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ABSTRACT

There are three aims of this paper. The first is to explain the reasons for behavior we had long
suspected to be true but the real reasons for which we could never quite nail down. Modulated striped
patterns arising from a wide class of gradient microscopic pattern forming systems display universal
behavior. Their order parameter evolves according to a phase diffusion equation that derives from an
averaged energy that consists of coordinate invariant combinations of the coefficients in the metric and
curvature two forms of a well-defined phase surface. The evolution towards universality is asymptotic
in that the pattern evolves in such a way that, over longer and longer time scales, many terms from
the microscopic energy simply become negligible leaving behind canonical forms common to a wide
class of microscopic pattern-forming systems. The second aim is to emphasize with some new results
the key role that the Jacobian matrix of the map from physical to order parameter space plays in
both two and three dimensions. In two dimensions, it is closely related to the Gaussian curvature
of the phase surface. It is a conserved density whose integral over space in two dimensions or on
cross-sections in three become boundary terms that measure the topological indices of point defects
in two dimensions and loop defects in three. In all dimensions, the Jacobian matrix acting on the order
parameter vector, the gradient of the phase, is zero when the local pattern wavenumber is close to
its preferred value and this leads to the effective linearization of the phase diffusion equation. The
third aim is to honor Hermann Flaschka, a close friend and scientific colleague for over fifty years, an
outstanding mathematician, a true gentleman and scholar with an uncanny knack of explaining the
most complicated of ideas in the simplest of ways, who passed away last year. Hermann was one of

the founding editors of Physica D and served as the coordinating editor for almost twenty years.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction and general discussion

Natural patterns turn up all over the place in nature and
in laboratories. A simple uniform state of a microscopic system
driven far from equilibrium by some external stress can destabi-
lize at a certain threshold [1,2]. At that phase transition, various
shapes and configurations become preferentially amplified and,
via nonlinear interactions, compete for dominance until a new
winning and energy minimizing state emerges. In this paper,
we focus on a class of gradient microscopic systems that are
translationally and rotationally invariant and whose preferred
post instability planform is one of stripes or rolls in which the
microscopic field breaks translational symmetry and is locally
periodic. However, rotational invariance is not broken. In spatial
geometries whose size greatly exceeds the local pattern wave-
length, the stripe wavelengths | are chosen to within certain
bounds, but their orientations are not. Those are chosen by local
biases. As a result, the emerging pattern is not a uniform state of
stripes all pointing in the same direction but consists of a mosaic
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of patches of stripes with different orientations that meet and
meld together along line and point defects in two dimensions and
on planes, lines and points in three.

The underlying microscopic field w(X, t) is locally periodic and
has the form

w(X, t) = w(; VO = k(X = eX, T = €t))
= ZAn(kz)cos no.

The phase gradient is modulated over distances L (box size or
average distance between defects) that is long with respect to

(1.1)

the local wavelength I. The ratio € = —, the inverse aspect ratio, is

small and we take advantage of this fI.'alct. Using asymptotic WKB-
like methods derived from the pioneering ideas of Keller [3] and
Whitham [4] for slowly modulated oscillators and waves, we can
define and describe the evolution of the macroscopic order for
such patterns. That order parameter is the phase (X, t) of the
underlying locally periodic field along with its gradient, the local
pattern wavevector k. The evolution equation has the form [5-7]

t(K2)Or + V - kB(K®) + €2nV*0 = 0 (1.2)
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Fig. 1. The universal shape of the function kB(k?). The solid portion of the
curve corresponds to the Busse balloon kg < k < kg where the uniform stripe
solutions are elliptically stable. The dashed portion corresponds to regions that
are unstable to perturbations. To remain well-posed despite these instabilities
the phase diffusion equation requires the inclusion of higher order terms that
are regularizing.

where 7(k?) and 7 are positive. In (1.1), the microscopic field
w(X, t) is locally 27 periodic in 6. It is even in 6, reflecting the
fact that the contours representing the maxima of w can be
labeled 0, 27, 47 or by their negatives. There are two important
consequences of this. First, the gradient of the phase is not a
vector field on the plane but rather on its double cover. Thus in
general, VO = k will be a director field and not a vector field on
the plane. Second, the microscopic field w can be represented by
a cosine Fourier series as shown. In Eq. (1.2), the phase diffusion

eX,T)

equation, 6(X, t) = X = ex, T = €2t, so that k(X, T) =

Vz0 = V;©®. The restriction that k is only defined as a vector
field on the double cover of the plane has consequences as it
broadens the number of states into which the pattern may settle.
In particular, the canonical point singularities turn out to be
disclinations, on contours surrounding which the wave director
twists not by integer multiples of 2 but by multiples of . That
twist is proportional to the amount of Gaussian curvature of the
phase surface that resides at point singularities.

Although the cubic shape of the function B(k?) (shown in
Fig. 1) was well understood to be universal, the exact nature
of the regularization, chosen from special examples to be the
biharmonic of ® and suspected to have that form in general,
remained an open challenge. The first new result of this paper
is to explain why that is so. We will see that the key idea
is that, under the evolution that takes place on the horizontal
diffusion time, almost everywhere the local wavenumber tends
to a preferred choice dictated by minimizing the energy that
governs that evolution. We shall see that energy can be thought
of as analogous to the strain energy connected with elastic sheets
and its minimization is equivalent to the appearance of and
preference for isometric deformations. This fact then removes
most of the terms that appear in the correction to the energy
leaving only those contributions which can be identified with the
bending energy of elastic surfaces. In the pattern context, it is the
energy that is stored along line defects and the cost is incurred
because the phase contours have to bend across line defects.

Regularization is needed because V - kB is a quasilinear dif-
ferential second order spatial operator on ® whose matrix of
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coefficients has eigenvalues B and %(kB) which may, and indeed
are, not necessarily negative for all wavenumbers k throughout
the pattern. The consequence is that the unregularized Eq. (1.2)
is a diffusion equation with negative diffusion coefficients at
some locations and therefore, without regularization, is ill posed.
Eq. (1.2) can be formally written as

SE
kK)or = —— (1.3)
T(k")Or 56O
where
T v 1 ¢ 2 1 2 2
E= dX -3 Bdk +§6 n(V - k)
) - (1.4)
E=— Edo
2 0

It turns out that E is simply the original microscopic energy E
averaged over the local periodicity of the pattern; namely E =

1
5 f Edf. The question is: Why is it that all the terms in the order
bd

€2 contribution to E other than the curvature (V - k)? that could
arise from averaging the original energy E are negligible and of
lower order in €? We shall see when we average E that many
other terms are possible. But only the squared mean curvature
survives! We shall also see that the Gaussian curvature can also
be in the integrand but this integrates out to a boundary con-
tribution that measures the amount of Gaussian curvature that,
under the initial evolution described by (1.2), will condense onto
and reside at point defects.

The answer is that the non-universal terms are still present for
the initial stages of the evolution (1.2). The first part of the evo-
lution that occurs on the horizontal diffusion time scale T, = eiz
the time it takes diffusion to communicate across the macroscopic
distance L, will see the pattern attempt to reach a state where the
first part of the averaged energy is minimized. That occurs when
k tends to a preferred wavenumber kg that turns out the be the
middle zero of the graph of kB(k?) versus k (See Fig. 1). For pattern
forming systems that arise from microscopic gradient flows, the
wavenumber kg is the one chosen by all the various selection
mechanisms; minimization of the energy; the edge of the Busse
balloon corresponding to the zig-zag stability boundary; circular
or curved patterns, stationary dislocations; boundary constraints.
For microscopic systems that are not gradient, many features of
the phase diffusion equation are the same but the fact that, for
example, dislocations do not necessarily remain stationary at kg,
which in the non-gradient case is the zig-zag instability edge of
the Busse balloon, means that the apparent gradient structure
of the phase diffusion equation is not sufficient to guarantee
the pattern macroscopic evolution is gradient. This is why we
stipulated that we are at present only treating pattern forming
systems that are gradient at the microscopic level.

But given that the underlying microscopic system is gradient,
then, almost everywhere, k tends to kg. But it cannot become kg
everywhere because of boundary constraints and the fact that
different neighboring stripe patches have different orientations
means that k < kg along line defects. But almost everywhere on
the horizontal diffusion time scale k*—k becomes small. This has
two key consequences. First, for times long with respect to Ty, the
minimization of the first part of the macroscopic and averaged
energy leads to k* — k2 being small almost everywhere in the
averaged energy integration domain. As we shall see, this means
that all the potentially non-universal terms that could arise in the
second part of E become negligible. All derivatives that capture
the modulation of the pattern of the form k-Vk?, that measure the
changes of wavenumber normal to the constant phase contours,
are much smaller than derivatives such as V - k that measure its
changes along the phase contours.
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In fact, even along phase grain boundaries when k < kg, k
changes very little in the direction of the local wavevector k.
V - k on the other hand measures the curvature of the phase
contour and is non-negligible and indeed very important near
both line and point defects. The result is that, as the evolution
progresses past the horizontal diffusion time, only the terms mea-
suring curvature in what amounts to the Taylor expansion of the
original microscopic energy integrand W(w, Vw-Vw, V-Vuw, ...)

with rotational and translational symmetries, V; = k— +€eVy

in powers of €V; about the pure periodic state, survive. The
average energy does not start out being universal but, as the
system evolves, most of the terms that might be present in the
microscopic description of the system simply become too small
to contribute to the averaged energy E. Only a canonical subset
of the possible terms remains relevant. For pedagogic reasons,
we use generic expressions (2.1) and (2.22) for the microscopic
energies in our presentation of thes results, so the work falls
short of being a rigorous proof. Nevertheless, the expressions
used are sufficiently general to persuade a reader of the truth of
our assertions.

The second important consequence is that the Hessian fig, —
fy& k = (f, g) and Jacobian of the map from (x, y) to (f, g) is
almost everywhere zero as, except near point and line defects,
all x, y points map to the circle k* = kﬁ. Modulo a factor which
becomes constant because k? tends to kg, this is also the Gaussian
curvature. Thus, under the evolution, the Gaussian curvature of
the phase surface, which may initially be distributed, will slowly
condense onto line defects. Then, as the line defects evolve so that
the corresponding local phase surface has a nonzero curvature in
only one direction (across the line defect) and zero curvature in
the orthogonal direction, the Gaussian curvature tends to zero
on the line defects. But the Gaussian curvature is a conserved
density and therefore has no option but to end up condensing
onto points. These points often lie at the intersection of the
line defects, the most important of which are the concave and
convex disclinations. That condensed Gaussian curvature gives
rise to the invariant indices that characterize these two canonical
point defects of two dimensional patterns. There is also another
important outcome of this property of the Jacobian matrix. We
shall see that it allows for an almost linearization of the stationary
phase diffusion Eq. (1.2) not only in two but in all spatial di-
mensions. The linearization expresses the fact that, at later times,
the evolution is governed by a self-dual approximation in which
the small amount of strain energy that survives near defects is
balanced by the bending energy contribution there. The obstacle
to an exact self-dual behavior is due to the presence of Gaussian
curvature of the phase surface localized at points (loops in three
dimensions) but their presence can be well approximated by delta
function sources whose strengths are known. This is the second
new result of this paper.

The outline of this paper is as follows. In Section 2.1, we
begin by applying the averaging to a pattern forming system for a
complex field with a real valued energy functional which admits
very simple spatially periodic solutions w(x, t) = Ae", 0 = k- X.
In such cases, the averaging process is extremely simple and
the outcomes, and especially the reasons for the emergence of
universal behavior, are transparent. In Section 2.2, we apply the
ideas to real fields where the locally periodic solutions are not
so easily represented but which, nevertheless, lead to the same
universal outcomes. In all we do, the phase is the active order
parameter and the amplitude (or sequence of amplitudes in the
case of real fields) is a passive coordinate slaved to the modulus
k of the phase gradient. But there may be places in the pattern,
centers of dislocations, amplitude grain boundaries, where the
amplitude becomes small and at those places the amplitude is
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no longer algebraically slaved to k but rather becomes an active
order parameter with its own evolution equation. This is also the
case near onset. What one must do at such locations remains an
open question.

In Section 3, we list many of the properties of solutions of the
canonical solutions of the regularized phase diffusion equation
and in particular those solutions which capture point and line
defects. We raise several important challenges. In Section 3.1, we
discuss open questions connected with the energy minimizing
convection patterns in elliptical containers with heated horizontal
boundaries. Although much of this evolution has been covered in
earlier works, there are still several outstanding open questions
which we highlight. Principal among the outstanding challenges
is the fact that disclinations which form along the major axes
between the foci due to the so called nipple instability seem to
want to coalesce into dislocations and the final state seems to
be close to a multi-dislocation on the principal axis. However, it
cannot be only a multi-dislocation with zero Gaussian curvature
as the initial Gaussian curvature reflecting the 2w twist of the
wave-vector on the boundary has to be included perhaps by
disclinations next to the two foci. It is intriguing that the pattern
phase gradient starts out as a vector field in forming the eikonal
solution, transitions to a director field because of the nipple
instability along the axis where the bend of the phase contours
becomes too much and then ends up again as a vector field
(except not quite everywhere) in order to reach a final energy
minimizing state. In Section 3.2, we discuss equally intriguing
open questions connected with loop defects in three dimensions

11
which have rather suggestive fractional invariants of 33 and 1.

2. Canonical patterns
2.1. Canonical patterns of complex fields

Consider the system with complex field w(x, y, t) = u(x, y, t)+
iv(x, y, t) with the energy functional

E= / <(v2 + k)w(V? + k2yw*
: (2.1)
— Rww* + szw*z + Bww*VwVw* ) dx

For 8 > 0,R < 0, w = 0 is the only minimum of E. As R increases
through zero, the w = 0 solution is unstable to a periodic stripe
pattern, infinitesimally stable for a range of k to be defined below,

R—(k* — k3)?
1+ 28k?
However, as we have discussed, because of rotational symmetry
and resulting degeneracy, the orientation of naturally arising
patterns is determined by local biases so that the pattern, instead

of being uniform, will consist of patches of stripes of almost
constant wavenumber but with directions that change signif-

w = A(R)e® A2(k?) = k=K (2.2)

l
icantly over distances —, large compared to the local pattern

€
wavelength. Accordingly we seek to describe the natural pattern
as a modulated version of (2.1) as

w=AK: X =ex, T = €2t)expif(X, t) (2.3)

where

Vif = VzOX,T) = k(X, T) (2.4)
The evolution of w and its complex conjugate are given by

we = —;ul;, w = — O (2.5)

Sw
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and then
SE = B—E(Sw + OF Sw* = —wfsw — wdw*
Sw Sw* (2.6)
= —2A;8A — 2A%©,86.
Inserting (2.3) into (2.1) with
V(Aexpif) = exp(i6)(ik + €Vz)A
VZ(Aexpif) = expl(if (K + ie(2k - Vg + Vg - k) + € V2)A
(2.7)

We obtain, upon substitution into (2.1) that
E= /{(18 —k2)*A% — RA* + %A“ + BICA* + K)dx
+ i€ / (2 — I3)(k - VA2 + V - kA?) — (kK — k2 )(k - VA2 + V - kA?)
+ BA3(k - VA) — BA3(k - VA))
+ €2 /{(ZE VA4V - kAP + 2(k2 — K*)AV2A + BAY(VA)}dx

(2.8)

Several observations about (2.8). First, because of the simplicity
of the form of the modulated stripe solution, the averaging

_ 1 27
E=— Edo (2.9)
2w 0

is done automatically. Second, to make sense of the energy in-
tegral, a constant K has to be added to ensure convergence
because we have not yet specified the behaviors of the pattern
at some distant boundary. We show shortly how that constant
is determined. Third, although we have written it out, the O(¢)
contribution to E vanishes as indeed it must since E is real.
Although obvious here, it will not be so obvious when we treat
patterns with real fields in Section 2.2. Next, we look at the
evolution of the amplitude A, namely

2/ = —— (2.10)
SA
Since the time derivative is order €2 and the variation of the O(e?)
part of E with respect to A gives rise to second spatial derivatives
of E which again are O(¢?), the dominant contribution to (2.10) is

the algebraic relation

0="2A ((kg—kz)z—RJrAz <1+2ﬂk2>>

Only at special points where A is small (dislocation centers) or
near onset where A is also small will this term be balanced

by — and V?A. In that case, it becomes the amplitude part of

the ?\ltewell—Whitehead—Segel equation [8,9] for striped patterns
near onset. In those circumstances, both the amplitude and phase
are active order parameters. Far from onset, however, only the
phase is an active order parameter and the amplitude is slaved
algebraically to the modulus of the phase gradient by (2.11).
2 212
a2 R — (k% — kg) . (2.12)
1+ 28k?

We note that, because of the presence of the 8, the maximum of
the amplitude A is not realized at ky. Neither will it be maximized
at the preferred wavenumber kg. The evolution of the phase is
given by

(2.11)

18E ) 1 6E
AOr=—-—
250

(2.13)
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where E is now the averaged energy Eo+¢2E, where, using (2.12),

— . 1 _
Eo = /Eodx = / <1< - 5(1 + 2,318)/\4) dx.

The maximum of (1 + 28k?)A* and the minimum of its negative
is how we define kg, namely

d
— [ 1428k ) A*=0.
dk2<+’3‘> 0

To ensure convergence we choose the added constant K to be
3(1+ 2Bk?)A* estimated at kz and therefore write

(2.14)

(2.15)

— 1 2

Fp = / 5 ((1 1 2BI2)A% ) Sy (2.16)
The negative of its variation with respect to 6 gives
A2Or + VzkB(K?) = 0 (2.17)
where

d
Bk*) = — [ 1428k | A* 2.18
k)= -5 ( +28 ) (2.18)

We have already discussed that (2.17) is ill-posed whenever
k is outside the Busse balloon kg < k < kg and requires
regularization. Here kg is the Eckhaus stability boundary. We
focus on the case where k < kg that occurs near most of the
line and point defects. In that case the regularization is provided
by the O(¢?) terms in the averaged energy (2.8). As we see from
(2.8), most of the terms reflect their microscopic origins and so,
as it stands, the regularization does not look to be universal. But,
on closer inspection, we see that, because they all arise from a
multinomial Taylor expansion of the original energy integrand in

each of its arguments under the action of V; = ﬁ@ + €Vy, the

terms either involve differentiating k as it changes direction along
the phase contour or differentiation of k? in the direction ozf k. The

N R dA2.
V - kA? is an example of the former while k- V3(A?) is a k- Vik?

is an example of the latter. But since k - Vk2or k - V(k> — k2)
is small because, under the minimization of the first part of the
averaged energy, k* — ké is small almost everywhere and because
even along defect lines there is little change in the wavelength
along the defect line, all the latter terms are negligible compared
to the former. Let us emphasize this. It is not the fact that A? is
maximum at kg as it would be for the case of § = 0, the complex
Swift-Hohenberg equation, but the fact that k? is almost constant
everywhere that makes the non-universal terms negligible. As a
consequence, the only surviving terms in the 0(€?) part of E in
(2.18) are the ones involving V-k. The second part of the averaged
energy can then be well approximated by €* [ dxA*(k3)(V - k)
and that will be common to all averaged energies arising from
a very wide class of microscopic systems. The regularized phase
diffusion equation then has the universal form

A(I2)Or 4+ V - kB + 2A(K)V* - © =0 (2.19)

Moreover, for times of the order of and longer than the horizontal
dB(k?)
dk?

diffusion time, we can also approximate B(k* by <

@ (k* — k%) and its corresponding energy E by

dk?

By analogy with elastic systems, it is natural to call the first the
pattern “strain” and the second the pattern “bending” energy as,
respectively, they involve the first and second spatial derivatives

E :/ ((ig(kz))kg(kz — k3y 4+ €X(V - E)zAz(kﬁ)) dx  (220)
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of the deformation, here the phase. We now turn to the case
of real fields for which the averaging process is not quite as
transparent. At the end of that section/or in Section 3, we also
discuss the defect point indices which measure the amount of
Gaussian curvature of the phase surface deposited at that point.

2.2. Canonical patterns for real fields

The previous class of examples for complex pattern fields
for which the insertion of the locally complex field led to an
automatic averaging of the energy functional was useful in that
it allowed us see the big picture relatively easily without the
complication of more difficult calculations. Nevertheless, guided
by that study we now turn to the case of pattern forming systems
with real fields and, although more complicated, follow the steps
of the earlier analysis. We consider energies of the form

E=/Wd?<

where W, the integrand, is any rotationally and translationally
invariant function of all even combinations of w and its gradients.
By including the up down symmetry, W invariant under w into
—w, we avoid any possibilities of subcritical bifurcations with
non-stripe planforms such as hexagons. (Hexagons can still be a
viable multimode planform in such systems but they rely on cubic
interactions and are much less likely.) For a typical and generic
example of (2.21) we consider,

(2.21)

1 1 1 1 -
E =/ { 3 ((VZ—I—kg)w) Z—ERw2+Zw4+§ﬁw2(Vw)2+K } dx.

(2.22)

The energy in (2.22) can be viewed as a generalization of the
Swift-Hohenberg energy [10], which is used as a generic model
for real fields that form stripe patterns. The evolution of the
microscopic field w(, t) is given by

SE

wt:—i_
Sw

— ( Vz—{—k(z) ) 2w+Rw—wi+Bw(Vw )+ Bw? Vw.
(2.23)

We can find stationary stripe solutions for Eq. (2.23) by substi-
tuting @ = k- X, w = >, An cos(nd) yielding a system of coupled
nonlinear algebraic equations for the amplitudes A,. Within a
range of k; < k < k,, that depends on the parameter R, we can
solve these equations to get A, = An(k*;R),n = 1, 3,5, ... with
all the even order amplitudes equal to zero, reflecting the up-
down symmetry w — —w of Eq. (2.23). Summing this Fourier
series yields an exact stationary solution for striped patterns

w(X, t) = w(0 = k- X; {A(K*)}°, R) = ZAn(kz; R)cosnf. (2.24)

w is clearly 27 periodic in 6. Also, the use of the cosine series to
represent w is deliberate. It reflects the fact that the phase con-
tours can be labeled 0, 27, +47, .... We now seek modulated
solutions as

w(X, t) = w(6; {A(k*)}, R;

VO = k(X = €X, T = €’t) = VzO(X, T)) (2.25)

We can find the evolution equations for @()2 ,T) in two ways.
The first is by solving Eq. (2.23) with the modulated form for
w iteratively and applying solvability conditions arising from the

. . . w .
translational invariance of the pattern that means that — is a

solution of the homogeneous part of the linearized equation for
w. The forcing terms in the equations for the iterates arise from
the slow variations of all quantities with respect to X and T and
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the condition that they have to be in the range of the linearized
equation for the iterates of w gives the evolution equation for
the phase ®(X, T). We choose to use the second way, used in
the previous section, which is to substitute the modulated w into
the microscopic energy functional (2.22) and average over 6. We
obtain then from (2.21) that

wedw = —8E (2.26)
which, upon averaging over 6, gives
(26,80 = —SE. (2.27)

In carrying out the second approach, we still will have to use
the equation analogous to (2.12) expressing the amplitudes A, in
terms of the wavenumber A, = A,(k?). This is significantly more
involved and less transparent than the case for the complex field
where the slaving of the amplitude equation gives the explicit
expression (2.12) for A(k?).

Substitute (2.25) into (2.21) with

Vi — ko + €V

- - (2.28)
Vi — k*0j +€(2k-V +V - k)dy + €° V2
and so on. For the moment, then, we write
Viw = ﬁw + eViw
" oTEX (2.29)

Vfw = Kwgg + €e2k-V+ V- E)wg + EZV)%w

But let us understand what the operator Vi- means when acting
on w given by (2.24),

dA,

0 (2.30)

Viw = Z ( —nkAq(K?)sinnd + €

n>1

V;k* cos nf )

The 6 derivative acts on the cosines and the slow derivatives act
on k? through the amplitude dependence on the latter. We now
insert (2.29) into (2.22) and average by writing

2w

— 1
E=— doE (2.31)
21 0
and obtain
E :<f 1(k2w + kKw)? — 1Rw2
2 TR 2
1 1 -
+-wt+ fﬁkzwzw(g +K } dx)
4 2
+ e(/ { (Kwee + I<§w)(27< -Vwg +V - Ewg)
(2.32)

+ Bwwgk - Vw } dx)
+ 62(/ { (Kwgg + kaw)VZiw

1 _- -
+ 5(2k- Vwy + V- kwg ) + Bw?(Vw)? } dx)
+ o(e?)

We now want to take the same step as we did with the complex
field patterns in that we want to include the dependence of all the
amplitudes on k? as the amplitudes are slaved to the modulus of
the phase gradients. The way we do this is to use Eq. (2.23) for w
directly after making the substitutions in (2.28) and keeping all
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terms to order 2. We obtain

kK*wagge + 2k2k(2,w99 + (kg —Rw+w’ — ﬁkzwwg — ﬂkzwzl,Ug(;
=—w —€ { (K32 + k2)(2k - Vg + V - kwy)
+(2k-V 4+ V - k)(Kwgeo + Kwg)
—2Bwwe(k - VIw — Bw?(2k - Vwg + V - kwg) }
— €2 { (K87 + k3)V*w + V(K wgg + kgw)
+ 2k V 4+ V - k) wee
— Bw(Vw)? — pw?Viw } +o(e?)
(2.33)

Multiply (2.33) by %w and average, liberally using integration by
parts, to obtain

1 1
5k4<w(§9> — K2KE (w?) + 5(kg —R)(w?) +

= —%(ww[) — %e { (w(k 82+k2)(

(w) + BI* (w?wp)

"‘l N | —

-Vwyg+ V- I(U)9)>
(w(2k - V + V - k) (kP wagy + k2wg))
—2B(wwa(k - VIw) — Bw3(2k -V + V - K)wg) ]

(2.34)
Substitute (2.34) into (2.32) and write

E=(E)=Ey+E+E, (2.35)

We will analyze each contribution in turn. First, we observe that
the substitution of the amplitude dependence on k? manifests as
a replacement of the many of the higher derivative terms in the
original averaged energy. We find,

Eo = /dxdy { —%(w“)—%ﬁkz(wz

The minimum of Ey is achieved for k* = k2 where

d d
a2’ T di2

w2) +K }: / dxdyE, (2.36)

1
< —(w*y + ﬂk (w? we) )— 0 (2.37)
where E; is the integrand of E,. As before, we choose the ‘con-
vergence’ constant K to be the value of Eg in the far field where
we choose k to be the preferred wavenumber kg. Thus,
1 2 2

B =( gtwh) + AR wud) ) i (2.38)
Note the similarity between this expression and (2.16). While
the numerical coefficients are different, they have the same
form if we simply use the first harmonic approximation w =
A1(k?)cos(8). Consequently, the phase diffusion equation to lead-
ing order, obtained from Eq. (2.38), is similar in form to (2.17),
and is given by

(w2)Or + VzkB(k?) = (2.39)
where

dE,
B(k?*) = —2@ (2.40)

We next look at the order e contributions to the averaged
energy which, in the case of the complex field, clearly vanished. In
the real field case, they still vanish but it takes a little more work
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to show that they do. The contributions come from two sources,
first the terms at O(¢) in (2.32) and second from (2.34) that arose
when we effectively replaced the amplitude dependence of the
An(k?) sequence. The totality of terms at this level is then given

/ { ((IPwgs + KRw)(2k - Vwy + V - kwy))
+ Blw wek - Vw) } dx

%(ww[) — %/ { (w(k?02 + K2)(2k - Vwy + V - kwy))
+ (W(2k -V + V - k)(Kwggy + KRwg) — 28w wek - V)
— B(w3(2k -V + V - k)wy) } dx
(2.41)

The (ww;) term can be written as (wwyb;) = €{wwy)OAr which
is the average of a perfect theta derivative of a periodic function
and therefore zero. All the terms proportional to V - k also vanish
for the same reason. Likewise, all the terms proportional to ké
vanish. Next we have all the higher derivative terms which we
write as

2k wea(k - VIwg) — (Rwdd(k - Vwg) — (wk - VK wgge)  (2.42)
The last two terms can be integrated by parts to give 2k? wg(k
Vwge) which, when added to the first term is 2k?k - V (wgwag)
which integrates to zero as w and its derivatives are all periodic.
It is remarkable that in the 8 = 0 limit that the inclusion of
information of how the amplitudes depend on k* makes all the
terms vanish simply by reason of the periodicity of w.

The terms proportional to 8 require slightly more work. Their
vanishing is not as obvious. The term proportional to V - k clearly
is a perfect derivative but the other remaining terms combine to
give —pB(w? wg(k V)w). To see that this is zero, we must remind

ourselves that k - V5 acting on w acts only on k through the

2
amplitudes A, (k?). Namely k- Viw = Z(k-V)-(kZ) (i( ) cos(né).
The product of this with the former terms give terms which are
all of the form cos(r6) cos(sf) sin(mé) cos(nd) where r, s, m and n
are integers and these combine to give sines of four arguments
of the form sin(+£r 4 s & m 4 n) which, if the integrand is not
zero integrates to a periodic function and, even if zero, are exactly
zero. Therefore, just as in the complex field case, all the O(¢)
terms in the averaged energy vanish

Finally we compute the O(e ) contribution. As we have already
argued, all terms involving (k - V;) acting on the amplitude

dAn(k?)
dk?

sequence give terms proportional to times k - Vx(kz)

- k
which we might also write as k - Vi(k* — k3). By virtue of the
fact that the strain part of the energy makes k* close to ké almost
everywhere, these terms are negligible compared to the terms
proportional to V - k. The latter come from both (2.32) and (2.33)
respectively as

1 -
62/ 5(v k) (w2)dx

1 (2.43)
—GZ/E(V-k)z(wwgg)d?(
which, after integration by parts, give
62/< 2)(V - k)PdX ~ €% (wlh, [(v k)*dx (2.44)
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The regularized phase diffusion equation is then

(w)Or + V - kB(k) + 26> (w?) V4O =0, (2.45)
where (we) is evaluated at kg and with
dEq
B(k*) = —2—— 2.4
()= 27, (2.46)
where
2 1 kg

Eo(k%) = (7w f + ﬂk (w?wg)), b, (2.47)

which is universal. Although we have carried out the calculation
using a typical integrand W for the microscopic energy, it is not
hard to see that as long as that integrand is rotationally and trans-
lationally invariant with respect to Euclidean transformations and
that W is even in the field w, the same arguments will obtain.

3. Two challenges

3.1. The Jacobian of the map from X to k; self-dual reduction of the
RCN equation in two, three and any number of spatial dimensions;
some properties of defects; and a challenge.

We have seen that the minimization of the strain energy on
the horizontal diffusion time scale leads to the local wavenumber
k being close to kg almost everywhere. This fact leads to the
elimination of many of the terms that potentially appear in the
bending energy and results in the averaged energy being univer-
sal. But it also has other consequences. In two space dimensions,
the determinant J of the Jacobian J of the map from physical space
to order parameter space is simply the determinant of the Hessian
(i.e. Hessian curvature) fyg, — f,8. The fact that finite areas of
points in physical space map to a circle in order parameter space
means that almost everywhere the Hessian and Gaussian curva-
ture of the phase surface are zero. We had previously shown [11]
that this allowed us to effectively linearize the regularized phase
diffusion equation in two space dimensions. A similar reduction
is actually possible in any number of spatial dimensions. A new
result is: if k tends to kg almost everywhere, then differentiation
of k-k = k2 with respect to each of the spatial varlables gives
us that ]k = 0. The Jacobian matrix ] has an eigenvector k with
an eigenvalue zero. It also means that the determinant is zero
but it is the fact that ]k is a zero vector that leads to effective
linearization.

The RCN stationary phase diffusion equation is

8E

V%9 +V.kB=—— =0 3.1
n + 50 (3.1)
where
_ 1 _
E= / vl + 26 ) dx (32)
2 2
and
1 ¢ 1 dB
G* = _7/ Bdk*, a=—-— (3.3)
o k‘Z3 dez k2=’<§

The variational derivative of the first term in (3.2) gives rise to
the V40 term ir1 (3 1). The variational derivative of the second

term is ﬁdi 2k - 8k = —B(k? )k V&6, which, after integration by

parts, is V (kB(k ))80, leading to the second term in (3.1). « is a
positive “normalizing” constant that is determined by requiring
that G* = (k* — k3)? at leading order, a fact we will use shortly
when we “almost” linearize (3.1).

The energy functional E is a generalization of the Aviles-
Giga functional [12] and reduces to it for (k* — k3) small. As
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we have indicated, the analysis of this system can be greatly
simplified by a self-dual reduction /oG = iﬁvze, and almost
everywhere be effectively linearized in any number of spatial
dimensions. Self-dual refers to the fact that solutions of the
second-order equation V26 = =+ %G, in which the strain and

bending energy contributions balance, also satisfy (3.1). The fact
that the linearization is not exact is due to the condensation of
nonzero minors of the Jacobian matrix, which in two dimensions
is the determinant of J and effectively the Gaussian curvature,
onto points in two dimensions and loops in three. These act
as localized delta function-like sources in what is otherwise a
linearized system. Their influence, however, can be handled in a
perturbative manner.

But first, some preliminaries. In two dimensions, a direct cal-
culation shows that, the determinant of the Hessian is a con-
served density and its evolution towards localization is described
by

r(k,;)% +V.-K=0 (3.4)
where

K = (Qg — Q&0 Ofy — Q) (3.5)
and

Q = (/B) + (gB)y + nV*0 (3.6)

Next, we list some useful formulae that relate the area of the Hes-
sian to a boundary integral and the topological indices associated
with the concentration of this quantity at defect points. Similar
indices will be associated with closed loops in three dimensions.
We will discuss the two dimensional case first. The key formulae
are:

fdg — gdf
1—r)F + kirF, :/7
( )Fr + kgrFriq R4+ gy
k2 k2
= d 3.7
/C 22y ¢ = oy l¢] (3.7)
where (f,g) = (kcos g, ksing), and we assume k is kg every-
where on the boundary C and [¢] is the twist T of the director

field k as it travels along the boundary circumscribing the area £2.
The function F; is

Fo=2 / dedy. (38)
2 (kB +f2 +g2)r

These formulae follow from Green’s theorem. In deriving (3.4), we

think of the surface as being the dimensional phase surface z =

0
—. The formulae can also be used for any r value although the

<B . . . . .
ones which are integer or half integer are the most interesting.
For r = 0, we obtain

Fo=2 / (f8y — fygx)dxdy = kAT (3.9)
2

The boundaries can be distant or they can simply be curves
surrounding individual defect points such as concave and convex
disinclination as long as the first stage of the energy minimization
has taken place so that the Hessian has condensed onto points
and the wavenumber k is kg on the circumscribing boundary.

We are now in a position to explain why it is that, for patterns
which are locally stripe and planar in any number of spatial
dimensions, the stationary RCN equation describing the energy
minimizing configurations, including those with line and point
defects, can be “almost” linearized. Although much of this con-
clusion had been conjectured in earlier papers, we now see how
dramatic the consequences of the local wavenumber approaching
kg almost everywhere are.
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We want to solve (3.1). We ask that if the self-dual or anti
self-dual balance of the energies in (3.2) can lead to solutions of
(3.1). This hope was originally motivated by an observation that
the shape of a stationary dislocation, originally given in [13] and
described by the fourth order stationary RCN equation [11], could
be described by equating the strain and bending energies in (3.2).
It was proven for two dimensional patterns that, if ] is identically
zero, the same result obtains.

We now show it will hold in any number of spatial dimen-
sions. We set,

V20 = BsG +sx (3.10)
where
o
,3:\F s= +1 (3.11)
n

and derive the equation for the amount of x by which the self-
dual and anti self-dual balances do not satisfy (3.1). After a little
manipulation, we find, for any number of spatial dimensions that

V2x 4 VsxV;G = —BsV;- (j(i — VZGI)VEG> (3.12)

dG - -
But, since V;G is 2— 7k and, if k* tends to k2, k is an eigenvector

of the Jacobian matrixj with eigenvalue zero, the right hand side
of (3.12) is zero almost everywhere in the pattern domain. We
have seen (see [11]) that, as the pattern evolves, the Gaussian
curvature, initially broadly distributed, condensed first onto line
defects and then onto points in two dimensions. In general, it
concentrates at codimension two defects, so it is only nonzero at
point defects in two dimensions, line defects in three.

But we can go further than simply exploiting self-dual so-
lutions. We can almost linearize the equation pair (3.10) and
(3.12) in the sense that we can perturbatively solve the pair of
Egs. (3.10) and (3.12) by alternately solving for ¢ in (3.10) with
x given and for x in (3.12) with 6, and hence ] given. This
procedure can be implemented by solving linear equations with
known forcing terms at each step.

We first focus on the two space dimension case. In that case,
as we have shown in [11], the right hand side of (3.12) is ﬂs]VfG
where | = det(f) is the determinant of the Hessian matrix
f+8y —fy8x which is almost everywhere zero because the map from
almost all points (x, y) is to a circle k* = kﬁ in order parameter
space. Then,

V2x + Vsx V;iG = BsJ VFG. (3.13)

Typically, following the behavior of the fundamental solution for

the Poisson equation, i.e. the Newtonian potential, the resulting
. 1 . .

x will decay as = r = /x%> + y?, the distance from point defects

where J is located. But, as we have shown, G? can be well approx-
imated by (k? —k2)2. Since, the sign s takes care of the plus-minus
ambiguity, (3.10) becomes

V20 = Bs(ka — k*) + sx (3.14)
Let 6 = é In and find that

Vi — (B’kg + Bx)y =0 (3.15)
Set x = v and then v satisfies

V2u — (B + Bx)v = —4By Y (3.16)

These equations are valid in the entire two dimensional pat-
tern domain. Clearly if ] = 0, x = 0 and (3.15) is linear. Even
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Fig. 2. The nipple instability and the birth of a VX pair.

if J is delta function like, x decays away from the defect and the
equation pair (3.15), (3.16) can be handled perturbatively.

We now briefly list some of the various solutions of (3.15),
(3.16) that correspond to two dimensional defects and some
of their key properties. After this brief list, we pose an open
challenge.

1. The simplest solutions for which ] = 0 are sums of expo-
nentials

N
¥ =" exp(Bk; - x). k| = ks (3.17)
1

N = 1 corresponds to a field of straight parallel rolls.
2. The phase grain boundary (PGB) arises when N = 2 and
leads to a wave vector field

. sV 1. - 1 - - 1 - .
k=V0 = E%w = E(k] + kz) + ES(Iﬁ — kz)tanh 5(](1 — k2) - X
(3.18)

which is also the weak solution with the usual Maxwell rule for
the hyperbolic system V - kB =0, V x k = 0 when |k| < kg. One
can verify by direct computation that J = 0.

3. Creation of VX pairs - the nipple instability. If « is the angle
that each of the stripe patches makes with the PGB direction, the

4 T
energy per unit length of PGB is —nk3 sin*(«). But as @ — —, the

stripe patches are parallel and t?lere should be no energy cost.
This suggests that as « increases, the PGB becomes unstable. It
does so to a perturbation in which the former wavevector field of
(3.18) becomes a director field. (See the second part of Fig. 2) AVX

pair with energy per unit length of the former PGB of fr;kg(l —

sin()) is created. Thus, PGBs are unstable to concave-convex
disclination pairs when sina > 1 —sina or a > 43°.

4, The canonical point defects, concave (V), and convex (X)
disclinations are shown in Fig. 3.

The concave disclination consists of a triad of PGB’s meeting at
the point defect at 120° angles. The convex disclination consists
of a semicircular arc joining straight stripes. Their corresponding
phase surfaces have Gaussian curvature localized at the defect
points [11]. Their far fields are described by a solution of the
Helmbholz Eq. (3.17).

5. The far fields of other point defects such as spines, saddles,
targets, and vortices which are composites of the canonical point
defects V and X can also be captured using the reduction (3.15),
(3.16).

6. A particularly interesting defect is the stationary dislocation.
It is the composite of a saddle (VV) and a vortex (XX) whose
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Fig. 3. A concave (left) and a convex (right) disclination.

harmonic (i.e. solutions of V - k = V x k = 0) structure is
i

given by f —ig = kg + Z For a nontrivial B(k?), their far field

is given by seeking solutions ¥ = exp(B8kgx)F(x, y) and treating y

derivatives of F as more important than x derivatives (the paraxial

approximation) so that F(x, y) satisfies 28kgF, + F,, = 0 We seek

solutions such that 8(—x, y) = 6(x, y) and that 6(x, y) = kgx for y

large and positive and to kzx + 7 sgn(x) for y large and negative.
The solution then is

0(x,y) = kgx + % In { %(1 + exp(Bm sgn(x)))

(3.19)
x|

+ 51— exp(B sgnGEf(y By - }

It is not difficult to check that the determinant of the Hessian,
Oy — 07, and the Gaussian curvature are small for dislocations
so that the self dual approximation gives an accurate represen-
tation of their shapes. The multi-dislocation state is captured by
superpositions of the profile in (3.19) as long as the centers are
well separated.

And now we come to our first challenge which we shall
introduce through a series of figures. Fig. 4 is the result of a
computation of solutions of the Swift-Hohenberg equation with
boundary conditions chosen to force stripes meeting at various
angles shown across the top of the figure. As predicted in item
3 above, the VX pair creation is beginning to show at 0.257x. It
becomes more pronounced as the angle increases and leads to
a sequence of such pairs along the PGB. However, we note that
the contours emanating from the V become less Y-shaped and
more V-shaped so that the arms become more or less parallel to
the original PGB itself. Indeed at angles of .45, the pattern looks
more and more like a sequence of dislocations. This observation is
consistent with what we see in ellipses with boundary conditions
(in the context of convection in an elliptic cylinder with heated
sidewalls) chosen to ensure that the boundary phase contours are
parallel to the boundary and the wavevector normal. These are
shown in Figs. 5, 6, 7, 8, 9, 11a-b, 12a-b.

In Fig. 5, we see the eikonal solution (namely the solution
obtained by moving along boundary normals with phases 0, 27,

2
etc. marked at intervals of —) regularized by a PGB between

the two foci. This would indecgd be the solution for an idealized
elastic blister whose energy is very similar to (3.2) with carefully
controlled boundary conditions. The surface height would rise
with a constant slope and meet in a ridge located between the
two foci where the cavities begin.

However, one observes that the angles at which the phase
contours meet the PGB become larger and larger. Fig. 6 shows
us what happens. The white triangle marks the focus, the center
of curvature of the end of the boundary along the major axis. The

Physica D 447 (2023) 133688

0.157 0.20r 0.25% 0.30n 0.357 0.40m 0.45m

- - . .

Fig. 4. Numerical solutions of the Swift-Hohenberg equation with boundary
conditions corresponding to stripes with increasing angles.

white diamond marks the point at which the angle reaches its
critical value and from that point to the center we see a sequence
of dislocations with the contours closest to the major axis parallel
to that rather than being shaped as they would if they followed
the eikonal solution exactly. But as Fig. 7 indicates, the deviation
from kg (here chosen to be unity) is very small and well within the
k — kg = O(€) tolerance. There are no fitting parameters in Fig. 7
and the grayscale is logarithmic, to highlight small deviations
k — kp. It is therefore remarkable that the deviation is really
small over the bulk of the domain. Indeed, even a small difference
between the nominal kg from the PDE (the parameter k) and the
“actual” kg realized by the solution will show as a bright region
in this plot. Fig. 8 shows the local energy density which is clearly
largest on the sequence of VX pairs near the foci and on the
sequence of dislocations nearer the center of the ellipse. Fig. 9 is
a repeat of Fig. 6 with a 4:1 aspect ratio with results very close to
that of Fig. 6. Fig. 10 is the result of a simulation of the Oberbeck-
Boussinesq equation at a Prandtl number of 100 (at which the
equations are almost but not exactly gradient) and a Rayleigh
number of 2000. Figs. 11a and 11b are, respectively, the results
of an experiment by Meevasana and Ahlers [ 14] with ethanol and
a simulation of Swift-Hohenberg in an identical geometry [15].
Fig. 12a, b are simulations of Swift-Hohenberg [15].

The challenge is to deduce all this structure from the sta-
tionary phase diffusion (3.1) for the energy minimizing field. In
the far-field, away from the major axis between the foci, the
Gaussian curvature (Hessian) would appear to be so small as to
be negligible so it is likely the self-dual approximation obtains.
On the outside, the mean curvature is also small so the eikonal
solution dominates.

But as we move in, the curvature of the phase contours is
slightly more pronounced as to allow, if in balance with the strain
energy, proportional to (k? —k2)?, small deviations in the latter in
which k > kg but well within the Busse balloon and still of order
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Fig. 5. A stripe pattern corresponding to a phase given by the eikonal equation |V6| = 1.

Fig. 6. A numerical simulation of the Swift-Hohenberg equation on an elliptical domain. Compare the eikonal solution on the same domain shown in Fig. 5.
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Fig. 7. The grayscale corresponds to log;, ||VO| — kp|, a measure of the deviation of the local wave-number |V@| from the preferred wavenumber kz = 1. The
deviation is plotted on a logarithmic scale is for improved contrast. || VO| — k| < 10~2ks on the bulk of the elliptical domain.

€. Therefore the self-dual approximation will allow for some
flattening of phase contours as the major axis is approached.
Most of the energy in the pattern, as is clear from Fig. 8, resides
along the major axis. This behavior can be approximated by a
series of phase contours on the major axis where § = mx with

m integer, and gaps where 3y 0. Following through with

y
this approach allows us to calculate the optimal placing of the
divisions so as to minimize the energy [16]. In all likelihood that

10

will be the multi-dislocation solution (a sum of (3.19) solutions).
Another question to address is whether, at the dislocations, one
has to reintroduce the amplitude as an additional order parame-
ter as the local wavevector approaches the neutral stability curve
where the amplitude is small. In any event, the matching of
what is observed, in experiments and in simulations of both the
large Prandtl number Oberbeck-Boussinesq equations and its toy
model the Swift-Hohenberg equation, provides a healthy but yet
unresolved challenge for the theory.
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Fig. 8. The local energy density on the Swift-Hohenberg solution on an elliptical domain. The energy density is normalized by its maximum value. As expected, the
total energy is negative since the energy of the stripe patterned state is less than that of the homogeneous state.

Fig. 9. The Swift-Hohenberg solution on an elliptical domain with a larger aspect ratio.

Fig. 10. Numerical simulation of the Oberbeck-Boussinesq equations for
convection.

3.2, Pattern quarks and leptons and a second challenge

We saw in 3.1 that the canonical point defects in two-
dimensional striped patterns were concave (V) and convex (X)
disclinations. Their associated invariants, namely the “Twists”,

measuring the amount of Gaussian curvature condensed onto the

1

1
point defects, when divided by 27 were fractional, —= and —

respectively. In three dimensions, the point defect analogs of the
V and X will easily dissociate, while loop defects are stable and
encode interesting topology [17]. The defects that are structurally
stable are loops (see Figs. 13 and 14) in which the cross-sections
are concave and convex disclinations. 1

As we shall see, they still retain their “spin” or &= invariants.

However, because the tori that envelope these loops have two

11

Fig. 11. (a) Experimental results for convection in an elliptical container.
(b) Simulation of the Swift-Hohenberg equation on the same domain.
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Fig. 12. Simulations of the Swift-Hohenberg equation. Note the flattening of the phase contours as the major axis is approached.

V-string

)

/4

Fig. 13. A phase defect in three dimensions with a concave disclination
backbone.

independent closed loops on their surfaces on which the total
twists of the k director are invariant, each loop defect has an
additional invariant which in the case of the V (X) string or loop
with a concave (convex) disclination cross-section, can be integer

multiples of — (1). Because of the analogy with the correspond-

ing electric ciarges we call these objects pattern quarks and
leptons [18].

Before we give the results of these calculations, we point out
that the main ideas of the two invariants can be seen from a
geometrical viewpoint. For the V string, the object of interest is
a loop with a concave disclination cross-section which is twisted
about the backbone so as to match the w(, t) field at the two
ends z = 0 and z = [ which are identified. This can be done
in essentially two ways. We can ask either that the phase field
is periodic, i.e. 8(x,y,z = 0) = 6(x,y,z = [) or anti-periodic,
ie 6(x,y,z = 0) = —6(x,y,z = I). To achieve the former we
must match sectors S1 and S3, as shown in Fig. 15, which will
require a twist of the direction f,g,h = V6 along a suitable
contour joining r =g, =0,z =0tor =rp,a = 4?”,2 =1 of
2

— . 2m.
3

12

Fig. 14. A phase defect with a convex disclination backbone.

To achieve the latter, we simply match sectors of S1 and S2
which will require an angular twist of — - 2z. Each of their

negatives is also possible by twisting in the clockwise direction.
The spin invariant is obtained by examining the twist of the
direction V6 around any cross-section. For the X-string, the field
w(X, t) can only be made periodic in the backbone direction by
twisting the backbone by an integer multiple of 2w. The spin

index again is —. To envision these invariants, consider a torus

containing each loop defect shown in Figs. 13 and 14. There are
two independent contours (the generators of the Homology group
Hy) on the torus along which one can compute the net twist of
the director field. Each invariant is associated with the twist of
the director field around the two independent generators on the
torus and the line integrals can be related to the area integrals
of the two independent and nontrivial sectional Gaussian surface
curvatures of the three-dimensional surface 6(x, y, z).

It is worth remarking on and emphasizing this extraordinary
possibility. We start from a field evolving under dynamics imbued
with only rotational and translational symmetry. However, when
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Fig. 15. Concave disclinations and fractional twist.

sufficient stress is applied to that system, there naturally emerge
objects with fractional invariants. Contrast this with the standard
model (TSM) of theoretical physics in which, informed by the
experiments of the early seventies, the symmetries associated
with U(1), SU(2), and SU(3) were invoked to capture the charge
and spin invariants associated with quarks and leptons. In the
context of patterns, there is no imposition of such symmetries
a priori. The stress on the system causes instabilities, and the
melding of differently oriented planar stripe patterns leads to
loop defects with precisely the fractional invariants associated
with charge and spin.

Here is an outline of what we wish to present. We begin
with a listing of previous results although now fortified by our
understanding that, even in three dimensions, the self-dual ap-
proximation is valid. To simplify the formulae, we choose units
such that 8 and kg are both unity. We then pose a series of
outstanding challenges.

It is a useful exercise to employ what we call the Laplacian ap-
proximation to consider solution to the phase diffusion equation
in the special case where we take B(k) = 1 and satisfy each of its
two terms separately by solving V - k = V20 = 0. Since V x k
is also zero, in two dimensions this means that fy = —g,,f, =
g, which are the Cauchy-Riemann conditions guaranteeing that
f —ig is analytic in x + iy.

1

Disinclinations are captured by the functions z'/? and 7

analytic on the Riemann surface which is the double cover on the
plane. Indeed such smgularltles arise in the theory of quadratlc

diffentials. Choose 8(x, y) = Im= {3/2 . =x+iy, = p*
where ( ,y) = (,o cos(a) pSlrl?oz A little analysis shows f2 -
ig exp(S) = ke™ where (f,g) =

1/2

SlI]

=p! (kcos ¢, ksing) Then

o
9= As « travels around the defect at ¢ = 0, the corre-

sponding twists in ¢ is —. This is the two dimensional Laplace or
harmonic concave disclination. The Laplace convex disclination is
found by choosing & = Im(2¢'/?). In three dimensions, we solve
Laplace’s equation on a cylinder with a backbone along the z-
axis identifying 6(x, y, 0) with 6(x, y, I) in various ways described
earlier when we discussed the main ideas.

For the V-string, or pattern quarks, the Laplacian approxima-
tion can be written as

2 3 . 30 nnz
0=_-Krzsin| — — —
3 2 l

where n is integer and we have approximated the Bessel function
I3(r) by its small argument limit. Therefore we work in the radial

(3.20)

omain 2r(=A) K r K L
nrwz s
g =K Pexpi( L2 T 3.21
f—ig=Kr'"expi ( > | 5 (3.21)
27n 3 nmz
h= _Ll Kr*2 cos ( 7" - 7’; ) (322)
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We note that, for r small, |h| < |f], |g|. Therefore the twist
of the direction (f, g, ;1) can be calculated from the change in ¢

where f — F? + g2 exp(—ip), /f? +g2 = Kr'/?.
_ o i nmz n b/ (3 23)
YT T :

Along the contour z = constant, 0 < « < 2m, the twist or

change in ¢ is —x. Along the contour @ = o+
. n
ro(ag), 0 < t < n on which 6 and h are constants, the change of

v, gkp] is

1
—[p]l = -n.
7 (] 3
For 6 periodic over 0 < z < I, n is even and its smallest value
is n = 2. We call this the pattern up quark. For 6 antiperiodic,
we choose n 1. We call this the pattern down quark. The

—t,z=—-t,r =

(3.24)

1
corresponding index is 3 For X-strings, or pattern leptons, the

nz
Laplace solution is 8 = 2Kr!/? sin(% — ——) for which f —
Nz
ig = f2+g2exp(—ip) = Kr'/? expi(—% - - %),h =
2nKnr3/? a 7w i )
S OS(E - T). The twist angle is
_a+nnz+n (3.25)
YT TS :

Around thle two circuits r = ry, z = constant, 0 < o < 27 and
r=r9,z = —t,a = g — 27wt,0 < t < n the respective twists
are m and —2mn. The choice of antiperiodic 6 leads to indices +1.
We note that the choice 6 periodic leads to indices +2.

We now turn to the self dual problem for which solutions for
6(x,y, z) are obtained by solving (3.15), the Helmholz equation
for ¥ and then calculating 6 = sln .

For the V-string, or pattern quarks, the self dual approximation
gives

3
01(r,,z;n) = gr cos (a

33 (3.26)
ro. 2ntz 0w
—In{ 2cosh=sin| « — —- — —
2 31 3
2nm z
92(T,(X,Z;n):——rcos((x—?j—n>
(3.27)
+1In 2cosh£sin a—zn—nf_n
2 3 1
V3 2nrz 57
93(T,0{,Z;n)=7rc05 a—?j—?
(3.28)

r

—In{ 2cosh-sin{ « = —- — —
2 3 1 3

The sectors are rotated versions of those shown in Fig. 15 and

2(n—1 2nmw z 2n
are defined by ——7 < il id ,n=1-—6.

a— —- <
The solutions are approximate, valid ?or 2m L r < I The phase
functions 04, 05, 65 in sectors 4, 5, 6 are the negatives of those in
S1, S2, S3. The z dependence of the arguments are chosen so that,
under the twist associated with integer n, the points og onz =0

2nmw
rotate to oo + 3 on z = [. We note that

O1(r,a,z=Ln=2)=03(r,a,z=0;n=2) (3.29)
and
Oi(r,a,z=Ln=1)= —6;(r,a,z=0;n=1). (3.30)



A.C. Newell and S.C. Venkataramani

In the first case, we match sectors 1 and 3. The twist along

4 4
the helical contour joining (ro, 0, 0) to (ro, ?ﬂ, D) is TH In the

.. 27 . .
second case, the twist is —. Again the twist along a contour at

constant z is —m. A similar three dimensional analogue to the
two dimensional solutions gives twists for the X-string of = and
—2mn.

There is a connection of the “charge” invariants with the Gaus-
sian curvature of the twisting phase surface that has a boundary

which consists ofC41: a helical curve joining (r =19, =0, z =40)
to(r = rp,ax = —ﬂ,z = [); C2: the straight line at @« = —ﬂ,

joining r = ry to r = 0; C3 : the backbone on which k — 0
joining z =1to z = 0 at r = 0; and C4 : The straight line joining
r=0,ad =0,z=0tor = rgp,e« = 0,z = 0. The value of

2
5= Jc, K¥dg is . Its value on C2 and C4 is zero because on these
straight lines [¢] = 0. The value along the backbone is also zero.

1 o . C
Thus Sr Zf(Vf x Vg) - ndS which adds the projections of
T
4
(VfxVg)ontoz=0,r<r1r5,0 < < ?71 and ontoa = 0,0 <

.2 )
r <rn,0<z<lis 3 One can calculate these integrals for

2 = 3 2
the case where we approximate 6 by §r2 sin(; - %Z). Then
1 1 s 1
(8 — fu&) = ——.fr& — f:& = — and —(fug; — f:8.) = 0.
4 4r l r

4

. 2 o p 3 1 1

The integral —— [.° —(fr8y — fug)rdrda = —— whereas

. gral 5 Jo" Jo® L8 — fugrdrdec = —3
=[P fol T drdz = 1.
27'”'0 1 . o i

In the harmonic case, one must divide out by the radius ry as
the wavenumber does not tend to 1 (the non-dimensional kg) in
the far field but to r. Therefore the two sets of invariants, the

1 2 1
“spins”, ——= and —, and the “charges” +1, £—, +—, reflect the

. . . 3

amounts o? sectional Gaussian curvatures Wth?‘l have condensed
on the loop backbones. On the other hand, the energy of the V
string is proportional to the mean curvature condensed along the

PGBs for the V-string which is proportional to 3 sin® T multiplied

by the product of its cross sectional and backbone lengths L and
I. The X-string energy is proportional to [InL.

There are several open challenges. Most are of interest in
their own right and aim at gaining a better understanding of
the defects contained in natural patterns. Others are motivated
by the possibility of connections with the origins of subatomic
particles.

1. The embedding of disclinations in physically reasonable
far fields. Even in two dimensions, this is a challenge.
Our calculations of the energy of the concave disclination
assume that the three phase grain boundaries have infinite
extent. So this brings up the question: Are disclinations
finite in size with finite energy and, if so, how do the
contributions from the phase grain boundaries (disconti-
nuities in the gradient of the phase field) in the case of
the concave disclination and of discontinuities in second
derivative (curvature) in the case of convex disclinations
decay as r, the distance from the core, increases and how
do these objects meld in with physically reasonable far
fields? Perhaps they do not. Perhaps they are part of a
very slowly coarsening process which only ends after many
mergings and when the final defect configuration is of the
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size of the system and constrained from complete elimina-
tion only by boundary constraints. These questions become
even more difficult when we consider the V and X strings in
three dimensions. Can they be embedded in R> or do they
require the notion of a wrapped up dimension so that the
configuration space is not R3 but S! x R? or more simply
a torus?

One can try to think of gedanken experiments. In [11],
we showed how a striped convective pattern evolves in
an elliptical cylinder whose sidewalls are heated. Near the
boundary, the convection rolls are parallel to the walls
(their wavevector k is normal to the wall) and their wave-
length is the preferred value, the eikonal construction. But
the normals to an elliptical cylinder form caustics emanat-
ing from the two foci so that the eikonal solution leads to
multivaluedness. A thin film elastic blister would regularize
this solution by introducing a wedge-like boundary roof
layer between the two foci and allow for a discontinu-
ity (PGB) in the gradient of the height [11]. The angle
a between the wavevector and the PGB is zero at both
foci and increases towards the center. What we find in a
convecting fluid is that, once « > 43°, the pattern de-
velops non-orientable defects resulting from director field
perturbations of what was previously a vectorfield. There is
a creation of VX pairs, a nipple instability, and a prediction
supported by both numerical and experimental confirma-
tions, the former using both the Swift-Hohenberg approx-
imations and the full Oberbeck-Boussinesq equations. The
final pattern (presumably the energy minimum although,
for nonconvex problems, one has no uniqueness result;
in some circumstances, one can show by finding almost
coincident upper and lower bounds [19] that an observed
configuration has an energy that the minimum must have)
consists of what appears to be a chain of “dislocations” in
which V-1 and & mod 7 are both zero on alternating seg-
ments on the chain axis [16]. The number is determined by
the aspect ratio of the elliptical container. In an experiment
conducted by Ahlers and colleagues [14] there is only one
defect (See Fig. 11(a)). It would be interesting to attempt
an experiment in an ellipsoidal container, axisymmetric
around its long axis, with some pattern producing system,
possibly chemical in nature, which can produce three di-
mensional patterns. One might conjecture that one would
obtain a bound zero charge pair of VX strings because there
is no twist along the backbones. It might be also possible
to use a toroidal cylinder with elliptical cross section in
which one might induce a 27 twist, a hydrogen atom like
arrangement.

. Interstring forces. Whereas much is known about the

interaction energies and forces between vortices (a back
to back superposition of two convex disclinations) and
dislocations (two concave, two convex dislocations) in vec-
torfield pattern forming systems, and, in certain cases,
between disclinations in two dimensions, nothing is yet
known about the interaction forces between loop discli-
nations. Some of the difficulty is that we do not have
finite energies for individual disclinations. What one would
like to be able is to calculate the interaction free energy
between two such objects by renormalizing, i.e. subtracting
the individual free energies from that of the combination
and calculating its dependence on the parameters r, an
appropriate choice of interdisclination distance, and the
spin and charge indices. An alternative approach might
follow the framework introduced in [20] to effect the
renormalization by introducing additional “defect”-fields
that modify the energy functional to keep it finite even
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in the presence of disclinations. One would like to see
whether, for example, the renormalized interaction energy
between a single V-string with 2z twist (two up quarks
and one down quark) and an X string is proportional to the
product of the signed charges and inversely proportional to
r, the separation between the strings.

3. Composites of pattern quarks and leptons. A related
question concerns the composition of pattern quarks and
leptons. Presumably one cannot match an individual up or
down pattern quark with a pattern lepton because their
charges (which are related to their topological structures)
do not match. Therefore, one might conjecture that if
pattern quarks and leptons can only appear (stably) in
pairs then we require quark composites whose indices add
to multiples of +1, e.g. two up quarks and a negative
down quark (a pattern proton). One could also add a zero
charge configuration, e.g., integer multiples of one up and
two down quarks (a pattern neutron). Do such composites
consist of pattern up and down quarks which share the
same loop backbone (and whose topologies are clearly
calculated by the addition of indices) or can one have inter-
linked loops? We should note that their cousins in excitable
media, vortices with vectorfield order parameters, tend to
appear as single rather than interlinked loops.

4. More sophisticated models. Patterns can arise as station-
ary (exchange of stabilities) or as traveling or standing
waves (overstability). The latter arise when the unstressed
system supports oscillatory or wave motion. For example,
the next most simple model of atmospheric motion is
the beta plane model which adds the north-south depen-
dence of Coriolis parameter to the geostrophic balance.
When stressed with a north-south temperature gradient,
the resulting vertical shear of the east-west velocity and
associated density, pressure fields can destabilize via what
is called the baroclinic instability to a traveling pattern
which has the character of Rossby waves, the natural os-
cillations of the unstressed system. Therefore the recipe
for a pattern forming system with waves is a superposi-
tion of Hamiltonian and gradient flows. It would be in-
teresting to investigate the nature of defects in a pat-
tern forming system whose Hamiltonian component had
Lorenz symmetry added to that of translation and rotation.
The system is stressed by the addition of the gradient
component.
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