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Abstract—Lossy compression has been employed to reduce
the unprecedented amount of data produced by today’s large-
scale scientific simulations and high-resolution instruments. To
avoid loss of critical information, state-of-the-art scientific lossy
compressors provide error controls on relatively simple metrics
such as absolute error bound. However, preserving these metrics
does not translate to the preservation of topological features, such
as critical points in vector fields. To address this problem, we
investigate how to effectively preserve the sign of determinant in
error-controlled lossy compression, as it is an important quantity
of interest used for the robust detection of many topological
features. Our contribution is three-fold. (1) We develop a generic
theory to derive the allowable perturbation for one row of a
matrix while preserving its sign of the determinant. As a practical
use-case, we apply this theory to preserve critical points in vector
fields because critical point detection can be reduced to the result
of the point-in-simplex test that purely relies on the sign of
determinants. (2) We optimize this algorithm with a speculative
compression scheme to allow for high compression ratios and effi-
ciently parallelize it in distributed environments. (3) We perform
solid experiments with real-world datasets, demonstrating that
our method achieves up to 440% improvements in compression
ratios over state-of-the-art lossy compressors when all critical
points need to be preserved. Using the parallelization strategies,
our method delivers up to 1.25× and 4.38× performance speedup
in data writing and reading compared with the vanilla approach
without compression.

Index Terms—High-performance computing, lossy compres-
sion, sign of determinant, critical points

I. INTRODUCTION

Today’s scientific applications are producing data at an
unprecedented speed and amount. For a typical example,
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climate simulations with 1 km × 1 km resolution generate
over 200 TB of data every 16 seconds [1]. Those data quickly
occupy the storage capacity and/or network bandwidth, leading
to severe problems in data storage and transmission.

To address such data challenges, error-controlled lossy com-
pressors [2]–[6] are proposed and aggressively developed in
the last decade to reduce the size of scientific data while main-
taining accuracy. Featuring high reduction ratios compared
with lossless compressors and better fidelity than classic lossy
compressors, these compressors are widely used in scientific
applications to solve diverse problems, including mitigating
storage requirement [7], improving I/O performance [8], and
accelerating computation [9].

In this work, we aim to preserve the sign of determinant
during lossy compression and leverage this theory to preserve
critical points in vector fields. In comparison, existing error-
controlled lossy compressors preserve the quality of data via
general metrics such as absolute errors and l2 errors, but few
of them provide the preservation of topological information.
Sign of determinant is an important quantity of interest in
computing geometry, which is used to express many predicates
such as convex hulls [10]. It has also been used to detect topo-
logical features, including isosurface and critical points [11].
Critical points are defined as the locations where the vector
field vanishes, and they are the key constituents of vector
field topology that is essential for flow visualizations [12]–
[15]. While our main goal is to preserve critical points that
are essential for visual analysis, the impact extends beyond
that as critical points usually represent important physical
phenomena such as eddies in ocean [16], cyclones in climate



applications [17], and vortices in fluid dynamics [18].
In the visualization community, various topological infor-

mation, such as locations and types of critical points, should
be preserved during the lossy compression to ensure accurate
analytics, while these properties are often overlooked by
existing lossy compressors, leading to altered topology in
the reconstructed data. Although attempts have been made to
preserve topology in vector field compression, the existing
works are either impractical or non-general. For example,
iterative methods such as Delaunay simplification [19] lead
to unbounded running time; the clustering methods [20] work
only for 2D vector fields. A variation of error-controlled lossy
compression was also proposed to preserve the locations and
types of critical points [21]. This approach derives sufficient
error bounds for each vertex based on how critical points are
extracted and leverages those derived error bounds to guide
compression. However, it usually over-preserves data as the
derived error bounds are sufficient but unnecessary, leading
to suboptimal compression ratios. In addition, its error bound
derivation is based on critical point extraction via numerical
methods, which may have ambiguity issues due to the inexact
floating-point arithmetics.

In this work, we propose a novel method to preserve the
sign of determinant during lossy compression and apply it to
preserve topological features such as critical points. Our com-
pression framework is based on the coupled scheme in [21] but
heavily extends it for high robustness, quality, and scalability.
To address the issue of loose sufficient error bounds in [21],
we propose a novel concept, namely speculative compression,
to trade off computation performance for high compression
ratios. In addition, we propose two parallelization strategies
to preserve topological features – critical points in border
cells constituted by vertices from multiple processors. To the
best of our knowledge, this is the first attempt to leverage
error-controlled lossy compressors for topology preservation
in distributed environments. Specifically, our contributions are
summarized as follows.

• We develop a general theory to preserve the sign of
determinant during lossy compression, which can be used
to preserve topological features extensively. As a use
case, we apply it to preserve critical points in vector field
compression.

• We implement a compression framework using the de-
rived theory based on the coupled compression scheme
proposed in [21]. We also propose a speculative com-
pression scheme that features a highly flexible balance
between compression ratios and speed.

• We carefully parallelize our algorithm to achieve critical
point preserving lossy compression in distributed environ-
ments. In particular, we propose both a simple method
with no communication cost and an optimized method
that provides better compression ratios than the simple
one with minimal communication overhead.

• We evaluate our method using four real-world datasets
from climate and computational fluid dynamics (CFD)
simulations. Experiments demonstrate that the proposed

method faithfully preserves the outcome of critical point
extraction while providing a compression ratio up to 4.4×
higher than the state of the arts. This leads to 4.38×
speedup on data reading performance when evaluated
with 768 GB data on a cluster using 4, 096 cores.

The remaining sections are organized as follows. Section II
discusses the background and related works. Section III for-
mulates the research problem and provides an overview. In
Section IV, we propose the error bound derivation theory for
robust critical point preservation. The detailed implementation,
along with the speculative compression scheme, is presented
in Section V. In Section VI, we demonstrate our parallelization
strategies. In section VII, we present and analyze the evalua-
tion results. Finally, we conclude our work with a vision for
future work in Section VIII.

II. BACKGROUND AND RELATED WORKS

In this section, we review the background for critical
point extraction in vector fields and the literature about lossy
compression. Without loss of generality, we assume piecewise
linear interpolation in each cell, which is widely used in the
community.

A. Sign of determinant and robust critical point extraction

The sign of determinant is an important quantity of data
that can be used as algorithmic solutions to a wide range of
geometric problems. Typical applications that rely on the sign
of determinant include point-in-polygon test [22], hyperplane
in Euclidean space [23], nonvertical hyperlanes [24], and
construction of convex hulls [10]. In the following, we only
introduce the algorithm that leverages the sign of determinant
for robust critical point extraction in vector fields because of
limited space, and refer readers to [25] for a more detailed
treatment.

A critical point is defined as the location where the vector
field vanishes. Critical points can be extracted by numerical
methods, which can be reduced to finding zero points in each
cell where the vector field is linearly interpolated according to
data values on the vertices of the cell. In a 2D case, this can be
formulated as solving the barycentric coordinates (µ0, µ1, µ2)
in the equation below:[

u0 u1 u2

v0 v1 v2

]µ0

µ1

µ2

 = 0 and µ0 + µ1 + µ2 = 1, (1)

where (ui, vi) are the vectors in each vertex. A critical point
is detected in the cell if 0 ≤ µk ≤ 1 holds for any k ∈
{0, 1, 2}; otherwise, there would be no critical points in the
cell. While this method provides a means for critical point
detection and extraction, it may lead to ambiguities due to the
inexact, and thus unstable, nature of floating-point arithmetic:
results of the detection could change with the order of the
vertices. For instance, one critical point on the edge of two
cells may be extracted as two separate critical points in the
two cells or no critical points in both cells (see [11] for a
concrete example). This will cause inconsistent results, such



as broken or branched traces in critical point tracing, which is
undesired in most cases.

To address this issue, prior research [11], [26] has suggested
the use of Simulation of Simplicity (SoS) [25] for robust
critical point detection and tracking. This is based on an
important lemma in [26]: a simplex contains a critical point if
and only if the origin 0 lies in the convex hull of the vectors
at the simplex’s vertices. As such, the detection of the critical
point in a cell reduces to a point-in-simplex test with x = 0 as
the target point, which is a well-defined problem that can be
solved by computing the orientation. As shown in Algorithm 1,
we can compute the orientation of the simplex and compare
it with the orientation computed after changing one of the
vertices to the target point 0. If all of the orientations have
the same sign, 0 is regarded as inside the simplex, so a critical
point is detected; otherwise, it would be outside of the simplex,
and no critical points will be reported.

If a critical point is detected in a cell, it can be extracted
using the numerical methods mentioned above. In addition,
critical points are categorized into different types, each repre-
senting a specific topology, based on the signs and existence
of imaginary parts in the eigenvalues of their Jacobian matrix.
More details about the types can be found in [27], [28].

Algorithm 1 Point-in-simplex test [25]
Input: Point x and simplex S = {x0,x1, . . . ,xn}.
Output: True if x is in S and false otherwise.

1: s← Orientation(x0,x1, . . . ,xn) ▷ compute the
orientation for S

2: for i ← 0 to n do
3: (x′

0,x
′
1, . . . ,x

′
n) = (x0,x1, . . . ,xn)

4: x′
i ← x ▷ replace the i-th data with x

5: si ← Orientation(x′
0,x

′
1, . . . ,x

′
n) ▷ compute the

new orientation
6: if s ̸= si then ▷ x is not in S if the orientations do

not align
7: return false
8: end if
9: end for

10: return true ▷ x is in S if all orientations align

B. Lossy compression for scientific data

Since the lossless compressors [29]–[31] fail to provide
satisfactory compression ratios for scientific data, and the
classic lossy compressors [32], [33] may lead to unbounded
errors, error-controlled lossy compressors are considered as a
viable option for scientific data compression. Error-controlled
lossy compressors can be generally classified into two cat-
egories, namely prediction-based ones and transform-based
ones, depending on how data are decorrelated. Prediction-
based compressors such as SZ [2] and FPZIP [3] decorrelate
data via certain prediction methods, while transform-based
compressors such as ZFP [4] and MGARD [5] do that
leveraging specific transforms. The decorrelated data will then
be quantized to a small set of discrete values for a better

compressibility while controlling the data distortion. After
that, the quantized data will be fed into lossless encoders such
as Huffman [34] and ZSTD [35] to achieve de-facto shrinking
of data size. Despite multiple error controls (including those
for certain quantities-of-interest [36], [37]) provided by these
compressors, most of them are topology-agnostic thus failing
to preserve topological information such as critical points.

Vector field compression has also been studied for years to
reduce data size while preserving critical topology. Most of
these approaches, however, are subject to iterative operations,
suffering from long execution time by nature. This includes
the iterative clustering method, which was used in [20] for
compressing 2D vector fields, the iterative collapsion of edges
[38], and an iterative segmentation-based approach [39]. De-
launay simplification was used in [19] to compress vector
fields based on edge collapsing, but it does not explicitly
preserve the topology.

The most relevant research to the proposed work is [21],
which uses a variation of error-bounded lossy compression
to reduce the size of vector fields while preserving criti-
cal points. This approach derives sufficient vertex-wise error
bounds based on how critical points are extracted, ensuring the
preservation of critical points when the derived error bounds
are enforced at every vertex. Such enforcement is ensured
by performing linear-scaling quantization [7], which in turn
guarantees the preservation. Note that the derived error bounds
need to be aggressively quantized for high compression ratios
and stored for usage during decompression. Although this
approach provides an elegant way for critical point preserving
lossy compression, it has several limitations. First, it can only
preserve critical points extracted by numerical methods, which
may have ambiguous issues themselves due to the inexact
floating-point arithmetics [11], [26]. Second, it leads to subop-
timal compression ratios in general because the derivation only
provides sufficient yet not necessary error bounds. Third, it is
designed for compression with a single processor, which may
not directly generalize to distributed cases. In this paper, we
carefully address all these three limitations by proposing a new
error bound derivation theory, a novel speculative compression
scheme, and two effective parallelization strategies detailed in
the later sections.

III. PROBLEM FORMULATION AND DESIGN OVERVIEW

In this section, we formulate our research problem, followed
by an overview of the proposed compression framework.

We follow [21] to define the false cases in critical point
preservation. Specifically, we have three false cases, namely
false positive (FP), false negative (FN), and false type (FT). FP
occurs if a critical point is detected in a cell with decompressed
data but does not exist with the original data. FN indicates
that a critical point is identified in a cell with the original data
but absent with the decompressed data. At last, FT means that
while the critical point is present in a cell with both the original
data and decompressed data, it has two different types. For
instance, FT occurs when an attracting node in the original
data becomes a repelling one in the decompressed data. If



there is a matched pair of critical points in the original and
decompressed data, we call it true positive (TP).

With these evaluation metrics for critical points, we define
the research objective as follows. Basically, we want to achieve
as high compression ratios as possible while enforcing user-
specified absolute error bound τ and preserving all the critical
points. Mathematically, these two constraints can be formu-
lated as ||d − d’||L∞ ≤ τ and card(FP ) = card(FN) =
card(FT ) = 0, where d and d′ are the original and de-
compressed data, respectively, and card is the cardinality that
indicates the number of false critical points. Note that we also
care about the compression and decompression throughput, but
we prioritize compression ratio because it is more important
in multiple use cases, such as mitigation of storage pressure
and transmission across wide area networks.

We first review the coupled compression scheme proposed
in [21], which is the pioneering work to leverage error-
controlled compression for critical point preservation. This
prior compression scheme inherits the traditional prediction-
based compression pipeline [40], but adds an error bound
derivation module to compute a sufficient error bound, which
guarantees the preservation of critical points extracted by
numerical methods. This error bound is then fed into a linear-
scaling quantizer [7], to ensure the error of the target data point
is less than the bound. As its error bound derivation module is
specifically tied to numerical methods, it does not generalize to
other critical point detection methods directly. In other words,
it cannot provide guaranteed preservation toward critical points
detected by the point-in-simplex test, which is more widely
used than numerical methods due to its robustness. Further-
more, by adopting the sufficient but not necessary error bounds
to guide the compression, it only provides limited compression
ratios (less than 10× in most cases) that are usually insufficient
for practical use. Last but not least, it offers no parallel support,
and a direct parallelization with domain decomposition will
lead to failures in preserving critical points in border cells
constituted by vertices from different processors.

Proposed modules Existing modules

domain 
decomposition

Ghost-aware 
error bound derivation

Lossless compression  
for border elements

lossless 
compressor

speculative 
quantizationprediction

overwrite with  
decompressed value

error bound 
derivation Sequential compression

Parallelization

Fig. 1. Overview of the proposed compression framework.

We now present the overview of our framework in Fig. 1,

which is built on the compression scheme mentioned above
but heavily extends the functionality to preserve critical points
detected by robust methods, provide a substantial improvement
on compression ratios, and enable efficient parallelization.
We highlight our proposed modules compared to the prior
compression scheme using cyan boxes. Specifically, we pro-
pose a new error bound derivation module inherited from the
sign of determinant preservation, which is well suited for
preserving both critical points and other features. We then
adopt a speculative quantization module that allows for flexible
trade-offs between compression ratios and speed, making it
adaptable to a wide range of use cases. To preserve critical
points belonging to border cells in a distributed system, we
propose two novel modules which can complement each other
in different cases. The first module is a rather simple one,
which compresses border elements losslessly, and the other
one is driven by a parallelization strategy that integrates a
more effective compression method that performs error bound
derivation using ghost elements. These two modules have
different pros and cons in terms of compression ratios and
speed, thus, can be adopted in an adaptive fashion during
runtime.

IV. THEORETICAL FOUNDATION

In this section, we first derive the theories for preserving
the sign of determinant, which is the foundation for many
problems. After that, we show how to apply them to preserve
features using critical points in vector fields as a case study.

Theorem 1: Given the target (n + 1) × (n + 1) matrix Λ,
a sufficient absolute error bound to perturb the values in the
m-th row while preserving the sign of determinant is:

Ψ(Λ) =

{
0 when det(Λ) = 0

|det Λ|∑n
i=0 |detAmi| Otherwise

(2)

where Ami is the submatrix obtained by removing the m-th
row and the i-th column of Λ.

Proof:
We focus on proving the non-degenerative case since the de-

generative case holds automatically. Without loss of generality,
we assume that the last row (xn0, xn1, . . . , xnn) is perturbed
by an error εi in the position i such that ∀i, |εi| ≤ Ψ(Λ).
Then, the new determinant can be computed as follows:

detΛ′ =


x00 x01 · · · x0(n−1) x0n

x10 x11 · · · x1(n−1) x1n

...
...

. . .
...

...
xn0 + ε0 xn1 + ε1 · · · xn(n−1) + εn−1 xnn + εn


=

n∑
i=0

(−1)n+i(xni + εi) detAni

=
n∑

i=0

(−1)n+ixni detAni +
n∑

i=0

(−1)n+iεi detAni

= detΛ +
n∑

i=0

(−1)n+iεi detAni



When detΛ > 0, we have:
detΛ′ ≥ detΛ − ∑n

i=0 |εi||detAni| > detΛ −∑n
i=0 Ψ(Λ)|detAni| = detΛ− detΛ = 0.
When detΛ < 0, we have:
detΛ′ ≤ detΛ +

∑n
i=0 |εi||detAni| < detΛ +∑n

i=0 Ψ(Λ)|detAni| = detΛ − detΛ = 0. As such, detΛ
and detΛ′ always have the same sign, which corresponds to
the same orientation.

Lemma 1: If the last column of Λ is an all-one vector, the
sufficient bound can be optimized to:

Ψ(Λ) =

{
0 when det(Λ) = 0

|det Λ|∑n
i=0 |detAni| Otherwise

(3)

This theorem (and the lemma) identifies sufficient error
bounds to preserve the sign of determinants in general cases,
which directly leads to the following lemma and theorem for
feature preservation.

Lemma 2: A sufficient absolute error bound for preserving
the relative intersection position of a value f and an edge
(f0, f1) is:

Ψ(f0, f1; f) = min
(
Ψ(

[
f0 1
f 1

]
),Ψ(

[
f1 1
f 1

]
)
)

= min(|f − f0|, |f − f1|).
This reduces to the derivation theory for isosurface preser-

vation in [37]. In the following, we show that Theorem 1 can
be used to preserve critical points extracted from the robust
point-in-simplex test (see Algorithm 1), which is the focus of
this paper.

Theorem 2: A sufficient absolute error bound for the n-th
point xn in a (n + 1)-simplex S = {x0, x1, . . . , xn} (xi has
n components) to keep the result of critical point detection is:

Ψ(S) = min(Ψ(Λ), min
0≤i≤n−1

Ψ(Ain)) (4)

where Λ is the orientation matrix for S and Ani is the
submatrix obtained by removing the i-th row and the n-th
column of Λ.

Proof: Let Λi be the orientation matrix after replac-
ing xi = (xi0, xi1, · · · , xi(n−1)) with x = (0, 0, . . . , 0).
According to Algorithm 1, preserving the signs of s =
detΛ and si = detΛi is sufficient to preserve the out-
come of the point-in-simplex test for critical point detection.
Thus, a sufficient solution for this problem is Ψ(S) =
min(Ψ(Λ),min0≤i≤n−1 Ψ(Λi)). Meanwhile, we have:

detΛi =



x00 x01 · · · x0(n−1) 1
x10 x11 · · · x1(n−1) 1

...
...

. . .
...

...
x(i−1)0 x(i−1)1 · · · x(i−1)(n−1) 1

0 0 · · · 0 1
x(i+1)0 x(i+1)1 · · · x(i+1)(n−1) 1

...
...

. . .
...

...
xn0 xn1 · · · xn(n−1) 1


= (−1)n+i detAin

Therefore Ψ(Λi) = Ψ(Ain) and this completes the proof.

According to Theorem 2, we can directly derive sufficient
error bounds for preserving the result of point-in-simplex test
in 2D and 3D spaces using the following lemmas.

Lemma 3: A sufficient absolute error bound for preserving
the critical point test in a simplex S =

(
u0 v0
u1 v1
u2 v2

)
under a 2D

vector field while perturbing (u2, v2) is:

Ψ(S) = min
(
Ψ(

[ u0 v0 1
u1 v1 1
u2 v2 1

]
),Ψ([ u1 v1

u2 v2
]),Ψ([ u0 v0

u2 v2
])
)
. (5)

Lemma 4: A sufficient absolute error bound for preserving

the critical point test in a simplex S =

(
u0 v0 w0
u1 v1 w1
u2 v2 w2
u3 v3 w3

)
under a

3D vector field while perturbing (u3, v3, w3) is:

Ψ(S) = min(Ψ(

[ u0 v0 w0 1
u1 v1 w1 1
u2 v2 w2 1
u3 v3 w3 1

]
),Ψ(

[
u1 v1 w1
u2 v2 w2
u3 v3 w3

]
),

Ψ(
[
u0 v0 w0
u2 v2 w2
u3 v3 w3

]
),Ψ(

[
u0 v0 w0
u1 v1 w1
u3 v3 w3

]
)). (6)

Note that the error bounds provided in Lemmas 3 and 4 only
preserve the location of critical points (i.e., eliminating FN and
FP). As such, we losslessly compress all nodes of a cell when
a critical point is present. In addition, such error bounds keep
the signs of each determinant, which over-preserve FN cases
because the outcome of the point-in-simplex test will hold
when s ̸= si for any i (see line 6 in Algorithm 1). We relax
the error bounds for some special cases to accommodate this
situation. In particular, it is well-known that critical points will
not exist in a cell where at least one component of the vector
field for that cell has the same sign, so we revise the sufficient
error bounds accordingly, which is detailed in Algorithm 2 (to
be introduced in the next section).

V. IMPLEMENTATION AND OPTIMIZATIONS

A. Algorithm and implementation

As mentioned in Section III, we follow the coupled com-
pression scheme proposed in [21] to implement our algorithm.
The detailed steps are presented in Algorithm 2. The idea is to
derive the error bound and perform error-bounded compression
on the fly for each data point. Compared to that approach, our
key innovation is to leverage the new error bound derivation
mechanism proposed in the last section (line 5-17). In partic-
ular, we use Ψ(j) derived in Lemmas 3 and 4 to determine
the error bound for a data point with respect to any simplex
j containing that point (line 10). We also pre-compute the
existence of critical points for each cell (line 1-3) to avoid
re-computation in line 7. This is important for the proposed
method as the point-in-simplex test is more expensive than
the numerical methods. In addition, we perform relaxation of
the derived error bound when some components in a cell have
the same sign (line 11-15), which indicates no critical point
in the cell. This is done by evaluating the signs of all vertices
in the current cell for each component. Especially when the
condition holds for any component, we will relax to the error
bound to the maximal one between its current value and the
absolute value of the corresponding component at the current



vertex because the latter is sufficient to preserve the sign of
that component which ensures that no critical point will be
present in the decompressed data. After that, we follow the
algorithm in [21] to aggregate and quantize the derived error
bound, which is then used to quantize the original data and
compute the decompressed data for later use (line 18-22). To
this end, the quantized integers of both data and error bounds
are fed to lossless encoders, including Huffman encoder and
ZSTD, to perform the actual data reduction (line 24).

Algorithm 2 CP-preserving lossy compression for 3D data
Input: Input fixed-point vector field {d} = {u,v,w}, fixed-

point error bound τ ′ transformed from user-specified error
bound τ .

Output: Compressed bytes.
1: for i← 0→ nc − 1 do ▷ pre-compute existence of

critical point for each cell
2: cp exists[i] = point_in_simplex(0, i)
3: end for
4: for i ← 0 to nv − 1 do ▷ iterate vertices
5: for j ∈ vertex cells(i) do ▷ iterate cells connected to

vertex i
6: {i0, i1, i2, i} ← cell vertices(j) ▷ vertices of cell

j; fix i as the last index
7: if cp exists[j] then
8: ξ

(j)
i ← 0 ▷ set to lossless to preserve types

9: else
10: ξ

(j)
i ← min (Ψ(j), τ ′) ▷ see Lemma 4

11: for z ∈ {u, v, w} do ▷ Check if any
component has the same size

12: if sgn(zi0) == sgn(zi1) ==
sgn(zi2) == sgn(zi) then

13: ξ
(j)
i ← max(ξ

(j)
i , |zi|) ▷ Relax the

sufficient error bound
14: end if
15: end for
16: end if
17: end for
18: ξi ← minj ξ

(j)
i ▷ aggregate error bound for vertex i

19: ξ̂i ← quant(ξi) ▷ quantize error bound of vertex i
20: qi ← lossy_compress(di, ξ̂i) ▷ quantize vector

values with error bounds
21: d′

i ← decode(bytes, ξ̂i) ▷ calculate decompressed
value d′

i on the fly
22: di ← d′

i ▷ replace the input value with the
decompressed value

23: end for
24: return compress losslessly({qi}, {ξ̂i})

Similar to [21], the proposed algorithm has a theoretical
computational complexity of O(nv) for structured data where
nv is the number of vertices, but it is expected to have higher
decompression speed due to the adoption of the derivation
theory in Section IV with absolute error bound. This eliminates
the expensive logarithmic transform on original data, which

is required in [21] to perform effective compression with
point-wise relative error bound [41]. In addition, error bound
derivation in this algorithm is based on the point-in-simplex
test that allows for robust critical point detection, which is
very useful in resolving ambiguous cases in a wide range of
analytics. Its memory complexity is also O(nv), which is same
as the coupled method in [21].

B. Speculative compression
To accommodate the variability of computation and I/O in

different computing systems, we propose a novel method to
provide better flexibility on the trade-off between compression
speed and ratios. We called it “speculative compression”,
as it borrows the concept of speculative execution [42] in
computing systems. Specifically, we will compress data with
a relaxed error bound to allow for higher compression ratios
and roll back if such an error bound leads to discrepant results
in our preserving target. This is inspired by the fact that the
derived error bounds are sufficient but not necessary, which
leads to over-preservation in many cases.
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Fig. 2. Workflow of speculative compression.

Fig. 2 depicts the workflow for speculative compression
given the speculation target, initial error bound ξ, and the
data value v. The input error bound ξ is first relaxed to
a higher one (denoted ξ′) by a relax function R, and then
used to compress the data v and generate the decompression
data v′. Then, the decompressed data is evaluated with the
speculation target to see if all the conditions are met. If such
verification is successful, we will use the relaxed error bound
ξ′ to compress our data; otherwise, we will restrict the current
error bound ξ′ to a lower one by a restriction function T
and repeat the compression. To avoid extended execution time,
we perform a hard cut-off if the number of failures exceeds
a preset limitation nl. In such case, we will set ξ = 0 for
lossless compression of v, which ensures that no error will
be introduced. In our implementation, we use simple relax
function R(x) = 2nlx and restriction function T (x) = 1

2x.



Speculative compression is expected to deliver higher com-
pression ratios at the cost of lower compression speed because
it involves a trial-and-error process to figure out an error bound
that is usually larger than the derived one. The essential trade-
offs in between are highly related to the speculation targets.
In the following, we investigate three speculation targets for
Algorithm 2 and compare their impacts using a 2D vector field.
We use di and d′

i to denote the i-th original and decompressed
data (each with multiple components), respectively.

a) Speculation on derived error bound: This speculation
relaxes the error bound to perform compression (line 18-20 in
Algorithm 2), because the errors in the decompressed data may
be much less than the specified error bound. The speculation
target can be formulated as ||di − d′

i||L∞ ≤ ξi (see line
18 in Algorithm 2 for ξi). It is the most lightweight solution
because only the quantization of data and error bounds will
be speculated.

b) Speculation on FN preservation: This specula-
tion relaxes the derivation for preserving FNs (line 10-
15 in Algorithm 2). The target can be formulated as
point_in_simplex(0, j′) == false, where j′ represents
the vertex cell j after changing the current data point di to
d′

i. It introduces higher computational overhead because the
verification needs to involve a point-in-simplex test for every
cell containing the current data point.

c) Speculation on the entire critical point preserva-
tion procedure: This speculation further relaxes the entire
derivation process (line 6-16 in Algorithm 2). The target
can be formulated as critical_point_type(j′) ==
critical_point_type(j). It introduces the highest over-
head because both critical point detection and its type identifi-
cation need to be performed on every adjacent cell containing
the current data point.

We summarize the speculation targets mentioned above
and use an abbreviation for each of them in the later texts.
We also formulate four speculation targets and analyze their
correspondences to our compression algorithm in Table I.
Generally speaking, aggressive speculation leads to high com-
pression ratios but may suffer from low compression speed.
For speculation on FN preservation, we evaluate two different
values of nl to investigate its impact on the speed and ratio.

TABLE I
SPECULATION TARGET AND IMPACT

Speculation Target Abbr. Correspondence
in Algorithm 2 Speed Ratio

None NoSpec - Fast↑ Low↓
Derived error bound ST1 line 18-20 Fast Low
Preserving FN (nl = 1) ST2 line 10-15 Slow High
Preserving FN (nl = 3) ST3 line 10-15 Slow High
Preserving FN, FP, and FT ST4 line 6-16 Slow↓ High↑

VI. PARALLELIZATION

In this section, we propose two methods to parallelize our
algorithms in distributed environments. The key challenge in
parallelization is to preserve critical points in edge and corner

cells constituted by vertices across different processors, as
depicted by the red and green regions in the 2D example in
Fig. 3 (a). These cells are usually overlooked by traditional
compression methods that are embarrassingly parallel, leading
to incorrect critical point information within. While ghost
elements [43] can be employed to exchange the values of the
border elements, the adjacent elements across two processors
cannot be compressed concurrently because the formula in
Theorem 1 only allows for error introduction in one row.
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Normally compressed node
Losslessly compressed node

 P0 P1i

 P2 P3i 

Unprotected edge cells

Unprotected corner cells

(a) Naive parallelization (b) Parallelization with lossless borders
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Fig. 3. Embarrassingly parallel strategies.

We first propose a simple yet effective parallelization
strategy to preserve critical points in border cells with no
communication cost. As illustrated in Fig. 3 (b), we use error
bound 0 for all the border elements, which leads to lossless
compression of those elements to ensure the same topology
as that of the original data. However, this may have a nega-
tive impact on the compression ratios compared with naive
parallelization, as more data points are encoded losslessly.
Comparisons between these two methods are presented in
Table II when τ = 0.01, using the strong-scaling results with
1, 8, and 64 cores for the Nek5000 data. According to the
table, it is observed that while being able to preserve all
the critical points, parallelization with lossless border causes
25% ∼ 50% degradation on the compression ratios, and the
level of degradation increases with the number of cores used
due to the increasing percentage of border elements. It is also
observed that adopting a higher level of speculation leads to
more degradation in the compression ratios. Due to the embar-
rassingly parallel design, both parallelization strategies yield
almost linear speedup with around 100% parallel efficiency.

TABLE II
RESULT OF NAIVE PARALLELIZATION ON NEK5000

#Cores Method Speculation TP FP FN FT Ratios Sc(MB/s) Sd(MB/s)

1

Naive None 12,482 0 0 0 14.99 7.54 139.22
parallelization ST4 12,482 0 0 0 19.01 3.50 141.34

Lossless None 12,482 0 0 0 14.26 5.06 93.07
borders ST4 12,482 0 0 0 18.28 4.03 129.94

8

Naive None 12,407 114 66 9 15.23 64.43 897.98
parallelization ST4 12,301 582 169 12 19.41 25.83 903.53

Lossless None 12,482 0 0 0 12.20 65.09 892.63
borders ST4 12,482 0 0 0 14.00 32.42 881.06

64

Naive None 12,322 212 135 25 14.70 513.36 6638.57
parallelization ST4 12,106 1,009 341 35 18.88 189.74 6776.97

Lossless None 12,482 0 0 0 9.34 515.32 6502.96
borders ST4 12,482 0 0 0 10.35 258.67 6597.49

To address the limitation of parallelization with lossless
borders, we propose another strategy that significantly reduces
the number of elements requiring lossless representation with



low communication overhead. In particular, we pre-define the
compression order of border elements and perform two-phase
communication and compression as illustrated by a 2D exam-
ple in Fig. 4. We start with the initial arrays on each processor,
each with allocations for ghost elements but no values. During
the first-phase communication, all the processors receive ghost
elements from their left and top neighbors. This provides
opportunities for each processor to normally compress data
in the top left corner, which is done in the first-phase com-
pression. For instance, as P1 receives the ghost elements on
the left edge, it can compress all the data except the last row;
however, the last row and column in P0 cannot be compressed
because of a lack of information on their neighbors. Note
that we use decompressed data to overwrite the original data
upon successful processing of a vertex, which is required for
both accurate prediction [7] and error bound derivation [21].
Also, note the vertices in the corners are always losslessly
compressed to eliminate complex diagonal communication.
In the second-phase communication, all the processors will
receive the ghost elements in the form of decompressed data
from their right and bottom neighbors to provide neighborhood
information for the unprocessed vertices. In the last step,
second-phase compression is performed to compress the rest
vertices. This strategy also generalizes to 3D cases, where the
exchange of ghost elements needs to be performed for each
surface of the data cube, and vertices located on the edges of
the ghost cube are compressed losslessly.
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Fig. 4. Ratio-oriented parallel strategy.

Efficiency and complexity: We then analyze the efficiency
and complexity of the two methods via the percentage of
lossless compressed border elements and communication over-
head. Without loss of generality, we assume all data are in
single-precision floating-point format (4 bytes per data point),

and λ and β are the message passing latency and bandwidth,
respectively. We also assume that n1 × n2 vertices are evenly
distributed in a

√
p × √p processor grid in 2D cases and

n1×n2×n3 vertices are evenly distributed in a 3
√
p× 3
√
p× 3
√
p

processor grid in 3D cases.
Parallelization with lossless borders: Since this method

losslessly compresses all border elements, the percent of loss-
less compressed border elements is 2(n1+n2)

√
p

n1n2
in 2D cases

and 2(n1n2+n1n3+n2n3) 3
√
p

n1n2n3
in 3D cases. It has no communica-

tion overhead since the process is embarrassingly parallel.
Ratio-oriented parallelization: In the 2D cases, at most

four elements are losslessly compressed in each processor,
leading to a percentage of less than 4p

n1n2
. Each phase of

communication transmits two messages, each containing n1√
p

and n2√
p vertices with 2 components, respectively. This yields

2(2λ + 8(n1+n2)√
pβ ) communication cost in total. In the 3D

cases, at most 4(n1+n2+n3)
3
√
p of vertices are compressed in

a lossless fashion in a processor, which corresponds to a

percentage of 4(n1+n2+n3)
3
√

p2

n1n2n3
. As for the communication,

three messages of n1n2
3
√

p2
, n2n3

3
√

p2
, and n1n3

3
√

p2
vertices with 3 com-

ponents are transmitted in each phase, respectively, leading
to 2(3λ + 12(n1n2+n2n3+n1n3)

3
√

p2β
) communication cost in total.

However, there would be additional computational overhead
for this approach though, as it needs to derive the error
bounds for all the data points in 3D cases, while the prior
parallelization directly uses error bound 0 for border elements.

Based on these statistics, we can conclude that paralleliza-
tion with lossless borders features high speed at the cost of
ratio deduction, while ratio-oriented parallelization mitigates
the ratio deduction with extra overhead. In Table III, we
present the ratios obtained by this parallelization strategy with
no speculation. According to this table, the ratio-oriented
method leads to compression ratios of 14.21× and 13.19×
on the Nek5000 data with respect to 8 and 64 cores while
preserving all the critical point information, which are very
close to the compression ratios provided (15.23× and 14.70×
respectively) by naive parallelization without critical point
preservation. The parallelization efficiency is roughly 75%,
where the overhead mainly comes from the stencil communi-
cation for ghost element exchanges.

TABLE III
RESULT OF RATIO-ORIENTED PARALLELIZATION ON NEK5000

#Cores Method Speculation TP FP FN FT Ratios Sc(MB/s) Sd(MB/s)

1 Ratio-oriented None 12,482 0 0 0 15.00 7.40 137.76
8 parallelization 12,482 0 0 0 14.21 63.87 848.62

64 12,482 0 0 0 13.19 383.04 4800.0

VII. EVALUATION

We evaluate our methods with four real-world datasets
from climate and CFD simulations and compare them with
four state-of-the-art error-bounded lossy compressors, namely
FPZIP [3], SZ3 [2], ZFP [4], and cpSZ [21]. We present both
the quantitative results in terms of the number of erroneous



critical points defined in Section III, as well as qualitative
results for both 2D and 3D data. To this end, we further
evaluate our parallelization strategies and present a large-scale
case with 768 GB of data. Throughout the evaluation, we use
”CR” to denote compression ratio, ”SC”/”SD” to represent
compression/decompression speed in megabytes per second
(MB/s), ”#TP” for the number of preserved critical points, and
”#FN/#FP/#FT” for the number of erroneous critical points.

A. Experiment Setup

We evaluate four scientific datasets from four applications:
• Ocean: A simulated dataset representing ocean currents.
• Nek5000: A fluid simulation generated by Nek5000 [44].
• Hurricane: A simulation of Hurriance-ISABEL from the

National Center for Atmospheric Research [45].
• Turbulence: A direct numerical simulation of forced

isotropic turbulence on a 4, 0963 periodic grid [46].
The detailed information of the datasets is listed in Table IV.

Here nd stands for the number of components in the data, and
nv and nc are the numbers of vertices and cells, respectively.
Based on the size of the data, we will evaluate the quality
of the compression methods using the three datasets and I/O
performance using the last one.

TABLE IV
BENCHMARK DATASETS

Dataset nd nv nc Size

Ocean 2 3600× 2400 2× 3599× 2399 65.92 MB
Hurricane 3 100× 500× 500 6× 99× 499× 499 286.10 MB
Nek5000 3 512× 512× 512 6× 511× 511× 511 1.50 GB
Turbulence 3 4096× 4096× 4096 6× 4095× 4095× 4095 768.00 GB

All of our experiments are conducted on a high-performance
cluster [47], where each compute node contains 2 AMD EPYC
ROME 7702P processors with 128 cores and 512 GB memory
in total. The system is interconnected by 100Gbps InfiniBand
and is equipped with Lenovo GPFS parallel file system.

B. Rate-distortion and speculation

We first present the rate-distortion of our methods and
investigate the impact of speculation targets on the quality
of compression. We use Peak Signal-to-Noise Ratios (PSNR)
as our distortion metric due to its wide acceptance in the
community, and bit-rate in the X-axis represents average bits
per compressed data, which can be computed by 32 over
compression ratios for single-precision floating-point data. The
rate-distortion graphs for the Ocean and Nek5000 data are
shown in Fig. 6, with points in the graph generated by setting
τ = 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, respectively.
As we can see, more aggressive speculation generally leads to
higher compression ratios (lower bit rates), especially when the
global error bound is relatively high, which also exhibits better
rate-distortion in those regions. Nevertheless, the differences
in compression ratios and PSNR diminish as the global error
bound decreases. Another interesting observation is that higher
error bounds may not always lead to higher ratios, which is
clearly shown by the first a few error bounds in the 3D plot

with Nek5000 data. This is possibly caused by the Lorenzo
predictor used in the prediction stage of the compression.
As Lorenzo predictor requires the use of decompressed data
for prediction, lower error bounds may have better prediction
accuracy due to lower errors in the decompressed data. Based
on this observation, we set τ = 0.01 for all later experiments
for all speculation targets.

C. Preservation of critical points

We then present the preservation of critical points with our
methods both qualitatively and quantitatively using the three
datasets mentioned above. Since FPZIP, ZFP, and SZ3 do not
provide mechanisms to preserve critical points, we tune them
to the same ratio as the one provided by our method with no
speculation using the available options provided by them. For
cpSZ, we use pointwise relative error bound 0.1 for 2D data
and 0.05 for 3D data as suggested by authors [21]. Note that
cpSZ only provides guaranteed preservation of critical points
when they are extracted using numerical methods, so it may
introduce a small number of erroneous cases in our evaluation
because we use SoS [25], [26] for critical point extraction.

The results on 2D Ocean data are displayed in Table V.
As shown in the table, while general error-controlled lossy
compressors control the maximal absolute error and/or point-
wise relative error, they cannot preserve critical points. FPZIP
performs the best among the general compressors, probably
because it preserves pointwise relative error. While cpSZ
has good preservation results, both of its two schemes have
limited compression ratios. As comparisons, all of our methods
preserve all the critical points, and our method with the most
aggressive speculation delivers a compression ratio that is
2.71× of that with the coupled scheme in cpSZ. Note that
both cpSZ and our methods yield lower compression speed
compared to the general lossy compressors, as they need to
integrate the topological information into the compression pro-
cess. Nonetheless, their decompression speed is comparable
to SZ3 and FPZIP. In particular, our methods have higher
decompression speed than cpSZ because we avoid the use of
pointwise relative error bound, which requires an expensive
logarithmic transform on the data.

We then present the qualitative results on this dataset
by visualizing all critical points, with surface Line Integral
Convolution (LIC) [48] on the vector field as background.
It is clearly observed that many false positives occur in the
decompressed data of SZ3 and ZFP, especially in regions that
are close to the land areas. Also, it is interesting to see that
only SZ3 and our method with high levels of speculation affect
data in the land areas. For the former, it is mainly caused
by error prorogation in the hierarchical interpolation; for the
latter, it is due to the loosened error bound by the speculation
as no critical points exist in the land areas.

The quantitative results for the two 3D datasets are listed
in Table VI and Table VII, respectively. The trends are pretty
similar to those of 2D, where general lossy compressors intro-
duce a large number of false positives. Note that both cpSZ and
our methods exhibit lower compression speed compared to 2D



TABLE V
QUANTITATIVE RESULTS ON 2D OCEAN DATA

Compressors Settings CRu CRv CRall Sc Sd #TP #FP #FN #FT
FPZIP -P 11 17.26 16.52 16.88 154.28 131.7 23,107 1,100 1,054 1,018
ZFP -P 8 16.62 16.79 16.71 489.94 539.42 15,621 61,405 8,002 1,556
ZFP -A 4 18.56 19.98 19.25 522.73 597.60 10,525 48,899 12,884 1,770
SZ3 -A 0.1 19.03 19.46 19.24 136.24 369.25 17,576 72,910 6,755 848

cpSZ decoupled -R 0.1 - - 7.58 38.99 101.40 25,137 0 0 42
coupled -R 0.1 - - 11.83 31.56 92.73 25,179 0 0 0

Our method

NoSpec -R 0.01 - - 19.57 27.21 174.14 25,179 0 0 0
ST1 -R 0.01 - - 20.82 26.7 161.07 25,179 0 0 0
ST2 -R 0.01 - - 25.38 19.11 182.34 25,179 0 0 0
ST3 -R 0.01 - - 25.56 18.9 169.2 25,179 0 0 0
ST4 -R 0.01 - - 32.11 15.45 168.33 25,179 0 0 0

cpSZ (coupled, CR=11.83)Original data Our method (NoSpec, CR=19.57) Our method (ST4, CR=32.11)

FPZIP (CR=16.88) SZ3 (CR=19.24) ZFP (-A, CR=19.25) ZFP (-P, CR=16.71)
Fig. 5. Qualitative results on 2D Ocean data with surface LIC visualized as context.
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Fig. 6. Rate-distortion of our method under different error bounds and
speculation targets.

cases because each vertex has 24 adjacent cells to be analyzed
for error bound derivation, whereas this number reduces to 6
in 2D data. Compared to the coupled scheme in cpSZ, our
method with the most aggressive speculation yields 446% and
160% improvement on compression ratios in Hurricane and
Nek5000, respectively.

We also present qualitative observations for the two datasets
in Figs. 7 and 8, respectively, using streamlines [49] traced by
points along the diagonal line as the context. We eliminate ZFP
and SZ3 because the large number of false positives across

the entire space makes it hard to visualize. It is observed that
cpSZ leads to the best preservation of the global streamlines,
but its compression ratio is pretty low. Our method with the
most aggressive speculation provides better quality than FPZIP
while providing much higher compression ratios.

D. Parallel I/O performance

We perform a parallel experiment to evaluate the two pro-
posed parallelization strategies for the writing and reading time
using the Turbulence data. The writing time is measured by the
summation of time on compression and writing compressed
data, while the reading time is computed by adding the
time of reading compressed data to decompression time. We
perform a strong-scaling test with 512 cores and 4, 096 cores,
where the Turbulence dataset is divided into 512 blocks of
512×512×512 grids and 4, 096 blocks of size 256×256×256
grids, respectively, with each processor dealing with one
block of data. For simplicity, we use “Simple” to denote the
parallelization with lossless borders and “Ratio-oriented” to
represent the parallelization with two-phase communication
and compression. We also include GZIP [29] as the evaluation
baseline because it is a lossless compressor that can preserve
all the critical points under the distributed setting as our
methods do, while none of existing lossy compressors can do
that. The corresponding results are reported in Fig. 9.



TABLE VI
QUANTITATIVE RESULTS ON 3D HURRICANE DATA

Compressors Settings CRu CRv CRw CRall Sc Sd #TP #FP #FN #FT
FPZIP -P 9 34.14 40.11 10.77 20.40 183.22 142.74 645 442 334 106
ZFP -P 9 30.63 33.09 11.08 19.59 322.18 673.32 608 27,243 407 70
ZFP -A 1 16.56 16.80 36.94 20.41 310.71 655.11 425 21,856 620 40
SZ3 -A 0.04 17.43 17.52 60.30 22.90 146.38 380.51 487 9,562 550 48

cpSZ decoupled -R 0.05 - - - 3.30 12.01 60.97 1,085 0 0 0
coupled -R 0.05 - - - 7.24 6.85 85.29 1,085 0 0 0

Our method

NoSpec -R 0.01 - - - 22.78 9.53 142.08 1,085 0 0 0
ST1 -R 0.01 - - - 24.11 9.57 129.49 1,085 0 0 0
ST2 -R 0.01 - - - 36.26 4.16 145.33 1,085 0 0 0
ST3 -R 0.01 - - - 36.98 4.15 142.49 1,085 0 0 0
ST4 -R 0.01 - - - 39.55 4.36 139.74 1,085 0 0 0

cpSZ (coupled, CR=7.24)Original data FPZIP (CR=20.40) Our method (ST4, CR=39.55)

Fig. 7. Qualitative results on 3D Hurricane data with streamlines visualized as context.

TABLE VII
QUANTITATIVE RESULTS ON THE 3D NEK5000 DATA

Compressors Settings CRu CRv CRw CRall Sc Sd #TP #FP #FN #FT
FPZIP -P 11 14.0 13.56 15.34 14.26 140.08 127.89 9,932 2,328 2,084 466
ZFP -P 10 13.64 13.20 14.57 13.78 285.76 534.53 7,253 232,235 4,848 381
ZFP -A 4 14.74 15.06 14.78 14.86 294.48 558.47 5,649 192,363 6,345 488
SZ3 -A 0.13 14.28 14.95 15.62 14.93 48.04 22.68 7,313 114,448 4,762 407

cpSZ decoupled -R 0.05 - - - 3.27 11.82 58.41 12,482 0 0 0
coupled -R 0.05 - - - 7.30 6.62 83.13 12,469 7 9 4

Our method

NoSpec -R 0.01 - - - 15.00 8.64 141.93 12,482 0 0 0
ST1 -R 0.01 - - - 15.16 8.62 119.10 12,482 0 0 0
ST2 -R 0.01 - - - 19.00 4.75 143.37 12,482 0 0 0
ST3 -R 0.01 - - - 18.27 4.75 142.52 12,482 0 0 0
ST4 -R 0.01 - - - 19.02 5.06 143.99 12,482 0 0 0

The figure shows that all three strategies have negative
impacts on writing data with 512 cores due to the slow com-
pression performance. This is more obvious for ratio-oriented
parallelization because it has higher computational and com-
munication overhead than simple parallelization. However,
benefits are observed for reading data with 512 cores due to
the significantly reduced size (15.17× for the simple paral-
lelization and 19.60× for the ratio-oriented parallelization).
This leads to more than 50% reduction in the reading time
compared to reading the entire dataset without compression.
For the large-scale evaluation with 4, 096 cores, significant
improvements are observed in both writing and reading per-
formance, as the reduced data size per core leads to greatly
decreased compression/decompression time. While the result-
ing compression ratios (13.29× for the simple parallelization
and 18.10× for the ratio-oriented parallelization) are less than

those of 512 cores, overall writing and reading performance
improvements are more obvious. In absolute terms, our ratio-
oriented strategy achieves 1.25× and 4.38× performance on
writing and reading, respectively, compared with the vanilla
approach with no compression. In contrast, lossless compres-
sion with GZIP yields minor performance gain compared with
the vanilla approach because of its limited compression ratios.
As scientific data is usually written once and read multiple
times, we envision a broad use of the proposed methods for
efficient data management due to its high reading performance.

VIII. CONCLUSION

In this paper, we develop a general theory for preserving
signs of determinants and leverage it to implement a feature-
preserving lossy compression framework. Unlike existing
lossy compression frameworks, our framework can preserve



cpSZ (coupled, CR=7.30)Original data FPZIP (CR=14.26) Our method (ST4, CR=19.02)

Fig. 8. Qualitative results on 3D Nek5000 data with streamlines visualized as context.

(a) Writing performance

(b) Reading performance

Fig. 9. Reading and writing performance with the proposed parallelization
strategies using the Turbulence data on 512 and 4, 096 cores. Error bar
encodes maximal and minimal time across 3 runs.

all critical points under robust detection algorithms. We further
propose a speculative compression scheme that is able to
obtain higher compression ratios with relaxed error bounds. In
addition, we provide two strategies to parallelize our algorithm
under distributed-memory settings. We evaluate our framework
on four real-world datasets, with the largest dataset exceeding
700GB. Our experiments utilized up to 4, 096 cores across 50
nodes. Some key findings are listed below:

• Our framework provides guaranteed preservation of criti-
cal points while delivering compression ratios up to 440%
better than the state of the arts.

• The proposed speculative compression significantly im-
proves the compression ratios while retaining the crit-
ical points. Specifically, it results in compression ratio

improvements of 54.23%, 26.80%, and 73.62% on the
Ocean, Nek5000, and Hurricane datasets, respectively.

• Both of our parallelization strategies successfully pre-
serve critical points during lossy compression in a parallel
setting. In particular, the ratio-oriented parallelization
leads to up to 1.25× and 4.38× speedup in writing
and reading performance, respectively, compared to the
vanilla approach with no compression on the Turbulent
dataset using 4, 096 cores.

• Compared to cpSZ, although our framework is about
10% − 25% slower in compression speed, the decom-
pression speed is 50% − 100% faster. Also, our frame-
work achieves significantly higher compression ratios
than cpSZ, while being able to preserve critical points
extracted by robust algorithms.

In the future, we will extend this framework to preserve
more features expressed by the sign of determinants. In addi-
tion, we will consider multiple ways to improve the efficiency
of the proposed methods. For instance, we will leverage GPUs
to improve the compression/decompression performance and
investigate optimizations such as non-blocking message pass-
ing for better communication efficiency and asynchronous
reading/writing for faster I/O operations.
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