE event’ when the mouse initiates the run. (d, e, f) The licking 

behavior of the animals is stereotyped. (d) Histogram of the time between each 
lick. (e) Examples of lick raster of consecutive failures (top) and consecutive 
rewards (bottom). Licks are aligned at the onset of a rewarded lick and sorted 
based on the following events. (f) The licking frequency that corresponds to 
the two different examples in (e) (series of consecutive rewards in green and 
series of consecutive failures in purple). (g, h, i, j) Time distributions of different 
behavioral events (mean ± s.e.m.; n = 21 mice). The time spent licking was much 
greater than the time to initiate licking (between STOP event and first lick) or the 
time to initiate running (between the last lick and LEAVE event). Notably, engaged 
mice took less than half a second after the last licks to leave the site in most bouts 
(Median time to run = 0.46 s). The running time is comparable to the licking time. 
(k) Monotonic relationship between the number of consecutive failures after 
the last reward and the time licking after the last reward (each dot represents the 
means across bouts for each session).
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Extended Data Fig. 2 | Ground truth model. (a, b) The slope (a) and intercept 
(b) estimates as a function of the ground truth for simulated sessions where 
the number of bouts matched that of real sessions. The ground truth can be 
recovered (R2 = 0.99 for the slope; R2 = 0.91 for the intercept) from the logistic 
regression. (c, d) The slope (c) and intercept (d) estimates as a function of the 
ground truth for simulated sessions with varying number of bouts. Overall, the 
ground truth can be precisely recovered for sessions with more than 100 bouts. 
(e) Deviance explained from a logistic regression model that fits simulated 
sessions of an inference-based agent using the correct model (‘Consecutive 
failures’), a wrong but correlated model (‘Negative value’) and a random model 
(where both rewards and failures are arbitrarily accumulated or reset). The 
deviance explained by the consecutive failures represents the upper-bound of 
the model performance. The deviance explained by the consecutive failures 
being smaller than 1 indicates that, although the ground truth can be recovered, 
the switching decision is not deterministic and involves some stochasticity (here 

the variability was matched to that of the data). However, the deviance explained 
by the consecutive failures is significantly greater than the deviance explained 
by the correlated model and the random model (two-sided Wilcoxon signed 
rank test, 3 stars indicate p < 10−3, p = 0.00005 between Consec. fail. and Neg. 
value; p < 10−7 between Consec. fail. and Random). On each box the central mark 
indicates the median across simulated sessions (n = 42 sessions), and the bottom 
and top edges of the box indicate the 25th and 75th percentiles, respectively. 
The whiskers extend to the most extreme data points. (f) Illustration of a logistic 
regression model for predicting the switching decision of an inference-based 
simulated agent from the two different DVs (‘Consecutive failures’ and ‘Negative 
value’) simultaneously. (g) Deviance explained from the model in (f) as a 
function of the number of bouts in each session. (h) For all simulated sessions in 
(e), the variance explained by the ‘consecutive failures’ DV was greater than the 
variance explained by the ‘negative value’ DV, indicating that the model inferred 
the true DV.
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Extended Data Fig. 3 | Testing alternative foraging strategies. (a) Illustration 
of the logistic regression model for predicting the switching decision of mice 
using a combination of the two main DVs, ‘Consecutive failures’ and ‘Negative 
value’, as well as additional DVs. Specifically, we tested 3 classes of additional 
DVs: 1) those relying on absolute time, 2) those relying on average reward rates, 
and 3) those that weigh recent evidence more strongly. The design matrix of the 
model thus consisted of the two main DVs, the time of each lick relative to the first 
lick of each bout (class 1), the average reward rate over 1, 3 and 10 previous bouts 
(class 2) and a version of the negative value DV that weighs recent evidence more 
heavily than the past ones (for class 3), such as: xt+1 = (1 − α)·g(ot+1)·xt + α·c(ot+1), 
with α = 0.8. (b) Deviance explained from a logistic regression model that 
predicts choice behavior based only on the 2 main DVs (left) and from the full 
model that also includes the additional DVs in (a). The central mark indicates 

the median across behavioral sessions (n = 42 sessions), and the bottom and 
top edges of the box indicate the 25th and 75th percentiles, respectively. The 
whiskers extend to the most extreme data points. There was no significant 
difference between the deviance explained of the two models (two-sided 
Wilcoxon signed rank test: p = 0.22), indicating that the additional DVs do not 
improve the performance of the model. (c) Relative variance explained by each 
predictor of the full model for each behavioral session (n = 42 sessions across 21 
mice, 2 sessions per mice). The dominant DV (the one with the maximum relative 
variance explained) was most often the ‘Consecutive failures’ (18 sessions), 
followed by the ‘Negative value’ (17 sessions), and finally the additional DVs  
(2 session for the absolute time, 2 sessions for average reward rate, 3 sessions  
for the weighted negative value).
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Extended Data Fig. 4 | Pipeline for extracellular electrophysiology, data 
processing and cluster mapping. (a) Data collection from the Neuropixels 
probe. (b) Kilosort2 is used to automatically match spike templates to raw data. 
(c) Example of voltage data input to Kilosort2. Prior to the automatic sorting, 
the raw data is preprocessed with offset subtraction, median subtraction, and 
whitening steps. (d) Manual quality control is done on the outputs of Kilosort2 
using PHY to remove units with nonphysiological waveforms (e), contaminated 
refractory periods, low amplitude (less than 50 µV) or low spiking units (less than 
0.5 spike·s−1). (f) For further quality control, visualization of peri-event spike 

histograms (g, top; examples histogram aligned to first lick) or scatter plots  
(g, bottom; example scatter plot aligned to first lick) of single neurons are made 
with custom-written script in MATLAB. (h, i) Example scatter plot of all neurons 
recorded simultaneously along the shank of the probe. This visualization  
helps delimitate landmarks based on electrophysiological signatures to map 
cluster locations. (j, k, l) Landmarks derived from electrophysiological responses 
are validated with estimates from histology using an open-source software 
(SHARP-Track).
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Extended Data Fig. 5 | Optogenetic effect on action timing. (a) Illustration of 
the different action timing during a behavioral bout. (b) We used generalized 
linear mixed effect models to evaluate the effect of stimulation (‘Laser’ predictor) 
on each action timing (see Methods). The models were fit separately for 
inactivated and control mice (number of observations: Inactivated = 68; Control 
= 20). (c–f) Median timing across bouts in Laser OFF vs. Laser ON condition for 
each session (dots) of inactivated mice (violet) and control mice (red) mice. The 
p-value corresponding to the t-statistic for a two-sided null hypothesis test that 
the coefficient of the ‘Laser’ predictor is equal to 0 (plaser) is reported for each 

group of mice (color coded). (c) Fixed effect of stimulation (‘Laser’ predictor) 
on the inter-lick interval: Inactivated: −0.003 ± 0.0009, p = 0.001; Control: 
0.005 ± 0.004, p = 0.24. (d) Fixed effect of stimulation (‘Laser’ predictor) on the 
time licking: Inactivated: 0.45 ± 0.26, p = 0.08; Control: −0.078 ± 0.22, p = 0.72. 
(e) Fixed effect of stimulation (‘Laser’ predictor) on the time to run: Inactivated: 
−0.075 ± 0.25, p = 0.76; Control: 0.014 ± 0.14, p = 0.92. (f) Fixed effect of 
stimulation (‘Laser’ predictor) on the time running: Inactivated: −0.079 ± 0.063, 
p = 0.22; Control: −0.061 ± 0.052, p = 0.28.
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Extended Data Fig. 6 | Properties of decision variables in M2. (a) Illustration 
of a model to estimate the time constant of the reset at the end of the bout from 
M2 neurons. Example consecutive failures (pink) and neural projections (black 
right) of the neural activity (left, example neural traces) including the activity 
during 2 s after the end of each bout (dashed line). The projection of the neural 
activity on the decoding weights for the consecutive failure slowly ramps down 
until the beginning of the next bout. (b) To quantify the time constant of the 
reset at the end of the bout, the consecutive failures with an additional reset 
at the end of the bout were decoded from the neural activity. We considered 
the decoding projection at different times after the end of the last lick of bout 
‘n’ and before the start of bout ‘n + 1’ and plotted the difference between the 
number of the consecutive failures (dashed pink) and the neural projection 
(dashed black) at the end of each bout across recording sessions (median ± 
MAD; n = 11) as a function of the time after the last lick. The neural activity can 
reset at the end of the bouts with a time constant of around 200 ms. (c) Deviance 
explained across sessions (n = 11 sessions, median ± 25th and 75th percentiles, 
the whiskers extend to the most extreme data points) predicted from M2 
neurons for ‘Consecutive failures’ (left) and ‘Negative value’ (right) on ipsilateral 
vs. contralateral bouts. If the recording is performed in the right hemisphere, 
ipsilateral bouts are those when mice exploit the right foraging site (the right 

motorized arm), while contralateral bouts are those when mice exploit the left 
foraging site (and vice versa for recordings in the left hemisphere). We observed 
no significant differences in the model performance as a function of the side of 
the DVs (two-sided Wilcoxon signed rank test; p > 0.05). (d) This panel shows the 
deviance explained across sessions (n = 11 sessions, median ± MAD) for DVs (Pink: 
‘consecutive failures’; Blue: ‘negative value’) as a function of window sizes. In all 
previous analyses, the window used to count the spikes was 200 ms centered 
around each lick (indicated by the black rectangle), which was a good tradeoff 
for including a significant number of spikes while mainly considering signals 
related to a single lick (since the average time between each lick was around 
150 ms; Fig. 2b & Extended Data Fig. 1d). Yet, a few spikes linked to the preceding 
or the following events could still be included in the 200 ms window, making it 
more difficult to evaluate the contribution of momentary evidence. Therefore, 
we tested whether both DVs remained decodable in M2 even when we strictly 
excluded all spikes from neighboring events by using smaller analysis windows. 
We found that the decodability of the DVs in M2 did not depend on the size of 
the window for widths larger than 20 ms (one-way ANOVA followed by multiple 
pairwise comparison tests, all p-values > 0.05 for windows size > 20 ms, both for 
‘consecutive failures’ and ‘negative value’), indicating that the results are not 
overly sensitive to the choice of parameters.
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Extended Data Fig. 7 | LM-HMM analysis of switch decision. (a) To determine 
the number of states that best capture the decision-making of mice, we fit the 
LM-HMM with a varying number of states and then performed model comparison 
using cross-validation (see Methods for details). Training and test sets maximum 
a posteriori (MAP, with gaussian prior on the weights and Dirichlet prior on 
transition probabilities) are reported in units of bits per bout (median ± MAD). 
The dash-line rectangle highlights the log probability for the three-state model, 
which we used for all subsequent analyses. A single model was fit to all mice, 
where for each session the consecutive failures and prior rewards were 
min-maxed (that is, divided by their max Fmax

m , Rmax
m ), obtaining normalized 

weights w(k) and biases b(k). Single-sessions weights and biases were then obtained 
from these normalized parameters as w(k)

m = w(k)Fmax
m /Rmax

m , b(k)m = b(k)Fmax
m . (b) 

Weights w(k)
m  on total reward (left) and biases b(k)m  (right) across sessions m (n = 11 

sessions, median ± 25th and 75th percentiles, the whiskers extend to the most 
extreme data points) in the different states k = 1, 2, 3. (c) Consecutive failures 
before leaving as a function of total reward number across behavioral bouts 
(median ± MAD) in an example session from two different states (state 1, blue; 
state 2, pink). The slope coefficients of a linear regression model that predicted 
the number of consecutive failures before leaving as a function of the number of 
prior rewards in each state are shown on the right (n = 6 sessions for state 1, n = 7 
sessions for state 2, median ± 25th and 75th percentiles across sessions, the 
whiskers extend to the most extreme data points). This result is consistent with 
the classification of stimulus-bound and inference-based strategies used in Fig. 1. 
(d) Posterior state probabilities for each recording session. Mice often start off 
the session with the stimulus-bound strategy and later switch to the inference-
based strategies (in 6 out of 11 sessions).
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Extended Data Fig. 8 | M2 does not represent arbitrary sequences. (a) A ‘near 
universal’ representational capacity is a feature of a computational framework 
known as ‘reservoir computing’ that exploits a potential functional capacity of 
recurrent networks to represent combinations of current inputs with previous 
evidence, even arbitrary ones. Thus, to test whether M2 also represented 
arbitrary signals, we examined whether sequences with similar temporal 
structure as the DVs but with no obvious relevance to the task could be decoded 
from M2. Here are examples of random sequences (gray) generated from one 
of the DVs (pink, here consecutive failures). The DV can lead to a shifted version 
(top right), a flipped version (middle right) or a random signal with equal power 
spectra. Each random signal is then decoded from M2 population activity (black 
traces). (b) Deviance explained (ordinate) by M2 neurons from decoding the 
DVs shifted by a given number of licks (abscissa). On each box, the central mark 
indicates the median across recording sessions (n = 11 sessions), and the bottom 
and top edges of the box indicate the 25th and 75th percentiles, respectively. 
The whiskers extend to the most extreme data points. The dash black line 

indicates chance level (Dev. Exp. = 0). Shifting the DVs by a delay greater than 
their temporal autocorrelation greatly impaired their decodability (one-way 
ANOVA, F = 62.81, p < 10−26). (c) Same as in (b) but for DVs flipped across sessions. 
None of the flipped signals were decodable from M2 population activity. (d) 
Same as in (c) but for random signals with power spectra that match each DV. 
None of the random signals were decodable from M2 population activity. (e) 
Since any signal can be approximated by sums of periodic functions (Fourier 
analysis), we also probed the capacity of M2 to represent arbitrary temporal 
sequences by testing whether we could decode from M2 a basis set of cosine 
functions with wavelengths in the dynamic range of what we observed with 
integration and reset of rewards (example top gray trace; wavelength = 4 licks, 
phase = 0 rad). Overall, the decoding quality of the periodic function (example 
neural projection, top trace in black, Dev. Exp. = −0.002) was close to chance 
level (Dev. Exp. = 0.024 ± 0.028, median ± MAD) as seen in the matrix of deviance 
explained from decoding sequences with different wavelengths and phases with 
M2 population activity.

http://www.nature.com/natureneuroscience


1

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

Corresponding author(s):

Fanny Cazettes  

Alfonso Renart 

Zach Mainen

Last updated by author(s): Feb 7, 2023

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Arduino IDE 1.8.8 

MATLAB 2016a, 2018a, 2019b  

Bonsai 2.3 (https://github.com/bonsai-rx/bonsai) 

SpikeGLX (https://billkarsh.github.io/SpikeGLX/)

Data analysis MATLAB 2019b  

Phyton 3.8 

Kilosort2 (https://github.com/MouseLand/Kilosort/releases/tag/v2.0) 

Phy (https://github.com/cortex-lab/phy) 

SHARP-Track (https://github.com/cortex-lab/allenCCF) 

Custom codes developed in the study (https://github.com/mazzulab/ssm/blob/master/notebooks/2c%20Input-driven%20linear%20model%

20(LM-HMM).ipynb) 

Glmnet in Matlab (https://hastie.su.domains/glmnet_matlab/)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.



2

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Preprocessed electrophisiological and behavioral data have been deposited to Figshare and can be accessed at: https://doi.org/10.6084/m9.figshare.20449089 

Raw electrophysiological data are too large (hundreds of GBs) to be shared on a publicly available repository and are therefore available from the authors upon 

reasonable request.  

The Allen Mouse Brain Atlas used in this study is publicly available: https://alleninstitute.github.io/AllenSDK/reference_space.html

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were not predetermined. A group of animals (n = 11) was first highly trained over weeks to study the effect of behavior. A second 

group (n = 10) of animals was then trained for the electrophysiology and also included in the behavioral datasets. A third group of animal 

(n=6) was used for the optogenetics experiments. The number of mice (n= 27 total) was chosen based on the on the current 

standard used for mice in neuroscience for sufficient statistical power.

Data exclusions For the electrophysiological datasets, sessions were included only if all the Neuropixels probe was located in the target regions by post-hoc 

histological analysis. Single units (neurons) spike clustering quality were assessed manually using Phy. Units were only included if firing rate 

did not drift over the recording session, and spikes did not violate absolute refractory period (see Method). 

Replication All relevant behavioral effects were replicated in 3 sets of independently trained animals (n = 11, n = 10 and n = 6). Effects reported in neural 

data were consistent across animals. 

Randomization Randomization was used for stimulus presentation. The task statistics were similar across sessions but probabilistic. Thus, the sequences of 

events during behavior bouts were naturally randomized by the probabilities and the length of behavior bouts depended on individual 

behavioral responses. Therefore, each session had a unique sequence of behavior bouts. 

Blinding The experimenter was blind to the genotype of the mice when performing optic fiber implantations and running the optogenetics 

experiments. For other experiments, no comparison across groups was made, therefore blinding was not necessary. 

Reporting for specific materials, systems and methods



3

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals  Male and female C57BL/6J and VGAT mice (2-9 months old) were used in this study. Mice were housed in individually ventilated 

cages under a normal 12 hour light/dark cycle, temperature was maintained between 19-23ºC and humidity between 50-65%. 

Wild animals This study did not involve wild animals.

Reporting on sex Both male and female mice were used in this study. 

Field-collected samples This study did not involve field-collected samples.

Ethics oversight All experimental procedures were approved and performed in accordance with the Champalimaud Centre for the Unknown Ethics 

Committee guidelines and by the Portuguese Veterinary General Board (Direco-Geral de Veterinria, approval 0421/000/000/2016). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	A reservoir of foraging decision variables in the mouse brain

	Results

	Multiple DVs predict switching decision

	Neural activity related to the switching decision

	Switching decision and running initiation are dissociable

	M2 is involved in the switching decision

	Neural representation of DVs

	Independent representations of DVs

	DV multiplexing does not reflect strategy switching

	M2 represents foraging algorithms


	Discussion

	Online content

	Fig. 1 Multiple DVs predict foraging behavior.
	Fig. 2 Neural activity related to the switching decision.
	Fig. 3 Switching decision and running initiation are dissociable.
	Fig. 4 M2 is involved in the switching decision.
	Fig. 5 Neural representation of DVs.
	Fig. 6 Independent representations of DVs.
	Fig. 7 Simultaneous representations of DVs.
	Fig. 8 M2 represents foraging algorithms.
	Extended Data Fig. 1 Task apparatus and behavioral properties.
	Extended Data Fig. 2 Ground truth model.
	Extended Data Fig. 3 Testing alternative foraging strategies.
	Extended Data Fig. 4 Pipeline for extracellular electrophysiology, data processing and cluster mapping.
	Extended Data Fig. 5 Optogenetic effect on action timing.
	Extended Data Fig. 6 Properties of decision variables in M2.
	Extended Data Fig. 7 LM-HMM analysis of switch decision.
	Extended Data Fig. 8 M2 does not represent arbitrary sequences.




