
BERNSTEIN-SATO POLYNOMIALS FOR GENERAL IDEALS VS.

PRINCIPAL IDEALS

MIRCEA MUSTAŢĂ

Abstract. We show that given an ideal a generated by regular functions f1, . . . , fr on X,
the Bernstein-Sato polynomial of a is equal to the reduced Bernstein-Sato polynomial of
the function g =

∑r
i=1 fiyi on X ×Ar. By combining this with results from [BMS06], we

relate invariants and properties of a to those of g. We also use the result on Bernstein-Sato
polynomials to show that the Strong Monodromy Conjecture for Igusa zeta functions of
principal ideals implies a similar statement for arbitrary ideals.

1. Introduction

Given a smooth complex algebraic variety X and a nonzero regular function f ∈ OX(X),
the Bernstein-Sato polynomial bf (s) ∈ C[s] is the monic polynomial of minimal degree such
that

bf (s)f s ∈ DX [s] • f s+1.

Here DX is the sheaf of differential operators on X and we use • to denote the action of
differential operators. Note that f s can be treated as a symbol on which differential operators
act in the expected way. By making s = −1, we see that if f is not invertible, then bf (s)

is divisible by (s + 1), and the quotient b̃f (s) = bf (s)/(s + 1) is the reduced Bernstein-Sato
polynomial of f . The existence of bf (s) was proved by Bernstein for the case when X = An

in [Ber71] and a proof in the general case (in the analytic setting) is given in [Bjö93]. The
Bernstein-Sato polynomial of f is a subtle invariant of the singularities of the hypersurface
defined by f and it is connected to several other invariants of singularities (for example, by
[Mal83], its roots determine the eigenvalues of the monodromy action on the cohomology of
the Milnor fiber).

The above invariant has been extended to arbitrary (nonzero) coherent ideals a in OX in
[BMS06]. Working locally, we may and will assume that we have nonzero regular functions
f1, . . . , fr ∈ OX(X) that generate the ideal a. In this case, the Bernstein-Sato polynomial
ba(s) ∈ C[s] is the monic polynomial of minimal degree such that

ba(s)f
s1
1 · · · f

sr
r ∈

∑
|u|=1

DX [s1, . . . , sr] •
∏
ui<0

(
s

−ui

)
f s1+u1

1 · · · f sr+ur
r ,

where the sum is over all u = (u1, . . . , ur) ∈ Zr such that |u| :=
∑

i ui = 1. Here s =
s1 + . . . + sr, where s1, . . . , sr are independent variables, f s11 · · · f srr is a symbol on which
differential operators act in the expected way, and for every positive integer m, we put(
si
m

)
= 1

m!

∏m−1
j=0 (si−j). The existence, independence of the choice of the generators f1, . . . , fr,

and some basic properties of ba(s) were proved in [BMS06]. The main observation of this
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note is the following result. Given f1, . . . , fr as above, we consider the regular function
g =

∑r
i=1 fiyi on X ×Ar, where y1, . . . , yr are the coordinates on Ar.

Theorem 1.1. If f1, . . . , fr are nonzero regular functions on the smooth, complex algebraic

variety X, generating the coherent ideal a, and if g =
∑r

i=1 fiyi, then ba(s) = b̃g(s).

In fact, this observation can be used to give a new proof of the existence of ba(s) and of
its independence of the generators f1, . . . , fr. We hope that it will be useful for extending
properties of Bernstein-Sato polynomials from the case of principal ideals to arbitrary ones.

By combining the above description of ba(s) with results in [BMS06], we can relate in-
variants and properties of g with those of the ideal a. Recall that by a result of Kashiwara
[Kas76], for every nonzero f ∈ OX(X), all roots of the Bernstein-Sato polynomial bf (s) are

negative rational numbers. If f is not invertible, then the negative of the largest root of b̃f (s)

is the minimal exponent α̃f of f (with the convention that α̃f =∞ if b̃f (s) = 1, which is the
case if and only if the hypersurface defined by f is smooth). Therefore min{1, α̃f} is the nega-
tive of the largest root of bf (s); by a result of Lichtin and Kollár (see [Kol97, Theorem 10.6]),
this is equal to the log canonical threshold lct(f) of f .

Corollary 1.2. With the notation in the theorem, we have α̃g = lct(a).

Corollary 1.3. With the notation in the theorem, if a defines a reduced, complete intersection
subscheme W , of pure codimension r, then W has rational singularities if and only if α̃g = r

and −r is a root of multiplicity 1 of b̃g(s).

Finally, we apply the description of ba(s) in the theorem to show that the Strong Mon-
odromy Conjecture for Igusa zeta functions associated to hypersurfaces implies the similar
statement for arbitrary ideals. For the sake of simplicity, we work in the p-adic setting,
though a similar result holds for the motivic zeta function (see Remark 3.1 below).

Recall that if f ∈ Zp[x1, . . . , xn] is a nonzero polynomial over the ring of p-adic integers,
the Igusa zeta function associated to f is the formal power series in p−s given by

Zp(f ; s) :=

∫
Zn
p

|f(x)|spdµp(x),

where | · |p is the p-adic absolute value on Qp and µp is the Haar measure on Qn
p . This

power series encodes the numbers am of roots of f in (Z/pmZ)n for m ≥ 1. It was shown
by Igusa [Igu74], [Igu75] that Zp(f ; s) is a rational function of p−s, with the candidate poles
determined in terms of a log resolution of the pair (An

C, f). The following is the outstanding
open problem in this area:

Conjecture (Strong Monodromy Conjecture, Igusa). Given f ∈ Z[x1, . . . , xn], for every
prime p large enough, if s0 is a pole of Zp(f ; s), then Re(s0) is a root of bf (s). Moreover, if
the order of s0 as a pole is m, then Re(s0) is a root of bf (s) of multiplicity ≥ m.

One can study an analogue of Igusa’s zeta function for arbitrary ideals a ⊆ Zp[x1, . . . , xn]
(see [VZG08]). More precisely, if f1, . . . , fr generate a, then we have a function ϕa : Znp → Q
given by ϕa(x) = maxni=1 |fi(x)|p and the corresponding Igusa zeta function

Zp(a; s) :=

∫
Zn
p

ϕa(x)sdµp(x).

Again, this is a rational function of p−s and candidate poles can be given in terms of a log
resolution of (An

C, a).
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Theorem 1.4. If a is the ideal of Zp[x1, . . . , xn] generated by the nonzero polynomials
f1, . . . , fr and if g =

∑r
i=1 fiyi ∈ Zp[x1, . . . , xn, y1, . . . , yr], then

Zp(g; s) =
1− p−1

1− p−s−1
Zp(a; s).

In particular, if f1, . . . , fr ∈ Z[x1, . . . , xn] and g satisfies the Strong Monodromy Conjecture,
then for every prime p large enough, if s0 is a pole of Zp(a, s) of order m, then Re(s0) is a
root of ba(s) of multiplicity ≥ m.

In the next section we give the proof of Theorem 1.1 and of its corollaries. The last section
contains the proof of Theorem 1.4.

Acknowledgement. I am indebted to Nero Budur for bringing to my attention the reference
[FdB11] and to Wim Veys for pointing out an inaccuracy in a previous version of this note.

2. The description of the Bernstein-Sato polynomial of an ideal

We begin with the formula relating the Bernstein-Sato polynomials of a and g.

Proof of Theorem 1.1. By taking an affine open cover of X, we see that we may assume
that X = Spec(R) is affine. By definition, the Bernstein-Sato polynomial bg(s) is the monic
polynomial of minimal degree such that there is P ∈ Γ(X ×Ar,DX×Ar)[s] such that

(1) bg(s)g
s = P • gs+1.

Such P can be uniquely written as P =
∑

α,β∈Zr
≥0
Pα,β

1
β!y

α∂βy , with Pα,β ∈ Γ(X,DX)[s],

only finitely many being nonzero. Here we use the multi-index notation yα = yα1
1 · · · yαr

r

and ∂βy = ∂β1y1 · · · ∂
βr
yr and β! =

∏r
i=1(βi)! for α = (α1, . . . , αr) and β = (β1, . . . , βr) in Zr≥0.

Furthermore, the equality in (1) is equivalent to

(2) bg(m)gm =
∑
α,β

Pα,β(m) • gm+1 for all m ≥ 0.

Indeed, given P as above, it follows from the definition of the DX -action on Rf [s]f s that there
is a polynomial Q ∈ Rf [s] such that (1) holds if and only if Q = 0, while (2) holds if and
only if Q(m) = 0 for all m ≥ 0. The two assertions are equivalent since Rf is a characteristic
0 domain.

Since g =
∑r

i=1 fiyi, we have

(3) bg(m)gm = bg(m) ·
∑
|a|=m

(
m

a1, . . . , ar

)
fa11 · · · f

ar
r ya11 · · · y

ar
r ,

where the sum is over all a = (a1, . . . , ar) ∈ Zr≥0 with |a| := a1 + . . .+ ar = m. On the other

hand, the right-hand side of (2) is equal to∑
α,β

Pα,β(m)
1

β!
yα∂βy •

∑
|b|=m+1

(
m+ 1

b1, . . . , br

)
f b11 · · · f

br
r y

b1
1 · · · y

br
r ,

where the second sum is over all b = (b1, . . . , br) ∈ Zr≥0, with |b| = m + 1. This is further
equal to

(4)
∑
α,β

∑
|b|=m+1

(
Pα,β(m) • f b11 · · · f

br
r

)
·
(

m+ 1

b1, . . . , br

)
·
r∏
i=1

(
bi
βi

)
·
r∏
i=1

ybi−βi+αi
i ,
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where we make the convention that
(
bi
βi

)
= 0 if βi > bi. Via the formulas in (3) and (4), the

equality in (2) is equivalent to the fact that for every a = (a1, . . . , ar) ∈ Zr≥0, we have

bg
(
|a|
)( |a|
a1, . . . , ar

)
fa11 · · · f

ar
r =

∑
|β|−|α|=1

(
Pα,β

(
|a|
)
•fa1+β1−α1

1 · · · far+βr−αr
r

)
·
(

|a|+ 1

a1 + β1 − α1, . . . , ar + βr − αr

)
·
r∏
i=1

(
ai + βi − αi

βi

)
.

An easy computation shows that this is further equivalent to

bg
(
|a|
)
fa11 · · · f

ar
r =

(
|a|+ 1

)
·
∑

|β|−|α|=1

r∏
i=1

(ai)!

(βi)!(ai − αi)!
Pα,β

(
|a|
)
• fa1+β1−α1

1 · · · far+βr−αr
r ,

where the sum is over all α, β ∈ Zr≥0 with |β|−|α| = 1 and such that αi ≤ ai for all i. Since it

is clear that g is not invertible, we know that (s+ 1) divides bg(s), with b̃g(s) = bg(s)/(s+ 1).

It follows that b̃g(s) is the monic polynomial of smallest degree such that we have Pα,β as
above such that for all a = (a1, . . . , ar) ∈ Zr≥0, we have

b̃g
(
|a|
)
fa11 · · · f

ar
r =

∑
|β|−|α|=1

r∏
i=1

(ai)!

(βi)!(ai − αi)!
Pα,β

(
|a|
)
• fa1+β1−α1

1 · · · far+βr−αr
r .

A similar argument to that showing the equivalence of (1) and (2) implies that the above
holds if and only if there are Pα,β ∈ Γ(X,DX)[s], for α, β ∈ Zr≥0 satisfying |β| − |α| = 1, with
only finitely many nonzero, such that we have the equality
(5)

b̃g(s1 + . . .+sr)f
s1
1 · · · f

sr
r =

∑
|β|−|α|=1

α!

β!
·
r∏
i=1

(
si
αi

)
·Pα,β(s1 + . . .+sr)•f s1+β1−α1

1 · · · f sr+βr−αr
r .

Equivalently, b̃g(s) is the monic polynomial of minimal degree such that b̃g(s1+. . .+sr)f
s1
1 · · · f srr

lies in ∑
|β|−|α|=1

r∏
i=1

(
si
αi

)
DX [s1 + . . .+ sr] • f s1+β1−α1

1 · · · f sr+βr−αr
r .

This sum can be rewritten as∑
|γ|=1

∑
α

DX [s1 + . . .+ sr] •
r∏
i=1

(
si
αi

)
· f s1+γ1

1 · · · f sr+γr
r ,

where the first summation index runs over those γ ∈ Zr≥0 such that |γ| = 1 and the second
summation index runs over those α ∈ Zr≥0 such that αi + γi ≥ 0 for all i. The polynomials(
si
αi

)
such that αi + γi ≥ 0 give a basis of C[si] if γi ≥ 0 and give a basis of

(
si
−γi

)
· C[si] if

γi < 0. We thus conclude that b̃g(s) is the monic polynomial of smallest degree such that

b̃g(s1 + . . .+ sr)f
s1
1 · · · f

sr
r ∈

∑
|γ|=1

DX [s1, . . . , sr] •
∏
γi<0

(
si
−γi

)
f s1+γ1

1 · · · f sr+γr
r ,
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hence it is equal to the Bernstein-Sato polynomial1 ba(s). This completes the proof of the
theorem. �

Remark 2.1. Note that in the proof of Theorem 1.1 we did not assume the existence of
ba, hence by the theorem, we can deduce the existence of the Bernstein-Sato polynomial
associated to f1, . . . , fr from the existence of bg(s). Furthermore, we see that ba(s) only
depends on the ideal generated by f1, . . . , fr and not on these generators. Indeed, it is enough
to show that if we consider fr+1 =

∑r
i=1 aifi for some a1, . . . , ar ∈ OX(X) and h =

∑r+1
i=1 fiyi,

then bg(s) = bh(s). Note that h =
∑r

i=1 fi(yi + aiyr+1). We have an automorphism of
X ×Ar+1 over X which maps yr+1 to yr+1 and yi to yi + aiyr+1 for 1 ≤ i ≤ r. Since this
maps g to h, it follows that bg(s) = bh(s).

Remark 2.2. The hypersurface g =
∑r

i=1 fiyi also appeared in [FdB11], where it was shown
that if all fi vanish at the origin, then the Milnor fibration of g at the origin has trivial
geometric monodromy and fiber homotopic to the complement of the germ defined by the
ideal (f1, . . . , fr).

We can now deduce the first consequences of the theorem.

Proof of Corollary 1.2. It is shown in [BMS06, Theorem 2] that the negative of the largest
root of ba(s) is the log canonical threshold lct(a) of a. Since α̃g is, by definition, the negative

of the largest root of b̃g(s), the assertion follows from Theorem 1.1. �

Proof of Corollary 1.3. Since W is reduced and a complete intersection of pure codimension r,
it follows from [BMS06, Theorem 4] that W has rational singularities if and only if lct(a) = r
and −r is a root of multiplicity 1 of ba(s). The assertion in the corollary thus follows from
Theorem 1.1. �

3. An application to the Strong Monodromy conjecture

For a nice introduction to Igusa’s zeta function we refer to [Nic10]. We only recall here
the definition of the p-adic absolute value and of the Haar measure on Znp . Let us denote by

ordp the p-adic valuation on Qp (so that any element u ∈ Qp can be written as u = pordp(u)v,
with v invertible in Zp). With this notation, if ordp(u) = m, then the p-adic absolute value
of u is given by |u|p = 1

pm .

The Haar measure µp on Znp is the unique translation-invariant measure such that µp(Z
n
p ) =

1. In particular, for every u ∈ Znp and every positive integer m, we have

µp(u+ pmZnp ) =
1

pmn
.

Note also that the Haar measure is multiplicative with respect to the Cartesian product of
cylinders in Znp ×Zrp ' Zn+r

p (recall that a cylinder in Znp is the inverse image of some set via
a projection map Znp → (Z/pmZ)n).

Given a nonzero f ∈ Zp[x1, . . . , xn], we denote by ordf the function ordp ◦ f : Znp → Z≥0.
It then follows by definition that

(6) Zp(f ; s) =
∑

m∈Z≥0

µp
(
ord−1

f (m)
)
p−ms.

1This is not the definition of the Bernstein-Sato polynomial ba(s) in [BMS06], but the definition is equivalent
to this one, as explained in [BMS06, Section 2.10].
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Similarly, if a = (f1, . . . , fr) is an ideal in Zp[x1, . . . , xn] and if we put orda = minri=1 ordfi ,
then

(7) Zp(a; s) =
∑

m∈Z≥0

µp
(
ord−1

a (m)
)
p−ms.

We can now prove the main result of this section.

Proof of Theorem 1.4. The key point is the computation of the p-adic measure of ord−1
g (m) ⊆

Zn+r
p for each m ≥ 0. Since g =

∑r
i=1 fiyi, it follows that if (u, v1, . . . , vr) ∈ Zn+r

p lies in

ord−1
g (m), then

orda(u) =
r

min
i=1

ordfi(u) ≤ m.

Suppose now that u ∈ Znp is such that minri=1 ordp(ui) = d ≤ m. We want to describe the
set Wu(m) consisting of those v = (v1, . . . , vr) ∈ Zrp such that ordp(u1v1 + . . . + urvr) = m.

Suppose that j is such that ordp(uj) = d. By assumption, we can write ui = tdu′i for 1 ≤ i ≤ r
and u′i ∈ Zp, with u′j invertible. In this case, we have ordp(u1v1 + . . .+urvr) = m if and only

if ordp(u
′
1v1 + . . . + u′rvr) = m − d. Since u′j is invertible, this means that v1, . . . , v̂j , . . . , vr

can be chosen arbitrarily and then the class of vj in Z/pm−d+1Z can take precisely (p − 1)
values (and then every lift of this class satisfies the desired condition). We thus conclude

that Wu(m) ⊆ Zrp is a cylinder whose p-adic measure is p−1
pm−d+1 .

The projection Znp × Zrp → Znp onto the first component induces a map

τ : ord−1
g (m)→

m⊔
d=0

ord−1
a (d).

If we decompose each ord−1
a (d) as a disjoint union of cylinders such that on each of these

cyclinders mini ordfi is achieved by some fixed i, then for every such cylinder C ⊆ ord−1
a (d),

the subset τ−1(C) ⊆ Znp × Zrp is a cylinder with

µp
(
τ−1(C)

)
= µp(C) · p− 1

pm−d+1
.

Therefore we have

µp
(
ord−1

g (m)
)

=

m∑
d=0

µp
(
ord−1

a (d)
)
· p− 1

pm−d+1
.

Using the formulas (6) and (7), we obtain

Zp(g; s) =
∑
m≥0

1

pms
·
m∑
d=0

µp
(
ord−1

a (d)
)
· p− 1

pm−d+1

=
p− 1

p
·
∑
d≥0

µp
(
ord−1

a (d)
)

pds
·
∑
m≥d

1

p(m−d)(s+1)
=

1− p−1

1− p−(s+1)
Zp(a; s).

This gives the first assertion in the theorem.
The formula relating Zp(g; s) and Zp(a; s) shows that if we denote by np(g;λ) and np(a;λ)

the order of λ as a pole of Zp(g; s) and Zp(a; s), respectively, then np(g;λ) = np(a;λ) for
λ 6= −1; moreover, if np(a;−1) ≥ 1, then np(g;−1) = np(a;−1) + 1. The second assertion in
the theorem follows from this and Theorem 1.1. �
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Remark 3.1. For the sake of simplicity, we assumed in Theorem 1.4 that a is an ideal
in Zp[x1, . . . , xn]. A similar formula holds, with the same proof, if we assume that f ∈
OK [x1, . . . , xn], where OK is the ring of integers of a p-adic field K. Moreover, the proof gen-
eralizes immediately to the case of the motivic zeta functions of Denef and Loeser [DL98]. In
this case, we see that if X is a smooth complex algebraic variety, a is the coherent ideal gen-
erated by f1, . . . , fr ∈ OX(X), and g =

∑r
i=1 fiyi, then the motivic zeta functions Zmot(g; s)

and Zmot(a; s) of g and a, respectively, are related by the following formula

Zmot(g; s) =
1− L−1

1− L−(s+1)
Zmot(a; s).
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[VZG08] W. Veys and W. A. Zúñiga-Galindo, Zeta functions for analytic mappings, log-principalization of
ideals, and Newton polyhedra, Trans. Amer. Math. Soc. 360 (2008), no. 4, 2205–2227. ↑2

Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI
48109, USA

E-mail address : mmustata@umich.edu


	1. Introduction
	Acknowledgement

	2. The description of the Bernstein-Sato polynomial of an ideal
	3. An application to the Strong Monodromy conjecture
	References

