
Experimental Validation of Constrained Spacecraft Attitude
Planning via Invariant Sets

Claus Danielson ∗

University of New Mexico, Albuquerque, NM 87110

Joseph Kloeppel †

BlueHalo, Albuquerque, NM 87123

Christopher Petersen ‡

University of Florida, Gainesville, Fl 32611

This paper experimentally validates the invariant-set motion planner (ISMP) for the

spacecraft attitude motion planning problem. Three novel results are presented that enable the
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for scaling the sets used by the ISMP to ensure their positive invariance despite this torque

constraint. The ISMP is experimentally validated through three experimental scenarios. In the

first scenario, the spacecraft must perform a re-orientation maneuver that caused it to move

towards a keep-out cone. The ISMP manages the momentum of the spacecraft to prevent it from

overshooting into the keep-out cone. In the second scenario, the spacecraft performs a slalom

maneuver to avoid a pair of keep-out cones. The ISMP must reverse the momentum of the

spacecraft to transition from avoiding the first keep-out cone to the second. The final scenario is

an unrealistically difficult scenario designed to stress-test the capabilities of the ISMP where the

spacecraft must escape from a ‘maze’ of keep-out cones. These results demonstrate the ability

of the ISMP to control the spacecraft attitude while enforcing state and input constraints.
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Nomenclature

R = Set of reals numbers

H̄ = Set of unitary quaternion

1 = Identity quaternion

𝒒(𝑡) = Quaternion orientation representation

𝒓̄ = desired quaternion orientation

𝒆(𝑡) = 𝒒 ⊗ 𝒓̄ = Error quaternion

𝑒0 = Scalar part of error quaternion 𝒆

𝝎(𝑡) = Angular velocity

𝝉(𝑡) = Torque

𝒒(𝑡) ⊗ 𝝎(𝑡) = Shorthand for quaternion multiplication

𝑱 = Moment-of-Inertia matrix of satellite

𝑪 = Output matrix

𝐾𝑝 = Proportional gain

𝐾𝑑 = Derivative gain

𝑉 = Lyapunov function for controller

K = Avoidance cone

Q = Keep-in cone

𝛼 = Cone Angle

𝒅 = Unit vector in inertial frame

𝒃 = Unit vector in body frame

𝑷 = Matrix for quadratic form of cone constraints

Ω = Angular velocity constraint set

𝑾 = Matrix defining ellipsoidal inner-approximation of angular velocity constraints
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𝒖 = Actuator command

𝑛𝑢 = Number of actuators

U = Actuator constraint set

T = Torque constraint set

T̄ = Inner-approximation for torque constraint

𝑻 = Control-actuator matrix relating actuator commands 𝒖 to torques 𝝉

G = Search graph / network

I = Set of graph nodes

E = Set of graph edges

𝜎𝑖 = Sequence of indices of planned references

O = Positively invariant set

𝜌 = Lyapunov level set tunning parameter

·× = Skew symmetric matrix operator

I. Introduction
The objective of the spacecraft constrained attitude motion-planning problem is to rotate the spacecraft into a desired

orientation while enforcing angular velocity constraints and avoiding undesirable orientations despite limited control

authority. This problem has been address through a variety of approaches including ground-based human-in-the-loop

planning, as opposed to the autonomous approach proposed in this paper. See [1] for a classical survey of solutions

to the constrained attitude motion planning problem. Artificial potential functions [2–8] are one popular solution to

this problem since they exploit well-known Lyapunov theory and provide rapid implementation, although they can

inadvertently produce spurious equilbria causing the spacecraft to become trapped in an undesired orientation. Another

popular approach are optimization-based methods which leverage popular numerical solvers to optimize performance,

but often suffer from high computational costs [9–15]. This paper employs another popular approach in which the

attitude-space is discretized and searched using graph search methods [16–20]. The challenge with this approach is

ensuring constraint satisfaction between waypoints despite imperfect reference tracking. This paper addresses this

problem using the invariant-set motion-planner (ISMP) to ensure constraint satisfaction despite imperfect tracking. All

these techniques have advantages and disadvantages, and a framework to compare some of these was presented in [21].

While the method of this paper share commonalities with the discretization and optimization-based methods, it stands

apart by uniquely blending the theoretic aspects of positive invariant sets and numeric structure of the constraints to
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quickly and reliably construct a safe constrained attitude path.

This paper experimentally validates the ISMP for the spacecraft constrianed attitude motion planning problem. The

ISMP generates a sequence of reference waypoints to safely guide a closed-loop dynamical system from an initial

state to a target equilibrium through an obstacle-filled environment despite limited control authority [22–33]. Like

other motion-planning algorithms, such as rapidly-exploring random trees (RRT) [34, 35], the ISMP abstracts the

motion-planning problem as a graph search. The defining feature of the ISMP is that knowledge of the closed-loop

system dynamics is incorporated into the search graph using constraint admissible positive invariant (CAPI) sets (also

called viable sets [36]). These CAPI sets describe regions of the state-space where the closed-loop system dynamics

will safely track the corresponding reference despite imperfect tracking. The ISMP uses a graph search to find a corridor

of CAPI sets that safely guides the system through the obstacle filled environment to the target equilibrium.

The ISMP has several advantageous properties. It allows for aggressive, but safe maneuvers since, by definition,

the system state will never leave the CAPI sets. It is inherently robust to model uncertainty and disturbances [27]

since it incorporates feedback into the design and the CAPI sets provide a natural buffer that can absorb tracking

errors. It typically has low online computational costs since the CAPI sets can be pre-computed as they only depend

on the time-invariant closed-loop dynamics, rather than the time varying environment. Furthermore, it reduces the

curse-of-dimensionality by sampling from the output-space instead of the state-space. Indeed for this paper, we sample

the orientation-space (quaternions) rather than the full state-space, which also includes the spacecraft angular velocity.

Since it plans motion based on the closed-loop dynamics, the ISMP does not require replacing the existing controller

with a customized controller. Indeed, we leverage a standard quaternion-based proportional-derivative controller for

reference tracking.

In our previous work [32], we applied the ISMP to spacecraft controlled by quaternion-based state-feedback

controllers. The main contribution of [32] was a closed-form solution for certifying the safety of the CAPI sets.

That paper [32] focused on the computational aspects of the safety test. Only a single simulation was presented that

provided minimal insight into the advantages of the ISMP for spacecraft attitude motion planning. In contrast, the

main contribution of this paper is an in-depth experimental validation of the ISMP for spacecraft attitude planning.

Experimental validation was conducted using the Air Force Research Laboratory (AFRL) Space Vehicles Directorate’s

large spherical air-bearing spacecraft simulator [37, 38]. The experiments used existing systems on the ReBEL testbed

without need for specialized hardware or software. The experiments make use of the existing steering-law for allocating

actuator commands to achieve the desired torque.

Terrestrial experiments are an important tool for the validation of space technology since accessibility to the

space-domain is limited due to launch availability, high financial costs, and a traditionally risk adverse environment. To

bring new technologies as close to flight-readiness as possible, there are a number of terresital experimental systems that

can be employed. Ground robotics can demonstrate algorithms on embedded systems [39], but are often restricted to 3
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degrees of motion (2 translational, 1 rotational) and are always fighting friction when tracking approximated satellite

dynamics. Drones can obtain 6 degrees of motion [40, 41], but due to actuator placement and limitations, cannot

perform certain maneuvers, e.g. a quadcopter cannot flip upside down and still hover. In addition, their actuators are

not representative of spacecraft and thus they are also forced to track approximated spacecraft dynamics. Platforms

exploiting air-bearing mechanisms [42, 43] enable near frictonless environments that can successfully emulate spacecraft

motion with representative actuators (e.g., air thrusters) but are also limited in their motion due to air-bearing placement.

Although none of these platforms perfectly emulates space, it is important to test new algorithms on an experimental

testbed that is partially representative of a real spacecraft in order to reduce risk before deployment in the space domain.

We present the results of three experimental scenarios that demonstrate the advantages of incorporating knowledge

of the spacecraft dynamics into the motion planning problem. The first experimental scenario is a pointing maneuver

where the spacecraft is commanded to rotate to a target orientation near the edge of a keep-out cone. The ISMP must

anticipate the momentum of the spacecraft to avoid overshoot that would carry the spacecraft into the keep-out cone.

The second experimental scenario is a slalom maneuver. In this scenario the spacecraft is rotating about its 𝑥-axis

to a target orientation while simultaneously rotating about the 𝑦-axis to avoid keep-out cones. The spacecraft must

first rotate in the positive 𝑦-direction to avoid the first keep-out cone and then reverse its momentum to rotation in the

negative 𝑦-direction to avoid the second keep-out cone. In the final experimental scenario, the spacecraft must navigate

out of a ‘maze’ of keep-out cones. This unrealistically challenging scenario is meant to stress-test the ISMP algorithm

and its ability to enforce state and input constraints. Together, these three experimental results demonstrate the ability of

the ISMP to safely navigate the spacecraft attitude around undesirable orientations to a desired equilibrium.

In addition to the experimental results, we present novel theoretical results developed to enable the experimental

implementation of our algorithm. Since our experimental platform has a severe keep-in cone constraint, we develop a

novel method for gridding quaternions that satisfy the keep-in cone constraints. This reduces memory usage by only

sampling orientations from the keep-in cone rather than sampling the entire orientation space and rejecting unsafe

orientations. This allows us to only plan maneuvers that respect the safe operating conditions for our experimental setup.

In practice, this parameterization of a keep-in cone could be used to ensure that the solar panels on a spacecraft are

always oriented to gather sufficient sunlight. This paper contributes a novel method for scaling our invariant sets to

enforce constraints on the angular velocity of the spacecraft and the torque provided by the actuators. Enforcing angular

velocity constraints is important because the experimental platform has a large inertia. At high angular velocities, this

will produce a large angular moment which the emergency shut-down systems will not be able to absorb. In practice,

enforcing angular velocity constraints is important because it ensures safety of certain spacecraft components and

subsystems. For example, if a solar panel is attached to the satellite, rotating at a high angular velocity could excite

flexible modes that could harm the spacecraft or its components. In addition, if the satellite is rotating too quickly,

the solar panel may not be able to absorb enough power, resulting in insufficient power for the system to complete its
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mission. Enforcing input constraints is important to ensure that the ISMP does not require steering torques that are

physically unrealizable by the experimental platform. Indeed, one of the main advantages of the ISMP is that it can

manage the momemtum of the spacecraft to avoid obstacles despite limited control authority. Another advantage is the

opportunity to leverage advanced steering laws such as a triplet steering-law to allocate torques to the 6 control moment

gryo (CMG)s to ensure that a minimal torque envelop is always available. In practice, enforcing torque constraints is

important since actual spacecraft actuators will have limitations on their control authority.

The remainder of this paper is organized as follows. In Section II, we describe the spacecraft constrained attitude

planning problem. In Section III, we describe the ISMP for spacecraft attitude control, including the constraint

admissible positive invariant set and search graph construction. In Section IV, we present three experimental results that

demonstrates advantages of the ISMP for spacecraft attitude motion planning.

II. Spacecraft Attitude Motion-Planning Problem
In this section, we describe the dynamics and constraints that define the spacecraft constrained attitude motion

planning problem.

A. Spacecraft Attitude Dynamics

The spacecraft attitude dynamics are modeled by

¤𝒒(𝑡) = 1
2 𝒒(𝑡) ⊗ 𝝎(𝑡) (1a)

𝑱 ¤𝝎(𝑡) = −𝝎(𝑡) × 𝑱𝝎(𝑡) + 𝝉(𝑡) (1b)

where 𝒒 ∈ H̄ and 𝝎 ∈ R3 are the spacecraft orientation and angular velocity, respectively, 𝝉 ∈ R3 is the torque applied

to the spacecraft attitude, and 𝑱 ∈ R3×3 is the spacecraft moment-of-inertia matrix. With abuse of notation, 𝒒(𝑡) ⊗ 𝝎(𝑡)

is shorthand for the quaternion multiplication 𝒒(𝑡) ⊗ (0,𝝎(𝑡)) The output-matrix 𝑪 = [𝐼4, 0] ∈ R4×7 extracts the

orientation 𝒒 = 𝑪𝒙 ∈ H̄ from the state 𝒙 = (𝒒,𝝎) ∈ H̄ × R3.

The orientation of the spacecraft is controlled by a standard proportional-derivative quaternion attitude controller [44]

𝝉(𝑡) = 𝝎(𝑡) × 𝑱𝝎(𝑡) − 𝐾𝑝𝑒𝑣 (𝑡) − 𝐾𝑑𝝎(𝑡) (1c)

where the error-quaternion 𝒆(𝑡) = ±𝒒(𝑡) ⊗ 𝒓 ∈ H̄ between the actual 𝒒(𝑡) ∈ H̄ and desired 𝒓 ∈ H̄ orientations of the

spacecraft is chosen such that scalar part 𝑒0 = ±𝒒⊤𝒓 ≥ 0 is non-negative where the quaternions H̄ are a double-cover

of SO(3). The proportional and derivative gains of the controller are 𝐾𝑝 = 𝑘 𝑝 𝑰 ∈ R3×3 and 𝐾𝑑 ∈ R3×3, respectively,

where 𝐾𝑑 satisfies the Lyapunov equation 𝑱−1𝐾𝑑 + 𝐾𝑑 𝑱
−1 ≺ 0. The robustness [45] and boundedness [46] of the
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closed-loop dynamics (1) have been previously studied. A torque allocation law computes actuators commands to

supply the desired torque 𝝉(𝑡) e.g. from electromagnetic torque rods, thrusters, reaction wheels, or control moment

gyroscopes. This is discussed further in Section II.B.4.

The asymptotic stability of the equilibrium (𝒆,𝝎) = (0, 0) for the closed-loop system (1) is certified by the following

Lyapunov function [47, 48]

𝑉 (𝒆,𝝎) =


𝒆−1

𝝎


⊤ 

𝑰 0

0 𝑘−1
𝑝 𝑰



𝒆−1

𝝎

 = 2 − 2𝑒0 + 𝑘−1
𝑝 ∥𝝎∥2 (2)

where 1 ∈ H̄ is the identity quaternion and 𝑒0 = ±𝒒⊤𝒓 ≥ 0. Since 𝒆 is a unit quaternion, the identity 𝒆⊤𝒆 = 1 can be

used to simplify the Lyapunov function into the second equality [32]. The invariant-set motion-planner will use the

Lyapunov function (2) to plan safe re-orientation maneuvers.

B. Spacecraft Constraints

In this section, we describe the constraints on the spacecraft attitude 𝒒, angular velocity 𝝎, and torque 𝝉.

1. Attitude Keep-Out Cones

Keep-out cones are a common type of output constraints in which the spacecraft orientation 𝒒(𝑡) must be kept out

𝒒(𝑡) ∉ K ⊆ H̄ of the cone

K(𝒅, 𝒃, 𝛼) =
{
𝒒 ∈ H̄ : 𝒅⊤𝑹(𝒒)𝒃 ≥ cos(𝛼)

}
=

{
𝒒 ∈ H̄ : 𝒒⊤𝑷𝒒 ≥ cos𝛼

}
(3)

where 𝛼 is the cone angle, 𝒅 ∈ S2 and 𝒃 ∈ S2 are unit-vectors in the inertial and body frames, respectively, and

𝑹(𝒒) is the rotation-matrix between these frames, which depends on the spacecraft orientation 𝒒 ∈ H̄. The constraint

𝒒(𝑡) ∉ K keeps the angle cos−1 (𝒅⊤𝑹(𝒒)𝒃) between the inertial-frame 𝒅 and body-frame 𝒃 unit-vectors sufficiently

large cos−1 (𝒅⊤𝑹(𝒒)𝒃) > 𝛼. Keep-out constraints can be used to ensure that a sensitive onboard instrument (e.g. a

star-tracker) is not pointed at a bright object (e.g. the sun, earth, or moon) which could temporarily blind or even

permanently damage the instrument. Likewise, a keep-out constraint could be used to prevent a spacecraft from pointing

its thrust at a nearby object during proximity operations. Equivalently, the keep-out cone (3) can be written as a

quadratic-form 𝒒⊤𝑷𝒒 ≥ cos𝛼 of the quaternion 𝒒 [32] where

𝑷 =


𝒅⊤𝒃 −(𝒅 × 𝒃)⊤

−𝒅 × 𝒃 𝒅𝒃⊤+ 𝒃𝒅⊤− 𝒅⊤𝒃𝑰

 . (4)
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We will use this second description of the keep-out cone (3) and properties of the matrix (4) to enforce safety constraints.

2. Attitude Keep-In Cones

Keep-in cones are another common type of output constraints in which the spacecraft orientation 𝒒(𝑡) must be kept

inside 𝒒(𝑡) ∈ Q a cone

Q =

{
𝒒 ∈ H̄ : 𝒅⊤Q𝑹(𝒒)𝒃 > cos𝛼Q

}
. (5)

Keep-in constraints ensure that the body-frame 𝒃 ∈ S2 and inertia-frame 𝒅Q ∈ S2 vectors are aligned 𝒅⊤𝑹(𝒒)𝒃 ≥ cos𝛼Q .

For instance, a keep-in constraints can be used to ensure that the solar panels receive sufficient sun-light or an onboard

instrument (e.g. a telescope) point in a particular direction. Keep-in constraints are mathematically equivalent to

enforcing keep-out constraints 𝒒(𝑡) ∉ H̄\Q on the complementK = H̄\Q of the keep-in setQ. Note that the complement

H̄ \ Q has the form (3) where 𝒅 = −𝒅Q and 𝜃 = 𝜋 − 𝛼Q . Thus, the keep-in cone constraint 𝒅⊤𝑹(𝒒)𝒃 ≥ cos𝛼Q can be

written as a quadratic constraints 𝒒⊤𝑷𝒒 on the quaternion where 𝑷 ∈ R4×4 has the form (4) with 𝒅 replaced by 𝒅Q .

Although they are mathematically equivalent, we will treat keep-in cones differently from keep-out cones in this

paper. In particular, we will present a method for parameterizing quaternions that satisfy the keep-in cone constraints to

allow efficient gridding of the keep-in cone.

3. Angular Velocity Constraints

The angular velocity of the spacecraft may also be constrained. For our experiments, the angular velocity must

be limited to prevent dangerously large angular momentum which could overwhelm the safety system and damage

the experimental platform. In practice, the angular velocity may be limited to ensure the safety of certain spacecraft

components and subsystems or to ensure that the satellite is kept in a power positive configuration (i.e., solar panels are

always mostly exposed to the sun for a long duration of time). We assume that the angular velocity constraint set Ω ⊆ R3

contains the origin in its interior so that the spacecraft is allowed to have a small angular velocity in any direction.

4. Torque and Input Constraints

We assume that the torque is constrained 𝝉 ∈ T to a set T ⊆ R3 which contains a neighborhood of the origin. This

ensures that the controller (1c) can produce a small torque 𝝉 ∈ T in any direction. This requirement is complicated by the

fact that the torque 𝝉 is not the control input. Rather, the commands to the actuators (thrusters, reaction wheels, CMGs,

torque-rods) are the control inputs. A torque allocation law maps the torque 𝝉 ∈ R3 requested by the controller (1c) to

an actuator command 𝒖 ∈ R𝑛𝑢 that realizes this torque. For most types of actuators (not CMGs), this distinction is

inconsequential. The input and torque can be related 𝝉 = 𝑻𝒖 by a fixed matrix 𝑻 ∈ R3×𝑛𝑢 where 𝑛𝑢 is the number of

actuators. For instance, the columns of 𝑻 can indicate the spin-axis and moments-of-inertia of reaction wheels. For
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a fully-actuated spacecraft, this matrix 𝑻 is full-rank. Thus, if the actuator constraints U contain the origin in their

interior then the torque set T = 𝑻U =
{
𝑇𝑢 : 𝒖 ∈ U

}
will as well [49].

For CMGs, the matrix 𝑻 (𝛿) ∈ R3×𝑛𝑢 is time-varying since it depends on the time-varying gimbal angles ¤𝛿(𝑡) = 𝒖(𝑡)

of the CMGs which integrate the input 𝒖(𝑡) history. It is well-known that a poorly designed torque allocation law can

drive the CMGs into a singular configuration where the matrix 𝑻 loses rank [37]. Therefore, it is important to use a

CMG torque allocation law (also known as a steering law) which guarantees 𝑻 is full-rank and thus T = 𝑻U contains

the origin in its interior. Mathematically, this ensures that singularity can be escaped with zero torque error, even if it

takes more control effort. Practically, what this entails is even if the CMGs results in a singular configuration, it can exit

it with zero torque error. A common example of this is if a pair of CMGs have their gimbal axes aligned and are in

singularity, they can perform a "scissor"-like maneuver by aligning their angular momentum axes for a certain period

of time and escape. See [37] for more examples. A properly designed steering law can enforce a lower-bound on the

minimum spectral-norm ∥𝑻 (𝛿)∥2 of the matrix 𝑻 (𝛿) [50, 51].

C. Spacecraft Attitude Motion Planning Problem

In this section, we summarize the spacecraft attitude motion planning problem.

Problem 1 Find a feasible torque trajectory 𝝉(𝑡) ∈ T (𝑡) such that the resulting angular velocity satisfies its constraints

𝝎(𝑡) ∈ Ω and the spacecraft orientation satisfies its constraints 𝒒(𝑡) ∈ Q and 𝒒(𝑡) ∉ K𝑘 and converges to the target

orientation 𝒒(𝑡) → 𝒓∞ as 𝑡 →∞. □

In the next section, we present the ISMP algorithm for solving this problem.

III. Invariant-Set Motion-Planning Algorithm
The ISMP is an algorithm for solving motion planning problems, such as Problem 1. The ISMP is described by

Algorithm 1. The ISMP searches an appropriately constructed directed graph G for a sequence { 𝒓̄𝑖}𝑁𝑖=1 of intermediate

reference orientations 𝒓̄𝑖 ∈ H̄ that guide the spacecraft (1) state 𝒙(𝑡) = (𝒒(𝑡),𝝎(𝑡)) ∈ H̄ × R3 from an initial state

(𝒒(0),𝝎(0)) to a target equilibrium orientation (𝒓∞, 0) ∈ H̄ × R3 while enforcing state and input constraints such as

keep-out cone 𝒒(𝑡) = 𝑪𝒙(𝑡) ∉ K𝑘 and keep-in cone constraints 𝒒(𝑡) = 𝑪𝒙(𝑡) ∈ Q𝑘 . The distinguishing feature of the

ISMP is that knowledge of the closed-loop spacecraft dynamics (1) is incorporated into the graph G using its CAPI

sets. Associated with each node 𝑖 ∈ I is a set O𝑖 , which is constraint admissible 𝑪O𝑖 ∩ K𝑘 = ∅ and positive invariant

𝒙(0) ∈ O𝑖 ⇒ 𝒙(𝑡) ∈ O𝑖 ∀𝑡 > 0. Since the set O𝑖 is constraint admissible, it does not collide with an obstacle e.g.

keep-out cone. Since the set O𝑖 is positive invariant, the state 𝒙(𝑡) ∈ O𝑖 will remain in the set while tracking the

reference orientation 𝒓𝑖 ∈ H̄. The edges (𝑖, 𝑗) ∈ E of the graph G= (I,E) indicate that the state (1) will enter the 𝑗-th

safe-set O 𝑗 while tracking the 𝑖-th node without leaving the current safe-set O𝑖 . Once the state 𝒙(𝑡) enters the next set
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O 𝑗 , it can safely switch to tracking the next reference 𝒓 𝑗 . Thus, the ISMP avoids obstacles by moving the closed-loop

spacecraft state (𝒒(𝑡),𝝎(𝑡)) ∈ H̄ × R3 through a sequence of safe CAPI sets O𝜎𝑖
for {𝜎𝑖}𝑁𝑖=0.

Algorithm 1 Invariant-Set Motion-Planner
1: Remove unsafe 𝑪O𝑖 ∩ K𝑘 ≠ ∅ nodes 𝑖 ∈ I from G
2: Search the graph G for a path {𝒓𝜎0 , . . . , 𝒓𝜎𝑁

} from 𝒓𝜎0 = 𝒒(0) to 𝒓𝜎𝑁
= 𝒓∞

3: Set 𝑘 ← 0
4: repeat
5: if 𝒙(𝑡) ∈ O𝜎𝑘+1 then
6: 𝑘 ← 𝑘 + 1
7: end if
8: track current target state 𝒓 (𝑡) = 𝒓𝜎𝑘

9: until 𝒓 (𝑡) = 𝒓∞

This paper applies the ISMP to the problem of spacecraft constrained attitude control. In this section, we will

describe CAPI sets O for spacecraft closed-loop dynamics (1). We will describe the necessary and sufficient condition

for certifying the safety of these sets (output admissibility). Then, we will describe how to scale these sets to enforce

angular velocity and torque constraints (input admissibilty). Finally, we will describe how to construct the search-graph

G = (I,E) by sampling the reference orientations 𝒓𝑖 for 𝑖 ∈ I and safely connected these nodes (𝑖, 𝑗) ∈ E.

A. Invariant-Sets

Level-sets of the Lyapunov function (2) are positive invariant (PI) sets O𝑖 of the closed-loop system (1)

O(𝒓, 𝜌) =



𝒒

𝝎

 ∈ H̄ × R
3 : 2 − 2𝒒⊤𝒓 + 𝝎⊤𝐾−1

𝑝 𝑱𝝎 ≤ 𝜌2

 (6)

where 𝑒0 = |𝒒⊤𝒓̄ | is the scalar-part of the error-quaternion 𝒆 = ±𝒒 ⊗ 𝒓, 𝒓 ∈ H̄ is the reference orientation for the PI set,

and 𝒓̄ ∈ H̄ is its conjugate. The level 𝜌2 ∈ (0, 2) of the Lyapunov function (2) is a tuning parameter that will be used in

the graph G construction as well as enforcement of the angular velocity and torque constraints.

1. Safety Certification

Line 1 of Algorithm 1 requires the removal of unsafe nodes 𝑪O𝑖 ∩ K𝑘 ≠ ∅ from the search graph. In other words,

we must remove PI sets O𝑖 that are not output admissible. A computationally efficient method for detecting collisions

𝑪O𝑖 ∩ K𝑘 ≠ ∅ was presented in [32]. This method is summarized by the following Theorem.
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Theorem 1 (Output Admissibility) A PI set (6) is safe 𝑪O(𝒓, 𝜌) ∩ K(𝒅, 𝒃, 𝛼) = ∅ if and only if ∥𝑷+𝒓∥ = 0 or

∥𝑷+𝒓∥ ≤ 1 − 1
2 𝜌

2 and


1 − 1

2 𝜌
2

2𝜌
√︁

4 − 𝜌2


⊤ 
∥𝑷+𝒓∥

∥𝑷−𝒓∥

 ≤
√︂

1
2
+ 1

2
cos(𝛼) (7)

where

𝑷+ =
1

√
2 + 2𝒅⊤𝒃


0 1 + 𝒅⊤𝒃

𝒅 + 𝒃 −𝒅 × 𝒃

 ∈ R
4×2 and 𝑷− =

1
√

2 − 2𝒅⊤𝒃


0 1 − 𝒅⊤𝒃

𝒅 − 𝒃 𝒅 × 𝒃

 ∈ R
4×2. (8)

The proof is provided in [32]. Theorem 1 provides the necessary and sufficient conditions for safety 𝑪O ∩ K ≠ ∅.

The collision detection (7) is computationally inexpensive since it only requires checking the inner-product of

vectors in R2. Furthermore, for each keep-out cone K(𝒅, 𝒃, 𝛼), the safety test (7) can be vectorized to simultaneously

checked all the PI sets O(𝒓𝑖 , 𝜌𝑖) for 𝑖 ∈ I.

2. Angular Velocity Constraint Enforcement

The angular velocity constraints Ω ⊆ R3 are enforced by setting a maximum level 𝜌2 ∈ (0, 2) for the PI set (6). From

the definition of the PI set (6), the angular velocity 𝝎 is bounded ∥𝝎∥2 ≤ 𝑘 𝑝𝜌2. Thus, if the angular velocity constraint

set Ω is inner-approximated by an ellipsoid {𝝎 : 𝝎⊤𝑾𝝎 ≤ 1} ⊆ Ω then 𝜌2 ≤ ∥𝑾∥2/𝑘 𝑝 will ensure the satisfaction of

the angular velocity constraints where ∥𝑾∥2 is the induced 2-norm of the matrix 𝑾. Likewise, if the angular velocity

constraint set Ω is inner-approximated by a polyhedron {𝝎 : 𝑤 𝑗𝝎 ≤ 1, 𝑗 = 1, . . . , 𝑚} ⊆ Ω then 𝜌2 ≤ ∥𝑤 𝑗 ∥2/𝑘 𝑝 will

ensure that the angular velocity constraint are satisfied.

3. Torque Constraint Enforcement

Like angular velocity, the torque constraints T = 𝑻U are enforce by setting a maximum level 𝜌2 ∈ (0, 2) for the PI

set (6). The following proposition describes two methods for bounding the level to ensure input admissibility.

Proposition 1 (Input Admissibility)

• If T is inner-approximated by an ellipsoidal set {𝝉 : ∥𝐻𝝉∥ ≤ 1} ⊆ T then the input constraints are satisfied for

𝜌 ≤



𝐻 (𝑘 𝑝 𝑰 + √︁𝑘 𝑝𝐾𝑑)


 +√︃

𝐻 (𝑘 𝑝 𝑰 + √︁𝑘 𝑝𝐾𝑑)



2 + ∥𝐻∥2∥𝑱∥2
2∥𝑱∥2∥𝐻∥2

. (9a)

• If T is inner-approximated by a polytopic set {𝝉 : ±ℎ 𝑗𝝉 ≤ 1, 𝑗 = 1, . . . , 𝑚} ⊆ T then the input constraints are
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satisfied for

𝜌 ≤ min
𝑗=1,...,𝑚



ℎ 𝑗 (𝑘 𝑝 𝑰 +
√︁
𝑘 𝑝𝐾𝑑)



 +√︃

ℎ 𝑗 (𝑘 𝑝 𝑰 +
√︁
𝑘 𝑝𝐾𝑑)



2 + ∥ℎ 𝑗 ∥2∥𝑱∥2
2∥𝑱∥2∥ℎ 𝑗 ∥2

. (9b)

Proof: The PI set (6) is input admissible if the maximum torque produce by the nonlinear state-feedback controller (1c)

over the subset of states (6) satisfies the ellipsoidal torque constraints T =
{
𝝉 : ∥𝐻𝝉∥ ≤ 1

}
i.e.

max
(𝒆,𝝎) ∈O

∥𝐻 (𝐾𝑝𝑒𝑣 + 𝐾𝑑𝝎 + 𝝎 × 𝑱𝝎)∥ ≤ 1.

By the triangle inequality and definition of the maximum operator, we have

max
(𝒆,𝝎) ∈O

∥𝐻𝝉∥ ≤ max
(𝒆,𝝎) ∈O

∥𝐻𝐾𝑝𝑒𝑣 + 𝐻𝐾𝑑𝝎∥ + max
(𝒆,𝝎) ∈O

∥𝐻𝝎 × 𝑱𝝎∥

where the first-term is the linear part of the controller (1c) and the second-term is the nonlinear Coriolis cancellation.

The first-term can be bounded using the definition of the spectral-norm of a matrix

max
(𝒆,𝝎) ∈O

∥𝐻𝐾𝑝𝑒𝑣 + 𝐻𝐾𝑑𝝎∥ = max
(𝒆,𝝎) ∈O










[
𝑘 𝑝𝐻

√︁
𝑘 𝑝𝐻𝐾𝑑

] 
𝑒𝑣

𝝎/
√︁
𝑘 𝑝










 =





[𝑘 𝑝𝐻 √︁
𝑘 𝑝𝐻𝐾𝑑

]




where ∥𝑒𝑣 ∥2 + 𝑘−1

𝑝 ∥𝝎∥2 ≤ 1 for all (𝒆,𝝎) ∈ O. The second-term can be bounded by ∥𝐻𝝎 × 𝑱𝝎∥ ≤ ∥𝐻∥2∥𝑱∥2∥𝝎∥22.

Thus,

max
(𝒆,𝝎) ∈O

∥𝐻𝝉∥ ≤ 𝜌


𝐻 (𝑘 𝑝 𝑰 + √︁𝑘 𝑝𝐾𝑑)



 + 𝜌2∥𝑱∥2∥𝐻∥2.

Therefore, the PI set (6) is input admissible max ∥𝐻𝝉∥ ≤ 1 if the following quadratic inequality holds

𝜌2∥𝑱∥2∥𝐻∥2 + 𝜌


𝐻 (𝑘 𝑝 𝑰 + √︁𝑘 𝑝𝐾𝑑)



 − 1 ≤ 0

Since this quadratic equation is convex, it is negative between its roots

𝜌 ∈



𝐻 (𝑘 𝑝 𝑰 + √︁𝑘 𝑝𝐾𝑑)


 ±√︃

𝐻 (𝑘 𝑝 𝑰 + √︁𝑘 𝑝𝐾𝑑)



2 + ∥𝐻∥2∥𝑱∥2
2∥𝑱∥2∥𝐻∥2

.

Since


𝐻 (𝑘 𝑝 𝑰 + √︁𝑘 𝑝𝐾𝑑)



 < √︃

𝐻 (𝑘 𝑝 𝑰 + √︁𝑘 𝑝𝐾𝑑)


2 + ∥𝐻∥2∥𝑱∥2 and 𝜌 ≥ 0, the lower-bound is redundant. There-

fore, (9a) bounds the level 𝜌 of the PI set (6) for input admissibilty. The bound (9b) can be derived by noting that
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the polytope {𝝉 : ±ℎ 𝑗𝝉 ≤ 1, 𝑗 = 1, . . . , 𝑚} = ⋂
𝑷 𝑗=1,...,𝑚{𝝉 : ∥ℎ 𝑗𝝉∥ ≤ 1} is the intersection of degenerate ellipsoids

{𝝉 : ∥ℎ 𝑗𝝉∥ ≤ 1}. □

Proposition 1 provides two methods for bounding the level 𝜌2 of the PI set (6) depending on the nature of the torque

constraint set T . For non-CMG actuators, the torque constraint set will typically be polyhedral. For instance, if each of

the actuator command 𝑢𝑖 has a lower 𝒖
𝑖

and upper 𝑢𝑖 bound on its authority 𝒖
𝑖
≤ 𝑢𝑖 ≤ 𝒖̄𝑖 then the input constraint

set will be a boxU = {𝒖 : 𝒖
𝑖
≤ 𝑢𝑖 ≤ 𝒖̄𝑖} and the torque constraint set T = 𝑻U will be a polyhedron (specifically a

zonotope) [49].

For CMGs, the torque constraint set T = 𝑻 (𝛿)U is time-varying since the matrix 𝑻 (𝛿) depends on the gimbal

angles 𝛿(𝑡). For the triplet steering-law, we can inner-approximated the angular momentum envelop of the CMG array

as the Cartesian product of circles [37]. Thus, we can inner-approximate T̄ ⊆ T (𝛿) the torque constraint set T using

a time-invariant ellipsoidal set T̄ . More generally, we can use the matrix 𝐻 = 𝜎𝑰 for the ellipsoidal-bound where

𝜎 ≤ ∥𝑻 (𝛿)∥2 is the lower-bound on the spectral-norm of the matrix 𝑻 (𝛿) for a particular steering law. This is necessary

so that the level bound 𝜌2 ∈ (0, 2) does not depend on the state 𝛿(𝑡) of the CMG-array, which is unknown to the ISMP.

B. Search Graph

In this section, we describe the generation of the nodes I and edges E of the search graph G = (I,E) used by the

ISMP.

1. Search Graph Nodes

The nodes 𝑖 ∈ I of the search graph G = (I,E) index the reference orientations 𝒓𝑖 ∈ H̄ and the corresponding PI set

O𝑖 such that (𝒓𝑖 , 0) ∈ O𝑖 . For some attitude motion planning problem, it is necessary to keep the spacecraft orientation

in a constant keep-in cone Q. For instance, our experimental platform has a crucial keep-in constraint to prevent damage,

see Section IV.A. In practice, a constant keep-in constraints can arise from a spacecraft needing to keep its solar panels

pointed at the sun. Since we are memory-constrained, we would like to ensure that we only sample reference quaternions

𝒓𝑖 ∈ H̄ for our search-graph G that satisfy the keep-in cone constraints 𝒓𝑖 ∈ Q. The following proposition provides a

parameterization of quaterions that satisfy the keep-in cone constraints.

Proposition 2 The keep-in cone (5) can be written as

Q =

{
𝒒 = 𝑷+𝒒+ + 𝑷−𝒒− : 𝒒− ∈ sin

𝛼

2
B2, 𝒒+ ∈

√︃
1 − ∥𝒒−∥2S1

}
(10)

where 𝑷+ and 𝑷− were defined in (8) and, B2 ⊂ R2 and S1 are the unit-disk and unit-circle in R2, respectively.

Proof: Let Q denote the original keep-in cone (5) and Q ′ denote our alternative parameterization (10). We will prove

Q = Q ′.
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Using the Euler-Rodrigues formula 𝑹(𝒒) = 𝑰 + 2𝒒0𝒒
×
𝑣 + 2𝒒×𝑣 𝒒×𝑣 , the keep-in cone (5) can be written in the form

Q =
{
𝒒 : 𝒒⊤𝑷𝒒 ≥ cos𝛼

}
where 𝑷 is given by (4). Consider 𝒒 = 𝑷+𝒒++𝑷−𝒒− ∈ Q ′. Then, 𝒒⊤𝑷𝒒 = ∥𝒒+∥2−∥𝒒−∥2 since

the columns of 𝑷+ ∈ R4×2 and 𝑷− ∈ R4×2 are respectively the eigenvectors corresponding to the repeated eigenvalues

𝜆+ = 1 and 𝜆− = −1 of 𝑷 [32]. Since 𝒒+ ∈
√︁

1 − ∥𝒒−∥2S1, we have ∥𝒒+∥2 = 1 − ∥𝒒−∥2. Thus, 𝒒⊤𝑷𝒒 = 1 − 2∥𝒒−∥2.

For 𝒒− ∈ sin 𝛼
2 B

2, we have

𝒒⊤𝑷𝒒 = 1 − 2∥𝒒−∥2 ≥ 1 − 2 sin
(
𝛼
2
)2

= cos𝛼

where sin(𝛼/2)2 = 1
2 −

1
2 cos𝛼. Thus, 𝒒 ∈ Q and therefore, Q ′ ⊆ Q.

Now consider 𝒒 ∉ Q ′. Then, either 𝒒+ ∉
√︁

1 − ∥𝒒−∥2S1 or 𝒒− ∉ sin 𝛼
2 B

2. If 𝒒+ ∉
√︁

1 − ∥𝒒−∥2S1 then

∥𝒒∥2 = ∥𝑷+𝒒+ + 𝑷−𝒒−∥2 = ∥𝒒+∥2 + ∥𝒒−∥2 ≠ 1. Thus, 𝒒 ∉ H̄ ⊇ Q. Conversely, if 𝒒− ∉ sin 𝛼
2 B

2 then 𝒒⊤𝑷𝒒 <

1 − 2 sin
(
𝛼
2
)2

= cos𝛼. Thus, 𝒒 ∉ Q. Therefore, Q ⊆ Q ′ and hence Q = Q ′. □

The orthogonal matrix 𝑷+ ∈ R4×2 parameterizes the manifold of quaternions 𝑷+𝒒+ ∈ H̄ that rotates the body-frame

vector 𝒃 about the inertia-frame vector 𝒅. These rotations 𝑷+𝒒+ ∈ H̄ will not change the alignment of these vectors

i.e. 𝒅⊤𝑹(𝑷+𝒒+)𝒃 is constant for all 𝒒+ ∈ S1. According to Proposition 2, we can freely-sample these rotations by

sampling the unit-circle 𝑞+ ∈
√︁

1 − ∥𝑞−∥2S1 ⊂ R2 and lifting into quaternions 𝑃+𝑞+ ∈ H̄ ⊂ R4. The scaling
√︁

1 − ∥𝑞−∥2

ensures that the sum 𝑷+𝒒+ + 𝑷−𝒒− is a unit-quaternion i.e. ∥𝒒+∥ =
√︁

1 − ∥𝒒−∥2 where ∥𝑷+𝒒+∥ = ∥𝒒+∥ since 𝑷+ is

orthogonal. In contrast, the orthogonal matrix 𝑷− ∈ R4×2 parameterizes the two-dimensional manifold of quaternions

𝑷−𝒒− that changes the alignment 𝒅⊤𝑹(𝑷−𝒒−)𝒃. According to Proposition 2, we must limit the magnitude ∥𝒒−∥ ≤ sin 𝛼
2

of quaternions in this subspace to prevent the vectors 𝒅 and 𝒃 from aligning 𝒅⊤𝑹(𝑷−𝒒−)𝒃 ≥ cos𝛼. According to

Proposition 2, sufficiently small rotations can be obtained by sampling the disk 𝑞+ ∈ sin 𝛼
2 B

2 ⊂ R2 and lifting into the

quaternions 𝑃−𝑞− ∈ H̄ ⊂ R4.

According to Proposition 2, we can sample safe reference quaternions 𝒓 = 𝑷+𝒓+ + 𝑷−𝒓− ∈ Q by sampling the

disk 𝒓+ ∈ sin(𝛼/2)B2 and the circle 𝒓+ ∈
√︁

1 − ∥𝒓−∥2S1. Thus, to create a grid of reference quaternions 𝒓𝑖 ∈ Q, we

need to grid the planar disk sin(𝛼/2)B2 ⊂ R2 and planar circle sin(𝛼/2)B2 ⊂ R2. The naive method for gridding the

planar disk sin(𝛼/2)B2 ⊂ R2 is to uniformly grid its polar coordinates i.e. radius and angle. However, this creates

a non-uniform grid 𝒓−,𝑖 that is dense near the origin and sparse near the boundary of the disk. Instead, we will grid

the disk using the process demonstrated by Fig. 1. First, we inscribe the planar disk sin(𝛼/2)B2 ⊂ R2 by a regular

n-sided polygon. The regular n-sided polygon is then divided into 𝑛 triangles. These triangles can then be sub-divided

into a triangular mesh to produce a uniform gird on the planar disk. Each of the grid points shown Fig. 1 represents a

sampling of 𝒓− ∈ sin(𝛼/2)B2 ⊂ R2. Gridding the
√︁

1 − ∥𝒓−∥2S1 ⊂ R2 to sample 𝒓+ ∈ R2 is straightforward since we

can uniformly grid the angles [0, 2𝜋) to produce uniformly distributed samples 𝒓+,𝑖 . The reference quaternions are

then given by 𝒓𝑖 = 𝑷+𝒓+,𝑖 + 𝑷−𝒓−,𝑖 ∈ H̄ according to Proposition 2. Although this parameterization does not provide a

uniform gridding of the keep-in cone, it can be easily modified for this purpose [52].
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(a) (b) (c) (d)

Fig. 1 (a) Non-uniform grid produced by gridding the polar coordinates. (b) Inscription of the planar disk by a
octagon. (c) Triangular mesh on a triangular slice of the octagon. (d) Resulting uniform mesh.

The same search-graph G = (I,E) will be used for each of our experiments where the references 𝒓𝑖 for 𝑖 ∈ I were

generated using the procedure above. The keep-in cone (5) requires that the spacecraft 𝑧-axis 𝒃 = (0, 0, 1) should be

aligned with the inertial 𝑧-axis 𝒅Q = (0, 0, 1) within an angle of 𝛼Q = 20◦. We inscribed the planar disk sin(10◦)B2 ⊂ R2

by a 8-sided octagon shown in Fig. 1(b). For each of the 8 resulting triangles, we produce a uniform triangular mesh

with 496 vertices. This produced a uniform sampling for 𝒓−,𝑖 ∈ R2. For the keep-in cone parameters 𝒃 = (0, 0, 1)

and 𝒅Q = (0, 0, 1), the eigenvector matrix 𝑷− in (8) maps the grid-points 𝒓−,𝑖 to quaternions 𝒓 = 𝑷+𝒓+,𝑖 + 𝑷−𝒓−,𝑖 ∈ H̄

representing rotations about the 𝑥-axis and 𝑦-axis of the spacecraft. The grid-points 𝒓+,𝑖 ∈
√︁

1 − ∥𝒓−∥2S1 will be

mapped by 𝑷+ in (8) to quaternions representing rotations about the 𝑧-axis of the spacecraft. Since our experiments

did not require large rotations about the 𝑧-axis, we uniformly gridded a 10◦ arc of the circle
√︁

1 − ∥𝒓−∥2S1 with 1◦

increments, rather than the entire circle.

2. Search Graph Edges

The edges (𝑖, 𝑗) ∈ E of the graph G = (I,E) indicate that the state 𝒙(𝑡) = (𝒒(𝑡),𝝎(𝑡)) of the spacecraft dynamics (1)

will enter the safe set O 𝑗 while tracking the 𝑖-th reference 𝒓𝑖 ∈ H̄ without leaving the current safe set O𝑖 (see Line 5 of

Algorithm 1). This will occur if the equilibrium state (𝒓𝑖 , 0) ∈ H̄ × R3 is contained (𝒓𝑖 , 0) ∈ int(O 𝑗 ) in the interior

int(O 𝑗 ) of the 𝑗-th PI set O 𝑗 . This can be efficiently checked using the expression

|𝒓⊤𝑖 𝒓 𝑗 | > 1 − 1
2 𝜌

2
𝑖 (11)

for 𝑖, 𝑗 ∈ I. This condition follows directly from substituting 𝒒 = 𝒓 𝑗 and 𝝎 = 0 into the Lyapunov function (2).

According to (6), increasing the level 𝜌2
𝑖
∈ (0, 2) will produce a larger PI set O𝑖 , increasing the connectivity (5) of the

graph, but also increasing the chance of collision 𝑪O𝑖 ∩ K𝑘 ≠ ∅ with an obstacle K𝑘 .

Note that in general the graph G = (I,E) has directed edges since the levels are not necessarily identical 𝜌𝑖 ≠ 𝜌 𝑗 i.e.

(𝒓𝑖 , 0) ∈ int(O 𝑗 ) ⇏ (𝒓 𝑗 , 0) ∈ int(O𝑖). For the search-graph G = (I,E) used in the experiments we used a uniform level
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𝜌2
𝑖
= 2 − 2 cos(2◦) for all PI sets (6). The search-graph used in the experiments has 3, 930 nodes and 416, 660 edges

requiring 6.69 megabytes to store.

IV. Experimental Results
In this section, we present experimental result demonstrating the ISMP for spacecraft attitude motion planning.

A. Experimental Setup and Methodology

Experimental evaluation of the ISMP was conducted using the Air Force Research Laboratory (AFRL) Space

Vehicles Directorate’s large spherical air-bearing spacecraft simulator, ReBEL (Resilient Bus Experimental Laboratory).

AFRL has operated such spacecraft simulators since the 1980s to investigate a wide range of topics including fault

detection and isolation algorithms and robust nonlinear controls [37, 38]. The ReBEL platform uses AFRL heritage

hardware from the Advanced Structural Technology Research Experiment (ASTREX) [53], one of AFRL’s first spacecraft

emulators. ReBEL uses ASTREX’s 18.9-in-diameter spherical air bearing which is capable of supporting loads of up to

15,000 lbs [38]. ReBEL provides approximately ±35 degrees of motion about the horizontal axes and unconstrained

rotation about its vertical axis. For the safety of the experimental platform, we enforce a tighter 20◦ < 35◦ keep-in

cone constraint since over-rotation can cause the support structure to collide with the air bearing which could damage

the platform see Figure 2. The moment-of-inerta 𝐽 of the platform can be estimated using standard methods from

literature [54].

Fig. 2 AFRL ReBEL Spacecraft Simulator

The experiments used existing systems on the ReBEL testbed without the need for specialized hardware or software.
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The ReBEL testbed uses an array of 6 CMGs in a rooftop configuration for attitude actuation. A 6-CMG roof array

configuration contains no elliptic internal singularities and are, therefore, able to achieve a non-singular solution internal

to the angular momentum space at every point by leveraging intelligent steering laws [37]. The platform makes use of a

Moore-Penrose Inverse steering law for allocating actuator commands to achieve the desired torque; however, the triplet

steering-law can be used to ensure no singularities can occur. For this experiment, the desired torque was specified

by the quaternion controller (1c). The orientation and angular velocity of the platform are directly measured using

a motion capture system and inertial measurement unit, respectively. The ReBEL platform has software to fuse and

smooth the raw sensor measurements.

Three experimental scenarios were setup and conducted to test the ISMP on the attitude spacecraft simulator.

B. Illustrative Scenario 1: Stopping

(a) (b) (c)

Fig. 3 The planned (a) and actual (b) paths of the 𝑧-axis of the spacecraft during the stopping scenario. This
scenario shows that the ISMP can ensure constraint satisfaction despite overshoot. (c) The planned and actual
path of the 𝑧-axis is shown in three-dimensions.

In this experimental scenario, the spacecraft must perform a re-orientation maneuver that causes it to move towards

a keep-out cone K as shown in Fig. 3(a). The ISMP must manage the momentum of the spacecraft to prevent it from

overshooting into the keep-out cone. The spacecraft starts from the equilibrium state 𝒙(0) = (𝒒(0),𝝎(0)) where it is

initial stationary 𝝎(0) = 0 and in the home-orientation 𝒒(0) = 1. The target orientation is a 10◦ rotation about the

𝑥-axis 𝒓∞ = (cos 5◦, 0, sin 5◦, 0) ∈ H̄. During the maneuver, the 𝑧-axis 𝒃 = (0, 0, 1) of the spacecraft must be kept out

of a single keep-out cone K with cone angle 𝛼 = 5◦ inertia-frame axis 𝒅 = (0,−0.2024, 0.9563). The inertial-axis 𝒅

corresponds to rotating the inertia 𝑧-axis (0, 0, 1) about the 𝑥-axis by 17◦. Thus, a 2◦ overshoot will cause the spacecraft

to enter the keep-out cone. This is a plausible threat due to the high-inertia of the spacecraft emulator. The experimental

scenario is shown in Fig. 3(a) with the planning graph described in Section III.B. For clarity of the plots, the body-frame
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axis 𝒃 = (0, 0, 1) will always be the 𝑧-axis of the spacecraft, but in practice this can be any vector.

Theorem 1 was applied 3, 930 times to check whether each of the |I| = 3, 930 PI sets O𝑖 collides 𝑪O𝑖 ∩ K1 ≠ ∅

with the single obstacles K1. Performing these collision checks required 0.525 milliseconds on a 2019 MacBook

Pro with a 2.6 GHz 6-Core Intel Core i7 process and 16GB of RAM. After removing the unsafe nodes, the reduced

search-graph shown in Fig. 3(a) has 3, 535 nodes and 370, 687 edges. This reduced search-graph was searched using

Dijkstra shortest-path algorithm implemented in MATLAB’s shortestpath function. The graph search required 9.4

milliseconds to produced a sequence {𝒓𝜎𝑘
}8
𝑘=1 ⊂ I of 8 references 𝒓𝜎𝑘

∈ H̄ that safely guides the spacecraft from the

initial state 𝒙0 = (𝒒0, 0) ∈ H̄ × R3 to the target equilibrium state 𝒙∞ = (𝒓∞, 0) ∈ H̄ × R3. The planned path for the

𝑧-axis of the spacecraft is shown in Fig. 3(a).

Following Algorithm 1, the reference 𝒓𝜎𝑘
tracked by the controller (1c) is updated 𝑘 ← 𝑘 + 1 each time the

spacecraft (1) state 𝒙(𝑡) = (𝒒(𝑡),𝝎(𝑡) ∈ H̄ × R3 enters the next PI set O𝜎𝑘+1 ⊆ H̄ × R3. The resulting trajectory traced

by the 𝑧-axis of the spacecraft is shown in Fig. 3(b). Note that the actual trajectory 𝑧(𝑡) of the 𝑧-axis of the spacecraft

does not perfectly track the planned path 𝑧 ⊗ 𝒓𝑖 . However, the ISMP avoids the keep-out cone K since the trajectory

remains inside 𝑧(𝑡) ∈ O𝜎𝑘
the corridor {O𝜎𝑘

}8
𝑘=1 ⊂ I of CAPI sets.

Fig. 4 State (𝒒(𝑡),𝝎(𝑡)) and torque 𝝉(𝑡) trajectories for the spacecraft in the stopping experimental scenario.

Fig. 4 shows the state and input trajectories of the spacecraft versus time. Fig. 4 shows the vector-part of the

quaternion 𝒒𝑣 (𝑡), angular velocity 𝝎(𝑡), and torque 𝝉(𝑡), respectively. Since the spacecraft maneuvers are relatively

small < 20◦, we only show the vector-part 𝒒𝑣 (𝑡) of the quaternion since 𝒒0 (𝑡) ≈ 1. The ISMP plans a series of small

intermediate set-point changes that eliminate overshoot and therefore prevent the spacecraft state from leaving the PI

sets O𝜎𝑘
. This demonstrates the main advantage of the ISMP. Since the spacecraft dynamics are incorporated into the
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planning process through the use of PI sets, we can prevent the momentum of the high-inertia spacecraft from carrying

it into a keep-out cone.

C. Illustrative Scenario 2: Slalom

(a) (b) (c)

Fig. 5 The planned (a) and actual (b) paths of the 𝑧-axis of the spacecraft during the slalom scenario. This
scenario shows that the ISMP can ensure that the spacecraft momentum is reversed to avoid the second keep-out
cone. (c) The planned and actual path of the 𝑧-axis is shown in three-dimensions.

In this experimental scenario, the spacecraft must perform a slalom maneuver to avoid a pair of keep-out cones

K1,2, as shown in Fig. 5(a). This maneuver is analogous to a slalom (or double-lane-change) maneuver, which

is a standard experimental test for evaluating the handling of a car. This test scenario will require the ISMP to

reverse the momentum of the spacecraft to transition from avoiding the first keep-out cone to the second. The

spacecraft starts from the equilibrium state 𝒙(0) = (𝒒(0),𝝎(0)) where it is initial stationary 𝝎(0) = 0 and rotated

−20◦ about the 𝑥-axis 𝒓0 = (cos 10◦, 0,− sin 10◦, 0) ∈ H̄. The target orientation is a +20◦ rotation about the 𝑥-axis

𝒓∞ = (cos 10◦, 0, sin 10◦, 0) ∈ H̄. Thus, the spacecraft will slew 40◦ total.

During the maneuver, the 𝑧-axis 𝒃1,2 = (0, 0, 1) of the spacecraft must be kept out of two keep-out cones K1,2. For

the first keep-out cone, the inertia-frame vector is 𝒅1 = (0.1040,−0.1801, 0.9781). This corresponds to rotating the

inertia 𝑧-axis (0, 0, 1), +12◦ about the inertia 𝑥-axis (1, 0, 0) and then 30◦ about the inertia 𝑧-axis (0, 0, 1). The second

keep-out cone has the inertia-frame vector is 𝒅2 = (−0.1040, 0.1801, 0.9781). This corresponds to rotating the inertia

𝑧-axis (0, 0, 1), −12◦ about the inertia 𝑥-axis (1, 0, 0) and then 30◦ about the inertia 𝑧-axis (0, 0, 1). Both keep-out cones

have an angle of 8◦. The experimental scenario is shown in Fig. 5(a) with the planing graph described in Section III.B.

Theorem 1 was applied 7, 860 times to check for collisions 𝑪O𝑖 ∩ K1 ≠ ∅ between the |I| = 3, 930 PI sets O𝑖

and the 2 the keep-out cones K1,2. Performing these collision checks required a total of 1.022 milliseconds. After

removing unsafe nodes, the reduced search-graph shown in Fig. 3(a) has 1, 644 nodes and 146, 842 edges. This reduced
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search-graph was searched using Dijkstra shortest-path algorithm requiring 20.0 milliseconds and producing a sequence

{𝒓𝜎𝑘
}29
𝑘=1 ⊂ I of 29 references 𝒓𝜎𝑘

∈ H̄ that safely guides the spacecraft from the initial state 𝒙0 = (𝒒0, 0) ∈ H̄ × R3 to

the target equilibrium state 𝒙∞ = (𝒓∞, 0) ∈ H̄ × R3.

Following Algorithm 1, the reference 𝒓𝜎𝑘
tracked by the controller (1c) is updated 𝑘 ← 𝑘 + 1 each time the

spacecraft (1) state 𝒙(𝑡) = (𝒒(𝑡),𝝎(𝑡) ∈ H̄ × R3 enters the next PI set O𝜎𝑘+1 ⊆ H̄ × R3. Thus, the ISMP creates a

reference trajectory 𝑟 (𝑡) = 𝒓𝜎𝑘
consisting of a sequence of steps. Since the reference 𝒓𝜎𝑘

is constantly updating, the

system has transient tracking errors resulting in imperfect tracking of the planned path. However, the trajectory remained

inside 𝑧(𝑡) ∈ O𝜎𝑘
the corridor {O𝜎𝑘

}29
𝑘=1 of CAPI sets despite transient tracking errors. Thus, the ISMP prevented the

spacecraft from entering the keep-out cones K1,2.

Fig. 6 State (𝒒(𝑡),𝝎(𝑡)) and torque 𝝉(𝑡) trajectories for the spacecraft in the slalom experimental scenario.

Fig. 6 shows the state and input trajectories of the spacecraft versus time. Fig. 6 shows the vector-part of the quaternion

𝒒𝑣 (𝑡), angular velocity 𝝎(𝑡), and torque 𝝉(𝑡), respectively. Since the spacecraft maneuvers are relatively small < 20◦, we

only show the vector-part 𝒒𝑣 (𝑡) of the quaternion since 𝒒0 (𝑡) ≈ 1. Although the initial 𝒓0 = (cos 10◦, 0,− sin 10◦, 0) ∈ H̄

and target 𝒓∞ = (cos 10◦, 0, sin 10◦, 0) ∈ H̄ orientations are only rotations about the 𝑥-axis, the ISMP rotates the

spacecraft about the 𝑦-axis to avoid pointing the 𝑧-axis at the keep-out cones. First, the spacecraft need perform a

negative rotation about 𝑦-axis and then a positive rotation. This is a difficult maneuver since the ISMP must impart a

high angular momentum in one direction and then reverse before entering the second keep-out cone.
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(a) (b) (c)

Fig. 7 The planned (a) and actual (b) paths of the 𝑧-axis of the spacecraft during the slalom scenario. This
scenario shows that the ISMP can ensure that the spacecraft momentum is reversed to avoid the second keep-out
cone. (c) The planned and actual path of the 𝑧-axis is shown in three-dimensions.

D. Challenging Scenario - Maze

In this experimental scenario, the spacecraft must escape from a ‘maze’ of keep-out cones. The objective of this

experiment is to provide an unrealistically difficult scenario to stress-test the capabilities of the ISMP. The spacecraft

starts from rest 𝝎(0) = 0 at the home-position 𝒒0 = 1. The target orientation is a 20◦ rotation about the 𝑥-axis

𝒓∞ = (cos 10◦, 0, sin 10◦, 0) ∈ H̄. The 𝑧-axis of the spacecraft must avoid 14 keep-out cones randomly placed in the

keep-in cone Q with keep-out angles 𝛼 = 2◦. Again, the body-frame axis 𝒒 = (0, 0, 1) is the 𝑧-axis of the spacecraft in

order to make our figures clearer. The experimental scenario is shown in Fig. 7(a) with the planing graph described in

Section III.B.

Theorem 1 was applied 55, 020 times to check for collisions 𝑪O𝑖 ∩ K1 ≠ ∅ between the |I| = 3, 930 PI sets O𝑖 and

the 14 keep-out conesK . Performing these collision checks required a total of 9.08 milliseconds. After removing unsafe

nodes, the reduced search-graph shown in Fig. 3(a) has 1, 132 nodes and 70, 942 edges. This reduced search-graph was

searched using Dijkstra shortest-path algorithm requiring 19.8 milliseconds and produced a sequence {𝒓𝜎𝑘
}32
𝑘=1 ⊂ I

of 32 references 𝒓𝜎𝑘
∈ H̄ that safely guides the spacecraft from the initial state 𝒙0 = (𝒒0, 0) ∈ H̄ × R3 to the target

equilibrium state 𝒙∞ = (𝒓∞, 0) ∈ H̄ × R3. The planned path for the 𝑧-axis of the spacecraft is shown in Fig. 7(a). The

trajectory 𝑧(𝑡) traced by the 𝑧-axis of the spacecraft is shown in Fig. 7(b).

Again, the ISMP creates a reference trajectory 𝑟 (𝑡) = 𝒓𝜎𝑘
consisting of a sequence of steps resulting in imperfect

tracking due to the transient tracking errors. However, the trajectory remained inside 𝑧(𝑡) ∈ O𝜎𝑘
the corridor of CAPI

sets {O𝜎𝑘
}29
𝑖=1 despite tracking errors and therefore avoided the keep-out cones.

Fig. 8 shows the state and input trajectories of the spacecraft versus time. Fig. 8 shows the vector-part of the
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Fig. 8 Maze Scenario - Shows ISMP can deal complicated geometry

quaternion 𝒒𝑣 (𝑡), angular velocity 𝝎(𝑡), and torque 𝝉(𝑡), respectively. This scenario was challenging since the ISMP

needed to constantly change orientation of the spacecraft to avoid the 14 of keep-out cones.

In this experimental scenario, the ISMP had difficulty switching between references 𝒓16 and 𝒓17. This was caused

by a numerical issue we identified with the (literature [47, 48]) Lyapunov function (2) used by the ISMP to determine

when to switch references. Switching references requires that the geodesic angle cos−1 𝑒0 = cos−1 𝒒(𝑡)⊤𝒓𝜎𝑘+1 between

the actual 𝒒(𝑡) and desired 𝒓𝑖 orientations is sufficiently small | cos−1 𝑒0 | ≤ 2◦. Alternatively, the Lyapunov function (2)

evaluates the cosine of this condition i.e. 𝑒0 ≥ cos 2◦. Although these conditions are theoretically equivalent, they are

not numerically equivalent. The slope of the cosine-function is flat at the origin, which increases its susceptibility to

noise. In particular, the ISMP only switches when 𝑒0 ≈ 1 to three digits of precision i.e. 𝑒0 ≥ cos 2◦ = 0.9994. In

future work, we will rectify this numerical issue by deriving an novel Lyapunov function that certifies the stability of the

closed-loop systems (1) while providing better numerical properties for the switching condition.

V. Conclusions
This paper experimentally validated the ISMP for the spacecraft constrained attitude motion planning problem.

We demonstrated that we can guide the attitude of a spacecraft from an initial state 𝒙(0) = (𝒒(0),𝝎(0)) to a desired

equilibrium 𝒙∞ = (𝒓∞, 0) while avoiding keep-out cones and respecting other constraints on the states and inputs of the

spacecraft. We described PI sets (6) for the closed-loop spacecraft dynamics (1). We presented methods for ensure that

these PI sets O are safe (output admissible) and satisfy angular velocity and torque constraints. We described a method

for gridding reference quaternions from a keep-in cone. Finally, we presented experimental results that validate the
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ISMP for spacecraft attitude motion planning. These experimental results show that by incorporating the spacecraft

dynamics into the motion planning process, the ISMP can manage the high-inertia of the spacecraft to avoid collisions

with keep-out cones.
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