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Changes in behavioral state, such as arousal and movements, strongly affect neural
activity in sensory areas, and can be modeled as long-range projections regulating the
mean and variance of baseline input currents. What are the computational benefits
of these baseline modulations? We investigate this question within a brain-inspired
framework for reservoir computing, where we vary the quenched baseline inputs to a
recurrent neural network with random couplings. We found that baseline modulations
control the dynamical phase of the reservoir network, unlocking a vast repertoire of
network phases. We uncovered a number of bistable phases exhibiting the simultaneous
coexistence of fixed points and chaos, of two fixed points, and of weak and strong
chaos. We identified several phenomena, including noise-driven enhancement of chaos
and ergodicity breaking; neural hysteresis, whereby transitions across a phase boundary
retain the memory of the preceding phase. In each bistable phase, the reservoir performs
a different binary decision-making task. Fast switching between different tasks can be
controlled by adjusting the baseline input mean and variance. Moreover, we found that
the reservoir network achieves optimal memory performance at any first-order phase
boundary. In summary, baseline control enables multitasking without any optimization
of the network couplings, opening directions for brain-inspired artificial intelligence
and providing an interpretation for the ubiquitously observed behavioral modulations
of cortical activity.

recurrent neural networks | mean field theory | reservoir computing | multitasking | decision-making

The activity of neurons across cortical areas is strongly modulated by changes in behavioral
state such as arousal (1, 2), movements (3–6), and task-engagement (7). Intracellular
recordings showed that these behavioral modulations are mediated by a change of baseline
synaptic currents, likely originating from the thalamus and other subcortical areas (8, 9).
Such baseline modulations exert strong effects on neural activity explaining up to 50%
of its variance across cortical areas, a much larger effect compared to the task-related
modulations (4–6). The functional role of these baseline modulations differs across
experiments and areas, with arousal- or locomotion-induced improvement of visual
(3, 10–13) and gustatory processing (2, 14), but degradation of auditory processing
(15–17).

We aim to shed light on the potential role of baseline modulations on cortical activity
within the framework of reservoir computing, a powerful tool based on recurrent neural
networks (RNNs) with random couplings (Fig. 1). Random RNNs can recapitulate
different dynamical phases observed in cortical circuits, such as silent or chaotic activity
(18), fixed points (19), and the balanced regime (20) and provide a simple explanation
for task selectivity features (21) and the heterogeneity of timescales (22) observed in
cortical neurons. Random RNNs can achieve optimal performance in memory tasks
when poised at a critical point either by fine-tuning their random couplings (23) or their
noisy input (24).

Following recent theoretical (2, 11) and experimental studies (4, 25), we modeled
the effect of changes in an animal’s behavioral state as changes in the mean and across-
neurons variance of the constant baseline input currents to an RNN (Fig. 1A). We found
that baseline modulations steer the network activity to continuously interpolate between
a large set of dynamical phases (Fig. 1B). Beyond known phases, such as fixed points and
chaos, baseline modulations unlocked ergodicity-breaking phases, where the network
activity can switch between weak and strong chaos, between a fixed point and chaos,
or between two fixed points, depending on the initial conditions. All these different
phases were continuously connected and achieved without any training or fine-tuning of
synaptic couplings. We found an effect where an increase in quenched noise can induce
chaos. When interpolating adiabatically between phases via baseline modulations, we
found a manifestation of the phenomenon of neural hysteresis, whereby the network
activity retains a memory of the path followed in phase space (Fig. 1C ). We found that
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Fig. 1. Summary of main results. (A) Random neural network where the baseline input current bi to the i-th neuron is drawn from a normal distribution
with mean and variance � and �2. (B) Network phase diagram for varying � and �2 shows four phases: fixed point (blue); chaos (cyan); bistable phase with
coexistence of two fixed points (green); bistable phase with coexistence of fixed point and chaos (brown). (C) Neural hysteresis: Adiabatic changes in baseline
variance �(t)2 lead to discontinuous transitions crossing over phase boundaries, retaining memory of the previous phase (blue: network simulations; red:
exact DMFT calculation; y-axis: mean activity M). (D) Optimal memory capacity is achieved by varying � across a phase boundary where the largest Lyapunov
exponent (LLE) crosses zero. (E) Baseline control of multitasking. The two bistable network phases (chaos/fixed-point and double fixed-point phases: brown
and green, respectively; see B) can be harnessed by a reservoir network to perform two different tasks: a delayed two-alternative forced-choice task (2AFC)
in the double FP phase and a delayed go/no-go task (G/NG) in the chaos/FP phase. Bottom: Six trials, alternating 2AFC and G/NG blocks (green and red lines
represent task rule onset), where in each block, stimuli from two classes are presented (blue/cyan and orange/brown color-shaded intervals represent the two
classes for each task). After a delay, the decision outcome is read out (dot-dashed lines; pink lines: representative activity of four neurons).

baseline modulations can achieve optimal memory performance
by poising the activity at any phase boundary where a Lyapunov
exponent vanishes (Fig. 1D).

Crucially, our theory uncovered two computational principles
in reservoir computing. First, the network can perform a different
binary decision-making task in each of the bistable phases.
Second, the network can achieve multitasking by simply varying
the input baseline without any optimization of network weights
(Fig. 1E). More generally, our theory shows that baseline
modulations unlock a much richer dynamical phase portrait
for RNNs than previously known. Baseline control represents
a simple and efficient way for a reservoir network to flexibly
toggle its dynamical regime to achieve flexible computations and
multitasking. Our results thus suggest an important computa-
tional role for behavioral modulations of neural activity, whereby
they might allow cortical circuits to flexibly adjust the cognitive
task they perform to rapidly adapt to different contexts such as
switching rapidly between multiple tasks.

Results

We model our local cortical circuit as a recurrent neuronal
network (RNN) of N neurons where the synaptic couplings are
randomly drawn from a Gaussian distribution of mean J0/N
and variance 1/N (Fig. 2A). We choose a positive definite
neuronal transfer function �(x) = 1/(1 + exp(2g(x − �)) =
(1 + tanh(g(x − �)))/2 with threshold �0. Every neuron in
our model receives a constant external synaptic input bi drawn
from a Gaussian distribution with mean � and variance �2. This
baseline represents the afferent projections to the local cortical
circuit originating from other areas. Following experimental

(8, 9, 25) and theoretical studies (2, 11), we modeled behavioral
modulations as a change in the baseline statistics (mean � and
variance �2) of synaptic inputs bi to the local circuit, induced by
long-range projections carrying information about the behavioral
state of the animal, or other contextual modulations (2, 11).
Because the characteristic timescale of behavioral modulations
is typically much slower than a circuit’s stimulus responses, we
approximate the effects of such modulations as the quenched
inputs bi. Importantly, these baseline modulations are constant,
time-independent offsets of the input current to each neuron and
represent quenched input noise.

Baseline Control of the Network Dynamical Phases. We found
that by varying the values of baseline mean and variance �, �2,
one can access a large library of network phases (Fig. 2 B
and C ). The first two phases are generalizations of the fixed
point and the chaotic phase which were previously reported
in ref. 26. Strikingly, we found a number of phases including
“bistable” phases where the network activity can reach two
different dynamical branches for the same values of recurrent
couplings and baseline input, depending on the initial conditions.
In the network of Fig. 2B, the bistable phases are of two
different kinds, with coexistence of either a fixed point and chaos
(brown) or two fixed points (green). Whereas in the monostable
phase, the network Landau potential has one global minimum,
in the bistable phases, it exhibits two local minima, each one
defining the basin of attraction of the initial conditions leading
to each of the two bistable branches. Depending on the network
parameters (J0, g), we found networks with up to five different
phases, including a bistable phase featuring the coexistence of
strong and weak chaos (SI Appendix). Each monostable phase
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Fig. 2. Baseline control of the network dynamical phase. (A) Random neural network where the baseline input current bi to the i-th neuron is drawn from a
normal distribution N (�, �2) (red). (B) Left: Network phase diagram, obtained by varying the mean � and variance �2 of the baseline input, shows four phases:
fixed point (blue); chaos (cyan); bistable phase with coexistence of two fixed points (green); bistable phase with coexistence of fixed point and chaos (brown).
Top Right: Multicritical point. Bottom Right: Schematic of the Landau potential along a phase space trajectory (black arrow in Inset) from a stable phase with a
single fixed point (blue circle), to a bistable phase with coexistence of fixed point and chaos (blue and cyan circles), to a stable phase with chaos (cyan circle).
(C) Positive (Left) and negative (Right) largest Lyapunov exponents (in the bistable phases both LLE coexist); (D) Order parameters in each phase: Mean network
activity (Top); autocorrelation (Middle); local stability (Bottom). Representative network activity in the different phases. Insets: Order parameters (Autocovariance
C0 , C∞ and mean activity M). Network parameters: J0 = 0.5, g = 5, �0 = 1.

and each branch of a bistable phase can be captured in terms
of the network order parameters LLE, M , and C (Fig. 2C ),
representing, respectively, the largest Lyapunov exponent LLE
and the mean M and variance C of the activity obtained from
the self-consistent dynamic mean field equations (Materials and
Methods).

The variance of the activity includes a contribution�2 from the
quenched baseline input and a recurrent contribution. A useful
characterization of the network dynamical phase is obtained when
considering the population-averaged autocorrelation function
c(t) at lag t, in particular, its zero lag value c(0) = C , the
network variance, and its asymptotic value for large lag c(∞).
The network is at a fixed point if c(t) does not depend on
time (i.e., c(∞) = c(0) = C ), while it is in a chaotic phase
if c(0) > c(∞), in which case the LLE is positive. Finally, a
value of c(∞) > 0 signals a nonzero mean activity driven by the
quenched variance in the baseline input.

Noise-Induced Enhancement of Chaos. Exploring the features
of baseline modulations revealed a surprising phenomenon,
whereby increasing the variance of the quenched input can
enhance chaos. This phenomenon can be understood from a
mean field perspective by considering how the baseline and the
recurrent synaptic inputs interact with the single cell transfer
function to determine the operating point of the network
dynamics (Fig. 3; see ref. 27 for additional details). To illustrate
this phenomenon, we first revisit the known case of noise-driven
suppression of chaos realized in a circuit with quenched inputs
and a zero-centered transfer function (Fig. 3A), which can be
obtained when the mean baseline is set equal to the threshold
� = �0 (see ref. 28 for a case where they both vanish). On

general grounds, one expects the network phase to be chaotic
whenever a large fraction of the synaptic input distribution is
concentrated in the high gain region of the transfer function,
defined as the region where the gradient of the transfer function
� is large. In this region, �′(x)2 is of order one, leading to a
large LLE (see ref. 29 and Materials and Methods, Eq. 6). The
distribution of synaptic inputs has mean M , which is centered
at the threshold, and some nonzero variance C , obtained self-
consistently from Eqs. 3 and 4. For zero baseline variance, the
network exhibits chaotic activity (case 1), as a large fraction of the
synaptic inputs have access to the high gain region of the transfer
function. When turning on a quenched baseline variance �2, the
synaptic input increases its variance by a value proportional to
�2. For larger values of the baseline variance �2, the fraction of
synaptic inputs in the high gain region progressively shrinks and
for large enough variance chaos is suppressed (case 2).

In the case where � < �0, the transfer function is not zero-
centered, and noise-driven enhancement of chaos can occur (Fig.
3B). For low baseline variance�2, the network is in the fixed point
regime as a small fraction of synaptic inputs has access to the high-
gain region (case a). Increasing the baseline variance �2 leads to a
transition into a chaotic phase, as a progressively larger fraction of
synaptic inputs has access to the high gain region. At some large
enough variance, though, the fraction of synaptic inputs in the
high-gain region starts decreasing again, and eventually, this leads
to a transition to the fixed point phase. This chaos enhancement
can be achieved either by passing through an intermediate bistable
phase (black arrow in Fig. 2B) or by inducing a direct transition
from a fixed point to a chaotic phase at lower values of the
mean baseline � (direct transition from blue to cyan at � ∼
0.5, Fig. 3B). This chaos enhancement has a number of striking
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Fig. 3. Noise-driven modulations of chaos. (A) When the transfer function
input is zero-centered (i.e., the baseline mean � equals the threshold �0).
The chaotic phase 1) occurs when a large fraction of the synaptic input
distribution (pink curve) lies within the high gain region (yellow-shaded area,
where �′(x)2

∼ O(1)) of the transfer function (blue curve). Increasing the
input quenched variance 2) reduces this fraction, suppressing chaos. (B)
When the transfer function is nonzero-centered (� < �0), for low (a) and
high (c) quenched input variance network activity is at a fixed point because
the high-gain region receives a small synaptic input fraction; this fraction
is maximized at intermediate quenched input variance (b), enhancing chaos.
Network parameters: g = 5, �0 = 1, J0 = 0. Panel A:�(x) = tanh(x−�0),� = 1;
cases (1, 2) � = (0.1,0.6). Panel B: �(x) = 1/(1 + exp(2g(x − �)) =
(1 + tanh(g(x − �)))/2,� = 0.5; case (a, b, c): � = (0.2,0.4,0.9).

consequences, such as baseline control of optimal performance
and neural hysteresis, which we will examine in the next sections.
While previous studies showed that an increase in the temporal
noise (e.g., white noise inputs) always leads to suppression of
chaos (24, 28–30), we found that quenched noise unlocks a
much richer set of phenomena.

Ergodicity Breaking in theBistable Phases. The network activity
in a bistable phase exhibits dynamical breaking of ergodicity. To
illustrate this effect, we consider a network with fixed baseline
mean � at different values of � (Fig. 4). At intermediate values of
� the network is in the bistable phase featuring a coexistence of a
fixed point attractor and chaos, while at low and high values,
the network is in the monostable fixed point phase and the
chaotic phase, respectively. In the bistable phase, the network
dynamics converge to either a fixed point attractor or to a
chaotic attractor, depending on the initial conditions (Fig. 4A).
These two branches are characterized by a negative (fixed point)

or a positive (chaos) LLE, respectively, and by branch-specific
values for the network order parameters (C,M , Fig. 4B). We
quantified ergodicity breaking in terms of the average distance
〈d(T )〉 between temporal trajectories (starting from different
initial conditions, or between different replicas) over an epoch T
(Fig. 4C ). Monostable phases (fixed point or chaos) are ergodic
and 〈d(T )〉 converges toC∞ at largeT →∞, since the network
activity eventually explores all possible configurations (in the
chaotic phase, the decay is typically slower than in a phase with
a single attractor). The network breaks ergodicity when 〈d(T )〉
does not decay to C∞ but rather it monotonically increases to
reach nonzero late time values larger than C∞. In this case,
depending on the initial conditions, there are two basins at a
finite distance from each other. We found that the network is
nonergodic in all the bistable phases, although each one of these
phases retains specific values of the order parameters.

The library of bistable phases induced by changes in the
baseline statistics includes all the phases in Fig. 4 and, remarkably,
a previously unobserved phase exhibiting the coexistence of two
chaotic phases Fig. 4D. This double chaos phase features a weak
chaotic branch with small positive LLE and slow dynamics, and a
strong chaotic branch with large positive LLE and fast dynamics.
We found that this double chaos phase occurs for large g and it
exhibits important computational properties that we investigate
below.

Neural Hysteresis Retains Memory of Network Phase Trajecto-
ries. What are the effects of adiabatic changes in baseline statistics
on the network dynamics? We sought to elucidate the effects of
slow baseline changes, by driving the network with time-varying
values of �(t) for fixed �, describing a closed loop (Fig. 4 E
and F ). We found that the network order parameters C,M
changed discontinuously across phase boundaries, signaling a
phase transition. When the baseline trajectory crosses the phase
boundary from a stable phase (with a single LLE) to a bistable
phase (with two branches, each characterized by its own LLE),
the network activity in the bistable phase lies on either of the
two branches, characterized by two separates basins of attractions
(Fig. 4). The rules governing which of the two branches will
be reached are determined by a hysteresis effect. We found that
the network activity in the bistable phase retained a memory of
the dynamical branch that it occupied before crossing the phase
boundary. In the particular example of Fig. 4F, when crossing
the boundary from the monostable fixed point to the bistable
phase, the activity will persist on the fixed point branch of the
bistable phase, whose negative LLE is continuously connected
with the fixed point phase. For larger values of �(t), the network
will eventually enter the monostable chaos phase, where the LLE
discontinuously jumps to a very large value. Vice versa, when
inverting the time-varying trajectory in phase space by slowly
decreasing the �(t) from the monostable chaotic phase into the
bistable phase, the network will persist on the chaotic branch
of the latter, whose positive LLE is continuously connected to
the monostable chaotic phase. Eventually, for lower �(t), the
network falls back into the fixed point phase where the LLE
discontinuously jumps from large positive to negative values.
Thus, when crossing phase boundaries adiabatically, the network
will choose the branch of the bistable phase whose LLE is
continuously connected to the previous phase.

Neural hysteresis occurs not just in the fixed point/chaos
bistable phase, but also in the double fixed point and double
chaos bistable phases. When crossing boundaries between two
adjacent bistable phases, more complex hysteresis profiles can
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Fig. 4. Ergodicity breaking in the bistable phase. (A) Top: Representative trials from initial conditions leading to the fixed point (Right) or chaotic attractor (Left)
within the bistable chaos/fixed point phase. Bottom: 10 representative trajectories of network activity in the same bistable phase starting from different initial
conditions (five leading to the chaotic attractor, black circles; five leading to the fixed point, black crosses; only three initial conditions per phase are shown;
dashed circles represent the positions of the chaotic and fixed point attractors, respectively). The first two principal components of the set of all trajectories
(PCs) are shown. The activity in both examples is captured by the mean and variance as shown in Fig. 2D). (B) For increasing values of �, a cross-over from a
monostable fixed point phase (Left) to a bistable phase fixed point/chaos (Middle) to a monostable chaotic phase (Right) is revealed by the order parameters (LLE:
largest Lyapunov exponent; M: mean activity; C: mean autocorrelation; 1S: 1-replica stability). In the bistable phase, the fixed point and chaotic branches exhibit
different order parameters. (C) Average distance between replica trajectories < d > reveals ergodicity breaking: in the monostable fixed point (blue) and chaotic
(cyan) phases < d > asymptotes to C∞, but in the bistable phase (brown) it asymptotes to a value larger than C∞, representing the average distance between
the basins of attraction of the two branches. (D) Example of a cross-over from a monostable fixed point phase (blue), to a bistable phase fixed point/chaos
(brown) to a bistable weak/strong chaos phase (red), to a monostable chaotic phase (cyan), as revealed by the order parameters (same as panel B). Neural
hysteresis. (E) Slow changes in baseline variance �(t) lead to discontinuous transitions in the network order parameters M,C (left: temporal profile of M,C, �).
(F ) Crossing-over phase boundaries by a time-varying �(t) retains memory of the previous phase (blue: network simulations; red: exact DMFT calculation).
Network parameters: panel A: J0 = 0.5, �0 = 1,� = 0.54, g = 5, � = 0.1; panel B: J0 = 0.5, g = 6, �0 = 1,� = 0.5; panel C: same as Fig. (2B) and � = 0.5,0.6,0.7;
panel D: J0 = 0.5, � = 1,� = 0.5, g = 18; panels E and F : J0 = 0.5, g = 12, �0 = 1,� = 0.5, �(t) = �0 + �1 sin(�t/T) with T = 2048, �0 = 0.17, �1 = 0.025.
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occur. For example, when crossing into the double chaos phase
(with fast/slow chaotic branches, Fig. 4D), from the fixed point
branch of the fixed point/chaotic phase, the network dynamics
will lie on the slow chaotic branch, whose positive but small LLE is
continuously connected to the fixed point branch of the previous
bistable phase. However, when crossing into the double chaos
phase from the chaotic branch of the fixed point/chaotic bistable
phase, the network dynamics will persist on the fast chaotic
branch, whose large positive LLE is continuously connected to
the chaotic branch of the fixed point/chaotic bistable phase. We
then examined the relevance of neural hysteresis for controlling
the network performance in a memory task.

Baseline Control of Multitasking. In any of the bistable phases,
our reservoir network can perform binary decision-making tasks
by equipping it with a linear readout (Fig. 5A). The two possible
outcomes of the binary decision are represented by the two
branches of a bistable phase and the linear readout is proportional
to the mean activity (leveraging the fact that different branches
of a bistable phase have different mean activity M ), reporting
the outcome of the binary decision in each trial. In each bistable
phase, stimuli are drawn from two classes, associated with the two
choices available to the reservoir (Fig. 5A), and are presented for a

short interval, nudging the network activity toward either branch
of a bistable phase via the neural hysteresis mechanism explained
in Fig. 4 E and F. For example, in the bistable chaos/fixed-point
phase (brown region in Fig. 5A), one class of stimuli transiently
nudges the network activity toward the chaotic phase (cyan region
in Fig. 5A), such that after stimulus offset, the network settles
into the chaotic branch of the chaos/fixed-point phase. The
second class of stimuli transiently nudges the network activity
toward the single fixed-point phase (blue region in Fig. 5A),
such that after stimulus offset the network settles into the fixed
point branch of the chaos/fixed-point phase. In the representative
simulated session in Fig. 5B, the network is performing two
trials of the Go/No-Go (G/NG) task and reports the correct
choice in response to either stimuli after a delay period. In
this neuroscience-inspired task, the network is interpreted as a
model of the motor cortex, and the chaotic and the fixed-point
branches are interpreted, respectively, as the animal performing
a movement (Go) in response to one class of stimuli (e.g., a
monkey releasing a bar), and withdrawing that movement (No-
Go) in response to the other class of stimuli (31).

The next step is to model task-switching by leveraging the
repertoire of multiple bistable phases (Fig. 5C ). By changing the
baseline input mean and variance, we can interpolate between
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Fig. 5. Baseline control of multitasking. (A) The two bistable network phases (chaos/fixed-point and double fixed-point phases: brown and green, respectively;
same as Fig. 2B) can be harnessed by a reservoir network to perform two different tasks: a delayed two-alternative forced-choice task (2AFC) in the double
FP phase and a delayed go/no-go task (G/NG) in the chaos/FP phase. (B) Top: Experimental design for two representative trials of the G/NG task: Task rules
are implemented by sustained values of task-specific baseline �, �. Stimuli are represented by transient changes in baseline mean � during a short sample
epoch (100 ms). Following a delay epoch (200 ms), the network decision outcome is extracted via a linear readout z (the z-scored mean activity). Bottom: Neural
mechanism of decision-making along the hysteresis loop (circles and letters mark time points in the two representative trials at the top, projected onto the
plane with LLEs as functions of the momentary input baseline). (C) Representative session with eight trials, alternating 2AFC and G/NG blocks (green and red
lines represent task rule onset). In each block, stimuli from two classes are presented (blue/cyan and orange/brown color-shaded intervals represent the two
classes for each task). After a delay, the decision outcome is read out (dot-dashed lines). Top: Representative activity of four neurons. Bottom: Network readout
reports the stimulus class in either task from network activity in 2AFC and G/NG tasks: Positive or negative readout values represent sR , sL or sG , sNG stimulus
classes, respectively. An additional linear readout reports task rule from network activity (positive and negative values for G/NG and 2AFC tasks, respectively;
linear discriminant between task rules). (D) Readouts during the task. (E) Baseline values during the task (see panel A for comparison). (F ) Network activity mean
and variance (see Fig. 2D for comparison). Network parameters as in Fig. 2.
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different bistable phases and therefore obtain a reservoir network
that performs multiple tasks. We illustrate this ability by showing
how our reservoir network can quickly switch between the
delayed two-alternative forced choice task (2AFC) and the
delayed G/NG, two classic paradigms commonly used in systems
neuroscience (31, 32). Each task rule is represented by a sustained
value of the baseline (�, �), which may change before trial onset,
signaling a change in task starting in the upcoming trial. In the
double fixed-point phase, the network performs a delayed 2AFC
task, whereby each stimulus class is associated with one of the
two fixed points attractors. In this neuroscience-inspired task,
the network is interpreted as a model of the premotor cortex, and
the two fixed points represent attractors which hold in working
memory during the delay period the two choices available to the
animal (e.g., licking the left or right water spout) in response to
the two classes of stimuli (32).

In a representative session featuring task switching every two
trials, the network decision-making performance was perfect (all
8 stimuli were correctly classified in Fig. 5C ; in a longer session
with 100 trials, 50 per task, yielded perfect performance in both
tasks, respectively). The network time-varying baseline and order
parameters reveal that the neural hysteresis mechanism underlies
the binary decision-making tasks in each bistable phase (Fig. 5
D–F ). The network multitasking repertoire may vary depending
on the set of bistable phases available for given values of the
random coupling variance g, including the double chaos bistable
phase in Fig. 4D. A striking feature of our framework is that the
reservoir is performing the task without any weight optimization,
contrary to the typical multitasking scenarios where RNNs are
trained to perform multiple tasks via a costly weight optimization
via gradient descent (33).

Baseline Control of Optimal Memory Capacity. A classic result
in the theory of random neural networks is that, by fine-tuning
the recurrent couplings at the “edge of chaos,” one can achieve
optimal performance in a memory task, where the network
activity maintains for a very long time a memory of stimuli
presented sequentially (23). This was achieved by fine-tuning
the network recurrent couplings to values close to the transition
between fixed point and chaos, which is a metabolically costly
and slow procedure typically requiring synaptic plasticity. Is it
possible to achieve optimal memory capacity without changing

the recurrent couplings? We found that baseline control can
achieve optimal memory capacity by simply adjusting the mean
and variance of the baseline input distribution, without requiring
any change in the recurrent couplings (Fig. 6).

We first derived an analytical formula for the memory capacity
in the vicinity of a second-order phase transition boundary

M ∼
1

1− 〈�′��′�〉
, [1]

where �, � are replica indices. Optimal memory capacity is
achieved close to a phase boundary, and its features are qual-
itatively different depending on whether the phases separated
by the boundary are monostable or bistable. At a boundary
between two monostable phases, where the activity transitions
between a fixed point and chaotic phase, optimal memory
capacity is achieved at the edge of chaos. For fixed values of
the recurrent couplings (Fig. 6A), one can easily achieve optimal
memory capacity by adiabatically changing either the mean or
the variance of the baseline. This external modulation thus sets
the network at the edge of chaos, in the region where memory
capacity is maximized, via baseline control, without any change
in the recurrent couplings. Around a phase boundary involving a
bistable phase, the optimal performance region can be reached by
making use of the neural hysteresis phenomenon. We illustrate
this intriguing scenario in the case of the transition from a bistable
fixed point/chaos branch to a bistable double chaos branch (Fig.
6B). Optimal performance is achieved only on the branch of
the bistable phase transition which undergoes a second-order
phase transition (i.e., the branch whose LLE crosses zero). In
this specific case, then, we can reach optimal performance on the
lower branch of the LLE curve, describing the transition between
the weak chaotic branch of the double chaos phase to the fixed
point branch of the fixed point/chaos phase. Because of the neural
hysteresis, achieving the optimal performance region requires first
initializing the network on the lower LLE branch (on either side
of the transition) and then adiabatically controlling the baseline
to reach the desired point. The phase boundaries where only
first-order phase transitions occur (i.e., no branch exhibits an
LLE that crosses zero) do not lead to optimal memory capacity.
For example, in Fig. 4B, neither the upper nor lower branch of the
transition between a monostable fixed point phase to a bistable
fixed point/chaos phase lead to large memory capacity, since no

BA Bistable phasesMemory in monostable phases
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+
+
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M
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10-3 10-2

Phases

trans.
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Fig. 6. Baseline control of optimal memory capacity. (A) Two representative trajectories in baseline (�, �) space (Left: green and orange lines) allow to reach
a phase transition where the LLE crosses zero (Top) and memory capacity is optimized (Bottom). (B) In a transition between bistable phases, memory capacity
is optimized by a baseline trajectory whose branch exhibits an LLE that crosses zero at the phase boundary (orange curve); the branch with positive LLE (blue
curve) does not maximize memory capacity. Network parameters: Panel A, same as Fig. 2A; panel B, same as Fig. 4D.
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LLE on either branch of the intermediate bistable phase crosses
zero. Nevertheless, it is always possible to reach a different second-
order phase boundary from any point in (�, �) space by following
an appropriate adiabatic trajectory in the baseline, where optimal
memory capacity can be achieved (Fig. 6A). Therefore, one
can achieve baseline control of optimal performance via neural
hysteresis.

Discussion

We presented a brain-inspired framework for reservoir comput-
ing where we controlled the dynamical phase of a recurrent
neural network by modulating the mean and quenched variance
of its baseline inputs. Baseline modulations revealed a host of
phenomena. First, we found that they can set the operating
point of the network activity by controlling whether synaptic
inputs overlap with the high gain region of the transfer function.
A manifestation of this effect is a noise-induced enhancement
of chaos. Second, baseline modulations unlocked access to a
large repertoire of network phases. On top of the known fixed
point and chaotic ones, we uncovered three bistable phases,
where the network activity breaks ergodicity and exhibits the
simultaneous coexistence of a fixed point and chaos, of two
different fixed points, and weak and strong chaos. By driving
the network with adiabatic changes in the baseline statistics one
can toggle between the different phases, charting a trajectory in
phase space. These trajectories exhibited a manifestation of the
phenomenon of neural hysteresis, whereby adiabatic transitions
across a phase boundary retain the memory of the adiabatic
trajectory. Moreover, we showed that baseline control can achieve
optimal performance in a memory task at a second-order phase
boundary without any fine-tuning of the network recurrent
couplings. In the bistable phases, we showed that the reservoir
can perform different decision-making tasks, leveraging neural
hysteresis and ergodicity breaking. Strikingly, we found that by
simply varying the network baseline the reservoir can perform
multiple tasks without any weight optimization. Our work
provides a conceptual framework to achieve flexible performance
and multitasking via the simple neural mechanism of baseline
control, paving the way for an approach to reservoir computing.

Noise-Induced Enhancement of Chaos. Previous theoretical
work found a noise-induced suppression of chaos in random
neural networks driven by time-varying inputs both in discrete
time (29) and continuous time (22, 24, 28, 30, 34). In previous
cases, featuring a mean synaptic input centered in the middle
of the high-gain region of the transfer function, suppression
of chaos occurs because an increase in the variance drives the
network away from the chaotic regime. In contrast, we found
that, when the baseline statistics sets the mean synaptic input
away from the center of the high gain region, one can induce a
transition from fixed point to chaos at intermediate values of the
variance (Fig. 3). Larger values of the variance eventually suppress
chaos, such that a nonmonotonic dependence of the Lyapunov
exponent on the baseline variance or mean can be realized. This is
an example of noise-induced chaos in recurrent neural networks
with additive interactions, although a similar phenomenon was
recently found in networks with gated recurrent units (35) (for
the logistic map see ref. 36). We believe that noise-induced
modulation of chaos in discrete time networks is similar for
both quenched and dynamical noise (24) since the LLE and
the edge of chaos are the same for both cases. We speculate
that introducing a leak term and generalizing our results to a
continuous time system may induce a dynamical suppression of

chaos on general grounds, based on the memory effect. Another
interesting direction is to drive the network with dynamical noise
at different values of the baseline input and investigate its effect
on the different monostable and bistable phases we uncovered
via baseline modulation.

Optimal Sequential Memory. Previous studies showed that opti-
mal performance in random networks can be achieved by either
tuning the recurrent couplings at the edge of chaos (23) or
by driving the network with noisy input tuned to a particular
amplitude (24). Both those methods requires simple tuning
of two hyperparameters [mean and variance of the random
couplings (23) or noise (24) distribution], as in our model. It
would be interesting to compare these alternative methods, test
whether any of them is realized in cortical circuits and develop
optimization algorithms to learn their parameters.

Comparison with Other Multitasking Frameworks. Humans
learn to perform new cognitive tasks by directly following
instructions, without any training at all (37). On the other hand,
brain-inspired RNNs can be trained to perform multiple tasks by
optimizing their recurrent weights via gradient descent (33, 38).
This optimization procedure is costly, scaling as the square of
the network size, and typically requires thousands or millions
of training epochs to achieve good task performance; moreover,
their maintenance is biologically implausible, as it requires a
mechanism to fine-tune the value of the recurrent weights. Recent
work showed that RNNs trained to perform a library of tasks via
gradient descent can then quickly learn a new task by reutilizing
learned computational motifs, such as learned fixed points or
line attractors (38, 39). Here, we took a different approach to
multitasking by interpreting the reservoir’s own dynamical phases
as a library of ’innate’ computational motifs. Each of the multiple
bistable phases already present with random recurrent couplings
was shown to implement a different binary choice, relying on the
combination of their ergodicity breaking and neural hysteresis
property. Task rules were implemented as values of the baseline
input mean and variance (Fig. 5). Unlike previous studies, our
approach does not require any training of recurrent weights, thus
avoiding the issues listed above. A limitation of our approach
is that only a small number of bistable phases are available,
and therefore, the expressivity of the reservoir is not large as
the one achieved by trained RNNs (33). It is tantalizing to
speculate that by combining our reservoir approach with some
limited weight optimization one could learn a larger variety of
computational motifs and lead to a more biologically plausible
theory of multitasking RNNs.

Information Processing Capabilities and Bistability. Bistable
phases with coexistence of fixed points and chaos were previously
reported in recurrent networks with random couplings (40)
and with gated recurrent units (35). We generalized this to
a set of bistable phases featuring the coexistence of two fixed
points and, remarkably, two chaotic attractors with slow and
fast chaos, respectively. This is a report of a doubly chaotic
phase in recurrent neural networks. Are there any information
processing benefits of the double chaos phase? Neural activity
unfolding within the weakly chaotic branch of this bistable phase
has large sequential memory capacity, as the Fisher information
diverges at the edge of chaos. On the other hand, the strongly
chaotic branch erases memory fast. In this doubly chaotic phase,
the network’s information processing ability can be changed
drastically by switching between the two branches, for example,
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via an external pulse. It would be tantalizing to explore the
computational capabilities of these bistable phases unlocked by
baseline modulation. Here, we only considered homogeneous
inputs where the baseline statistics is the same for all network
neurons. Although, one may consider a more general setup with
heterogeneous inputs, where different neural populations receive
baseline modulations with different statistics. The simplest such
possibility would be the ability to perform different tasks by
gating in and out specific subpopulations, driving them with
negative input. This is a promising direction for multitasking,
and we leave it for future work.

Evidence for Baseline Modulations in Brain Circuits. In bio-
logically plausible models of cortical circuits based on spiking
networks, it was previously shown that increasing the base-
line quenched variance leads to improved performance. This
mechanism was shown to explain the improvement of sensory
processing observed in the visual cortex during locomotion
(11) and in the gustatory cortex with general expectation (2).
In these studies, the effect of locomotion or expectation was
modeled as a change in the constant baseline input to each
neuron realizing an increase in the input quenched variance.
This model was consistent with the physiological observation of
the heterogeneous neuronal responses to changes in behavioral
state, comprising a mix of enhanced and suppressed firing rate
responses [during locomotion (3, 11, 25), movements (4–6),
or expectation (14, 41)]. Intracellular recordings showed that
these modulations are mediated by a change of baseline synaptic
currents, likely originating from subcortical areas (8, 9). Because
the effects of these changes in behavioral state on neural activity
unfolded over a slower timescale (a few seconds) compared
to the typical information processing speed in neural circuits
(subsecond), we modeled them as constant baseline changes,
captured by changes in the mean and variance of the distribution
of input currents. Our results provide an interpretation of these
phenomena, leading to the hypothesis that they could enable
cortical circuits to adapt their operating regimes to changing
demands.

Baseline Modulations and Gain Modulation. The effect of the
baseline modulations on network dynamics highlighted in this
study can be understood in terms of changes in the network
effective transfer function Φeff (x) =

∫
Dz�(

√
Cz + � + x),

where Dz is a standard Gaussian measure, and C is the self-
consistent variance of the activity, giving the self-consistent
equation for the mean rate M = Φeff (M) (Materials and
Methods). Baseline modulations lead to changes in the slope of
the effective transfer function, a relationship previously derived
in spiking networks (2). This is consistent with experimental
observations that changes in behavioral states are mediated by
gain modulation, as observed at the level of single cells (1) as well
as populations (11). Alternative mechanisms for gain modulation
include changes in the background synaptic currents controlling
the single-cell conductances (42), which are not captured by our
rate-based model.

Ergodicity Breaking. We found ergodicity breaking in network
dynamics occurring in a series of bistable phases, which include
phases with two fixed points, with a fixed point and chaos, and
with weak/strong realizations of chaos. Ergodicity breaking was
recently reported independently in a dynamically balanced neural
network of inhibitory units in ref. 43. The origin of the ergodicity
breaking in these two models is different. While in our case it

is driven by heterogeneity, or disorder, in the input baseline,
in ref. 43, it is caused by an overrepresentation of symmetric
connections, leading to non-Gaussian inputs for each neuron as
a consequence. Moreover, while we relied on DMFT to prove
the existence of bistability, Berlemont and Mongillo (43) applied
the cavity method to reveal a large number of metastable states.

Neural Hysteresis. A prediction of our model is that baseline
modulations may induce neural hysteresis when crossing a
bistable phase boundary. Hysteresis is a universal phenomenon
observed in many domains of physics. Hysteresis in neural
networks was first observed in the presence of recurrent inhibition
(44, 45) and later confirmed in visual areas in vitro (46). In
the Wilson–Cowan model (47), hysteresis was observed in the
transitions between fixed points. In our case, hysteresis occurs in
the transition between different network phases including chaotic
and fixed-point regimes. Our results suggest a potential way to
examine the existence of hysteresis in brain circuits, within the
assumption that increasing baseline variance represents increasing
values of a continuous behavioral modulation such as arousal
[e.g., measured by pupil size (48)]. A potential signature of
hysteresis could be detected whether the autocorrelation time
of neural activity at a specific arousal level exhibited a strong
dependence on whether arousal levels decreased from very high
levels or increased from very low levels. We leave this interesting
direction for future work.

Materials and Methods
Random Neural Network Model. Our discrete time neural network model
with top-downcontrol, illustratedin Fig.2, isgoverned bythe dynamicalequation

xi,t+1 =

N∑
j=1

Jij�(xj,t) + bi + �t. [2]

Here, bi is quenched Gaussian noise with mean �, and variance �2, �t is a
possible time-dependent external stimulus (relevant for the sequential memory
task below). The synaptic couplings Jij are drawn from a normal distribution with

mean J0/N, and variance is g2/N; the scaling 1/N guarantees the existence
of the large N limit. We will assume � > 0 in accordance with the fact that
long-range projections are typically mediated by pyramidal cells. The activation
function �(x) = 1

2 [tanh(x − �0) + 1] is positive definite and biologically
plausible as it incorporates both a soft rectification and thresholding. Indeed,
the activation function � satisfies �(x) ≈ 0 when x � �0 and �(x) ≈ 1
when x� �0.

For this model, the measure of the path integral is

Dx =

N∏
i=1

Dxi, Dxi =
∑
t∈Z

dxi,t.

We apply dynamical mean field theory (DMFT) as described in ref. 27. The aim
of DMFT is to obtain the single body density functional P1(x) or equivalently its
moment generating functional, averaged over the randomness of the synaptic
connections and the external noise in the infinite population limit N → ∞.
That is,

P1(x1,t) ≡

∫
〈PN(x)〉� ,J

N∏
i=2

Dxi,

or its characteristic function,

Z1(l1,t) =

∫
ei
∑

t l1,tx1,tP1(x1,t)Dx1,

where PN(x)Dx is the N-body density functional given by
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PN(x) =

N∏
i=1

∏
t
�
(
xi,t+1 − Ii,t − �t − bi

)
,

where Ii,t =
∑N

j=1 Jij�(xj,t). Using the expression of the Ditrac � function as

�(x) = (2�)−1 ∫ eix̃xdx̃, and the saddle point method (18, 24, 27), we derive
the single-body density function, whose detail is shown in SI Appendix.

Order Parameters. The order parameters of the model are the population
mean and variance at equilibrium of the single neuron activity 〈xi,t〉. A
rigorous derivation of self-consistent equations for these two quantities requires
dynamical mean field theory (SI Appendix); a heuristic argument for them can
be sketched as follows. Averaging Eq. 2 in the absence of external input yields

〈xi,t+1〉 =
N∑
j=1

〈Jij�(xj,t)〉.

Neglecting correlation between the random variables Jij and xj,t on the right-
hand side, and using the statistical invariance under permutation of neuron
labels to drop cell indices, we obtain 〈xt+1〉 = J〈�(xt)〉. Focusing now on
the stationary regime, where the distribution of xt+1 and xt are identical, and
assuming them to be Gaussian with mean M and variance C, leads to

M = J
∫

dx
√

2�
e−x

2/2�
(√

Cx + M
)

. [3]

Taking the second moment of Eq. 2, without neglecting the variance of the
quenched disorder, term, and deploying once again the same assumptions
yields

C = �2 + g2
∫

dx
√

2�
e−x

2/2�
(√

Cx + M
)2

. [4]

Stability of the systems with single or double replicas is checked by computing
the linear response or by checking that the hessian matrix is positive definite
(18, 49). In SI Appendix, the dynamical mean-field theory approach is rigorously
developed to derive two dynamical equations for the mean-field momenta. The
stationary limit of those equations is found to correspond to Eqs. 3 and 4, thus
confirming the heuristic result.

Largest Lyapunov Exponent. The Lyapunov exponent of a dynamical system
is a quantity that characterizes the rate of separation of infinitesimally close
trajectories. Quantitatively, two trajectories in phase space with an initial
separation vector diverge (provided that the divergence can be treated within
the linearized approximation) at an exponential rate given, and the Lyapunov
exponent governs this exponential growth. The LLE for a discrete-time dynamical
system is defined as

�max = lim
�→∞

lim
‖x1

t −x
2
t ‖→0

1
2�

ln

〈∣∣∣x1
t+� − x2

t+�

∣∣∣2〉〈∣∣∣x1
t − x2

t

∣∣∣2〉 , [5]

which indicates how the two orbits, or replicas, get to be far from each other.
In the N body picture, when N → ∞, we find (50) (see SI Appendix for a
derivation):

�LLE =
1
2

ln〈�′(x)2
〉 =

1
2

ln
∫

�′
(√

Cx + M
)2

Dx. [6]

Here, C and M are the self-consistent solutions to the dynamical mean-field
equation [3] and [4]. In the monostable phases, a single LLE exists since a
single solution to these equations can be found. In the bistable phases, two
different solutions for C andM exist, depending on the initial conditions for the
mean-field equations, corresponding to the two basins of attraction of the two
branches. The two solutions in turn yield two different LLE via Eq. 6.

Distance between Replicas. Let us define the mean activity in the replica �
(corresponding to some initial conditions x�i (0)) as

x̄�i (T) =
1
T

∫ T

0
x�i (t)dt.

We then define the distance between replicas as (43)

d2
��(T) =

1
N

N∑
i=1

[
x̄�i (T)− x̄�i (T)

]2
,

and its average 〈d〉 = 1
n2

∑n
a,b=1 d��(T), as used in the visualization of

Fig. 4C.

Multitasking Readouts. Network readouts z in each task were chosen as z-
scored mean network. The task readout was chosen as a projection on the linear
discriminant direction maximizing separability of the two tasks from the activity
immediately preceding stimulus presentation (min-maxed as well).

Memory Capacity. Following refs. 51 and 52, we define the memory capacity
of a dynamical system for an observer in possession of an unbiased estimator
for the mean, who can therefore remove the mean values from all the time
series he records. Moreover, we would like the resulting memory capacity
to be zero when the linear readout is dominated by a constant baseline
value because nothing can be learned from a readout independent of
the input. Adopting therefore the mean-removed formula, we find for the
memory capacityM in the neighborhood of the second-order phase transition
boundary

M ∼
1

1− 〈�′��′� 〉
. [7]

To derive this formula, we proceed along the same lines as in Ref. 24,
considering the input signal ut as ut = 1

N
∑

t �i,t and trying to reconstruct the

input u(t0) with the sparse linear readout
∑K

j=1 wjxj,t with O(K) < O(
√
N).

The memory curveC� and capacityCM are given respectively by the determinant
coefficient which measures how well the readout neurons reconstruct the past
input u(t − �) correctly, and their sum (52)

C� =

∑K
i,j=1 Covt(ut , xi,t+�)Covt(xi,t , xj,t)−1Covt(ut , xj,t+�)

Vart(ut)
,

CM =
∑
�

C� ,
[8]

where

Covt(ut , vt+�) = lim
T→∞

1
T

T∑
t=1

utvt+� −

1
T

T∑
t=1

ut

1
T

T∑
s=1

vs+�

 ,

and Vart(ut) is computed in the same manner. The readout is sparse, so that
the covariance Covt(xi(t), xj(t)) becomes diagonal in the infinite population
limit N → ∞ (23). Moreover, we deal with the steady state so that this term
is constant with respect to time. The detail of the derivation is exhibited in
Supplement.

Data, Materials, and Software Availability. Jupyter notebooks reproducing
the main figures can be found at https://github.com/mazzulab/multitasking
(53). All study data are included in the article and/or SI Appendix.
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40. Ł Kuśmierz, S. Ogawa, T. Toyoizumi, Edge of chaos and avalanches in neural networks with heavy-
tailed synaptic weight distribution. Phys. Rev. Lett. 125, 028101 (2020).

41. R. Vincis, A. Fontanini, Associative learning changes cross-modal representations in the gustatory
cortex. eLife 5, e16420 (2016).

42. F. S. Chance, L. F. Abbott, A. D. Reyes, Gain modulation from background synaptic input. Neuron
35, 773–782 (2002).

43. K. Berlemont, G. Mongillo, Glassy phase in dynamically-balanced neural networks. bioRxiv
[Preprint] (2022). https://doi.org/10.1101/2022.03.14.484348 (Accessed 4 January 2023).

44. B. G. Cragg, H. N. V. Temperley, Memory: The analogy with ferromagnetic hysteresis. Brain 78,
304–316 (1955).

45. D. R. Smith, C. H. Davidson, Maintained activity in neural nets. J. ACM (JACM) 9, 268–279 (1962).
46. D. Fender, B. Julesz, Extension of panum’s fusional area in binocularly stabilized vision. JOSA 57,

819–830 (1967).
47. H. R. Wilson, J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model

neurons. Biophys. J. 12, 1–24 (1972).
48. M. J. McGinley, S. V. David, D. A. McCormick, Cortical membrane potential signature of optimal

states for sensory signal detection. Neuron 87, 179–192 (2015).
49. J. R. de Almeida, D. J. Thouless, Stability of the Sherrington–Kirkpatrick solution of a spin glass

model. J. Phys. A: Math. General 11, 983 (1978).
50. B. Cessac, Increase in complexity in random neural networks. J. Phys. I, 409–432 (1995).
51. J. Dambre, D. Verstraeten, B. Schrauwen, S. Massar, Information processing capacity of dynamical

systems. Sci. Rep. 2, 1–7 (2012).
52. H. Jaeger, “Short term memory in echo state networks” in GMD-Report 152, GMD-German National

Research Institute for Computer Science (Citeseer, 2002). http://www.faculty.jacobs-university.de/
hjaeger/pubs/STMEchoStatesTechRep.pdf Accessed 4 January 2023.

53. S. Ogawa, F. Fumarola, L. Mazzucato, Multitasking RNN. Github. https://github.com/mazzulab/
multitasking. Deposited 17 July 2023.

PNAS 2023 Vol. 120 No. 33 e2304394120 https://doi.org/10.1073/pnas.2304394120 11 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

73
.9

6.
96

.2
17

 o
n 

Ju
ly

 2
8,

 2
02

4 
fr

om
 IP

 a
dd

re
ss

 7
3.

96
.9

6.
21

7.

https://doi.org/10.1101/306019
https://doi.org/10.1101/308288
https://doi.org/10.1101/308288
https://doi.org/10.1101/2020.08.31.276584
https://doi.org/10.1101/2020.08.31.276584
http://arxiv.org/abs/2110.09165
http://arxiv.org/abs/2201.09916
http://arxiv.org/abs/2201.09916
https://doi.org/10.1101/2022.08.15.503870
http://arxiv.org/abs/2105.14108
https://doi.org/10.1101/2022.03.14.484348
http://www.faculty.jacobs-university.de/hjaeger/pubs/STMEchoStatesTechRep.pdf
http://www.faculty.jacobs-university.de/hjaeger/pubs/STMEchoStatesTechRep.pdf
https://github.com/mazzulab/multitasking
https://github.com/mazzulab/multitasking

	Materials and Methods

