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1 | INTRODUCTION

Extremum-seeking controller (ESC) is a century-old! form of adaptive control for real-time optimization wherein the
closed-loop dynamic system is driven towards an optimal equilibrium which is learned in real-time from online data.
Typically, EScC is considered a form of model-free adaptive control. This advantageous property of ESC allows its application
to a wide range of unknown systems with unknown costs. However, in many applications, the system and costs are not
completely unknown. For instance, in adaptive optics, the dynamics of the deformable mirror and the structure of the
power-density function are known.? Likewise, a drone using ESC to search for the source of a chemical leak will have
known dynamics.? In this article, we consider ESC for systems with known steady-state gains. Furthermore, we will
assume that the cost is strictly a function of the measured system outputs for example, a Hammerstein-Wiener model
(although we consider nonlinear dynamics). Both of these assumptions are consistent with the applications described
above for example, the concentration of pollutant will be a function of the position of the drone, and power-in-fiber
will depend on the configuration of the deformable mirror. Furthermore, these assumptions are consistent with many
closed-loop systems designed for reference tracking.*” Although model-free ESC can be applied to these systems, the
performance of the algorithm can be improved by exploiting this partial knowledge.

ESC has other beneficial properties that are important for applications with partial system and cost knowledge. While
the structure of the cost function may be known, it could be parameterized by unknown exogenous signals. For instance,
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in adaptive optics, the optimal configuration of the deformable mirror depends on unknown (and typically unmeasur-
able) atmospheric conditions.? For leak detection, the pollutant concentration depends on the unknown location of the
leak.® Thus, these applications can benefit from ESC’s ability to perform real-time data-driven optimization. Furthermore,
ESC accounts for the fact that the data is collected from a dynamic system that is not necessarily in equilibrium. Indeed,
our ESC algorithm will explicitly account for tracking errors in the gradient estimation using the aforementioned mea-
sured outputs. Finally, ESC accounts for the feedback-loop created by interconnecting a dynamic system with an iterative
optimization algorithm.

Over the past two decades, numerous ESC algorithms have been introduced, including perturbation-based, slid-
ing mode, fractional order, Newton-based, and gradient-based ESc algorithms.® These algorithms have been effectively
applied in various fields such as air conditioning systems,’ braking systems,' wind and solar energy systems,!! photo-
voltaics,'? plasma control,'* and biochemical processes.'* The convergence rate of these algorithms varies significantly.
Several accelerators for ESC are proposed for systems with unknown dynamics, in Reference 15 by high-frequency
dither signals, in Reference 16 by unknown Hessian, in Reference 17 by event-triggered mechanisms, and in Reference
18 by dither-free methods. Other different approaches include Esc for affine nonlinear systems,'® and Newton-based
Hessian-free ESc for convex cost functions.?>?! Studies suggest that gradient-based ESC potentially increases the conver-
gence rate of perturbation-based Esc.??

The standard gradient descent ESC for example, Reference 23 is a discrete-time integrator and the set-point in clas-
sical ESc for example, References 24 and 25 is the continuous-time integral of the estimated gradient. However, this
integral action can potentially destabilize a system that is initially stable (see the illustrative example in Reference 3).
Therefore, ensuring stability is a significant concern in ESC, often addressed using methods such as proportional-integral
method.?® Stability in proportional-integral ESC is typically maintained either by reducing the controller’s aggressive-
ness or by improving the accuracy of gradient descent estimation. Decreasing aggressiveness in stable open-loop systems
often necessitates slower dynamics in the closed-loop system. Meanwhile, enhancing gradient estimation accuracy
can be achieved through methods like dither amplitude control,?® which has been extended to dither adaptation and
higher-order sliding modes.?” Formal guarantees of asymptotic stability of ESC is studied using decaying dither.?®*° In
this article, a joint Lyapunov function for the plant and our ESC controller is employed to ensure input-to-state stable
(188) stability.

The proposed ESC has an explore-exploit structure wherein there are distinct modes for gathering data and using
this data to improve the cost. This explore-exploit structure is common in ESC algorithms.>*3° However, this structure
is typically a heuristic where the ESC algorithm is explicitly designed to gather data for a fixed amount of time before
exploiting the data. In contrast, our explore-exploit structure is an emergent property of our game-theoretic analysis of
our joint Lyapunov function. The ESC only enters the exploitation mode when the data is sufficiently informative to
confidently decrease the joint Lyapunov function.

One of the main contributions of this article is a novel set-based gradient estimation algorithm. While dither adapta-
tion for efficiently probing gradient data has been thoroughly examined in previous studies,?®?”?° this data is processed
by generic estimation algorithms, such as batch least-squares (BLS), to estimate the gradient. We prove that for costs
with bounded curvature, the set of possible gradients that are consistent with the gathered data forms a polyhedron. For
a persistently exciting (PE) dither, this set is bounded that is, a polytope instead of a polyhedron. Our estimator selects
the estimated gradient from this set that optimizes the worst-case convergence of the joint Lyapunov function. This is
in contrast to typical gradient estimators (e.g., least-squares,?!8-2331-33 gsc filtering methods for example, References 34
and 35) whose tacit objective is to minimize the estimator errors. This ignores the impact of those errors for example,
some small errors can have disproportionately large impacts on convergence, whereas some large errors can actually be
beneficial to convergence. Our gradient estimator solves a game that optimizes the worst-case convergence of the joint
Lyapunov function. We show that this game can be re-posed as a quadratic programming (QP), allowing for efficient
online computation.

This article makes several novel contributions:

1. We characterize the set of gradients consistent with the gathered data for cost functions with bounded curvature; this
set of gradients is proven to form a polytope.

2. We present a novel optimization-based gradient estimator that optimizes the worst-case convergence of the ESC; this
estimator is implemented efficiently by casting it as a quadratic program (QP).
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3. We present novel mathematical analysis that proves the convergence of our novel ESC algorithm. We use a
game-theoretic analysis to quantify when the ESC has sufficient data to confidently decrease the cost.

4. We formally prove in Corollary 1 that a similar, previous approach? is more conservative than the novel ESC presented
in this article.

5. Using three benchmark numerical examples, we demonstrate that the presented ESC algorithm has supe-
rior performance over the previous approach® despite very loose assumptions on the knowledge of the
curvature bounds.

The remainder of the article is organized as follows. In Section 2, we formally define our ESC problem. In Section 3,
we present our novel ESC algorithm and prove its convergence. This involves proving that our gradient set characterizes
the set of all gradients consistent with the data and proving that our gradient estimator selects the gradient estimate that
provides the best worst-case performance. In Section 4, we present numerical examples that demonstrate the efficacy of
our ESC algorithm.

1.1 | Notation and definitions

For a vector v e R" and positive definite matrix M € R™", ||v||;y = VvTMv is the weighted 2-norm where the
subscript is omitted for the identity matrix |[v|| = m For a square matrix M € R™", A(M) and A(M) denote
its smallest and largest eigenvalues respectively and ||M|| = sup{||Mx|| : ||x|]| <1} is the induced 2-norm. A func-
tion f is in C" if the derivatives f, ... ,f® exist and are continuous. A function «a : [0, 00) — [0, ) is class-iC,
denoted by a € K, if a(0) =0 and it is strictly increasing. A function f : [0,00)? — [0,00) is class-KL, denoted
by p € KL, if p(-,t) € K Vt > 0 and f(r,-) is continuous and strictly decreasing Vr > 0. A system X1 = f(x;, U;) is
1SS if [[x:]| < B(l|xoll, £) + &(sup, ||u;]|) where g € KL and ¢ € K. A signal u, € R™ is PE*® in the interval ¢ € [z, 7 +
T], with T > m, if for every unit vector w € R™ there exists an instance f € [z, 7+ T] and scalar £ > 0 such that
|[wTu;| > el|lu;]|. For notational simplicity, 6 is used for the gradient V.J of cost J and time index ¢ is omitted in
some places.

2 | DYNAMICOPTIMIZATION PROBLEM
Our plant is an unmodeled nonlinear discrete-time system,

Xt+1 :f (-xt’ ut) s (13.)
yi = h(X[, ut)a (lb)

where x; € R" is the state, y; € R™ is the output, and u, € R™ is the control input at time index t € N. We make the
following assumptions about the plant (1).

Assumption 1 (Plant).

(a) The plant (1) is controllable, observable, and Lipschitz continuous. Furthermore, each constant input
u; = r corresponds to a unique ISS equilibrium state x = z(r), where x is Lipschitz continuous.

(b) The input and output have the same dimension m, and output (1b) asymptotically tracks constant input
u; =r;thatisy, > rast - oo for all ¥ € R™.

Assumption 1 reflects assumptions made in recent ESC literature®3!3? and is consistent with many industrial
applications, where ESC is applied to a closed-loop system with a well-designed tracking controller and sufficient instru-
mentation. In other words, ESC is implemented as add-on to find the optimal reference r, — 7~ for a system that tracks
y: — r, when commanded u, = ¥ to any reference set point r; = ¥. Here, we are interested in ESC for its beneficial stabil-
ity and data-driven optimization properties that can be integrated with systems closed-loop by model-free controllers for
example, References 37-39.
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Although the cost 7 is considered unknown, we require the following knowledge about 7.

Assumption 2 (Cost).

(a) The bound ||[VI@)|| > x3(||F — 77||) holds where 3 € K.
(b) The bounds k,([F =7 ) <T@ —= JF) < (|7 — 7]) hold where k1, x; € K.
(c) The curvature V2J of J € C? isbounded H < V2J < H by some known H and H.

Assumption 2a,b characterize a class of generally non-convex functions for which gradient descent can be used to
find the unique global optimal (see Remark 1 in Reference 40). Assumption 2a implies that driving the cost gradi-
ent to zero V.J — 0 results in converging to the optimum r, — r*, which returns the optimal cost by Assumption 2b.
Assumption 2a,b will be used to prove the stability of the optimal equilibrium. If the cost J is convex (i.e.,
0 < H < V2J) then Assumption 2c implies that Assumption 2a,b. However, these assumptions can hold for non-
convex costs J .40

The curvature bounds imposed by Assumption 2c ensure that the gradient V.J is Lipschitz continuous that is,
H = —hl and H = hI implies |[VJ (1) — VI @)l < hlly: — y2|l. Without Lipschitz continuity it is impossible to bound
the estimation error. Our ESC algorithm can exploit more nuanced curvature bounds H, H than Lipschitz constants
h, if available, to produce tighter bounds on the estimated gradient. The bounds H,H do not need to be tight for
the system to converge to optimum. Instead, there is a trade-off between the tightness of these bounds and the
amount of data needed to confidently estimate the gradient. Note that the bounds H and H are not required to be
positive definite matrices. Thus, we are not assuming that the cost J is convex. Assumption 2c is common in ESC
literature.20:41:42

In summary, our ESC solves the following problem.

Problem 1 (ESc). Compute a sequence of inputs u, that drives the output y, —» 7* of an unmodeled
system (1) to the optimum 7= argmin, J(y) of an unknown cost [J(y;) using real-time measured data

Do TOOY_,_,-

3 | SET-BASED ESC ALGORITHM

We make use of the tracking properties of the unmodeled system from Assumption 1 to reformulate ESC Problem 1. We
modify the objective of ESC to driving r; — 7 the reference r; as the input u; = r,, to the optimum 7~ that corresponds to
the equilibrium

x5 7) = arg min J (h(x, 7)), (2a)

s.t. X =f(x, 7). (2b)

This is sufficient for the cost J(y;) to converge to its minimum J (") as r; - ", since Assumption 1b dictates
the output y, of the system (1) to converge y, — 7 to the steady state 7" = h(x",7") when the input u, =r, =7~
is constant.

Our ESC is described by Algorithm 1, which updates the reference r; by using the collected data {yx, .J (yk)};{= o @
real-time history of measured outputs yx and costs J of a horizon T. Algorithm 1 continually switches between two
operational modes; exploration and exploitation. In the exploration mode (4), Algorithm 1 perturbs the system using
a PE dither signal d; to improve the estimate § of the gradient @ = V.J where the reference r; is the state of the ESC
controller. In the exploitation mode (5), Algorithm 1 descends the estimated gradient § ~ V.J toward the optimal equi-
librium (2). The operational mode of Algorithm 1 is determined by line 1 which quantifies the informativeness of the
collected data {yx, J (V) }tk= e Algorithm 1 avoids redundant computation by verifying whether the data is PE, using the
information matrix

-T

1 AycAy!

== Z T (3)
T W Ayl

2SUDIT suowwo)) aanear) a[qesrjdde ayy £q pauroaos a1 S3[ONIE V() 2SN JO SI[NI 10J AIRIQIT dUI[UQ AJ[TAN UO (SUONIPUOI-PUL-SULID}/W0d K[ 1M ATeIqIjout]uoy/:sdny) SuonIpuo)) pue swia [, oy} S *[$707/L0/£7] uo Areiqry auruQ A9IA\ ‘00X MAN JO ANSIOATUN YL, £q LG T€ 80,7001 (/10p/Ww0d" Ad]im KIRIqI[aul[uo//:sdiy wolj papeofumo( 0 ‘F1S16601



KASHANI ET AL. W] LEY 5

Algorithm 1. Proposed ESC algorithm

1. if A(A)<e?, where 0<e< <1, and A is given by (3),
or a||0* || g1 < %”Ayk”ﬁ[ + lle/l|;; for any k € [t — T, t — 1], where §* is given by (6),

then

2. Explore:
Tey1 = 1t (43')
U =ry+di, (4b)

where d; is PE, and ||d;|| < 6,
3: else

4. Exploit:
re1 =r — Koy, (5a)
Uy =r, (5b)

where ét* is given by (6) and K satisfies (9).
5. end if.

The estimated gradient 0 used in the exploitation mode (5) is provided by the following novel gradient estimator

67 = argmin||d]1%, (6)
0€e0,

t

where the set of consistent gradient estimates @ is the polyhedron

~

t—
6= () {0€R™: 0 <AJi— Ay 0 <@} ™
k=t-1

for some estimation horizon T, where Ayy = y; — yr and AJ, = J () — J (Vr) are the change in the measured output yi
and measured cost .J (Jx), respectively. The uncertainty bounds are

_ AU 1

@ = Ay Hee + = Ay HAy + || Ayelllleclr, (8a)
S B 1

o, = Ay, He; + EAkaA.Vk - EHAyk”H”et”H, (8b)

where e; = r, — y, is the tracking error, H = %(ITI + H) is the median curvature and H = H- H > 0 is the over-estimated
range of curvature V27 for the cost .J. The source of uncertainty when estimating the gradient V.7 is due to the uncertain
(but bounded) curvature V2. The set (5) is a polyhedron since it is the intersection of pairs of parallel half-spaces. Thus,
the gradient estimator (6) is a Qp. We will show that Algorithm 1 only enters the exploitation mode when the direction
and amplitude of the estimated gradient is comparable to the actual gradient V.J.

The estimation horizon T is a tuning parameter for the gradient estimator (6). To ensure that the gradient set (7)
remains bounded, the estimation horizon T > n should be greater than or equal to the state dimension n, and the data
should be persistently exciting. Increasing T reduces the volume of the set (7) providing more accurate gradient esti-
mates and improving convergence. However, the trade-off is that the number of constraints defining the polytopic set (7)
increases, increasing the complexity of the QP (6) used to estimate the gradient.

Remark 1. In Reference 3, a time-varying adaptive step-size was proposed to ensure that a BLS estimated gra-
dient is contained inside an ellipsoidal gradient set. In Corollary 1, we will show that the previous ellipsoidal
set is an outer-approximation of the polytopic gradient set (7). Furthermore, our numerical examples will
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demonstrate that the optimization-based gradient estimator (6) with the more accurate polytopic gradient
set (7) improves performance.

The positive definite controller gain K = K" > 0 is designed for the controller (5) to provide nominal 1ss stability for
the closed-loop system (1) and (5) when 8 = V.J. A sufficient condition is the inequality

K—K<E+ﬂ)Kz0, ©)

where y > 0 is a tuning parameter. The gain condition (9) will be derived from our stability analysis in Proposition 1 in
Section 3.2. Additionally, Section 3.2 will discuss tuning y to promote robustness.

The main contribution of this article is the novel gradient estimator (6), which replaces for example, the least-squares
(Ls) estimators used in other ESC. In Reference 3 and 23, it was shown that LS estimators have bounded estimation errors
vy gy given by an ellipsoidal set (:),LS. Thus, VJ € @LS =0+ (:),LS.

In contrast, we will show that (7) characterizes all gradient estimates 6 € O consistent with the collected data
Ve, T (Vk)}[k:t_T and Assumption 2 that is, V.J € ©,. We will show our estimator (6) is strictly less conservative than
Ls since the circumscribed ellipsoids in the LS are necessarily conservative outer-approximations of polyhedral that is,
6, c 6" isa tighter bound on the true gradient V.J € © @LS, where our estimator uses the same information about
the system as in the LS estimator.

Another advantage of the novel estimator (6) is that it selects the best worst-case gradient estimate § € ©. For a Ls,
the estimated gradient 6" is the center of the ellipsoid 6" Thisisa good choice in the sense that it minimizes the largest
possible estimation error that is, it is the solution to the game

ALS . A
0" = min max ||VJ - 0| (10)
06" vyed"

In other words, choosing a gradient estimate 9" other than the center of @ would increase the worst-case estimation
error ||V.J — ||2. For a polytope, the analogous choice would be the bary-center éBC = Ilvzliiléi where ; are the vertices
of . However, our objective is not to minimize the worst-case estimation error (10). Instead, our objective is to minimize
the effects of the gradient estimation errors on the closed-loop performance. These objectives are not synonymous since
not all estimation errors § =  — V.J have the same influence on the closed-loop system. We will show that our gradi-
ent estimator (6) minimizes the destabilizing influence of gradient estimation errors on the closed-loop system (1) and
Algorithm 1 (see Theorem 2).

3.1 | Polytopic gradient estimation set 6

The following theorem shows that (7) characterizes all gradient estimates § consistent with the collected data
k> TG0}, _, and Assumption 2.

Theorem 1. Let Assumption 2 hold. Then, the cost gradient 0, = V.J (r;) at r = h(z(r), 1) is contained
in the set (7).

Proof. According to Taylor’s theorem, the cost J satisfies

TR = TG0 + Ay VI ) + Ay V2T (2 Ay 11

where Ay = yi — y;. Note that (11) holds by Taylor’s theorem where the second-order Lagrange remainder
%Aygvzj (Zx)Ayy is evaluated at an unknown point zx = ey + (1 — g )y for some py € [0, 1]. The desired
gradient V.J (r;) evaluated at the current reference r, is related to the gradient V.7 (y,) evaluated aty, = h(x;, ;)
by the mean-value theorem (see Theorem 12.9 in Reference 43) applied to the scalar function f(z) = d"VJ (z)

d'VIr) =d"VIW) +d VAT (20)(re — yo) (12)
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for any direction d € R™, where the unknown curvature V27 (z) is again evaluated at an unknown point
Zo = poY: + (1 — po)yx for some g € [0, 1] which depends on the direction d. Combining (11) and (12) in the
direction d = y; — y; results

1
AJy = Ay 0+ EAYZH1Ayk — e] HyAyy, (13)
@3

@y

where e; = r; — y; is the tracking error. Although @, and w, are unknown, they are bounded since the cur-
vature H = V2J of the cost J is bounded H < H < H. From the definition of positive definite matrices, the
quadratic-form w; = %AyZHl Ayy is contained in the line interval

Q = [AyZHAyk, Ay HAy |,

N =

where H; — H > 0 and H — H; > 0. Here Q, is the tightest possible bound on the uncertainty ;.

Deriving the bounds 2, on w, is more complex since w, is not a quadratic-form. Since the linear function
fH) = etTH Ayy is continuous, the image Q, = f(H) of the connectedset H = {H : H < H < H} is connected.
Furthermore, since w, € R is a scalar, this set Q, is a line interval,

QZZ

min_e/ HAy,, max e/ H Ayk] , (14)
H<H<H H<H<H

where the semi-definite programs ensure that Q, is the tightest bound on w,. According to Theorem 2.2 from
Reference 44, the semi-definite programs (14) have closed-from solution

min LTr(CH) = 11 (Fll/zcﬁl/ 2) + 17y (CH),
H<H<H 2 2 -

where C = AyketT + e,AyZ is the symmetric cost matrix, and Tr~ is the trace of the projection of a matrix into
the negative semidefinite cone, or more simply, the sum of the negative eigenvalues of a matrix. The matrix

H'2CH" is rank-2, and it has exactly one negative eigenvalue A_ = e] HAyi — || Aykllzllecllz. Thus,

.1 1 ~ 1
min_-Tr(CH) = = Ay, He, — ~||Ayilizllellz + ] HAyx
EstH 2 2

~ 1
= Ay, He, — S Akl ez

where H — H > 0. Similarly, the upper-bound of Q, in (14) can be derived as w, < Aylﬁlet + |Ayill g lled| &
that results

~ 1
Q, = Ay, He: + 5 (=l Ayelzledlz 1Ayl ledlz] -

The bounds (8) on the total uncertainty w = w; + w, are given by Q; @ €, where @ is the Minkowski sum. For
line-intervals, the Minkowski sum is also a line-interval with bounds (8). Thus, the gradient set (7) describes
set of gradient estimates 6 that satisfy (13) for some w = @, + w, € Q1 B Q;. n

Theorem 1 shows that (7) characterizes all consistent gradients under Assumption 2. If the curvature V2.J of the cost
J were known and constant, then each data-point (Ayk, AJx) would restrict the gradient to an m — 1 dimensional affine
subspace. Since the cost 7 and its curvature are unknown, these affine subspaces become strips in R” that is, the region
between two hyperplanes. The gradient set (7) is the intersection of these strips. This set will be bounded if the data
collection points {yx }I‘c= ,_r contain an affinely independent subset for example, if Ay is PE. Since the bounds (8) depend
on the squared norm ||Ayy||?, smaller PE signals will produce a smaller gradient set (7). In addition, the tracking error
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e; =y, — 1y affects the size of the set (7) since we are estimating the gradient V.7 (r;) at r;. These results are consistent with
. . . . A LS . . ~ ~ LS
the ellipsoidal outer-approximation ®  derived in Reference 3. Next, we show ® C ©

Corollary 1. The estimated polyhedral gradient set ® from (7) is strictly more accurate than the estimated
ALS
ellipsoidal set 0" derived in Lemma 1 from Reference 3.

Proof. From Lemma 1 from Reference 3, the cost gradient V.7 belongs to the ellipsoid

~ LS ALS
6" =101 A (0-0") <), (1s)

where Avs = 231 wiAyAy], with the weights wi = (111AyelllAvells (Nl + 214yl ) ), and Ls
estimator

-1 t=T

L5 3 widve(AJi+ 8TH (e - 2aw) ). (16)

k=t-1 N J
~~

ALS _
0

which is the center of the ellipsoid (:)LS (15).
For 6 €® in (7), it can be shown that ©® can be represented by the following form ((23)
from Reference 3)

AJ + Ay, H(e — %Ayk) =Ayj 0+

-

—vk?
wie|| Ayl

v~

where v, € [—1, 1] is the normalized noise. Substituting this in 9LS (16) yields

LS t=T —1 t=T Ay
A k
60 = A kaykAyk >9 + — Vk
< kz;‘l kz;‘l Ayl
Ars

A ALS .
Thus, 0 € ® since

-T
ALS 1
As(0-07) 1P =115
1AL I T;mku

A ALS ALS A

Therefore, we showed ® C ® " that is, the ellipsoid ®  circumscribes 0. Finally, we show the strict inclusion
A ALS A oA A on A N

® c ® . Consider two adjacent vertices 61, 8, € © of ®. The mid-point 0.56, + 0.56, will lie on the boundary

N ALS N
of @ but strictly inside the ellipsoid ® . Thus, © is a strictly less conservative than the least-squares estimation
A ALS
set®@ CO . [

3.2 | Convergence under the exploitation mode

In this section, we show that the exploitation mode (5) of Algorithm 1 stabilizes the optimal equilibrium (2) despite
the uncertainty of estimated gradient 0 #VJ € 0. First, we show that the exploitation controller (5) stabilizes the
equilibrium (2) under the idealistic condition where the gradient is known.

Proposition 1. Let Assumptions 1 and 2 hold. Let V.J (r;) be known. Let the controller gain K satisfy (9) for
some y > 0. Then, the optimal equilibrium (2) is asymptotically stable for the plant (1) in closed-loop with the
exploitation controller (5) using 9: =VJ ).
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Proof. The full proof can be found in Reference 3. Here, we provide a sketch of the proof since subsequent
results will follow similar arguments. We define reference error ¥ = r — 7, output error X = x — z(r), and a
Lyapunov function of the form

V&, F) = %Vx(fc) +V,(P), (17)

bysome y > 0,and p > 0, where V, and V, are Lyapunov functions for the plant (1), and dynamic controller (5),
respectively. Then, by the converse Lyapunov function theorem, we show

T

Vi@ — Va(® < —q2(I%I) + =6 KG™(T" + P)GK®
2
b5 (18)
~q2(IxID + 5 K29,

where ¢° = g — %VVXT I"'VV, € Kby g, € K and proper adjustment of the positive definite I" > 0, the matrix

G is the Lipschitz constant matrix as || Az(r)|| < ||GAr||, the positive definite P > V?V} is bound on the curva-
ture of Vy, scalar ¢ = ||I" + P||||(T" + P)~!|| is the condition number of (I" + P), and scalar p = cA(G"(I" + P)G).
For V,, we use the unknown cost J of the form

V(A =JF+T) - JF), (19)

for which we use Taylor’s theorem to get

;_n

PN

V,(F) — Vi(F) < VI () TKO + =6 KHK, (20)

[\

where r* — r = =K@ by the controller dynamics (5). By combining (18) and (20), and denoting 6; = V.J(r,),
the combined Lyapunov function (17) satisfies

AV < —gM(I%I) - 07K + 10" K(H + yDKO
2 (21)
st — aTkd 2 LaTes
—qx(|IxXI) -0 K6'+50 K9,

where AV = V(X*, 7)) — V(%,7), gL = gqg € K, and gain K follows (9). Since §; = § = 0 = VJ(r;) is known
here, (21) follows

AV < —qx(IXID) = g2dIFID, (22)

where q%(||7||) = %i(K)’Q(H?“) € K. Thus (X, ) —» 0as t — oo by Lyapunov’s direct method. [

The proof of Proposition 1 provides insight on choosing the controller gain (9). The scalar y trades-off convergence
of the plant and controller Lyapunov functions. A small y can cause overshoot as the plant lags tracking the estimated
optimal set-point r;.

The estimated gradient (6) will not necessarily match 0 # VJ the actual gradient V.J. In principle, this could desta-
bilize the closed-loop (1) and Algorithm 1. However, we will show that our ESC is robust to gradient estimation errors. To
analyze the robustness, we will adopt a game-theoretic approach. Consider the following two-player zero-sum game

6= argm1n<max =161 - QTKé>, (23)
0O

where the compact polytope ® was defined in (7). The inner-optimization in (23) is our adversary which attempts to
destabilize the system. The adversary selects the “actual” gradient = V.J € 0 (consistent with the data) that maximizes
the Lyapunov function (21). Here, the adversary has the advantageous position of selecting the worst-case gradient V.J =
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10 Wl LEY KASHANI ET AL.

x(0) as a function of our estimated gradient 6 € . In the outer-optimization in (23) we select the estimate § € O that
provides the best worst-case change in the Lyapunov function (21). This adversarial perspective ensures that (23) provides
the best worst-case convergence, ensuring that the ESC is robust to estimation errors. The game (23) is distinct from the
game (10), which is tacitly solved in LS estimators. Instead of selecting our gradient estimate # to minimizes the magnitude
|6 — 8]| estimation errors, we select it to minimize the effect (21) of the estimation errors.

We will show that the gradient 0 estimated by our novel estimator (6) is also the solution of the game (23). First, we
must prove the following lemma.

Lemma 1. The inequality 6TKO" > ||é*||%< holds V6 € O.

Proof. The Lagrangian of the gradient estimation problem (6) is L(d, A) = %éTKé + AT(HO — K) where © =
{0 : HO < K} is the half-space representation of the polytopic set (7). The stationarity and dual-feasibility
optimality conditions state

VL™, ") = K40  + H 2% =0, A% >0,

where K 4 and H 4 describe the subset of constraints active at the optimal. By Farkas’ lemma, this means that

there does not exist § — 6 such that HA(é* —-0)=K,—H,40 >0and —(9* - B)TKé* < 0. In other words,
Ak Ak

0TKO > |0 ||xforalld € {6 : H460 < K4} 2O. n

Lemma 1 shows that the estimator (6) inherently balances direction and amplitude of the estimated gradient that is,
a bigger 0" will have a smaller angle « 07K with the actual gradient # = V.J. Therefore, big changes to the reference r
will only be made when the gradient direction can be confidently estimated. As a result, we can show the cost 7 is strictly
decrescent. By Taylor’s theorem

+_ _oTrp* o Lug* iz _Lyaxa Ve
J)=J) = =0K0 + 210 g, < =510 [lx = S0 M-

where §TK9" > ||9* ||§< by Lemma 1, and gain K follows (9). The following theorem shows that the solution of the QP (6)
is also the solution of the robust optimization (23).

Theorem 2. The gradient @ estimated from (6) is equivalent to the optimal worst-case gradient estimated
from (23).

Proof. We will show that the optimal solution 6" of (6) is a feasible lower-bound for (23) and therefore its
optimizer. In other words, we will prove the inequality

£(@") < minf(9) (24)
0e®

where f(6) = maX,g % ||9||1$< — k(9)TK0 is the cost of (23) with the optimal adversarial strategy 6 = x(6). From
Lemma 1, the following inequality holds

Ak 1, Ax Ak 1, A% . 1,4
f(07) =max= 1671z —0TKO" < —>|8" ||} = —min=|0]|%, (25)
0e6 2 2 e 2
since max, g —0TKO" < —||§" [|%. By the minimax inequality, we have
. 1loan Tea . a2 oTeh
max min—||0||; — ' K6 < min max—||0]|; — 6 K0.
0cd 6 2 0 6o 2

The inner-optimization problem on the left-side selects the best gradient estimate  as a function of the actual
gradient 6. Clearly, the optimal solution is & = 6, which yields the inequality

max — 210112 < min max=||8]1% — 67K® < minf(6) (26)
0cd 2 0 6ed 2 6ebd
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by combining (25) and (26) we obtain the optimizer indicating inequality (24) where max,_g —%||9||1%<

m1noe® ||49||K [

Theorem 2 means that we can compute the best worst-case gradient estimate § by solving a convex optimization
problem (6) instead of the min—-max game (23). Since the estimated gradient set (7) is a polytope, the gradient estimator (6)
isa Qp.

Even though QPs have polynomial complexity, solving (6) each time a new data point (y;, J;) is collected will be com-
putationally expensive. Algorithm 1 checks whether the data is insufficient to confidently estimate the gradient. If not,
Algorithm 1 enters exploration mode where it keeps r, = ¥ constant so that the system can converge y — r to gather local
data, while the system is perturbed with a dither signal d, to tighten the set ® around V.J # 0. Intuitively, the estimation
is confident if the uncertainty @ is sufficiently tight compared to the magnitude of § = V.J € ©. This is proven in the
next lemma.

Lemma 2. Let Assumption 2 hold. Let Algorithm 1 be in the exploitation mode. Then, there exists ay > 0 such
Ak
that [|0; llx = aoll6:lk-

Proof. For every 0,0 € O, where O is defined in (7), the distance |Ay 0| - |Ay 6| between 6 and 6 in the Ay
direction is less than the width wy — @, of the interval [ [_ o] — AJy, or equlvalently
|Ay 0] — |Ay[ 0] <@y — o,
We can divide both sides by || Ayk| 7 to get
N 1
el = 1811 < (S1AVls + lledls ) 27)

where we used Cauchy-Schwarz inequality |Ayk9| < Ayl ol o> and we defined g € [0,1] where
|Ay 0| = er|lAyill116] ;-1 . For some instance k, where £ = max ey over the interval kK € [t — T, t — 1], we

can show 1/Cpex > €, where Cy; is the condition number of H. Since A(A) > €2 holds in the exploitation mode
by line 1 of Algorithm 1, we have

L1 i HTAyk/AyI,Q . Ca i _
T b I9|I2||Ayk/||2 I

?T‘N

Furthermore, since %||Ayk|| g+ llellg < a||é* |l 5 holds according to line 1 of Algorithm 1, (27) yields

1 < L+ )07,

£
VCn

where § = 0", Therefore, IIé*II Kk = &]|0]lx holds at time ¢ by equivalence of norms, where ag > £/((1 +
a)CiA/Ck) > 0, where Ck is the condition numbers of K. [

Lemma 2 means that if we can force the estimate gradient to converge & — 0 (i.e., ||8]|x — 0) then we can force the
actual gradient to zero that is, ||0]|x < al||9|| x — 0. The following corollary shows that this promotes convergence to the
0

optimal equilibrium (2).

Corollary 2. Let Assumptions 1 and 2 hold. Let the controller gain K satisfy (9). Then, the optimal equilib-
rium (2) is asymptotically stable for the plant (1) in closed-loop with the Algorithm 1 in the exploitation mode.

Proof. We prove ISS stability using the Lyapunov function (17) from Proposition 1. The proof is identical
to Proposition 1 until the bound (21) on the decrease of the Lyapunov function which assumed the gradi-
ent was known 8 = V.J. Under estimation error § # VJ, the best worst-case decrease can be bounded by
the game (23)
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10115 1oa* ez _ gTep*
AV < —gX(|IF|]) + max <-||9 12— 07KD ) . (28)
0ed \2
Using Lemma 1, we obtain the bound
AV < —gM(I%I) + S 116" |2 — mingTK0"
2 06

- 1 4 - .
< ~qiIE) = S 1071 < ~gk(I%I) ~ g} (IFID,

where gl(||F|]) = %a@([{)@(n?n)g §a0||9||§<5 §||é*||12< is class-K function ¢! € K by Lemma 2
and Assumption 2a. Therefore, the states (%,7) of the closed-loop system converge to the optimal
equilibrium (2). n

Corollary 2 shows that the optimal equilibrium (2) is asymptotically stabilized when Algorithm 1 is in the exploitation
mode (5). Since 0" from (6) also optimizes the game (23), the decrease of the Lyapunov function (28) is maximized, provid-
ing the best performance under uncertainty. This convergence relies on the restrictive conditions (line 1 of Algorithm 1)
for entering the exploitation mode. In the following section, we will show that it is possible to satisfy these restrictive
conditions.

3.3 | Convergence under the ESC algorithm

In this section, we show that Algorithm 1 drives the plant (1) to the optimal equilibrium (2). By Corollary 2, this will occur
if Algorithm 1 always returns to the exploitation mode after finite-time when V.7 (r;) # 0. Or equivalently, if Algorithm 1
always leaves exploration mode in finite-time as shown in the following lemma.

Lemma 3. Let Assumption 1 hold. Let 0 = V J (r;) # 0, the dither d; be pe, and sufficiently small that is, ||d;|| <
6. Then, there is a finite time T < oo such that the system leaves the exploration mode.

Proof. According to line 1, Algorithm 1 leaves the exploration, if the output Ayy is PE A(A) > €* and the data
is sufficiently local that is, a||9*||H-1 > %||Ayk||H + lledl -

Since the system is controllable, the PE dither d; will produce a PE state x; and likewise, the PE state will
produce a PE output y; since the system is observable. Thus, for a estimation horizon T larger than the sum
of the controllability and observability indices, Ayy is PE and A(A) > &> will be satisfied.?

For the second condition, \/C_Hek > ¢ for some k when Ay is PE according to Lemma 2 (see (27)). Thus,
for = 6™ (27) yields

Ak £
e 1l =

1
011z = (5149l + llells ).

H

To enter the exploitation mode, we need to show that the right hand side becomes greater than i(% 1AVl +
|letl| ), or equivalently

a €
1+a\/C_H

for t>7—-T and ke [t—T, t—1], so that both conditions of Algorithm 1 line 1 will be violated after
finite-time = > T. To show this, we bound the signals e; and Ayy. Since the plant output map (1b) is Lipschitz
continuous, we have

1
S 1Al + lleddlm < 101 -+

el = llye = rll = llh(x) = hGOIl < Zpllxe — x|,

where ¢, is the Lipschitz constant for 4 and x is the equilibrium state corresponding to the reference r.
Likewise,
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1y = Yell < llhCxe) — h(x) = (h(x) — ROO)|
< Zallxe = x|l + Zallxi — XI.

Therefore,
1 -~ (1 — 3 —
18yl + ledllr < 2GD( S Enllee =3l + 5 Enllx = X))

Since the plant is ISS, there exists a finite time = and bound 6 on the dither amplitude ||d;|| < é such that for
t>t,=7t—-T,
eal|0] -

Il = Xl < AlIxo = XII. 7o) + £(8) < — :
t ’ i 24 K1 + @)\/Cr

where p € KL and { € K. Therefore, there exists dither amplitude 6 such that Algorithm 1 leaves the
exploration mode. [

Algorithm 1 leaves the exploration mode if the tracking error e; and output “velocity” Ayy are sufficiently informative
and small compare to the magnitude of § = V.J. We note that the switching condition in line 1 of Algorithm 1 does not
depend on either T or . Thus, we only need to show the existence of these bound to show that Algorithm 1 will not
become trapped in the exploration mode.

Finally, we prove that Algorithm 1 drives the plant (1) to the optimal equilibrium (2).

Theorem 3. Let Assumptions 1 and 2 hold. Let the controller gain K satisfy (9). Let the dither d, be bounded
l|d:]| < 6 and pe. Then the plant (1), controlled by Algorithm 1, is 1SS at the equilibrium (2).

Proof. In the exploitation mode, the combined Lyapunov function (17) follows

AV < =q;(IxI) = g7 (IFID.
according to Corollary 2. In the exploration mode, since the system is ISS,
AV < —gz(I%I) + 6°(5),
where 6°(8) = sy[|(T + P)||IG||*6* € K.
We use theoretical principles from the switched system literature*> for the proof. Let i € N be the

mode-switching indices, where t,; denote the time-indices that the system enters exploration mode. Then, the
combined Lyapunov function follows

V (Xaiza, Faig2) — V(Xai, T2i) < —q([|X21, F2ill) + 0(6), (29)
where X; = X, 7; = 7, and
biv2 by

q(I%2 Fl) = D @A%D + Y @D € K,

=ty [=hyi

and 6(8) = (ty2 — t2)6°(8) € K. Therefore, by (29) and Proposition 2.3 in Reference 46, there exists ! € KL
and ¢! € K such that

%21, Faill < B (II%0s Foll, 2k) + £1(S).

Therefore, the state (x, r) of the closed-loop system of plant (1) controlled by Algorithm 1 converges to a neigh-
borhood of the optimal equilibrium (2) as the exploitation time goes to infinity. By Lemma 2 the system leaves
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the exploration mode in finite time. Thus, the total time 221 T,i+1 that the system is in the exploitation mode
goes to infinity ). > Thiy1 — o0 ast — oo. n

Theorem 3 proves that the closed-loop systems (1) and Algorithm 1 is 1SS with respect to the dither signal d,. Thus,
the closed-loop system converges to a neighborhood of the optimal equilibrium that depends on the dither amplitude. As
previously mentioned, asymptotic stability of the optimal equilibrium can be achieved using a decaying dither.2847

4 | NUMERICAL EXAMPLES

In this section, we illustrate our ESC Algorithm 1 through three benchmark and one practical examples. The numerical
results were simulated in MATLAB R2022b using Windows 11 on a laptop with a 2.30 GHz Intel Core i7-12700H processor,
16 GB RAM, and 500 GB SSD.

4.1 | First-order benchmark example

The following example is taken from Reference 18. It features linear first-order dynamics with a non-convex cost. The
plant dynamics are

X=-x+u, (30a)
y=Xx, (30b)

which satisfy Assumption 1. The unknown cost function is
1

which is non-convex and only locally satisfies Assumption 2, indicating that assumptions on the cost function are only
sufficient and not necessary. We set a sample rate of 10 Hz, an estimation horizon of T = 5,bounds H = —2and H = 2 on
the curvature V2J of the cost, an initial condition of xo = 100 and r, = 100, a dither of d, = 0.001 sin ¢, design parameters
£ =10"% a« = 10% and a gain K = 0.5I.

Figure 1 shows our algorithm converges to optimum faster than the previous algorithm from Reference 3. This is
a result of using the less conservative polytopic set (7) over the ellipsoidal sets used by LS estimated, as discussed in
Corollary 1. Additionally, our algorithm converged in roughly half of the time as the least-squares ESC from Reference 18.
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P | S | “
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FIGURE 1 Results for the first-order problem; time ¢ is in seconds. .J shows the cost (31) optimized by one-dimensional ESCs,
including the presented method, the BLS of Reference 3, and the least squares of Reference 18, where y; follows (30). M;, and M, show the
operation modes for the BLS and proposed methods, respectively. Value 0 indicates exploration and 1 exploitation. T, is the computation time.
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4.2 | Second-order benchmark example
The following second-order ESC problem is taken from Reference 29. The plant dynamics are

X =RXu+w, (32a)
y=x, (32b)

where R(x) € R®? is a known planar rotation matrix with angle x; +x, and w(t) = [sin(2t), cos(t)]T is a periodic
disturbance. We pre-stabilize the system using the feedback-linearizing input

u=—Rx)"(Fx-r)—w),

where the matrix F = —10I ensures tracking y; — r, so that the plant (32) satisfies Assumption 1. To preserve
nonlinearity and challenge our method, the plant (32) is simulated in continuous-time using MATLAB’s ode45
solver, while the controller is updated in discrete-time. For t € [f, ty+1), zero-order hold is applied for the control
input u(t) = u(xg), which is computed using sampled state x(tx) and disturbance w(f;). The unknown cost function
is considered

J®) = lly — 1]|> + 2018, (33)

which globally satisfies Assumption 2.

We set a sample rate of 20 Hz, an estimation horizon of T = 10, an initial condition of x, = 0 and ry = 0, and a gain of
K = 0.5I. We perform two experiments here. First we use fairly over-estimated bounds H = 0 and H = 101 on the curva-
ture V2J = 2I of the cost, and design parameters ¢ = 10~* and « = 10*. For the second experiment, we use loose bounds
H = —1000I and H = 10001 on the curvature V2J of the cost, the same ¢ = 1074, and reduced « = 1, which increases the
confidence of gradient estimation.

Figure 2 shows our polyhedral-based algorithm converges faster than the recent ellipsoidal-based BLS from Refer-
ence 3 when the curvature bounds are tight. Again this a consequence of Corollary 1. In addition, the presented ESC out
performs that ESC with adaptive dither from Reference 29. Figure 3 shows our algorithm still converges to the optimum
in less than 3 s when the curvature bounds are loosened. In contrast, the BLS from Reference 3 does not converge within
the allotted 5 s.
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FIGURE 2 Results for the second-order problem; time ¢ is in seconds. .J shows the cost (33) optimized by two-dimensional ESCs,
including the presented method, the BLS of Reference 3, and the adaptive dither method of Reference 29, where y, follows (32). M, and M,
show the operation modes for the BLS and proposed methods, respectively. Value 0 indicates exploration and 1 exploitation. T, is the
computation time.
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FIGURE 3 Results for the second experiment on the second-order problem. Configurations are similar to those in Figure 2.

4.3 | Third-order benchmark example

The following third-order ESC problem is taken from Reference 28. The plant dynamics are

=+ (342)
Xp = =X + Uy, (34b)
X3 = —X3 + UxXp. (34C)

Indeed the plant (34) does not satisfy the asymptotic tracking assumption of Assumption 1b. This can be rectified, if the
steady-state map of the plant is known, by using the transformation

i =n/1+1/r),
U = —\/E,

where r, > 0 is enforced by setting r, = 0 if r, < 0. However, (34) is only locally Lipschitz continuous, indicating that
Assumption 1 about the system is only sufficient but not necessary. Similar to the previous example, the plant (34) is
simulated in continuous-time using MATLAB’s ode4 5 solver, while the controller is updated in discrete-time that is, using
the measurements at ¢, where zero-order hold is applied for the control inputs for t € [t, ty+1). The unknown cost is

J®) =y +2y,, (35)

where y; = x; + X3 and y, = x; +x2 — ul are the measured outputs. The cost (35) globally satisfies Assumption 2.

We set a sample rate of 4 Hz, an estimation horizon of T = 5, over-estimated bounds H = 0l and H = 10I on the
curvature V2J of the cost, an initial condition of x, = [1, 5, 5]" and r, = [10,1]7, design parameters € = 1074, a = 104, a
gain of K = I, and a dither of d, = 0.001[sin(¢), cos(2t)]".

Figure 4 shows our algorithm converges faster than the recent BLS from Reference 3 due to the less conservative
gradient estimator. Furthermore, the convergence is roughly 1% of the convergence time of the perturbation-based ESC
from Reference 28.

4.4 | Practical example: Drone leak inspection

In this section, we apply our ESC algorithm to the problem of autonomously locating the source of gas emissions. This
application is useful for dangerous tasks such as sampling material from volcanic craters where line-of-sight limits both
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FIGURE 4 Results for the third-order problem; time ¢ is in seconds. J shows the cost (35) optimized by the presented method, and the
BLS method of Reference 3, where y; follows the third-order dynamical plant (34). M, and M, show the operation modes for the BLS and
proposed methods, respectively. Value 0 indicates exploration and 1 exploitation. T, is the computation time.

visibility and communications, requiring autonomous operation. Furthermore, this application is useful in industrial
setting to locate toxic gas leaks without endangering a human operator.

Typically, ESC controllers consider a model-free approach for both the plant dynamics and objective function. How-
ever, for this application, the dynamics of the drone will be well characterized. Furthermore, the drone will be generally
equipped with GPS and a tracking control system allowing it to move to prescribed locations. The premise of this arti-
cle is that this knowledge can be exploited to improve the performance of the ESc algorithm. In contrast, the objective
function (gas concentration) is unknown. However gas concentration is a function of the drone position (plant output)
rather than the motor throttles (plant input), as typically considered in the ESC literature. Thus, this problem is an ideal
application of the ESC algorithm proposed in this article.

We use the standard drone dynamics,*®

my; = (U + Uy + uz + uy) sin 6,, (36a)
my, = (U + Uy + uz + uy) sin 6, (36b)
JO1 = (u1 — up — us + Ug)?, (36¢)
JOy = (u1 + up — Uz — ug)?, (36d)

where m = 1 kg is the mass, £ = 3 cm is the half length, J = 0.09 kg m? is the moment of inertia for each axis, y = (y1,»)
is the planar drone position, 8 = (61, 6,) is the pitch and roll, and u; i = 1, ... , 4 are the propellers’ forces. The yaw and
vertical positions of the drone are ignored for simplicity of our presentation. We designed a linear-quadratic-integral con-
troller with parameters Q = I, and R = 0.011; using the linearization of the drone dynamics (36a) to satisfy Assumption 1.
The cost to be minimized is the negative response of the gas sensor installed on the drone. We assume the concentration
of gas is a function of location only, specifically the Gaussian plume model

J) = ——

1 S\ Ty—1 *
exp(—=(—-y) Z@-y) (37)
ro < 2 )

is considered as the negative concentration of gas in the plane, where y* =[200,100]" is the location of the
source, and

21 —dd™) ifdTy>0
) = { .

o otherwise,

O
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FIGURE 5 Gasisemitted from the source and blown in 45° southwest direction. Blue indicates low concentration while red indicates
high concentration. The presented controller generates the connected purple path, and the controller from Reference 3 generates the dashed
blue path. The red dot-dashed is generated by using the actual cost gradient for Esc.
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FIGURE 6 J shows the cost (31) optimized by the presented ESC (purple connected), the BLS ESC from Reference 3 (blue dashed), and
ESC using the actual gradient (red dot-dashed). r; is the reference command generated by the ESC controllers. The yellow dotted line indicates
the location of the leak source. M, and M,, show the operation modes for the BLS and proposed methods, respectively. Value 0 indicates
exploration and 1 exploitation. T, is the computation time.

where d = [cos(—x/4), sin(—x/4)]" is the wind direction, 6o = 15, and ¢ = 6y + d' (y — y*)/v grows in the wind direction,
where the wind speed is v = 10 meters/second. The non-convex cost (37) locally satisfies Assumption 2. We set a sample
rate of 20 Hz, an estimation horizon of T = 20, design parameters e = 1074, a = 104, 2 gain of K = 1001, and over-estimated
bounds H = —3 x 107*I and H = 3 x 107*I. The PE dither is d; = [sin(2xf), cos(2zt)]".

Figure 5 shows the gas concentration and the path generated by the presented method and the BLS-ESC from Reference
3 which used an ellipsoidal gradient set. Since the gradient direction is initially perpendicular to the wind direction,
the drone first enters the gas plume, then turns towards the source of gas. The path is similar to the path produced
by the previous algorithm. As Figure 6 shows, the reference command r;, generated by the proposed method converges
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to the location of the source r, — ¥~ by the rate of 70% faster than the one generated by the BLS-ESC from Reference
3. Moreover, the proposed controller is always in exploitation mode whereas the BLS-ESC from Reference 3 frequently
switches modes.

To further validate the presented ESC algorithm, we compare its performance with gradient descent (5) that uses
perfect knowledge of the gradient that is, & = V.J. With perfect knowledge of the gradient, we can decrease the con-
vergence time to 48% as shown in Figure 6. This simulation shows that about half of the convergence time was due
to the ill-conditioning cost (37) that is, the Hessian of the cost varies significantly over the domain of the cost. This
ill-conditioning fundamentally limits the convergence rate of gradient descent (5).** Unfortunately, past research has
shown that optimization techniques used to address ill-conditioning do not translate well to Esc.> This simulation also
shows that about half of the convergence time was due to the conservativeness of the gradient estimator (6) due to the
uncertainty of the cost. However, if we tighten the bounds H, H on the Hessian then the gradient estimator becomes less
conservative reducing the convergence time. For instance, when we re-simulated with 3x tighter bounds H = —10* and
H = 1071, the convergence time for the proposed ESC was only 32% slower than the perfect ESC algorithm.

5 | CONCLUSIONS

We presented an ESC algorithm with a novel gradient estimator. We showed that ESC stabilizes the optimal equilibrium of
the closed-loop system despite estimation errors. Furthermore, since we select the estimated gradient that optimizes the
worst-case convergence of the joint Lyapunov function, our ESC provides fast and robust convergence. This was demon-
strated through three benchmark examples with state-of-the-art ESC algorithms. Finally, we demonstrated the practical
utility of our ESC algorithm for autonomous leak inspection. In future works, a Hessian estimator can be integrated
with the presented method to estimate bounds on the curvature required for our gradient estimator. Moreover, we will
investigate a stochastic set-based frameworks for the estimated gradient set when the data is noisy.
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