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Abstract
We study the capacity of entanglement as an alternative to entanglement entrop-
ies in estimating the degree of entanglement of quantum bipartite systems over
fermionic Gaussian states. In particular, we derive the exact and asymptotic
formulas of average capacity of two different cases—with and without particle
number constraints. For the later case, the obtained formulas generalize some
partial results of average capacity in the literature. The key ingredient in deriv-
ing the results is a set of new tools for simplifying finite summations developed
very recently in the study of entanglement entropy of fermionic Gaussian
states.
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1. Introduction

Entanglement is a fundamental feature of quantum mechanics and it is also the resource that
enables quantum information processing as an emerging technology. The understanding of
entanglement is crucial to a successful exploitation of advances of the quantum revolution. In
the past decades, there has been considerable progress in estimating the degree of entangle-
ment over different models of generic states, where one of the most extensively studied area is
the entropy based estimations using, for example, von Neumann entropy [1-11], quantum pur-

ity [7, 12-16],

and Tsallis entropy [17, 18] as entanglement indicators. These results mainly

focus on the statistical behavior of entanglement entropies over generic state models, such
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as the well-known Hilbert—Schmidt ensemble [1-6, 8, 11, 12, 15, 17, 18], the Bures—Hall
ensemble [7, 9, 10, 13, 14, 16, 19], and the fermionic Gaussian ensemble [20-23].

Besides entropies, there is a growing interest in understanding the capacity of entanglement
as another entanglement quantifier. Similarly to entanglement entropy as an analogy to the
thermal entropy, the entanglement capacity introduced in [24] serves as an analogy to thermal
heat capacity. In the time evolution of quantum systems, capacity is observed to detect the
presence of entanglement at earlier times than entropies could capture. It is also identified as a
critical value to distinguish integrable systems from chaotic ones [25]. In the literature, differ-
ent properties of entanglement capacity have been numerically studied in [25, 26]. Moreover,
exact formulas of the average capacity of finite subsystem dimensions are recently obtained for
the Hilbert—Schmidt ensemble [27-29] and the Bures—Hall ensemble [29]. For the fermionic
Gaussian ensemble without particle number constraint, the average capacity of equal subsys-
tem dimensions is derived in [21, 30], whereas the corresponding finite-size formula in the
general case of unequal dimensions remains open. Knowing the finite-size formula of aver-
age capacity allows the comparison to the finite-size results of entanglement entropy obtained
recently in [20-23], leading to a more comprehensive understanding of the properties of entan-
glement capacity. For noisy intermediate-scale quantum systems [31], where the qubits num-
ber is limited to a few dozens, finite-size estimations of degree of entanglement including the
finite-size average capacity become crucial. Furthermore, knowing the finite-size formula of
average capacity is useful in constructing simple Gaussian approximations to the distribution
of entanglement capacity.

In this work, we compute the exact average entanglement capacity valid for any subsys-
tem dimensions of fermionic Gaussian states for the cases of with and without particle num-
ber constraints. A key ingredient in obtaining the results is the set of tools for simplifying
finite summations developed very recently [23] in the study of von Neumann entropy of the
fermionic Gaussian ensemble. Our exact results also lead to the limiting values of average
capacity when the subsystem dimensions approach infinity with a fixed dimension difference.
Simulations are performed to numerically verify the derived results.

The rest of the paper is organized as follows. In section 2, we first outline the problem
formulation before presenting our main results of the exact mean capacity of fixed particle
numbers and arbitrary particle numbers in propositions 1 and 2, respectively. The correspond-
ing asymptotic capacity formulas are given in corollary 1. Proofs to the results are provided
in section 3. In appendix A, we list summation representations of the integrals involved in the
proofs. Summation identities utilized in the simplification are listed in appendix B. The coef-
ficients of some intermediate results appeared in the derivation are provided in appendix C.

2. Problem formulation and main results

2.1. Problem formulation

We first introduce the formulation that leads to the entanglement capacity of fermionic
Gaussian states with and without particle number constraints as well as the corresponding
statistical ensembles.

A system of N fermionic degree of freedom can be formulated in terms of a set of fer-
mionic creation and annihilation operators @; and &I-T, i =1,...,N, which obey the canonical
anti-commutation relation,

{&h&;} =o;I,  {a,a}=0= {&?aa}}’ (0
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where {A,B} = AB + BA denotes the anti-commutation relation and I is an identity operator.
These fermionic modes can be equivalently described via the Majorana operators ~;, [ =
1,...,2N, and
At | oA At oA
R a; +a; R a; +a;
e B 2)
Y2i—1 \/E 2i \ﬁ
with ¢+ =+/—1 denoting the imaginary unit. The Majorana operators also satisfy the
anti-commutation relation

{31, %} = oull. (3)

By collecting the Majorana operators into a 2N dimensional operator-valued column vector

v = (%1,---,%n)", a system of fermionic Gaussian state is then characterized by the density
operator of the form [22, 32]

e~ 0y A

p(v) = m, 4)

where the coefficient matrix Q is a 2N x 2N imaginary anti-symmetric matrix as the
consequence of the anti-communication relation (3).

2.2. Entanglement capacity over fermionic Gaussian states without particle number
constraint

There always exists an orthogonal matrix M that diagnoses the coefficient matrix Q by
transforming +y into another Majorana basis 1 = (ji1, ..., flay)! = M~. A fermionic Gaussian
state of arbitrary particle numbers is determined by the anti-symmetric covariance matrix [22]

J = —atanh (Q) = M"JyM, (5)

where tanh(x) denotes the hyperbolic tangent function [33], the matrix Jo takes the block
diagonal form

tanh (A;)A ... 0
Jo= : : ; (6)
0 ... tanh(\y)A

0 1
A(_10>. ™

In the setting of the quantum bipartite model [34], the system of N fermionic degree of
freedoms can be decomposed into two subsystems A and B of dimension m and n, respectively,
with m +n = N. We assume m < n without loss of generality. By restricting the matrix J to
the entries from subsystem A, the restricted covariance matrix J4 is the 2m x 2m left-upper
block of J. The entanglement capacity can be represented via the real positive eigenvalues
X, i =1,...,mof 1Jy as [25, 26, 30]

and

C= Zu(x,-) (3)
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with
()717x21n21+x ©)
=y 1—x
The resulting joint probability density of the eigenvalues x;, i = 1,...,m is proportional to
(20]

m

[ @E-2T[a-2)"", xelo1, (10)

1<i<j<m i=1

which is obtained by recursively applying the result in [35, proposition A.2].

2.3. Entanglement capacity over fermionic Gaussian states with particle number constraint

For a fermionic Gaussian state |F) with a fixed particle number p, it is more convenient to
formulate it with the fermionic creation and annihilation operators, and the corresponding
covariance matrix can be expressed as [22, 36, 37]

Hjj = —u(Fla]a; — a;al |F). (11)
Using the anti-commutation relation (1), the entries of the matrix H then become
H,'j = 721G,‘j + Zél‘j, (12)

where Gj; = (F |&}L&j|F } denotes the entries of an N x N matrix G. There always exists a unitary
transformation U that diagonalizes G. In the resulting diagonal form, the first p elements are
equal to 1 and the rest are 0. Therefore, one can write

G = UnxpUly,- (13)
Denoting y;, i =1,...,m the eigenvalues of the restricted matrix G4 = UmXpU,LXp, the
entanglement capacity can be represented as the function of y; as [26]

C=-) uy—-1), y€l01l]. (14)

i=1

The eigenvalue distribution of the random matrix Uy, UL «p 18 the well-known Jacobi unitary
ensemble [38, 39]. Here, it is more convenient to use the eigenvalues of matrix :H. Denote
x;, i =1,...,m, as the eigenvalues of the m x m upper-left block of the matrix +H, the change
of variables x; =2y; — 1 in (14) leads to the entanglement capacity (8) for the case of fixed
particle number. The resulting joint probability density of the eigenvalues x;,i = 1,...,m, is

proportional to [40]

m

[T G-x’JJa+x)""0-x)"", xel-11]. (15)

1<i<j<m i=1

It has been introduced in [23] that the joint probability densities (10) and (15) can be
compactly represented by a single joint density as

m

fra (x) o< H (x?—x;’)ZH(l—xi)a(l—I—xi)b. (16)

1<i <j<m i=1

4
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The two considered scenarios of fermionic Gaussian states can now be conveniently identified
by the above density (16), where we have

v=1, a=n—-p>0, b=p-m>=0, xe€[-1,1] 17)
for fermionic Gaussian states with an arbitrary number of particles, and
vy=2, a=b=n—-m>0, xe€l0,1] (18)

for fermionic Gaussian states with a fixed number of particles. Note that computing the average
capacity for the two cases will be performed separately below since the computation for an
arbitrary vy in (16) appears difficult. We omit the normalization constants in (16) as they will
not be utilized in the calculation.

2.4. Main results

We now present our main results on the exact and asymptotic average capacity of the fermionic
Gaussian states for the cases of fixed and arbitrary number of particles.

Proposition 1. Denote the summation ®. 4 as

K c+d—k)1
D,y = . de 7t 19
A (c+d)!; c—nr R’ 94c (19

and the function F(a,b) as

F(a,b) = ag2Puimp+2Ppa+ 01 (a+b+m+ 1)+ (a+m+1)+ (o (a+m+1)
—tho(a+b+m+1))> = (1)) +aro(at+m—+1)+axpo(a+1)+as,

(20)
where the coefficients «; are
b b
ao:m(a—i—m)( +m)(a+b+m) @1
(a+b+2m—1),
(a+b)(a+m—1)(a+m)
= 22
O“ (a+b+2m—1), 22)
2 2
+ab+2am—a+2bm—b+2m~—2
az:ia(a a am—a m m m) (23)
(a+b+2m—1),
-1
gy Matm=1) _m 24)

(a+b+2m—1), 2

Then, for any subsystem dimensions m < n, the mean value of entanglement capacity (8) of
fermionic Gaussian states with a fixed particle number p as in (17) is given by

5
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In proposition 1,

dInT (x
Yo (x) = T() (26)
and
d’InT (x)
Y1 (x) = R — (27)
denote respectively the digamma and trigamma functions, and
T'(a+n)
_ 28
@ = () (28)

denotes the Pochhammer symbol. The proof of proposition 1 can be found in section 3.1. Note
that the summation ®. 4 in (19) does not in general admit a closed-form representation for
arbitrary ¢ and d. On the other hand, the sum ®. ; may be further simplified in some special
cases as discussed in the following remark.

Remark 1. Substituting i — k, m — ¢, n — ¢ +d in the identity (B.12), the summation ®. 4
in (19) admits an alternative form

~ o (k+d)
s toktd o 29)

where CF denotes the closed-form terms in the bracket of (B.12). The sum in (29) may
not be summable into a closed-form expression and is referred to as an unsimplifiable
basis [6, 8, 10, 11, 21, 23, 29]. However, in the special cases of a given integer d, it permits
closed-form representation as a result of the identity (B.3). This corresponds to the case of
fixed differences a = n — p, b = p — m, where the average capacity (25) admits more explicit
expressions. The cases a = b =0, 1,2 are provided respectively in below as examples

3 2 2 _
Bl =~ iyt >@Mm+w—2)—b"M”1 (30)

2m—1)2m+1 2m—1
2m m+1)(m+2) 2 m(2m(m+3)+5
E[C] = ( Yy (m _ m(@m( ) +3) 31
 2m+1)(2m+3) (m+1)(2m+3)
2m(m—|—2 Y(m+4) 2 4
E[C] = -
€] (2m+3) (2m+5) (wl >+(m+l)(m+3)
m (m* +4m+5) (4m® 4 30m* + 72m + 57)
X +1)— 1)) — 32
(o (m+1) =20 (1) (@m+3)(2m+5) (m+ 1), 2
Remark 2. By using the limiting behavior of polygamma functions
1 < By
Yo (x) =In(x) — % 2 oYk X — 00, (33)
1+2x <= B
P (1) = 2 X — 00, (34)

) K2
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where By is the kth Bernoulli number [33], the finite-size formulas (30)—(32) respectively give
the following asymptotic results for the casesa =b=0,1,2

E[C] =2 72 1
=1 — 35
m 8 +32m2+0 m3 33)
E[C] =? w2 1 372 1
ot AL PR R T O L —
m 8 * < 8 m  32m? o m3 (36)
E[C] =? 2 1 1572 1
ST (T ) S 2T (). 37
m 8 + < 4 m  32m? o m3 37)

Proposition 2. For any subsystem dimensions m < n, the mean value of entanglement
capacity (8) of fermionic Gaussian states with an arbitrary particle number as in (18) is
given by

1
E[C] - ﬁ (@2m71,n7m + cI)ernfl,nfm) + Z ((I)mfl,n + Cpmfl,nfm) + ( + )

X () 0 () 5 (0 (2m) — o (m-4 )+ 4 (2) — iy (1)
45 o () g (m4 )2+ 2 o (mtom) — o (n—m)) —m, 39)

where @, 5, is defined in (19) and the coefficient (3 is given by
_(@2m—-1)(2n—-1)
= dm+4n—2

Proposition 2 is proved in section 3.2. It is important to point out that in deriving the
results (25) and (38), we make use of the lemmas 1-4 in [23] as will also be discussed
in section 3.1.2. The four lemmas are examples of a new simplification framework recently
developed in [23] when studying the exact variance of von Neumann entropy. This new frame-
work consists of a set of novel tools useful in simplifying the summations involved, includ-
ing (A.3), (A.4), and (A.7) in appendix A. These summations do not permit further simplific-
ations when using the existing simplification tools for the computation over Hilbert—Schmidt
ensemble [6, 8, 11] or the Bures—Hall ensemble [9, 10, 16]. For proposition 2, we also have
the following remark.

(39)

Remark 3. For the same reason as in remark 1, the result (38) admits closed-form represent-
ations for the special cases when the subsystem dimension difference a = n — m is fixed. For
example, by fixinga =0, 1,2, 3 in (38), we recover the recently obtained mean capacity values
in [21, equations (27)—(30)]. We also list below the limiting behavior of average capacity for
the casesa=0,1,2,3

E[C] =? 72 1\ 1 2 1
SHoT () e T o= 40
m 8 <n 4)m " 12em O\ “40)

E[C] «? 72 1\ 1 372 1
ST () - o= 41
m 8 ‘%n 3)m 128 7O\ “h
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E[C] «? 372 3\ 1 1572 1
ST () S 2T o — )
m 8 +<32 3)m 1282 T\ “2)

E[C] =? 572 5\ 1 3572 1
ST (22 S 2T (). 43
m 8 +<32 4)m 128w 0\ “3)

Based on the two propositions, the limiting behavior of the average capacity for any fixed
subsystem dimension can now be obtained. The results are summarized in corollary 1 below,
and the corresponding proof can be found in section 3.3.

Corollary 1. For any subsystem dimensions m < n in the asymptotic regime
m— 00, n— oo, withafixedn—m, (44)

the average entanglement capacity of fermionic Gaussian states with a fixed particle
number (25) and with an arbitrary particle number (38) approach to the same limit

2

B =~ (45)

m 8

In corollary 1, we note that for the case of fixed particle number, the particle number p also
goes to infinity of the same rate as m and »n in the limit (44). For the case of arbitrary number of
particles, the limiting value (45), also known as the leading volume-law coefficient, was first
obtained in [30] for equal subsystem dimensions. Here, we have extended it rigorously to a
more general regime (44) starting from our explicit result (38). We also observe the interesting
fact that the limiting value (45) is the same for the cases (17) and (18) despite the fundamental
difference of the two underlying models.

Note that the asymptotic capacity over the fermionic Gaussian ensemble is different than
the Hilbert—Schmidt ensemble or the Bures—Hall ensemble [29]. This is due to the difference
between the entanglement structures of the ensembles. In particular, the interaction parts of the
Hilbert—Schmidt ensemble and the Bures—Hall ensemble are different. Moreover, the obser-
vation of different asymptotic values can be understood from the variance of the modular
Hamiltonian interpretation of the capacity [29]. The fact that the asymptotic average of entan-
glement capacity over Bures—Hall ensemble attains a larger value than the Hilbert—Schmidt
ensemble implies that the width of the spectrum of Bures—Hall ensemble is on average wider
than that of the Hilbert—Schmidt ensemble. On the other hand, the capacity behavior is expec-
ted to be model dependent, and the choice of the appropriate model is crucial for an accurate
estimation.

To illustrate the obtained results, we plot in figure 1 the exact formulas (25) and (38)
per dimension m for fixed subsystem dimension differences n —m = 0, 4, 8, along with the
asymptotic value (45). The left-hand side figure corresponds to the case of a fixed particle
number p = (m+ n)/2, and the right-hand side corresponds to the case of an arbitrary particle
number. We also plot the simulated values of mean capacity in figure 1, which match well with
the analytical results. It is observed that as the dimension difference n — m increases, the aver-
age capacity (25) and (38) approach to the limiting value (45) more slowly. This fact indicates
that the finite-size capacity formulas are more useful when the dimension difference n —m
is large, see [29], and otherwise the asymptotic value (45) serves as a reasonably accurate
approximation in the regime (44).

On the other hand, for the regimes where the dimension differences n — m are increasing
with the subsystem dimension m, the true average capacity starts to deviate from the limiting
value (45). For example, in figure 2, we plot the exact formulas (25) and (38) per dimension

8
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Fié(%d particle number p = (m +n)/ 20 3 Arbitrary particle numbers

0.28 1 1 028} 1
= 0.26 0.26 | ]
2
n
5 0.24 0.24
T 022 0.22
2
= 0.2 0.2 |
E
g 0.18 1 0.18
S
(]

g 0.16 1 0.16 ]

s | === limiting behavior| | —--—-— limiting behavior

;50.14- o n=m {1 0.14 o n=m 1
n=m+4 n=m+4

012} X n=m+38 1 012y X n=m+38

0.1 ' ' ' 0.1 ' ' :
20 40 60 20 40 60
Subsystem dimension m Subsystem dimension m

Figure 1. Average of entanglement capacity (per dimension) of fermionic Gaussian
states with and without particle number constraints: analytical results versus simula-
tions. The solid lines are drawn by the exact capacity formulas (25) and (38), while the
dash-dot horizontal lines represent the limiting behaviors of average capacity (45). The
corresponding scatters in the symbols of circle, diamond, and asterisk are obtained from
numerical simulations.

m for the cases n —m = 0.5\/m, \/m, 2./m, 4\/m, as compared to the limiting value (45).
It turns out that in the regime where the dimension differences are of order \/m, the limiting
value (45) still provides a moderately accurate estimation for a relatively slow increasing rate
of dimension differences, yet become less accurate for a higher rate.

Larger deviations to the limiting value (45) are observed in figure 3, where we plot
the exact formulas (25) and (38) per dimension m for dimension differences n—m =
1.1m, 1.5m, 2m, 3m, in comparison to the limiting value (45). Itis also observed in figure 3 that
the values of average capacity outside of the regime (44) seem to oscillate around the asymp-
totic value within the regime. Note that both the figures 2 and 3 are plotted by the numerical
results that are outside of the regime (44), where the scaling limit of average capacity appears
robust to the case within the asymptotic regime (44).

3. Computation of average capacity

In this section, we prove the results presented in the previous section. The mean formula of
entanglement capacity for fermionic Gaussian states with a fixed particle number in proposi-
tion 1 is calculated in section 3.1. The computation for the case of an arbitrary particle number
in proposition 2 is performed in section 3.2. The limiting value of the average capacity in
corollary 1 is proved in section 3.3.



J. Phys. A: Math. Theor. 56 (2023) 435201

Y Huang and L Wei

Fixed particle number p = (m + n)/2
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2022t .
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CbDO n—m= m

g 02+ n—m=2/m |

E n—m=4/m
0.19 t .
0.18 : :
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Subsystem dimension m

0.26

0.25

0.24

0.23

0.22

0.21

0.2

0.19

0.18

Arbitrary particle numbers

————— ?/8 —1
: n—m=+vm/2 A
n—m=+m
L n—m=2/m A
n—m =4vym

2000 4000 6000
Subsystem dimension m

Figure 2. Average of entanglement capacity (per dimension) of fermionic Gaussian
states with and without particle number constraints: analytical results of order \/m sub-
system dimension differences versus the asymptotic results of fixed subsystem dimen-
sion differences. The solid lines are drawn by the exact capacity formulas (25) and (38),
while the dashed line represents the limiting behaviors of average capacity (45) in the

regime (44).

3.1. Average capacity over fermionic Gaussian states with particle number constraint

Here, we compute the mean value of entanglement capacity (8) over fermionic Gaussian states
with particle number constraint (17). The computation mainly consists of two parts. The first
part is to obtain a summation representation of the average capacity as shown in section 3.1.1.
In section 3.1.2, we then simplify the summations in arriving at the desired result (25) in

proposition 1.

3.1.1. Correlation functions and integral calculations.

entanglement capacity

with

1—x2 1
T

Recall the definition (8) of

(46)

47
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Fixed particle number p = (m +n)/2  Arbitrary particle numbers

0.26 1 026t ' ' ' ]
g
.S 0.24 + 1 0.24 ]
5 T~ - - - _--_-—_-—_-——cC
|
g
A=
< 0.22F 1 0.22 ]
g
a
=
'g 0.2 0.2 F
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S ?/8—1 7/8 —1
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4 n = 1.5m n=1.5m
< n=2m n=2m
0.16 - n=3m - 0.16 + n=3m A
400 600 800 400 600 800
Subsystem dimension m Subsystem dimension m

Figure 3. Average of entanglement capacity (per dimension) of fermionic Gaussian
states with and without particle number constraints: analytical results of order m subsys-
tem dimension differences versus the asymptotic results of fixed subsystem dimension
differences. The solid lines are drawn by the exact capacity formulas (25) and (38),
while the dashed line represents the limiting behaviors of average capacity (45) in the
regime (44).

computing its average requires the probability density function of one arbitrary eigenvalue
of the fermionic Gaussian ensemble. Denoting g;(x1,...,x;) as the joint density of / arbitrary
eigenvalues, the average capacity is written as

1
E[C] = m / u(x) g1 (x) dx. 48)
—1
When « = 1, the ensemble (16) is the well-known Jacobi unitary ensemble. In this case, the
joint density g;(xi,...,x;) can be written in terms of an [ x [ determinant as [38, 39]
(m —1)! !
gi(x1,...,x) = p det (K(xi,xj))ile . (49)

The determinant in (49) is known as the /-point correlation function [39], where

m—1 (a, a,
Z‘]l(c Y ()7 ()

I (50)

K(xy) = vwx)w(y)
k=0

is the correlation kernel with the weight function

w(x)(lgxy(l;rx)b. 1)

1
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In (50), the polynomial J,(ca’b) (x) is the Jacobi polynomial supported in x € [—1, 1], and
2 (k+a+ )T (k+b+1)
2k+a+b+1)T (k+1)T (k+a+b+1)

is the normalization constant, which is obtained by the orthogonality relation of Jacobi
polynomials [39]

1 a b
1—x I4+x ab ab
/( . ) ( ' )J;E”(xwf ) () dv

B 2T (k+a+ )T (k+b+1)
_(2k+a+b+1)1"(k+1)F(k+a+b+l)5kl’ R(a,b)>-1. (3

hy =

(52)

By rewriting the function u(x) in (9) as

1 1 1-— 1-—
u(x) = —;xlnz —;—x len2 Zx

_(l—i-x 1+x 1—x l—x)2

21n2+21n2

(54)

the average capacity (48) boils down to computing two integrals involving the one-point
correlation function, see [21], as

E[C] =1¢ — L4, (55)
where
1
I+x ,1+x 1—x ,1—x
Ic = | 1 K dx 56
c /_1< 7 It — =+ —— I — ) (x,x) (56)
I —/1 P Ibx Tox, 1ox 2K( ) dx (57)
A=)\ 2 2 2 2 %) &

By the definition of the correlation kernel (50), the integral I in (56) is further written as

m—1 1
1 I+x ,1+x 1-x ,1—x
Ic = — 1 1
¢ I;hk/_l( 2y Ny T M

1—x\*/1+x b ab )
x<2><2)J,£ ) (x)? dx. (58)
Similarly, the integral I 4 in (57) now consists of two parts
La=A1+ A, (59

where

m—1 1 2 2
1 1+x 2 I +x 1—x 1 —x
=3~ 1 1
A hk/1<< 2 ) " +< 2 ) " )
k=0
1-x\“/1 b
x( 2’“) ( ;x) T ()2 dx (60)

12
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m—1 1 a+1 b+1
B 2 1—x 1+x L—x 14X (ap), 2
2Sn [ (7)) (57) ettt o

Here, we recall thata=n—p >0 and b =p —m > 0 in (17). Due to the parity property of
Jacobi polynomials [41]

JEP (=) = (1) (), (62)

the integrals I and .A; admit the following symmetric structures

Ie = 1@ 109 (63)

A=A+ AP, (64)

where

m—1 1 a b+1
; 1 1—x 1+x 2 1+X (apy, 2
=y [ () () wir e e
k=0 -

m—1 1 a b+2
(a,b) 1 l—x 1+X l 21+.X (a,b) 2
A = E — J dx. 66
l k:ohk/_l( 2 ) ( 2 SR 0

The summations in (61), (65) and (66) can be evaluated by using the confluent form of
Christoffel-Darboux formula [39]

m—1 J(a,b) (x)z (a+1,64+1) a,b) (a+1,b+1)
Z kT =ad, |’ ()1, 77 (x) — a7y (%) J'(#b) (), (©67)
k=0

where

_ m(a+b+m)(a+b+m+1)

- 68
T T @+ bt 2m—1), (68)

m(a+b+m)
hp—1(a+b+2m—1),

Qp = (69)

Consequently, we have
1 a b+1
1— 1 1
e —an [ (15F) (55F) e A s ) o
-1

1 a b+1

1—- 1 1

o (F) (57) wRa e e o
—1
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1 a b+2
1- 1 1
Aga,b) :0“/1 ( x) ( +x) 1n2 +XJ,(1fj-11,b+1) (x)J,Ef;bl) (x) dx

2 2 2
=\ /1+x b+2 1+x
*az/ ( ) <> In? =S (0 10D () e (71)
1 2 2 2
and
Ay =200 A4 (m—1,m—1)—2a,4; (m—2,m), (72)
where
1 a+1 b+1
1—x 14+x
—lm—1)= 0
aom-tm-n= [ (455) ()
1-— 1 a a
xin = I =S (00 (2) de (73)
1 a+1 b+l
1—x 1+x
wom-2m=[ () (F)
1-— 1
xl +xj(a+1,b+1)( )J(ab)( ) dx (74)

xIn 2 HT m—2 m

The above integrals I¢ (@b) Aga’b), and A; in (70)—(72) are computed by using the following

two integral identities

1 aj c
1—x 1+x ar, a,
/1( 2 ) ( 2 )Jil'b‘)@)Jifb“(x)dx

2(k +1 Z (D)™ (1) (i + b2+ 1), 4,
(b2+k2+1 sz—l-‘r F(a1+c+i+k1+2)
-1, (75)

X(C+lfb17k1+1)kl, %(alya2>blab23C)>

and

1 d
1—x 1+)C ar,b ax,by)
[L(5) () e o

W (a+ka+ DT (by+ka+1) i (—1)'T(d—aj+i+1)
I'(c+d+ki+k+2) — T+ 1) (ax+i+1)

" T(c—b—i+k+1) d (_l)j(kl _j+1)d+i
Lk =i+ DT (b — itk +1) & rG+1)

(c—it+j—bi—ki+k+1),
R bi,by,c,d) > —1. (76
) Md—a+i—j+1) (a1,a2,b1,b2,c¢,d) > (76)

The proofs of the two identities (75) and (76) can be found in [23, section 2.1].

14
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Computing I¢ (@b) and AE“’” will require the identity (75). In (75), by specializing

a=a, ap=a+1, by=b, bp=b+1, ky=k=m—1 (77)
so that
TP () TP (), T () = T (), (78)

the first integral in (70) can now be computed by taking twice derivatives with respect to the
parameter ¢ of the specialized identity (75) before setting ¢ = b + 1. Other integrals in (70)—
(71) are calculated in the same manner.

To compute the integral A, in (72), one will need the integral identity (76). The two integ-
rals (73) and (74) in A, are calculated by taking derivatives of ¢ and d of identity (76) with
the specialization (77) and the specialization

ay=a, bj=b, aa=a+1, by=b+1, ky=m, ky=m—2, (79)

respectively, before settingc =b+1,d=a+ 1.

In writing down the summation forms of Ic(*?), AE“’Z’), and .Ag“’b), one will also have to
resolve the indeterminacy by using the following asymptotic expansions of gamma and poly-
gamma functions of negative arguments [33] when € — 0,

I'(—l+e) = (;!1)1(14-1#0(1—1—1)6—#0(62)) (80)

Yo~ €) =~ (14 1) + (26 (1)~ (4 1) e +0 () 81

U (10 = 5 — G (4 1)+ (1) +C2) +o(o), (82
where

<<s>=kiki (83)

is the Riemann zeta function. The resulting summation forms of I¢ (“’b), AY”“ , and A, are
summarized in (A.1)—(A.4) in appendix A.1.

3.1.2. Simplification of summations.  The remaining task in computing the average capacity

E[C] =1¢ — L4, (84)

is to simplify the summations in (A.1)—-(A.4). In the subsequent calculation, we first sim-
plify the summation (A.1) in obtaining I, whereas I 4 is obtained by simplifying the sum-
mations (A.2)-(A.4).

We first simplify the summations in (A.1). Note that the first two sums in (A.1) are
single sums consisting of polygamma and rational functions, and the last sum can be directly
reduced to a closed-form expression. The two single summations are simplified, by using the
identities (B.1)—(B.8) while keeping in mind the symmetric structure (63)

I =18 4109, (85)
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as

- b+k b+k (b+k)
I((:a,b):aoz1/)0(a+ +k+m) Zvjz o(a+ + +m) Zz/;() + ta

a
b+k p

x (V8 (a+b+2m) — 1o (a+b+m)o (a+b+2m)— o (a+b+2m)
x¢0(b+m))+ao1/)o(b)¢0(a+b+m)+a—21(1/11 (b) — 1 (a+b+m)

1o (@ + b+ m) (Yo (a4 b+ m) + 21pg (m) — 24po (1)) + 2100 (b) (1o (b +m)

—tho (m) + 1o (1)) — 45 (b)) +azo(a+b+2m) + agho(a+ b+ m)
+asvo(b +m) + asipo(b) + az, (86)

where the coefficients a; are summarized in (C.1)—(C.8) of appendix C.1.

We now simplify the summations (A.2)—(A.4) in obtaining [ 4. The summation (A.2) is
simplified into a similar form as the result (86) by using the identities (B.1)—(B.8). The integ-
ral A, is then obtained by adding the result of (A.2) and its symmetric form according to (64).
Continue to simplify the summations (A.3) and (A.4) will require the following four lemmas.

Lemma 1. For any complex numbers a,b,c ¢ 7., we have

¢ 1
;F Tla+)T(m+1—)T(m+b+1—1i)(c+i)

_ 1 Zm':l"(c—i+m+l)1“(a+b—i+2m)
F(b—i—m)lj(c—&—m—i—I)F(a—i—b—i—m)i:1 Fm—i+1)T(a—i+m+1)
(87)
Lemma 2. For any complex numbers a,b ¢ 7=, and any ¢ € Z", we have
i 1
—Lc+il(a+i)l(m+1-i)T (m+b+1-i)
B 1 " T( m—l—a—|—b—|—1—1)F(m—|—c—i)
~ D(m+b)T(m+a+b)T ()l (m+c) < Fa+i)T(m—i+1) '
(88)

Lemma 3. For any complex numbers a,b ¢ 7Z.~, and any ¢ € ZT, we have

m

1
;F(c—&-i)l‘(a—ki)l‘(m—i—&-1)F(b—i+m+1)i

B 1 if a—t—i—m I‘(b+c—|—i+m)
(@) (a+m) T (1+b+m)L(b+c+m) — F(m—i+1)i
(a) — o (a+m)

n Yo
L'(@T ()T (m+1)T(b+m+1)

(89)
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Lemma 4. For any complex numbers a,b ¢ 7.~, and any c,d € ™, we have

= 1
;F(6+i)r(4+i)r(d+m—i+1)F(b+m—i+1)

m

1 T(c+d+i—1DT(a+b—i+2m)
F(dT(a+m)T(a+b+m)I(c+d+m) ; C(c+i)T(b—i+m+1)

m

1 ZF ct+d+i—D)T(a+b—i+2m)

+F(c)F(b—|—m)F(a—|—b—|—m) L(c+d+m) Fd+il(a—i+m+1)

(90)

i=1

Proofs to the above four lemmas can be found in [23, section 2.2.2], where a new simplifica-
tion framework is utilized. Equipped with these tools, the summations (A.3) and (A.4) can now
be simplified. In the following, we will first present the simplification of (A.4), whereas (A.3)
is simplified in the same manner.

Note that (A.4) consists of one single summation and two double summations. To proceed
with the single summation

1
,Z:;F(i)r(a+i+I)F(m—i)r(b_i+m+1) (Yo (a+b+2m+2)—bg(a+m—+1)

—tpo (i+1) + 90 (1)) (o (m—i+1) =t (a+b+2m+2)+1ho(b+m+1) — (1))
+Y(a+b+2m+2)), 91

we first rewrite it as

m—1

1

(91):(30_5152);F(i)p(a+i+1)1"(m—i)1"(b—i+m+l)

m—1 1
+ <s1 m) ;r(i)F(a+i+l)F(m—i+ Db —itm+1)

m

1
+ <s2_>zr (i+DC(a+i+ )T (m—)T(b—it+m+1)

i=1

m—1 .
+ 81 Z 210

T()T(b+it VD (m—)T(a—itm+1)

m—1 1/}0 (l)

_;F(i)F(b+i+1)F(m—i+1)F(a—i+m+1)

;nzl o(i)
LTl (a+i+ )(m—i+ DL(b—i+m+1)

= Yo(i)
o) T(OT(atit D0(m—iT(b—itm+1)

S oli)go(m — )
T DT (atit DT (m—0)T(b—itm+1) 92)
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where
so =1 (a+b+2m+2) 93)
S1:wo(a+b+2m+2)—wo(a—f'm'f-l)‘i"l/}o(l) (94)
sy =1ola+b+2m+2)—ip(b+m+1)+1(1). (95)

The summations in (92) are then simplified into single sums of the forms

“T(a+b—j+2m—1)

96
et F(a—j+m)j 6)
“T(a+b—j+2m—1
(a+ {—l— m'2 ) ©7)
= Tla—j+m)j
by using lemmas 2, 4, and the closed-form identity [42]
2’”: 1
izlI‘(i)F(a+i)F(m—i+1)F(m+b+l—i)
T b+2m—1
_ (a+b+2m—1) 98)

FmT(a+mT(b+mT(a+b+m)

More specifically, the first three summations in (92) are simplified into closed-form expres-
sions by using the identity (98), and the next four summations are simplified by taking deriv-
ative of ¢ of the identity (88) in lemma 2 before setting ¢ =0. The last summation in (92)
is simplified by taking derivatives of ¢ and d of the identity (90) in lemma 4 before setting
c=d=0.

We now move on to the double summations in (A.4), which are

m—1 m—i
i(m—i) Fa+j+m+1)T'b—j+m+1)
;P(b+i+1)1“ 2

(a—i—l—m—i—l)j:1 JTi+j+1)T(m—i—j+1)

X (o (a+j+m—+1)—tho(a+b+2m+2)+to(m—i+1)—iho(j+1)) (99)
and
- —i) mz_if(a—j+m+1)F(b+j+m+1)
iT(i+j+ D) (m—i—j+1)

> o
— F(a—}—H—1)1“(1)—1'—|—m—|—1)j:1

X (o (b+j+m—+1) =g (a+b+2m+2)+ b (m—i+1) =g (j+1)).  (100)

The two summations (99) and (100) admit a similar symmetric structure as (63)—(64).
Therefore, by simplifying the summation (99), the summation (100) can be directly obtained
by switching a and b. We start with the summation (99) by dividing it into two parts

18
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’"i i(m—1i) ST (atj+m+ D) (b—j+m+1)
iZlF(b—&— +1)F(a—l+m+ = JL(+j+ )T (m—i—j+1)
X (=g (a+b+2m+2)—1o(j+1)) (101)

and

F(a+]+m+1)1"(b—j+m+l)
JU+j+ )T (m—i—j+1)

ME

m—i)
;F(b+i+l) TFla—i+m+1) =

X (o (m—i+ 1)+ (a+j+m+1)). (102)
In (101), after changing the summation order as

m—1

ZF(cH—j—I—m-l—l)F(b—j—l—m-i—l)
J

(101) = (—o(a+b+2m+2)—1(j+1))

j=1

3

- i (m—i)
x C(b+i+ ) (i+j+ DT (@—i+m+ DT (m—i—j+1)’ (103)

i

we evaluate the sum over i by using lemma 2. The double becomes

m (1—a—m)jz_§(a+j+m),(bj+m)(1/zo(a+b+2m+2)

ol ZJ b—i—(ll—l (_al:ri;gzm)+Zf;+m;§b_§+m(¢°(j+l)
+po (a+b+ 2m+2)):nz_§ L +;l.)11)1r(;a__if;)m+ D, L +Z:bll(i+ )
x§W(w0(a+b+2m+2)+ww+l z_f bz:)lr)((a_lf;)m) 7

(104)

where the sums over j can be further simplified into closed-form expressions by using the
identity (B.3). As a result, the remaining summations only involve single sums as in (92) that
are simplified similarly.

The sum (102) is simplified by first using lemma 3 along with its derivative with respect to
b to evaluate the inner sum over j. As a result, the remaining sums are reduced to single sums
after computing the sum over i except for the sum

19
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" 1
Z1“(j—I)F(a—&—j)F(m—j—i-I)F(b—j—&-m—i-Z)

m—j+1 o
o Z (¢o(a+l+]) 7/)0(11.'*‘]))' (105)

1

To proceed with (105), we first use the identity (B.9) to compute the inner sum

m—j+1
2 st i (106)
into
"X v ( z+] Goll+m+1) 1 , ,
2 IZ i L4 L (@ola+) o (7)
x (Yo (a+j) +2¢0 (m —j+2) +1ho (j) — 240 (1)) — ¥1 (a+j) + 11 (j)) - (107)

Inserting the result (107) into (105), the double sum in (105) now boils down to simplifying
the three sums

l & 1 . . .
;F ]—1 a—l—])F(m—]—i-l)F(b—J—l—m—l—Z) (7/}1 (])—’_(7/}0(""_])_7/}0(]))
X (tho (@ +j) +2¢0 (m —j +2) + 1o (j) — 20 (1)) — 91 (a+))), (108)
a m _1
;wo(lerJrl);F(j—1)F(a+j)F(m—j+1)I‘(b—j+m—|—2)(j+l—1)’ (109)
and
" jHﬂJo l+]).

= 2
110
;I‘]—l Fa+)T'(m—j+1)T(b—j+m+2) Z (110)

The single sum (108) is simplified in the same manner as (92). For the double summation
in (109), after evaluating the inner sum over j by using lemma 1, we arrive at

_ 1 o (l+m+1)
<109)__F(b+m) T(a+b+m+1) Z T (I+m)
r

m—1

(m— j—l—l I'(a+b—j+2m)
I'm—jT'(a—j+m+1)

(111)

j=1

The above sum (111) can now be simplified into single sums by using the identities (B.13) and
(B.14) to evaluate the sum over /, where the remaining single sums are

20



J. Phys. A: Math. Theor. 56 (2023) 435201 Y Huang and L Wei

" T'(a+b—j+2m—1
Z “+ —J2m - )wo(a+bfj+2m—l), (112)

— (a—j+m)j

.

and

(113)

o (a+b+j+m)
Y

So far, the only part that remains to be simplified in (99) is the double sum (110). We first point
out that the sum (110) has to be treated together with its symmetric part in (100), which is

m m—j+1
Z 2 Zj Yo l+J)
“L(j-DITG+)T(m—j+ 1) (a—j+m+2) ’

(114)

The two summations (110) and (114) may not be further simplified individually. However, we
observe cancellations among the two sums by adding them up, where the key ingredient is the
identity (B.9). Specifically, we evaluate the inner summation

m—j+1
Z o ( lJFJ (115)
in (110) by the identity (B.9) with the specialization

a—j, b—0, m—m—j+ 1. (116)
The sum (110) becomes

9 2 o (m—j+i+2)
o= ;F (G-=DC(@+)T(m—j+1)T(b+m—j+2) Z:: i
t Y DT @) T+ DTG em—jr2) (ol =i+2 ()

j=1

X (Yo (m—j+2)+v0(j) =200 (1)) =1 (m—j+2) =1 (/) +2¢1 (1)) (117)

Shifting the index j — m + 2 — j of the double sum in (117) as

2 — o (m—j+i+2)
—j+l)1“(b+m—j+2)lz:: '

_jz_:r(j—l)r(aﬂ)r(m
m+1 2 m—j+1 )

wo
ZF (G-I p+)rm—j+1)T'(a—j+m+2) Z

(118)

which is now the same form as (114). Inserting the result (118) into (110) before adding
up (114), we obtain
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m m—j+1
2

ZF(}—I)F(d—i—])F(m

j=1

(s (l +J)

—j+ Db —j+m+2) Z

m—j+1
2

. Yo
JrJZlI’(]—I)I‘(b—i-])I’(m —j+ )l (a—j+m+2) Z

(l +J)

n

1 . .
:Zr(]— DT @) Tm—j+ DT (—jFmt2) (Volm=i+2)+2o ()

X (Yo (m —j+2) + 4o (j) = 2t (1)) = 1 (m —j+2) =1 (j) + 241 (1)), (119)

Jj=1

which is simplified into single sums of the forms (96), (97), (112), and

a+b —j+2m—1)
g a—itmy U (120)

by using lemmas 2 and 4, and their derivatives with respect to c. After inserting the simplified
results of (91), (99), and (100) into (A.4), we observe complete cancellations of the single
sums (96), (97), (112) and (120). The sum A, (m — 2,m) is simplified to

AT (a+m+ 1T (b+m+1)
Fm—1)T(a+b+m+1)(a+b+2m—1),

Zwo +b+J+m)

AZ (mfzam) =

+ CF, 121
j=1

where the shorthand notation CF, different in each use, denotes some closed-form terms omit-
ted due to the length. Using the same approach, one is able to simplify (A.3) into a similar
form, which completes the simplification of .4, as per (72).

Now inserting the resulting forms of .A; and .4, into (59), I 4 is finally obtained as

La=fa(a,b) +fa(b,a), (122)
where
fA(a,b):bOZ%(azbﬁ;ck+m)_m ¢o(a+bk+k+m)+blzw
= k=1 k=1
+ 5 (U (a+btm) by (a+b4m)) + by (v (a+b+2m) — g (a+b+m))

X o (a+b+2m) + by (a+m) g (a+ b+ 2m) + byrbg (a+ b+ 2m)
+ botpo (@) Yo (a+ b +m) +m (1o (m) — o (1)) vho (a+ b +m) + bsiho (a+m)

X (290 (a+b+m) + 1o (b+m)) + betbo(a+b+m) + %(Zwo(a)lbo(a—km)

— 24p(@)po(m) — ¥ (a) + 240 (1)ho(a) + 41 (a)) + brtbo(a + m) + bgio (a)
+ by. (123)

The coefficients b; in (123) are summarized in (C.9)—(C.18) in appendix C.2.
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By inserting (86) and (123) into (55), we obtain
2m(a+m)(b+m)(a+b+m) (Zwo (a+k) iwo (b+k)

Elc] = (a+b+2m—1),

o ( a—|—b—|—k—|—m Yo (a+b+k—+m)
F. 124
}: }: s +C (124)
The remaining task in obtaining (25) is to represent the single summations
“ k
— k
"o (b+k
k
k=1
a b+k
— a+k
“ b+k
) wo(a‘ﬁé 4; +m) (128)
k=1 +
in (124) into (19) as reproduced below
(c+d—k)1 4
Pea= c+dlz ol c,deZ™. (129)

By utilizing the identity (B.12), the summations in (125) and (126) are respectively computed
into the summations ®,, , and ®,, ; as

ZM = ®,,,+CF (130)

" 4o (b +k)
}: + = ®,,;, + CF. (131)

To proceed with the summations (127) and (128), we have to consider their combination

§i¢Ma+b+k+m)+§ina+b+k+m)
a+k b+k '

(132)

We first rewrite (127) as

m a+m—1

" po(a+b+k+m) o (b4 k)
1
kz:; a+k Z a+k ZaJrk Z b+k+l (133)
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where we have used the finite sum form of digamma function [43]

I) = —7+Z% (134)
k=1
to replace
Yo (a+b+k+m) (135)
by
a+m—1 1
Yo (b+k) + 2 kAl (136)

We then change the order of summation of the double sum in (133) to evaluate the sum over k
first, where the remaining sums are further evaluated by the identity (B.3), leading to

a+m—1

Z ¢0(b+kk+m+ )

o latbrktm) N o (btkt1)
z:: b+k B Z k pi
+%((2¢0(1)—2¢0(0+m)—¢o(b+m+1)—¢0(b+1))

X (o (b+1) —thg (b+m+1)) = by (b+m~+1) +1by (b+1)).

137)
Similarly, one has (128) manipulated to
m b+m—1 b+m—1
Yo (a+b+k+m) Yo(b+k+1) Yola+k+m+1)
= —_— CF. 138
Z a+k k_zl k Z k + (138)
Here, we also need the result
“*i‘wo(wﬂmﬂ)+’”§:‘1¢0(a+k+m+1)
k k
k=1 k=1
1 (a+b+2m)tpo(a+b+2m)+1
=—= 1 b 1)) —
1
3 @) ~tolatmt 1) =yo(btm+ 1) Wolatm+1)+yo(b+m+1))
+¢i(1), (139)
which is obtained by evaluating the summation
a+m—1 a+m—1 at+m—1 , b+m
o ( b+k+m+ 1/)0 1 1
- —_— 140
kzl Z 4 - kl; k+1) (140)

in the same manner as we have processed (133). Finally, by adding (137) and (138) before
using (139), we obtain
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Z¢0(a+b+k+m) JrZQZJO(CZ-Fb—Hc-Fm)

— a+k — b+k
b+m a+m
Yo (a+k) Yo (b+k)
= _— —_— F. 141
>t +C (141)
k=1 k=1
= (I)b+m,a + (ba-l—m,b + CFa (142)

where the last equality (142) is obtained by using the identity (B.12). Inserting the results (130),
(131) and (142) into (124), we complete the proof of proposition 1.

3.2. Average capacity over fermionic Gaussian states without particle number constraint

In this section, we compute the mean value of entanglement capacity (8) over fermionic
Gaussian states without particle number constraint (18) in proving proposition 2. The same
as the previous section, we first discuss the computation that leads to the summation repres-
entation in section 3.2.1. Simplification of the summations is performed in section 3.2.2.

3.2.1. Correlation functions and integral calculations.  For fermionic Gaussian states of arbit-
rary number of particles, by definition the average capacity is given by the integral

1
E[C] = m/ u(x) g (x) dx, (143)
0
where g (x1,...,x;) denotes the joint probability density of / arbitrary eigenvalues. Similar to
the previous case, the density g;(xi,...,x;) can be written in terms of the I-point correlation
function as
(m—1)! !
g (x1,...,x) = P det(K(xi73€i))iJ:1 ) (144)
where
m—1 J(a,a) (x) J(a,a) (y)
K(xy) =Vwow(y) ) H—""k = e (145)
k=0

with the weight function being

w(x) = (1;x>a<1;x)a. (146)

By rewriting the orthogonality relation (53) as

1 a a
1—x 1+x a,
[ (55) (57) 49 w9 s

B I'(2k+a+1)T(2k4+a+1)
_(4k—|—2a—|—1)F(2k+1)F(2k+2a+1)5“’ R(a) > -1, (147)

we obtain the normalization constant /; of the polynomials JgZ’“) (x)

F2k+a+ 1T (2k+a+1)

e = .
T (@k+2a+ )T (2k+ 1)T (2k+2a+ 1)

(148)
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By using (54) and (145), the computation of the average capacity (143) boils down to
computing two integrals

E[C] =Ic — I, (149)
where
m—1 1 a a+2
1 1—x 1+x 14X (44
NG G
k=0 -
A=A +A; (151)
with
m—1 1 a a+2
1 1—x 14+x 14+x (44
S () () Wi e o
k=0 -
m—1 1 a+1 a+1
1 1— 1 1— 1
Azzhk/l( 2x> ( ;x) I3 (9 ax (153)
k=0 -

The integral in I¢ is calculated by applying the identity (75), where we need to assign
aq :bl :a2:b2:a7 k1 :k2:2k, (154)

and take twice derivatives of ¢ before setting ¢ = a 4 1. Under the same specialization (154),
the integral in A is calculated by taking twice derivatives of ¢ of the identity (75) before setting
¢ = a+ 1, whereas the integral in A; is calculated by taking derivatives of both ¢ and d of the
identity (76) before setting ¢ = d = a + 1. After resolving the indeterminacy of gamma and
polygamma functions by using (80)—(82), one arrives at the summation representations (A.5)—
(A.7) of the above integrals as listed in appendix A.2.

3.2.2. Simplification of summations. The remaining task in computing the mean value (149)
is to simplify the summation representations (A.5)—(A.7) of the integrals I¢c and 1.

We first compute Ic by simplifying the summations in (A.5). Note that (A.5) consists of
two double summations. The first double summation is readily reduced to a single sum by
evaluating the inner sum over j. The resulting single sum is further simplified by using the
identities (B.1)—(B.8) similarly to the simplification of (A.1). Here, one will also need the
results

1 i
wo(mk)zlnm—l—m;z/)()(k-i- m) s m€Z+ (155)
12/
Wy (mk) = ngz/n(m +k> , meZ* (156)

to evaluate the sums involving polygamma functions with even argument. In (A.5), the second
double sum is
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m—1 2k—2

20+ 1) (a+j+1)
2(2a+4k+ 1
; (2a+4k+ ),Zo 2k—j—1),(2a+j+2k+ 1),

X (Yo la+j+2) —tho (2a+j+2k+3) =¢o(2k—j— 1)+ 0 (j+2)). (157)

By the partial fraction decomposition

2+ (a+j+1)
(2k—j—1),(2a+j+2k+1),

_ 1 —2a—2k—1 2a+k) 2% N 2%+ 1 158)
_2a+4k+1 2a+j+2k+2 2a+j+2k+1 j—2k+1 j—2k )
we rewrite (157) as the sum of the following five double summations (159)—(163),
m—12k—2
2a+2k+1 2(a+k) .
2 - 2 2k+3 159
;;<2a+j+2k+2 2a+j+2k+1>¢0(a+1+ +3)  (159)
m—12k—2
2k 2k+1
2 - 2%—j—1 1
Z.Z(j—ZkJrl j—2k>w0( j=1 (160)
k=1 j=0
m—12k—2
2k 2k+1
2 - 2a+j+2k+3 161
k=1 j=0
m—12k—2
2a+2k+1 2(a+k) '
2 - 2k—j—1 162
;;(2614-]'-1-21(—&-2 2a+j+2k+1>w0( j=1 (162)
mo12%=2 S ok 2(a+k) 2k 2%+ 1
222 \5ass + . L2
k=1 j—=0 2a+j+2k+2 2a+j+2k+1 j-2k+1 j—2k
x (o (a+j+2)+vo(j+2)). (163)

We now simplify each of the summations (159)—(163) into single sums. Specifically, the sum-
mation (159) is simplified by using the identity (B.3) to evaluate the sum over j. The summa-
tion (160) is simplified similarly after shifting the index j — 2k — 2 — j. The summation (161)
is simplified by using the identity (B.1) to evaluate the sum over k after shifting the index
Jj — 2k — 2 —j and changing the summation order as

m—1 m—1
2k 2k+1

2> <> Yo (2a—2j+4k+1)

e flearri? 2j+1  2j+2

m—1 m—1

2k 2k+1

2 AT 2a —2j + 4k 164

2233 (g ey ) vnl2a-2i+ 40, (164

=0 k=j+1
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where one has divided the summation over j into even and odd ones. The remaining two
sums (162) and (163) are simplified in a similar approach as (161). For (162), one needs to
shift the index j — 2k — 2 — j before changing the summation order to evaluate the sum over
k. For (163), one directly evaluates the sum over k by changing the summation order.

Putting together the results of (159)—(163), the summation (A.5) now consists of single
sums, cf (A.1), which are further simplified by the identities (B.1)—(B.8). This leads to

m—1
11 Am—3 dm+1
[ 2
c (( 1% 4k+2>w°(“+k)+<4k+2+ 1% )w(’(‘“r k)

k=1
da+4m—1 4a+4m—1 2a 1—2a 1
- 2a+ 2k
<2a+4k+2 datdk 2k+1 %% +2(a+k))wo(a+ )
2a—1 2a+1 —2a-—1 1—2a
2a+4
( 2% +2k+1+2a+2k+2a+2k+1)w0((H_ )

1 1 —2a—-2m+1 2a+2m
+<4k+24k>¢o(a+k+m)+( K - 1 )¢0(2a+2k+2m))

e (2a+2m) = 1 (@t m)+ e (11 (2a) 93 (20)) + e (@)

+ c3tpo (2a +4m) (1o (a +2m) + 1o (2a + 2m) — 1)y (2a + 4m)) — 2co1)o(2a + 2m)
X (¢0(a) + wo(zm) — 1/}0(1)) — 001/)(2)(2a —+ 2m) + cu/}%(a + 2m) + Csiﬁo(d)

x o(a-+ 2m) + 3 (Yo(a) +o(2m) — Yo(1)) dola+m) — 3o(a)yo(m)

+ cotho(a)ho(2m) + c715(a) + ecsibo(2a + 4m) + corbo (2a + 2m) + c1otho(a + 2m)
+ c11tpo(a+ m) + c1210(2a) + c13t00(1)30(a) + cratbo(a)

a 1 a 1 a
+ci5 <1/10 <2 +m+ 4) — g (2 + 4)> + c16%0 (5 +m)
a
17 (o(m) — 200(2m) + (1)) + crst (5 ) —2m, (165)
where the coefficients ¢; are listed in (C.19)—(C.37) in appendix C.3.
The simplification of (A.6) and (A.7) in computing I, is parallel to that of (A.5) and (A.4),

respectively, where much of details are omitted here. However, we note that when first evalu-
ating the inner summations over i and j in (A.7), the resulting sum simply becomes

CF,  (166)

—r

( )2(2a2+4ak+a+4k2+2k—1) ZkaO(ZcH—j—i—Zk) N
(2a+4k—1)(2a+ 4k +3) e J

where the term

I (2a+4k+4)

"= Garak T T @kr DT (2a s 267 1) -

cancels completely with that in (A.7). The remaining sums now only consist of rational func-
tions and polygamma functions, which are readily simplifiable. Inserting the resulting forms
of (A.6) and (A.7) into (151), we obtain
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m—1
1 1 2am —2a+ 6m?> — 6m + 1
I = L k
A ;(( 2(2k+1) 4k)w°(“+ H( 2k+1)(2at4m—1)

n 1 +4am+2a+12m2—1 o (at26) + 1—261+ 1 7 2a
4(a+k) " 4k(2a+4m—1) 0 2k 2(a+k) 2k+1
2(2a2+5am—a—|—3m2—m) 1 1

2a+ 2k
* 2a+4m—1 <a+2k+1+a+2k> Yo (2a+2k)

e S Y U W Lo 2 WA 1
2% ' 2(a+k)  2k+1 " 2a+2k+1)"0 2(2k+ 1) 4k

2a—-2m+1 2a+2m

—x?/}o(a+k+m)+<_ o T >wo(2a+2k+2m))

- dothy (2a+2m) + dy (11 (2a) — ¥2(2a)) + dtby (a) — %qm (a+m)

+ds (Yo(a+2m) + tho(2a + 2m) — ho(2a + 4m)) 1o (2a + 4m) + dorpo(2a + 2m)
X (=tho(2a 4 2m) — 24po(2m) + 240 (1)) 4 darpo(a + 2m) 1o (2a + 2m)

+ dspd (a + 2m) + dstho(a) o (2a + 2m) + arbo(a) (o (a) — 2¢(a+ 2m))
+ % (Yo(a) +2¢ho(2m) — 290 (1)) Yo (a + m) + dy3po(a)ipo(2m) — %%(GWO(’")

+ dng(Za + 4m) + dng(Za + 2m) + dlo’(/)o(a + 2m) + dll’l/Jo(a + m)
+dia (Yo (m) — 2¢00(2m) + 1o(1)) 4 di3v0(2a) + diavo(1)vo(a) + dispo(a) + dis

(algeme) o (§4)) o nlGom) s

where the coefficients d; are listed in (C.38)—(C.55) in appendix C.4.

Inserting the results (165) and (168) into (149), the mean capacity becomes

m—1 m—

2a+4m—1 a+k 2(2a+4m—1)

E[C] = m(a+m) Zwo (a+2k) %Z o (a+2k) (2m—1)(2a+2m—1)
=1

XZ(¢0a+2k+1) Vo (2a + 2k) ¢o(za+2k+1)>+CF’ (169)

2k+1 a—+2k a+2k+1

where we recall that the shorthand notation CF denotes the closed-form terms omitted. In the
above result (169), we rewrite the single summations

Zwo (a+2k+1)

and

as

2k+1 (179)
m—1
Yo (2a+2k+1) a7
a+2k+1
k=1
m—1
Yo (a+2k+1) o ( a+k I Yo (a+2k)
e A s 172
Z Z - (172)

— 2k+1 k:l

29



J. Phys. A: Math. Theor. 56 (2023) 435201 Y Huang and L Wei

and
m—1 m
o (a+2k+1) o (2a +k) o (2a + 2k)
_ 173
kz:; 2k+1 Z a+k kz:; a+2k (173)
a+2m m
wo a + k) o (2a + 2k)
+CF 174
I = TN
respectively. Here, the equality (174) is obtained by shifting the summation index as
2m+a 2m+a a+1
o (2a+k) ’(ﬂo Cl+k o ( Cl-‘rk o ( a+k
Z k- -2 P> a7s)
k=2+a
before evaluating the last sum by the identity (B.5). Moreover, for the summation
m—1
2k
Z 0 (ak-i- ) 7 (176)

k=1
we have

= Yo (a+2k) a—|—2k :’”Zl(wo (atk+m) wolath)  vola+2k)

CF 177
k k a+k )+ ’ a7

k=1 k=1

which is obtained by the fact that

m—1 m—1k—1
o (a + 2k) o (a+k)
178
; at+k ;12—: a+k) a+k+l Z a+k (178)

similarly to the identity (133). By substituting in (169) the sums (170), (171) and (176) with
their equivalent forms (172), (174) and (177), respectively, we arrive at

2m—1 2m+a—1
1 ’"”wo(a+k+m) o (a+K)
- (Ek_:l - + ;:1: - +CF. (179)

Finally, replacing the single sums in (179) by the short-hand notation ®. 4 defined in (19) the
claimed result (38) is obtained. This completes the proof of proposition 2.

3.3. Asymptotic capacity

In this section, we compute the limiting average capacity in corollary 1. Note that the limiting
average capacity can be obtained by using the limiting level density of the Jacobi unitary
ensemble instead of the general form (49) that we have utilized in section 3 for the finite-size
computation. On the other hand, computing the limiting capacity is straightforward when the
corresponding finite-size formulas are available. Specifically, the limiting values in (45) are
obtained by computing the limits of the exact capacity (25) and (38) in the regime (44). To
this end, the following asymptotic results are needed. The first one is the limiting behavior of
polygamma functions (33) and (34). The second one is the fact that in the asymptotic regime

c— 00, with a fixed d, (180)
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one has
2
<I>Cyd—>1/)1(1):€. (181)
For the exact capacity formula (25) of fermionic Gaussian states with fixed particle

number (17), we now have in the limit (44),

a°=1+o<1> (182)
m 8 m
@ :0<1> (183)
m m
a2—0<1> (184)
m m
a3_1+0(1), (185)
m 2 m
and
w](a+b+m+1)+¢1(a+m—|—1):0(;l) (186)
¢0(a+m+l)—1/10(a+b+m+l):o<;) (187)
Yo(a+m+1)=o0(lnm), (188)

where we recall a = n — p and b = p — m. Consequently, we obtain

E(C] =z(;+(;)) (”2+<;))
+20 (;) o(lnm) —1+o0 <,711> ’ 5)

where, by using the fact that
1
lim — 0, (190)

m—oo m

one arrives at the claimed asymptotic result
(44) 72

E[C] = &~ L. (191)

For the exact capacity (38) of fermionic Gaussian states with arbitrary particle number (18),
similarly we have in the limit (44),

o (m+n)=0<;> (192)
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i =o(s) (193)

m

o (2n) —tho(m+n)=o (;) (194)
o (m+n)—1o(n)=In2+o0 (;) (195)
o (m+n) — 1o (n—m) = —tpg(n—m) +1n2+o(Inm). (196)

As a result, we have

-3 ()2 () D) D
+0(’L)0(lnm)+o(nl¢> b (197)

which leads to the claimed result

2
Ejc] Y % ~1. (198)

This completes the proof of corollary 1.

4. Conclusion

In this work, we derived the exact and asymptotic average capacity formulas of fermionic
Gaussian states with and without particle number constraints. The derivation of the results
relies on tools from random matrix theory and, more importantly, recent progress in simpli-
fying finite summations involving special functions. The obtained analytical formulas provide
insights into the statistical behavior of entanglement as measured by entanglement capacity.
Future works include computing higher-order statistics, such as the variance, of entangle-
ment capacity. In particular, by obtaining the finite-size variance formulas, a simple Gaussian
approximation to the distribution of entanglement capacity can be constructed.
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Appendix A. Summation representations of integrals

In this appendix, we list the summation representations of the integrals Io (@), Aga’h),
Ay in (70)—(72) and I¢, Ay, Ay in (150), (152) and (153) in the computation of average
entanglement capacity in section 3.

A.1. Summation representations of integrals 1c @), A% Ay(m —1,m —1), and
Az (m - 27m)

m—2

2m(b+m) i . . ‘
(a,b) _ B L
Ic _a+b+2m§(m—i—1)2(¢o(b+z+l) o(m—i—1)+1y(i+1)

m—1

(a+m)(a+b+m)z 2i
a+b+2m — (a+b+i+tm),

—Yola+b+itm+1))—

X (o (b+i+ 1) —tho(m—i)+tho(i+1)—vo(a+b+i+m+2))
mb+m) = (i—1) (=)

a+b+2m “T'(i—m+1)I'(m—i+2)
+w1<z)—w1<a+b+z+m> (Yo(b+i) —o(i —m+ 1) + 1o (i)

(% (b+i) =t (i—m+1)

—wo(a+b+i+m))2> (A1)

(@p) _ 2m(b+m) f— (b+i+1)(i), , ,
2(a+m)(a+b+m)

- ' 2)— —i-2
Yola+b+i+m+2)—y(m—i—2))+ atbhim

XZ _l_brla+i,(_:zl+m)3(¢0(b+i+2)—¢o(a+b+i+m+3)

m

—1 .
(b+i+2)(=1)F"(i+1),
Z Fm—il(i—m+4)

m(b+m)
a+b+2m

—tho(m—i—1)+o(i+2)) -

i=m—3

1
X—
at+b+i+m+2
+ (tho(i+3) —ola+b+i+m+3)—to(i —m+4) +o(b+i+3))?)

(a+m)(a+b+m)b+m)(m—1)
(a+b+2m)(a+b+2m—1); (_wl(“bﬂmﬂ)

1 (b+m+ 1)+ (m+ 1) =i (1) + 45 (1) + o (b +m+1) + o (m +1)
—o(a+b+2m+2))(o(b+m-+1)+ho(m+1) —bo(a+b+2m+2)

—2%(1))) (A2)

(v1(b+i+3)—i(i—m+4) =i (a+b+i+m+3)

+1(i+3)—
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Az(m— l,m—l)

2l (a+m+1)T'(b+m+1) im—i+1)(—1)
B I'(a+b+2m+2) <Zr(a+z+1)r(bz+m+2 Z

" Fla+i—j+mT((b—i+j+m+2)
TG+ E—j+ D) (G—i+3)T(m—))
+ (o (a+i—j+m)—o(i—j+1) 4+ (i+1)—o(a+b+2m+2))

(wl(a+b+2m+2)

x <w0(a+b+2m+2)¢0(bi+j+m+2)+¢o(ji+3)

m—t—l )

m—2
m—i+1)
_ —i42)
o(m —i+ )>+§Fb+z+1 )(a—i+m+2) Z

j=1

m—i J)

I'(a+j+m+2) . . .
m(wo(a+1+m+2)+¢o(m—l+2)—¢o(1+3)

m—2 (

—i+1
—thola+b+2m+2)) +ZFa+z+ i+1)

DI'(b—i+m+2)

In7l71

ng—I—j—&-l)F( m—i— )

(o(b4j+m~+2) +po(m—i+2)

—o(j+3) —1/10(a+b+2m+2))>

Ay (m—2,m)
_ 2l(a+m)['(b+m) Z (a+m+1DIb+m+1)
- T(a+b+2m+2) F@T(a+i+1)I(m—iT(b—i+m+1)

x <(¢o(a+b+2m+2) —Yola+m+1)—o(i+1)+vo(1)(Wo(m—i+1)

wo(a+b+2m+2)+¢o(b+m+1)wo(l))+w1(a+b+2m+2))

! i(m—i) mZF(a+j+m+1)F(bfj+m+l)

+Zr (b+i+ Ola—itm+1) & jTi+j+ DNm—i—j+1)

(¢O(a+1+m+1) Yola+b+2m+2)+1po(m—i+1)—o(j+1))

— i) mX_:iF(a—j+m+l)F(b+j—|—m—|—1)

z; a—i—z-i—l (l)—l—i-m—+-1)j:1 JTE+j+ 1) (m—i—j+1)

X (wo(b+j+m+1)—¢0(a+b+2m+2)+¢o(m—i+1)—w0(j+1))>
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A.2. Summation representations of integrals Ic, Aq, and Az

m—1
Ie = ($ola+2) —¥o(2a+3)) +¢1(a+2) —¥1(2a+3)+ > _2Q2a+4k+1)
k=1

( DR SUAADICETERY

(2a+j+2k+1), ((¢O(j+2>_1/)0(2a+j+2k+3)

j=2k—1
+pola+j+2) —vo(j—2k+2)) > +1(a+j+2) = (2a+j+2k+3)
2k—2

+wl(j+2>—wl(j—2k+2)) +>

J=0

2(j+1)(a+j+1)
(2k—j— 1)2(2a+]+2k+ 1)2

X(Yola+j+2)—vo(2a+j+2k+3)—1Yo(2k—j—1) +1l)0(j+2))> (A5)

m—1 2% )
(—1Y (j+1),(a+j+1),
A=Y "202a+4k+1
1 ; vt )(j_%;2 T(2k—j+ )T (j—2k+3)(2a+j+2k+ 1),

X <(¢o(a+j+3)—¢0(2a+j+2k+4)—¢o(j—2k+3)+1/)o(j+3))2

— 1 (Qa+j+2k+4)+(a+j+3)— 1 (G—2k+3)+ 1 (j+3)>

2k—3

2(j+1),(a+j+1), ) )
§ 2 2+ 4) — 3
T2 i) (2a+j+2k+1)3(w0(a+]+ +4) =t la+j+3)

+ Yo (2k—j—2) —1/Jo(j+3))) (A.6)

Ay =

— (2a+4k+ 1T (2k+ )T (2a+ 2k + 1) Zz' 1)(2k—i+1)
I'(2a+4k+4) PG+ Dl(a+i+1)

[2(a+2k+2)
“T@k—it Dl(at2k—it1)
+¢0(2k—i+2))(¢0(a+2k+2) Yo(2a+ 4k +4) +1po(i+2) —o(2))

DI'(a+2k+1)'(a+2k+3)
a+]+1) k—j+ DT (a—j+2k+1)
x ((tola+2k+1) — wo(2a+4k+4)+wo(2k—j+2)—z/)o(l))(wo(a+zk+3)
X (2k—j+1)

~o(2a+4k+4) +yo(j+2) —%0(3) — w1 Qe+ 4k +4)) =) S
Jj=0

»
Il
=}

((Yola+2k+2) —o(2a+4k+4) —)o(2)

— 1 (2a+4k+4)) Zr

L D(a+2k+Dl(a+2k+3)
Dla+j+ )T 2k—j)T(2k—j+a+1)
+100(2k —j+2) = ¥0(3)) (Yo(a+ 2k + 1) — 1o (2a+ 4k +4) +1o(j +2)

((ola+2k+3) —o(2a+ 4k +4)
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2k . '
— (1)) =1 (2a+4k+4)) +4> T(a—j+2k)T(a+j+2k+4)

= (J+1)s
x2k§2 (2k—i—j—1)(i+j+3)
T(i+ )T(2k—i+ DI (a+i+j+3)T(a—i—j+2k—1)

x (vho(a+j+2k+4) —o(2a+4k+4) +o(i+j+4) — wo(j+4))) : (A7)

Appendix B. List of summation identities

In this appendix, we list the finite sum identities useful in simplifying the summations in
appendix A. Here, it is sufficient to assume a,b > 0,a # b in identities (B.1)—(B.3), (B.6)
and (B.7),a>min (B.8),and a,b > 0, n > m in (B.9)-(B.14)

Z@[Jo(z’—ka):(m-i—a)ql)o(m—i-a—i-l)—az/Jo(a—i-l)—m (B.1)

Zwl (i+a)=m+a)Yy(m+a+1)—a(a+ 1) +vog(m+a+1)—tp(a+1) (B.2)
i=1

m . 1

;%i(‘:a“) =S @ilmtat ) =@+ D+gdmrat)—via+l) B3
o (m+1-1) 2

Yo = U 1) = o (Do (mt 1) 4 (m 1) =1 (1) (B.4)
i=1

S IR 1) o (1) m 1) — s Gt 1) - P4 ®35)
i=l1

27/10 i+a)(i+b)= El/Jo a+l m+a)o(m+a)(m+b)—a

i=1
Xwo(a+1)1/}o(b+1) (m+a—1)g(m+a)+apy(a+1)
— (m+b) o (m+b)+ (b+ )b (b+ 1) +2m—2 (B.6)

m

Zwl—l&-—;b Z l—li——'l_)a +iho(m+a+1)ho(m+b+1)—vo(at1)

—_

xwo(b+1)—|—ﬁ(wo(m—|—a+l)—¢o(m+b+l)—z/)o(a+1)
+1ho (b+ 1)) (B.7)
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m

Z ikt inl) Z 0EE A=) (g (= m) + 60 (a+ 1)) (o (m+ 1)

(1)) + 5 ((¢0(a—m)—¢0(a+1))2+¢1 (a+1) =1 (a—m))
(B.8)

Z olathrd _y s Z%bbflflm 2 )+ o a D)~ o (8)

i

=1
X (Yo (a+b)+1po (D) +2 (o (m+1) =2 (1)) =41 (a+b)) (B.9)

- (n—i)! n!

2l Dl m D) (8.10)
= (n—1i)! n!

.Z(m—i)!i:@(%(”“)_%(n—mﬂ)) (B.11)

(w (n—m+1) = (n+1)—gn+1)

T3
i=1
+¢o(n—m+1)) Yoln—m)($o(n+1) =o(n—m+1)
—wo(m+1>+wo(1))> (B.12)
" (n—i)! B 1 n! (n—m)!
;(m—ka—i)!_n—m—a—kl((a+m—1)!_(a—l)!) (B.13)
B 1 n! B 1 _ (n—m)!
_l—a—m+n<(a+m—l)! (wo(a—i—m) 1—a—m—|—n> (a—1)!
x (1”0(“)‘ 11m+)> (B.14)

Proofs to the above identities (B.1)—(B.14) can be found, for example, in [6, 8, 10, 11,
21, 23, 44]. For convenience, we summarize in the following the main strategies in obtaining
these identities. Specifically, the main idea in deriving the identities (B.1)—(B.9) is to change
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the summation orders and make use of the obtained lower order summation formulas in a
recursive manner. For example, by using the finite sum form of the digamma function

-1
1
vo()=—1+>_ . (B.15)
k=1
the summation

> o (i+a)to (i+b) (B.16)
i=1
can be rewritten as

%(b)iz_;wo(waw;bﬂl._l;woam), ®.17)
where we have changed the summation order of the double sum. The remaining sums can be
simplified by using the lower order identity (B.1), leading to the result in (B.6).

The identitiy (B.10) is a special case of the Chu-Vandermonde identity [42], which can
be utilized to derive the identities (B.11) and (B.12) recursively. For example, in (B.11), the
summation

m .
(n—0'1
S = - B.18
m,m) — (m—i)i (B.18)
is computed by first obtaining the recurrence relation
n n—m (n—1—1i)!
S(m,n)—%S(In*l,l’l*l)ﬁ’ - E =1 (B.19)

i=1
After recurring m times, and using the existing result (B.10), one obtains the closed-form result
in (B.11). The identity (B.12) is derived in a similar manner, where one needs to utilize the
result (B.11).
For the identity (B.13), it is obtained by first considering

~ (n—i)! _a+m (n—i)! (n—m—1i)
Zm—;(waii),—; =] (B.20)

e . .

before applying (B.10). The identity (B.13) is analytically continued to any complex number
a. Taking a derivative of a in (B.13) gives (B.14).

Appendix C. Coefficients of results in section 3

In this appendix, we list the coefficients in the results (86), (123), (165) and (168).

C.1. Coefficients in (86)

2(a+m)(a+b+m)
= .]
o a+b+2m €D
2m(b+m)
= C2
Q= T om (C2)
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2(a*>+b 2 2 2m?
“— (a*+b(a+2m) + 2am +2m?) ©3)
a+b+2m

=— 2 5 (b* (a* + 8am + a + 10m?) + 2a>m (m +2) + @’ + b*
(b+m)(a+b+2m)
+b° (2a+5m) +b (a2 (3m +2) 4 6am (2m + 1) + 2m* (5m + 1)) + 6am® (m + 1)
+2m’ (2m + 1)) (C4)
2
b(a+b+2m)*

+b* (2a+4m+ 1)+ (a+m)* (a+2m) +b*) (C.5)

(b* (a* +a(Sm+2) +m(5Sm+3)) +b(m+2) (a* + 3am + 2m?)

2(b+m) (a*+b(2a+3m) +3am+b* +m(2m — 1))

as = (C.6)
(a+b+2m)’
2b(a+b+2m+1)
T bt om €7
2m(a+m) (a*+ 2ab+4am+ a+ b> + 4bm + b+ 4m* + 2m + 1) C8)
a7 = — . .
! (a+b+2m)’
C.2. Coefficients in (123)
2(b+m) 2 3 2 2 2 3
by = 3b+4 3b"+9b 6m~—1)+5b b
T (atb+2m—1), (B0 m) -+ (374 Sbm -+ m” — 1) 4 5bm +
+7bm* — b+ 3m’ —m) (C.9)

) _ 2m(a+m)(a*+a(b+3m)+2bm+3m* —1) 10
' (a+b+2m—1), (10)

by =2(a+m) (C.11)

2 (a(b+2m)+ b*+ 2bm+2m?)

by = —
3 a+b+2m

(C.12)

m—m? m?+m 2b 2m

by = - -
S Ylarbrom—1) 2axbeomtl) a+m atb+om

—2a—2m (C.13)
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bs:m(a+m)(b+H1)(a+b+m) (C.14)
(@+b+2m—1),
1 (—2a%0? +d* +4a> +b* + 407 1
1 —c(a—b-1)(a—b+1 ~1 1
bs 8a< a+b+2m 2(a b—1)(a—b+1)(a+b—1)(a+b+1)
1 1
16ab + 8 7 11b+6 C.15
) <a+b+2m+1+a+b+2m—1>Jr o e o m> )
b (a—b)(a+b) 1 !
b — +Gatb—1)+m+_((a=b-1)(a=b+1
T atb+2m 2(a+b+2m)’ 4( “ J+m 8((a )@ )
1 1
- 3 C.16
x(atb+1)) (a+b+2m+1 a—l—b+2m—1> ( )
b a(a*+3a(b+2m+1)+2b* +b(6m+3) + 6m* + 6m +2) (C.17)
8= (atb+2m)(atb+om+i) '
m m m
_— ~ om C.18
7T (a+b+2m)? 2atb+2mtl) 2 o
C.3. Coefficients in (165)
1
co:—i(Za—i—Zm—l) (C.19)
1
c = 5 (2a—-1) (C.20)
1
0221(4"1“"1) (C.21)
c3=—-2a—4m+1 (C.22)
1
cs=7 (4a+4m—1) (€23
o (C.24)
co=1-2m (C.25)
1
¢ = (a=1) (C.26)
ou = —2(a+ 2m) (C.27)
—12a° — 64 +4a+1
_ 2
@ 4a3 + 6a% +2a e
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€10 2(a—1)a 2
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2(4a® — 5a° + a)
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a(8(a+1)m+2a+3)+2m
ala+1)(2a+1)

Ci2 =
1
C13 = 5(4141— 1)

—4m —3 3 1 1 1 1
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88a> — 76a* — 10a® + 83a* — 3a — 4 (2a—1)(2a+1) 3m
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