
Rapid Construction of Safe Search-Trees for Spacecraft Attitude Planning
Claus Danielson†, Joseph Kloeppel‡

Abstract— This paper adapts the rapidly-exploring variant
of invariant-set motion planner (ISMP) for spacecraft attitude
motion planning and control. The ISMP is a motion-planning
algorithm that uses positive-invariant sets of the closed-loop
dynamics to find a constraint admissible path to a desired target
through an obstacle filled environment. We present four math-
ematical results that enable the sub-routines used to rapidly
construct a search-tree for the ISMP. These mathematical
results describe how to uniformly sample safe quaternions, how
to find the nearest orientation in the search-tree, how to move
the sampled orientation to form an edge, and how to scale the
invariant set to guarantee constraint admissibility. We present
simulation results that demonstrate the ISMP for spacecraft
attitude motion planning.

I. INTRODUCTION

The invariant-set motion-planner (ISMP) is motion plan-
ning algorithm that generates a sequence of references that
safely guides a closed-loop system from an initial state
to a target equilibrium through an obstacle-filled environ-
ment [1]–[10]. The defining feature of the ISMP is that
knowledge of the closed-loop system dynamics is incor-
porated into the search graph using constraint admissible
positive invariant (CAPI) sets (also called viable sets [11]).
These CAPI sets describe regions of the state-space where
the closed-loop system can safely track the corresponding
references. The ISMP uses a graph search to find a corridor
of safe sets that safely guides the system through the obstacle
filled environment to the target equilibrium.

The ISMP has several beneficial properties. It allows for
aggressive, but safe maneuvers since, by definition, the
system state will never leave the CAPI sets. It is inherently
robust since it incorporates feedback into the design and
the CAPI sets provide a natural buffer that can absorb
tracking errors due to model uncertainty and disturbances [4].
It typically has low online computational costs since the
CAPI sets can be pre-computed as they only depend on the
time-invariant closed-loop dynamics, rather than the time
varying environment. Furthermore, it does not require dense
sampling since the CAPI sets can cover large volumes of
the state/output-space. In addition, it reduces the curse-of-
dimensionality by sampling from the output-space instead
of the state-space. In the case of spacecraft, this means we
can sample orientation-space (quaternions) rather than the

This material is based upon work supported by the National Science
Foundation under NSF Grant Number CMMI-2105631 and the Air Force
Office of Scientific Research under award number FA9550-22-1-0093.
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation nor the United States Air
Force. †cdanielson@unm.edu, Assistant Professor, Department of Mechani-
cal Engineering, University of New Mexico ‡Air Force Research Laboratory
AFRL/VSSV OrgMailbox@us.af.mil

full state-space, which also includes the spacecraft angular
velocity.

We previously applied the ISMP for spacecraft attitude con-
trol in [6]. That paper used a pre-constructed search-graph
where unsafe nodes were removed online if they collided
with a keep-out cone. This required a dense uniform graph to
increase the likelihood of finding a path through an arbitrary
arrangement of keep-out cones. The main contribution of
that paper was a computationally efficient method for testing
the safety of nodes. In contrast, this paper focuses on the
online construction of a search-tree that is tailored to the
arrangement of keep-out cones. This requires fewer nodes
and can potentially produce more desirable paths.

The rapid-exploring variant of the ISMP [7] combines the
advantages of the ISMP [1]–[10] with the rapidly-exploring
random tree (RRT) algorithm [12], [13]. The rapid-ISMP
constructs a search-tree online using the sampling procedure
from RRT. The main-loop of the algorithm samples a point
from the output space and then moves this sample to form
a connection with the nearest point in the search-tree. The
rapid-ISMP has an additional step where a CAPI set is
constructed around the newly sampled reference. This paper
adapts the rapid-ISMP for spacecraft motion planning and
control. We present four mathematical results that describe
the sub-routines of the online search-tree construction algo-
rithm. We describe how to uniformly sample [14] quaternion-
representations of spacecraft orientations that satisfy keep-in
cone constraints. Then, we describe how to find the nearest
orientation in terms of the Minkowski function [15] of the
CAPI set. Next, we describe how to move the sampled
orientation using spherical linear interpolation (SLERP) so
that it lies in the interior of the nearest CAPI set. Finally,
we describe how to construct a CAPI set around the new
reference orientation. We adapt the necessary and sufficient
conditions from [6] to find the largest positive invariant (PI)
set that is constraint admissible. The contributions of this
paper are summarized:

i. A method for uniformly sampling quaternions from
keep-in cones

ii. A closed-form expression for the Minkowski distance
between orientations

iii. A closed-form for the SLERP connecting orientations
iv. A method for scaling PI sets for constraint admissibility

Notation and Definitions: A set O is positive invariant if
x(t0) ∈ O ⇒ x(t) ∈ O ∀t > t0. Level-sets {x : V (x) ≤ l}
of Lyapunov functions are positive invariant. SO(3) ⊂ R3×3

is the group of rotation matrices i.e. R>R = RR> = I
and det(R) = +1. With abuse of terminology, we will use
SO(3) to refer to an abstract group isomorphic to SO(3).
SE(3) = SO(3) × R3. Sn = {x ∈ Rn+1 : x>x = 1}.

The quaternions q = (q0, qx, qy, qz) ∈ H are a group of
hyper-complex numbers with the Hamilton product q ⊗ p =
(q0p0 − ~q>~p, q0~p+ p0~q + ~q × ~p) where ~q = (qx, qy, qz) and
q0 are the vector and scalar parts of q, respectively. 1 =
(1, 0, 0, 0) ∈ H is the identity quaternion. q̄ = (q0,−~q) is
the conjugate of q = (q0, ~q). H̄ = H ∩ S3 denotes the unit
quaternions. The unit quaternions H̄ are a double-cover of
SO(3) since ±q ∈ H̄ represent the same element of SO(3).
With abuse of notation, q ⊗ v is the quaternion product of
q ∈ H and (0, v) ∈ H where v ∈ R3. A directed graph
G = (I,E) is a set of nodes I together with a set of ordered
pairs E ⊆ I × I called edges. Nodes i, j ∈ I are called
adjacent if (i, j) ∈ E is an edge. A path is a sequence of
adjacent vertices. A graph search is an algorithm for finding
a path through a graph. A graph T is a tree if every pair of
nodes (i, j) ∈ I is connected by exactly one path.

II. ATTITUDE PLANNING PROBLEM AND ALGORITHM

A. Spacecraft Attitude Dynamics

The spacecraft attitude dynamics are modeled by the
quaternion kinematics and Euler’s equation, respectively [6]

q̇(t) = 1
2q(t)⊗ ω(t) (1a)

Jω̇(t) = −ω(t)× Jω(t) + τ(t) (1b)

where the state x = (q, ω) ∈ SE(3) is comprised of the
spacecraft orientation q ∈ H̄ and angular velocity ω ∈ R3

and the control input is the torque τ ∈ R3. The parameter
J ∈ R3×3 is the moment-of-inertia matrix. The output-
matrix C = [I4, 0] ∈ R4×7 extracts the orientation q =
Cx ∈ H̄.

We consider the spacecraft dynamics (1) in closed-loop
with a standard quaternion attitude controller [16]

τ(t) = ω(t)× Jω(t)−Kp~e(t)−Kdω(t) (1c)

where the error quaternion e(t) = ±q(t) ⊗ r̄ ∈ H̄ between
the actual q(t) ∈ H̄ and desired r ∈ H̄ orientations of the
spacecraft is chosen such that e0 ≥ 0 where H̄ is a double-
cover of SO(3). The proportional and derivative gains of the
controller are Kp ∈ R3×3 and Kd ∈ R3×3, respectively.
The torque allocation algorithm used to compute actuators
commands to supply the desired torque τ(t) is outside the
scope of this paper.

The asymptotic stability of the equilibrium (e, ω) = (0, 0)
for the closed-loop system (1) is certified by the following
Lyapunov function [16]

V (e, ω) = 2− 2e0 + ω>K−1
p Jω (2)

where e0 = |q>r| ≥ 0. Although it is not immediately ob-
vious, this Lyapunov function is indeed a positive definition
function of the full state (e, ω) ∈ SE(3) [6]. We will use
the level-sets of the Lyapunov function (2) as PI sets for the
closed-loop system (1)

O(r, `) =

{[
q
ω

]
: 2−2|q>r|+ ω>K−1

p Jω ≤ 2−2`

}
. (3)

The level ` ∈ [0, 1] will be chosen to ensure that the
PI is constraint admissible. The parameterization 2 − 2`
will simplify evaluating whether an equilibrium (q, 0) is
contained in the PI set i.e. e0 = |q>r| ≥ `.

B. Constraints

The closed-loop spacecraft dynamics (1b) are subject to
state and input constraints. The spacecraft orientation q(t)
must be kept out q(t) 6∈ K ⊆ H̄ of the cone

K(d, b, α) =
{
q ∈ H̄ : d>R(q)b ≥ cosα

}
(4)

where α ∈ [0, π] is the cone angle, d ∈ S2 and b ∈ S2

are unit-vectors in the inertial and body frames, respectively,
and R(q) is the rotation-matrix between these frames, which
depends on the spacecraft orientation q ∈ H̄. The constraint
q(t) 6∈ K requires that the angle cos−1(d>R(q)b) between
the inertial-frame d and body-frame b unit-vectors is suffi-
ciently large cos−1(d>R(q)b) > α. Keep-out constraints can
be used to e.g. prevent rocket thrust from damaging a nearby
object.

This paper exploits an equivalent parameterization of the
keep-out cone (4) from [6]

K(d, b, α) =
{
q ∈ H̄ : q>Pq ≥ cosα

}
(5)

where

P =

[
d>b −(d× b)>
−d× b db>+ bd>− d>bI

]
∈ R4×4. (6)

According to Proposition 2 from [6], the matrix above has
eigenvalues λ+ = +1 and λ− = −1 both with multiplicity
2 and respective eigenvectors

U+ =
1√

2 + 2d>b

[
0 1 + d>b

d+ b −d× b

]
∈ R4×2 (7a)

U− =
1√

2− 2d>b

[
0 1− d>b

d− b d× b

]
∈ R4×2. (7b)

Our attitude motion planning algorithm will exploit this
eigen-structure.

Another common type of state-constraints are keep-in
constraints, in which the spacecraft orientation q(t) is kept
inside q(t) ∈ Q a cone

Q =
{
q ∈ H̄ : q>Pq ≥ cosαQ

}
(8)

where P has the form (6). The keep-in cone requires that a
body-frame vector b ∈ S2 is kept aligned with an inertia-
frame vector d ∈ S2 within an angle α ∈ [0, π]. Keep-
in constraints can be used to ensure that the solar panels
receive sufficient radiation to power the spacecraft. Keep-in
constraints are equivalent to enforcing keep-out constraints
q(t) 6∈ H̄ \ Q on the complement K = H̄ \ Q of the keep-in
set Q.

Bounds on the control torque τ and angular velocity ω
can be enforced by limiting the size ` ≥ ` of the PI sets O
where the bound ` can be computed offline [8].

C. Attitude Planning Problem and Algorithm
The attitude planning problem is summarized below.
Problem 1: Find a feasible torque trajectory τ(t) ∈ T

such that the spacecraft attitude converges to the target
orientation q(t) → r∞ as t → ∞ while avoiding keep-out
constraints q(t) 6∈ Kk and maintaining keep-in constraints
q(t) ∈ Q.

The attitude planning problem can be solved using the
ISMP described by Alg 1. The ISMP searches an appropriately
constructed directed search-tree T for a sequence {r̄i}Ni=1 of
intermediate references r̄i ∈ H̄ that guide the spacecraft (1)
state x(t) = (q(t), ω(t)) ∈ SE(3) from an initial state
x(0) = x0 to a target equilibrium orientation r∞ ∈ H̄
while enforcing keep-out constraints q(t) = Cx(t) 6∈ Kk.
The defining feature of the ISMP is that knowledge of the
closed-loop spacecraft dynamics (1) is incorporated into the
search-tree T using its CAPI sets. Associated with each node
i∈ I is a CAPI set Oi, which is both constraint admissible
COi ∩ Kk = ∅ and positive invariant x(0) ∈ Oi ⇒ x(t) ∈
Oi ∀t > 0. The edges (i, j) ∈ E of the tree T = (I,E)
indicate that the state (1) will enter the j-th safe-set Oj while
tracking the i-th node without leaving the current safe-set Oi.
Thus, the ISMP avoids obstacles by moving the spacecraft
state through a sequence of safe-sets Oσi for {σi}Ni=0.

Algorithm 1 Invariant-Set Motion-Planner

1: Search tree T for path {rσ0
, . . . , rσN

}
2: repeat
3: if x(t) ∈ Oσk+1

then
4: k ← k + 1
5: end if
6: Track current target state r(t) = rσk

7: until r(t) = r∞

In previous work [6], we applied the ISMP Alg 1 to space-
craft attitude motion planning using a pre-built search-graph
G. This paper will focus on the rapid online construction of
an appropriate search-tree T = (I,E) for Alg 1.

III. INVARIANT-SET MOTION-PLANNER

Alg 2 describes the construction of the search-tree T for
the rapidly-exploring variant of the ISMP in Alg 1. Alg 2
incorporates CAPI sets into the RRT algorithm [12], [13].
Alg 2 randomly samples an orientation r ∈ H̄ which is
moved to ri to form a connection (i, j) ∈ E with the nearest
orientation rj in the search-tree T. Then a CAPI set Oi is
constructed around this new node ri ∈ H̄. Alg 2 continues
until it finds a CAPI set Oi that contains the current state
(q(0), ω(0)) ∈ Oi of the spacecraft (1). This section provides
four mathematical results that describe the sub-routines for
lines 3,6-9 of Alg 2. Note that lines 3 and 9 use the same
sub-routine.

A. Sampling Safe Orientations
In this section, we describe line 6 of Alg 2 where we

randomly sample orientations r ∈ H̄. We can sample orien-
tations from the group H̄ = (S3,⊗) by sampling from the

Algorithm 2 Search Tree T Construction

1: Input: Current state (q(0), ω(0)), target r∞, obstacles
Kk

2: Output: Search Tree T
3: Scale `∞ PI set O∞ for safety CO∞ ∩ Kk = ∅, ∀k
4: Initialize tree T.add-node = (r∞, `∞)
5: repeat
6: Sample random orientation r ∈ Q
7: Find nearest orientation rj ∈ T to r
8: Move r → ri ∈ int(COj) to form edge from ri to rj

9: Scale `i PI set Oi for safety COi ∩ Kk = ∅, ∀k
10: Update search tree

T.add-node = {ri, `i}
T.add-edge = (i, j)

11: until (q(0), ω(0)) ∈ Oi

underlying set S3 ⊆ R4 and rejecting samples that violate the
keep-out r ∈ K and keep-in r 6∈ Q constraints. However, this
can be inefficient for attitude motion planning problems with
restrictive keep-in constraints. The following lemma provides
a parameterization of orientations r ∈ Q ⊆ H̄ that satisfy the
keep-in cone (8).

Lemma 1: The keep-in cone (8) can be written as

Q =
{
U(q ⊗ p) : θ+, θ− ∈

[
− π, π

]
, ρ ∈

[
cos α2 , 1

]}
(9)

where U = [U+, U−] are the eigenvectors (7) of P (6) and

q =


cos θ+/2
sin θ+/2

0
0

 and p =


ρ
0√

1− ρ2 cos θ−√
1− ρ2 sin θ−

 (10)

Proof: Let Q denote the original cone (8) and Q′
denote the alternative cone (9). We will prove Q = Q′. First,
consider r = U(q ⊗ p) ∈ Q′. Since U is the eigenvector-
matrix of P , we have r>Pr = ‖r+‖2 − ‖r−‖2 where
(r+, r−) = q ⊗ p and r+, r− ∈ R2 multiply the eigenvalues
λ+ = +1 and λ− = −1, respectively. Since the r ∈ H̄,
we have ‖r‖2 = ‖r+‖2 + ‖r−‖2 = 1. Or equivalently,
‖r−‖2 = 1−‖r+‖2. Thus, r>Pr = 2‖r+‖2−1. Substituting
r+ = (ρ cos θ+2 , ρ sin θ+

2), we obtain

r>Pr = 2ρ2 cos(θ+2)2 + 2ρ2 sin(θ+2)2 − 1 = 2ρ2 − 1

≥ 2 cos(α2)2 − 1 = cosα

where cos(θ+2)2 +sin(θ+2)2 = 1 and cos(α2)2 = 1
2 + 1

2 cosα.
Since r>Pr ≥ cosα, we have r ∈ Q. Therefore, Q′ ⊆ Q.

Finally, we prove Q ⊆ Q′. Consider r ∈ H̄ \ Q′. Then,
ρ < cos α2 . Thus, r>Pr = 2ρ2 − 1 < 2 cos(α2)2 − 1 = cosα
i.e r 6∈ Q. Therefore, r 6∈ Q′ ⇒ r 6∈ Q i.e. Q ⊆ Q′.

The following theorem shows how to uniformly sample
the the keep-in cone (9) from Lemma 1. This is important
since many of the beneficial theoretical properties of RRT
depend on uniform sampling [13].

Theorem 1 (Sampling): Let θ+, θ− ∼ U([−π,+π]) and
ρ∼U([cos α2 , 1]). Then U(q⊗ p)∼U(Q) where the random
variables p and q are defined by (10).

Proof: First, we will derive the probability density
functions (PDFs) of p and q. Since the scalar function
qx = sin θ+/2 is monotonic for θ+ ∈ [−π, π], the PDF of
qx is

fqx
(qx) = fθ+(2 sin−1 qx)

d

dqx
2 sin−1 qx ∝

1√
1− q2

x

where fθ+ is constant since θ+ is uniformly distributed. We
can lift this PDF fqx

into a PDF fq for the full quaternion
q ∈ H̄ as

fq(q) = δ(q0 ±
√

1− q2
x)fqx

(qx)δ(qy)δ(qz)

where δ is the Dirac delta function. Using the identity
δ(q>q − 1) = 2

√
1− q2

xδ(q0 − ±
√

1− q2
x) [14], we have

fq(q) ∝ δ(qy)δ(qz)δ(q
>q−1) i.e. q is uniformly distributed.

Next, we derive the PDF for p. Restricting (10) to p− =
(py, pz) produces a bijective map p− = H(ρ, θ−). The PDF
of p− is given by

fp−(p−) = fρ,θ−(H−1)| det∇H−1| ∝ | det∇H−1|

where fρ,θ−(H−1(p−)) is constant since ρ and θ− are
uniformly distributed. By direct computation, the Jacobian
∇H−1(p−) of the inverse H−1(p−) of (10) is

∇H−1(p−) =

[py√
1−‖p−‖2

pz√
1−‖p−‖2

−pz
‖p−‖2

py
‖p−‖2

]
and thus | det∇H−1| = 1/

√
1− ‖p−‖2. Applying a similar

lifting and identity as above, yields the PDF for p

fp(p) = δ(p0 ±
√

1− ‖p−‖2)| det∇H−1|δ(px) = δ(px).

Thus, both p and q are uniformly distributed.
Next, we derive the PDF of r = q⊗p. Since p and q are

independent, the PDF of r is by definition

fr(r) =

∫ ∫
fq(q)fp(p)δ(r − q ⊗ p)dpdq

=

∫
fq(q)fp(q̄ ⊗ r)

(∫
δ(r − q ⊗ p)dp

)
dq (11)

where fp(p)δ(r− q⊗ p) = fp(q̄⊗ r)δ(r− q⊗ p). Using the
scaling and translation properties of δ, the inner-integral is∫

δ(r − q ⊗ p)dp =

∫
δ(r −Qp)dp =

1

detQ

where Q ∈ R4×4 is the matrix representation of the linear
operator q⊗. Since detQ = 1, the integral (11) simplifies

fr(r) =

∫
fq(q)fp(q̄ ⊗ r)dq

where fq(q) = 1 if and only if q = (q0, qx, 0, 0) ∈ H̄ is
a pure x-rotation. Likewise, fp(q̄ ⊗ r) = 1 if and only if
p = q̄⊗r ∈ H̄ is a pure yz-rotation i.e. px = rxq0−r0qx = 0.
Thus, the integral simplifies

fr(r) =

∫ ∫
δ(q2

0 + q2
x − 1)δ(rxq0 − r0qx)dq0dqx

Since the line rxq0 − r0qx = 0 pass through the origin, it
intersects the circle q2

0 + q2
x = 1 at exactly 2 points. Thus,

fr(r) ∝ 2 is constant and therefore r is uniformly distributed.
Finally, we note that the orthogonal matrix U will not

affect the uniform distribution i.e. fUr(Ur) ∝ fr(r). Thus,
U(q ⊗ p) ∼ U(Q) since U(q ⊗ p) parameterized Q by
Lemma 1.

B. Nearest-Neighbor Orientation
In this section, we describe line 7 of Alg 2 which finds

the nearest orientation rj ∈ T in the search-tree T to the
uniformly sampled orientation r ∈ H̄. As argued in [7], the
appropriate metric for measuring the nearest orientation is
the Minkowski function

ΦCOi(r) = inf
ρ

{
ρ ≥ 0 : r ∈ ρCO(ri, `i)

}
(12)

of the PI set (3). The Minkowski function (12) quantifies the
amount ρ ≥ 0 we need to scale ρCO the PI set O to contain
the point r ∈ ρCO. Minkowski functions generalize distance
e.g. Euclidean distance is a Minkowski function with a unit-
ball and 1-norm and∞-norms are Minkowski functions with
a unit hyperoctohedron or hypercube, respectively [17]. The
following proposition provides a closed-form for (12).

Proposition 1 (Minkowski Distance): The Minkowski
distance (12) between r ∈ H̄ and ri ∈ H̄ is

ΦCOi
(q) = |r>i r|/`i. (13)

Proof: Since the Lyapunov function (2) does not
include cross-terms between the attitude error e and angular
velocity ω, we have CO = {e ∈ H̄ : e0 ≥ `} where e0 =
|r>i r|. Thus, ρCO = {ρe : e0 ≥ `} = {e ∈ H̄ : e0 ≥ ρ`}.
The infimum ρ ≥ 0 for which e = ri ⊗ r ∈ ρCO holds
is (13).

Using Proposition 1, the index i ∈ I of the nearest node
ri is arg mini∈I |r>i r|/`i.

C. Connecting to Nearest-Neighbor
The edges (i, j) ∈ E of the search-tree T = (I,E)

indicate that the spacecraft can safely transition from tracking
reference ri to rj . We add a directed edge (i, j) ∈ E when
ri ∈ int(COj). In this section, we describe line 8 of Alg 2
in which we move the sampled reference r ∈ H̄ to form an
edge r → ri ∈ int(COj).

In Cartesian-space, we can form an edge (i, j) by finding
a convex-combination such that ri = λr + (1 − λ)rj ∈
int(COj) where λ ∈ [0, 1]. In quaternion-space, the equiva-
lent operation is the spherical linear interpolation (SLERP)

SLERP(r, rj , λ) =
sin(ε− λε)

sin(ε)
rj +

sin(λε)

sin(ε)
q (14)

where ε = cos−1 r>j r is the angle between vectors r and rj
and λ ∈ [0, 1]. The following proposition uses the SLERP (14)
to form an edge ri ∈ int(COj).

Proposition 2 (Connection): An equilibrium state
(ri, 0) ∈ SE(3) satisfies (ri, 0) ∈ int(Oj) if

ri = cos θ2rj +

√
(sin θ

2)2

1− (r>j r)
2

(
I − rjr>j

)
r (15)

where θ ∈ (0, 2 cos−1 `j).
Proof: An equilibrium state (ri, 0) ∈ SE(3) satisfies

(ri, 0) ∈ int(Oj) if e0 = |r>i rj | ≥ `j . Thus, we need to find
λ ∈ [0, 1] such that

SLERP(r, rj , λ)>rj =
sin(ε− λε)

sin ε
+

sinλε

sin ε
cos ε = e0 ≥ `j

where r>j rj = 1 since rj ∈ H̄ and cos ε = r>j r by
definition. Using the trig-identity sin(ε−λε) = sin ε cosλε−
cos ε sinλε

e0 = cosλε− cos ε sinλε

sin ε
+

cos ε sinλε

sin ε
.

Simplifying, yields λ = cos−1 e0/ cos−1 r>j r. Substituting
into the SLERP, we obtain

ri = SLERP(r, rj , λ) =
sin(ε− λε)√

1− (r>j r)
2
rj +

√
1− e2

0√
1− (r>j r)

2
r

where sinλε =
√

1− e2
0 since cosλε = e0 and sin ε =√

1− (r>j r)
2 since cos ε = r>j r. Using the identity sin(ε −

λε) = sin ε cosλε − cos ε sinλε and re-arranging terms
yields

ri = SLERP(r, rj , λ) = e0rj +

√
1− e2

0

1− (r>j r)
2

(r − rjr>j r)

which produces (15) for e0 = cos θ2 and
√

1− e2
0 = sin θ

2 .

Proposition 2 provides a closed-form solution for con-
necting the edge (i, j) ∈ E. The tuning-parameter θ ∈
(0, 2 cos−1 `j) is the desired angle between the quaternions
ri, rj ∈ H̄. For cos θ2 ≈ `j , the orientation ri is near the
boundary of Oj . This can reduce the number of samples
required to find a path. However, Alg 1 will be slow to switch
modes ri → rj . For cos θ2 ≈ 1, ri ≈ rj is near the “center”
rj of Oj which will produce smoother inputs.

D. Constructing CAPI Set

Level-sets (3) of the Lyapunov function (2) are PI, but not
necessarily constraint admissible. In this section, we describe
lines 3 and 9 of Alg 2 where we select the level `i ∈ (0, 1) to
ensure constraint admissibility COi∩K = ∅. The following
corollary of Theorem 1 from [6] provides necessary and
sufficient conditions for admissibility.

Corollary 1 (Admissibility): The PI set (3) is constraint
admissible CO(r, `) ∩ K(d, b, α) = ∅ if and only if

` ≥
∥∥U+(d, b)>r

∥∥ cos α2 +
∥∥U−(d, b)>r

∥∥ sin α
2 (16)

where U+ and U− were defined in (7).
Proof: According to Theorem 1 from [6], the PI set (3)

is admissible CO ∩K = ∅ if and only if

‖U+r‖ ≤ ` and (17a)

`‖U+r‖+
√

1− `2‖U−r‖ ≤ cos α2 . (17b)

Consider the change-of-variables ` = cos θ̄/2 ∈ [0, 1] and
‖U+r‖ = cosβ/2 ∈ [0, 1] for θ̄, β ∈ [0, π]. Since ‖r‖ =

‖U+r‖+‖U−r‖ = 1, we have ‖U−r‖ = sinβ/2. Thus, (17a)
can be written as cosβ/2 ≤ cos θ̄/2. Or equivalently θ̄ ≤ β.

Condition (17b) can be written as cos θ̄2 cos β2 +

sin θ̄
2 sin β

2 ≤ cos α2 . We can simplify this expression using
an angle-sum trig identity to obtain cos θ̄−β2 ≤ cos α2 . Or
equivalently |θ̄−β| ≥ α, which can be split into two disjoint
inequalities θ ≥ β + α or θ ≤ β − α. Since θ ≤ β, the
first inequality is unsatisfiable. Furthermore, θ̄ ≤ β − α is a
tighter inequality than θ̄ ≤ β. Applying another angle-sum
trig identity we obtain

` = cos θ̄2 ≥ cos β−α2 = cos β2 cos α2 + sin β
2 sin α

2 .

Substituting cos β2 = ‖U+r‖ produces (16).
Corollary 1 describe the necessary and sufficient condi-

tions for the PI set (3) to not intersect a keep-out cone
CO ∩ K = ∅. For multiple keep-out cones Kk, we use the
largest level ` = maxk `k (larger `s produce smaller PI sets).
To enforce input or angular velocity constraints, we can set
a lower-bound on the level ` ≥ `.

The proof of Corollary 1 provides intuition about how the
level ` guarantees safety. An equilibrium (q, 0) ∈ SE(3) is
contained in the PI set (3) if e0 = |q>r| ≥ ` where the
scalar-part e0 = cos θ/2 of the error quaternion e = q ⊗
r̄ is related to the angle θ between orientations q, r ∈ H̄.
Thus, the parameterization ` = cos θ̄/2 used in the proof
places an upper-bound θ ≤ θ̄ on the error angle θ. The angle
β = cos−1 ‖U+r‖ measures the minimum angle between
the reference quaternion r ∈ H̄ and an orientation q that
aligns d>R(q)b = 1 the inertia-frame d ∈ S2 and body-
frame b ∈ S2 vectors. Thus, the condition θ̄ = β−α ensures
that no orientation q ∈ O in the PI set O enters the keep-out
cone (5).

IV. SIMULATION RESULTS

In this section, we demonstrate Algs 1 and 2 for the space-
craft attitude motion planning problem. We will compare our
result with previous research [6].

In this simulation, the attitude motion planner must guide
the spacecraft out of a “maze” of keep-out cones (5). The
objective of this simulation is to provide an unrealistically
difficult scenario to stress-test the capabilities of the ISMP.
The ISMP must carefully manage the momentum of the
spacecraft since moving to avoid a keep-out cone can pro-
duce overshoot causing the spacecraft to enter a different
keep-out cone. The spacecraft starts from rest ω(0) = 0 at
the home-position q(0) = 1. The target orientation is a 20◦

rotation about the x-axis r∞ = (cos 10◦, 0, sin 10◦, 0) ∈ H̄.
The z-axis of the spacecraft must be kept inside a 22◦ keep-
in cone (8). In addition, the z-axis of the spacecraft must
avoid 14 keep-out cones (5) randomly placed in the keep-in
cones Q with keep-out angles α = 4◦. The arrangement of
keep-in and keep-out cones is shown in Fig. 1. For clarity
of the plots, the z-axis of the spacecraft was used as the
body-frame unit vector b = (0, 0, 1) for both the keep-in and
keep-out cones allowing us to project the simulation results
onto the xy-plane.

Fig. 1: The blue-circle represents the keep-in cone and the
red-circles represent the keep-out cones. The nodes z ⊗ ri
for i ∈ I and edges (z ⊗ ri, z ⊗ rj) for (i, j) ∈ E of the
search-tree T produced by Alg 2 are shown in yellow. The
path z ⊗ rσ1

, . . . , z ⊗ rσN
is shown in purple.

A search-tree T = (I,E) was constructed using Alg 2
with θ = cos−1 `j as shown in Fig 1. The advantage of
constructing the search-tree T online is that the PI set Oi
are customized for the arrangement of keep-out cones K.
In contrast, the previous method [6] used a pre-constructed
search-graph G = (IG,EG) where nodes i ∈ IG are
removed if the pre-scaled PI set Oi collides with a keep-
out cone COi ∩ K 6= ∅. This requires a dense uniform
graph to increase the likelihood of finding a path through any
arrangement of constraints. For this example, the previous
method [6] used a fixed level ` = cos1◦ requiring a search-
graph G = (IG,EG) with |IG| = 3529 nodes and |EG| =
119, 893 edges. In contrast, search-tree T produced by Alg 2
has |I| = 534 nodes and |E| = |I|−1 edges. The customized
levels in Alg 2 produced angular-bounds θ̄i ranging from
0.06◦ to 1.9◦ depending on the proximity to a keep-out cone.
This search-tree was constructed by Alg 2 in 1.48 seconds.

Fig. 2: The path z(t) traced by the z-axis produced by Alg 1
using the search-tree T produced by Alg 2.

Alg 1 used the search-tree T produced by Alg 2 to find
a sequence {rσk

}66
k=1 ⊆ I of 66 references rσk

∈ H̄ that
safely guide the spacecraft from the initial state x0 to the
target equilibrium (r∞, 0) as shown in Fig. 1.

Following Alg 1, the reference rσk
tracked by the closed-

loop spacecraft dynamics (1) is updated k ← k + 1 each
time the state x(t) enters the next CAPI set Oσk+1

. The
switching condition x(t) ∈ Oσk+1

was checked every 1
second. Between updates, the spacecraft dynamics (1) were
simulated using MATLAB’s ode45 solver. The path z(t) of
the z-axis of the spacecraft is shown in Fig 2. Note that
the actual path z(t) of the z-axis of the spacecraft does not
perfectly track the planned path z ⊗ ri. However, collisions
are avoided since z(t) remains in the corridor of CAPI sets
Oσk

along the path {rσk
}66
k=1 ⊆ I as shown in Fig 2.

REFERENCES

[1] K. Berntorp, A. Weiss, C. Danielson, S. Di Cairano, and I. Kol-
manovsky, “Automated driving: Safe motion planning using positive-
invariant sets,” in Intelligent Transportation Systems Conference, 2017.

[2] K. Berntorp, R. Bai, K. F. Erliksson, C. Danielson, A. Weiss, and S. D.
Cairano, “Positive invariant sets for safe integrated vehicle motion
planning and control,” IEEE Transactions on Intelligent Vehicles,
2020.

[3] C. Danielson, A. Weiss, K. Berntorp, and S. Di Cairano, “Path
planning using positive invariant sets,” in Conf. on Decision and
Control, 2016.

[4] C. Danielson, K. Berntorp, A. Weiss, and S. Di Cairano, “Robust
motion-planning for uncertain systems with disturbances using the
invariant-set motion-planner,” IEEE Transactions on Automatic Con-
trol, 2019.

[5] C. Danielson, K. Berntorp, S. Di Cairano, and A. Weiss, “Motion-
planning for unicycles using the invariant-set motion-planner,” in
American Control Conference, 2020.

[6] C. Danielson, J. Kloeppel, and C. Petersen, “Spacecraft attitude control
using the invariant-set motion-planner,” IEEE Control Systems Letters,
pp. 1–1, 2021.

[7] A. Weiss, C. Danielson, K. Berntorp, I. Kolmanovsky, and S. Di
Cairano, “Motion planning with invariant set trees,” in Conf. on
Control Technology and Applications, 2017.

[8] A. Weiss, C. Petersen, M. Baldwin, R. Erwin, and I. Kolmanovsky,
“Safe positively invariant sets for spacecraft obstacle avoidance,” J. of
Guidance, Control, and Dynamics, 2015.

[9] A. Weiss, F. Leve, M. Baldwin, J. R. Forbes, and I. Kolmanovsky,
“Spacecraft constrained attitude control using positively invariant
constraint admissible sets on so(3) x r3,” in 2014 American Control
Conference, 2014, pp. 4955–4960.

[10] C. Danielson, “Invariant configuration-space bubbles for revolute
serial-chain robots,” IEEE Control Systems Letters, pp. 1–1, 2022.

[11] J.-P. Aubin, Viability Theory. Birkhauser Boston Inc., 1991.
[12] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” The

International Journal of Robotics Research, 2001.
[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” Int J of Robotics Research, vol. 30, no. 7, pp. 846–
894, 2011.

[14] M. D. Shuster, “Uniform attitude probability distributions,” The Jour-
nal of the Astronautical Sciences, vol. 51, no. 4, pp. 451–475, 2003.

[15] R. Schneider, G. Rota, B. Doran, P. Flajolet, M. Ismail, T. Lam, and
E. Lutwak, Convex Bodies: The Brunn-Minkowski Theory. Cambridge
University Press, 1993.

[16] B. Wie, H. Weiss, and A. Arapostathis, “Quarternion feedback regu-
lator for spacecraft eigenaxis rotations,” J. of Guidance, Control, and
Dynamics, vol. 12, no. 3, pp. 375–380, 1989.

[17] C. Danielson, “Terminal-cost design for model predictive control
with linear stage-costs: A set-theoretic method,” Optimal Control
Applications and Methods, vol. 42, no. 4, pp. 943–964, 2021.

