BERNSTEIN-SATO POLYNOMIALS FOR GENERAL IDEALS VS.
PRINCIPAL IDEALS

MIRCEA MUSTATA

ABSTRACT. We show that given an ideal a generated by regular functions fi,..., fr on X,
the Bernstein-Sato polynomial of a is equal to the reduced Bernstein-Sato polynomial of
the function g = >°7_, fiyi on X x A”. By combining this with results from [BMS06], we
relate invariants and properties of a to those of g. We also use the result on Bernstein-Sato
polynomials to show that the Strong Monodromy Conjecture for Igusa zeta functions of
principal ideals implies a similar statement for arbitrary ideals.

1. INTRODUCTION

Given a smooth complex algebraic variety X and a nonzero regular function f € Ox(X),
the Bernstein-Sato polynomial bg(s) € Cls| is the monic polynomial of minimal degree such
that

by(s)f* € Dxls] o f**.

Here Dx is the sheaf of differential operators on X and we use e to denote the action of
differential operators. Note that f* can be treated as a symbol on which differential operators
act in the expected way. By making s = —1, we see that if f is not invertible, then by(s)
is divisible by (s + 1), and the quotient Ef(s) = bs(s)/(s+ 1) is the reduced Bernstein-Sato
polynomial of f. The existence of bs(s) was proved by Bernstein for the case when X = A"
in [Ber71] and a proof in the general case (in the analytic setting) is given in [Bj693]. The
Bernstein-Sato polynomial of f is a subtle invariant of the singularities of the hypersurface
defined by f and it is connected to several other invariants of singularities (for example, by
[Mal83], its roots determine the eigenvalues of the monodromy action on the cohomology of
the Milnor fiber).

The above invariant has been extended to arbitrary (nonzero) coherent ideals a in Ox in
[BMSO06]. Working locally, we may and will assume that we have nonzero regular functions
fiy--+, fr € Ox(X) that generate the ideal a. In this case, the Bernstein-Sato polynomial
ba(s) € CJs] is the monic polynomial of minimal degree such that

s S + T T
ba(s)ft -+ fir € > Dxlsi,....sle [[ <Ui>ff1 uLL L pertur

Ju|=1 u; <0

where the sum is over all v = (uy,...,u,) € Z" such that |u| := > ,u; = 1. Here s =
$1+ ...+ s, where s1,...,s, are independent variables, fi'---f5 is a symbol on which
differential operators act in the expected way, and for every positive integer m, we put
(ffl) = % ]_[;Zol (si—7). The existence, independence of the choice of the generators fi, ..., fr,
and some basic properties of bq(s) were proved in [BMS06]. The main observation of this
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note is the following result. Given fi,..., f, as above, we consider the regular function
9= iy fiyion X x A", where y,...,y, are the coordinates on A".

Theorem 1.1. If f1,..., f; are nonzero reqular functions on the smooth, complex algebraic
variety X, generating the coherent ideal a, and if g =Y ;_; fiyi, then ba(s) = by(s).

In fact, this observation can be used to give a new proof of the existence of b,(s) and of
its independence of the generators fi,..., fr. We hope that it will be useful for extending
properties of Bernstein-Sato polynomials from the case of principal ideals to arbitrary ones.

By combining the above description of by(s) with results in [BMS06], we can relate in-
variants and properties of g with those of the ideal a. Recall that by a result of Kashiwara
[Kas76], for every nonzero f € Ox(X), all roots of the Bernstein-Sato polynomial bs(s) are

negative rational numbers. If f is not invertible, then the negative of the largest root of Ef(s)

is the minimal exponent oy of f (with the convention that ay = oo if by(s) = 1, which is the
case if and only if the hypersurface defined by f is smooth). Therefore min{1, o} is the nega-
tive of the largest root of bf(s); by a result of Lichtin and Kollar (see [Ko0l97, Theorem 10.6]),
this is equal to the log canonical threshold lct(f) of f.

Corollary 1.2. With the notation in the theorem, we have oy = Ict(a).

Corollary 1.3. With the notation in the theorem, if a defines a reduced, complete intersection
subscheme W, of pure codimension r, then W has rational singularities if and only if og =1

and —r is a root of multiplicity 1 ofgg(s).

Finally, we apply the description of b4(s) in the theorem to show that the Strong Mon-
odromy Conjecture for Igusa zeta functions associated to hypersurfaces implies the similar
statement for arbitrary ideals. For the sake of simplicity, we work in the p-adic setting,
though a similar result holds for the motivic zeta function (see Remark 3.1 below).

Recall that if f € Zp[z1,...,z,] is a nonzero polynomial over the ring of p-adic integers,
the Igusa zeta function associated to f is the formal power series in p~*% given by

Zy(5i5) = [ 5@y (),
Zy
where | - |, is the p-adic absolute value on Q, and p, is the Haar measure on Qp. This
power series encodes the numbers a,, of roots of f in (Z/p™Z)" for m > 1. It was shown
by Igusa [Igu74], [Igu75] that Z,(f;s) is a rational function of p~—*, with the candidate poles
determined in terms of a log resolution of the pair (Ag, f). The following is the outstanding
open problem in this area:

Conjecture (Strong Monodromy Conjecture, Igusa). Given f € Zxy,...,x,], for every
prime p large enough, if so is a pole of Z,(f;s), then Re(so) is a oot of bg(s). Moreover, if
the order of so as a pole is m, then Re(sg) is a root of by(s) of multiplicity > m.

One can study an analogue of Igusa’s zeta function for arbitrary ideals a C Zp[z1, ..., zy]
(see [VZGO08]). More precisely, if fi,..., fr generate a, then we have a function g: Z, - Q
given by ¢q(x) = max}" , |fi(x)|, and the corresponding Igusa zeta function

Zp(a;s) = /Zn wa(x)’dpy(x).

Again, this is a rational function of p~® and candidate poles can be given in terms of a log

resolution of (A, a).
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Theorem 1.4. If a is the ideal of Zpy[z1,...,x,] generated by the nonzero polynomials
f17 s 7f7" CLTLd ng = Z;=1 fzyl € Zp[xlv LU 7$n7y17 e 7y7’]7 then
1—p!
Zplgss) = 1= e Zp(a; ).

In particular, if fi,..., fr € Z]z1,...,2,] and g satisfies the Strong Monodromy Conjecture,
then for every prime p large enough, if so is a pole of Zy(a,s) of order m, then Re(so) is a
root of bq(s) of multiplicity > m.

In the next section we give the proof of Theorem 1.1 and of its corollaries. The last section
contains the proof of Theorem 1.4.

Acknowledgement. I am indebted to Nero Budur for bringing to my attention the reference
[FdB11] and to Wim Veys for pointing out an inaccuracy in a previous version of this note.

2. THE DESCRIPTION OF THE BERNSTEIN-SATO POLYNOMIAL OF AN IDEAL
We begin with the formula relating the Bernstein-Sato polynomials of a and g.

Proof of Theorem 1.1. By taking an affine open cover of X, we see that we may assume
that X = Spec(R) is affine. By definition, the Bernstein-Sato polynomial by(s) is the monic
polynomial of minimal degree such that there is P € I'(X x A", Dxxar)[s] such that

(1) bg(s)g®> =P gt
Such P can be uniquely written as P = Zaﬁezrzo Paﬂéyaé)g, with P, g € I'(X,Dx)[s],
only finitely many being nonzero. Here we use the multi-index notation y® = y{* .-y

and 05 = 8511---85: and f! = [[;_(8;)! for a = (a1,...,0;) and B = (B1,..., ;) in ZL,.
Furthermore, the equality in (1) is equivalent to

(2) by(m)g™ =Y Pop(m)eg™™ forall m > 0.
o,

Indeed, given P as above, it follows from the definition of the Dx-action on Ry[s|f* that there
is a polynomial @) € Ry[s] such that (1) holds if and only if @ = 0, while (2) holds if and
only if Q(m) = 0 for all m > 0. The two assertions are equivalent since Ry is a characteristic
0 domain.

Since g =Y _;_; fiyi, we have

m
(3) by(m)g™ = bg(m)- > ( ) P fEy eyl
A1y, Qp
|a|=m
where the sum is over all a = (a1, ..., a,) € Z5, with |a| := a1 + ...+ a; = m. On the other

hand, the right-hand side of (2) is equal to

1, m+1
ZBPQ’B(m)ﬁly 850 Z ( 7br> fl...ffryl{1...y$r7

bi,...
bl=mt1 L

where the second sum is over all b = (by,...,b,) € Z%, with [b] = m + 1. This is further
equal to

@ XY (Pl fl---ffr)-(bf_ffbr)-E(gi)-ﬁyfrmaa

a8 [bl=m+1 i=1
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where we make the convention that ( ) = 0 if B; > b;. Via the formulas in (3) and (4), the

equality in (2) is equivalent to the fact that for every a = (a1,...,a;) € Z%,, we have
lal
b ai ., far _
o (lal) <a1,...,ar ! "
_ _ al +1 ~(ai+ Bi — o
P,s(la ofa1+51 .. forthrar < | ) ( .
|5|Za|:1( a,B(’ D ! " ) ai+f1—ai,..., a0 + Br — i1 Bi
An easy computation shows that this is further equivalent to
bg(lal) P i =
al+1 al) e forthimer L partf—ar
(lal ZH/BZ p— Pog(lal) e f i

|B|—|al=11=1
where the sum is over all a, 8 € Z%, with 8] —|a| = 1 and such that «; < a; for all i. Since it

is clear that g is not invertible, we know that (s+1) divides by(s), with gg(s) =by(s)/(s+1).
It follows that by(s) is the monic polynomial of smallest degree such that we have P, g as

above such that for all a = (ay,...,a,) € Z%,, we have
T r a + r r—Qp
a5 = 3 T ey oo o) o S0 g
el (P = )

A similar argument to that showing the equivalence of (1) and (2) implies that the above
holds if and only if there are P, s € T'(X, Dx)|[s], for o, B € Z%, satisfying |3] — |a| = 1, with
only finitely many nonzero, such that we have the equality

(5)
By(sit s fit o fr= > 3 B! H( ) Pag(si..ds,)e fi 7. portfear,

|8]—|a|=1
Equivalently, b (s ) is the monic polynomial of minimal degree such that b (31+ + 37,) N
lies in
Z I I < )DX S14+ ...+ 8] f”‘ﬁl_o‘l ...fﬁrJrﬁr*ar‘
Z

|Bl—la|=11=1

This sum can be rewritten as
'
5
S S ot tr oo [T (1) g
. (673
=1 @ i—1

where the first summation index runs over those v € Z%, such that |y| = 1 and the second
summation index runs over those o € Z%) such that o; +v; > 0 for all i. The polynomials

(2’1) such that «; +; > 0 give a basis of Cls;] if 7; > 0 and give a basis of (_%) - Cls;] if
~v; < 0. We thus conclude that Eg(s) is the monic polynomial of smallest degree such that

Bg(sl +. +87~) . fSr c Z DX 81,... ] H < Si )flsl+71 ...f;?r'f"Yr’

71=1 7i<o NN
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hence it is equal to the Bernstein-Sato polynomial® ba(s). This completes the proof of the
theorem. O

Remark 2.1. Note that in the proof of Theorem 1.1 we did not assume the existence of
bq, hence by the theorem, we can deduce the existence of the Bernstein-Sato polynomial
associated to fi,..., f, from the existence of by(s). Furthermore, we see that bq(s) only
depends on the ideal generated by fi,..., fr and not on these generators. Indeed, it is enough
to show that if we consider f,41 =Y .;_; a;f; for some ay,...,a, € Ox(X) and h = Z:ill fivi,
then by(s) = bp(s). Note that h = Y7, fi(yi + a;yr+1). We have an automorphism of
X x A" over X which maps Yr+1 to yr41 and y; to y; + a;yr41 for 1 < ¢ < 7. Since this
maps g to h, it follows that b,(s) = by(s).

Remark 2.2. The hypersurface g = >, fiy; also appeared in [FdB11], where it was shown
that if all f; vanish at the origin, then the Milnor fibration of g at the origin has trivial
geometric monodromy and fiber homotopic to the complement of the germ defined by the

ideal (fi,...,f,).

We can now deduce the first consequences of the theorem.

Proof of Corollary 1.2. 1t is shown in [BMS06, Theorem 2] that the negative of the largest
root of bq(s) is the log canonical threshold Ict(a) of a. Since ¢y is, by definition, the negative

of the largest root of gg(s), the assertion follows from Theorem 1.1. O

Proof of Corollary 1.3. Since W is reduced and a complete intersection of pure codimension r,
it follows from [BMS06, Theorem 4] that W has rational singularities if and only if lct(a) = r
and —r is a root of multiplicity 1 of byq(s). The assertion in the corollary thus follows from
Theorem 1.1. g

3. AN APPLICATION TO THE STRONG MONODROMY CONJECTURE

For a nice introduction to Igusa’s zeta function we refer to [Nic10]. We only recall here
the definition of the p-adic absolute value and of the Haar measure on Z;. Let us denote by

ord, the p-adic valuation on Q,, (so that any element v € Q,, can be written as u = perdp(w)q,
with v invertible in Z,). With this notation, if ord,(u) = m, then the p-adic absolute value
of u is given by |ul, = me.

The Haar measure p, on Zj is the unique translation-invariant measure such that p,(Zy) =
1. In particular, for every u € Z; and every positive integer m, we have

1
mplu+p"2Zp) = o
Note also that the Haar measure is multiplicative with respect to the Cartesian product of
cylinders in Zj x Z;, ~ ZZ” (recall that a cylinder in Zy is the inverse image of some set via

a projection map Zy — (Z/p™Z)").

Given a nonzero f € Zy|[z1,...,xy], we denote by ordy the function ord, o f: Zy — Z>o.
It then follows by definition that
(6) Zy(fis) =Y mp(ord (m))p™.
mEZzo

IThis is not the definition of the Bernstein-Sato polynomial bq(s) in [BMS06], but the definition is equivalent
to this one, as explained in [BMS06, Section 2.10].
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Similarly, if a = (f1,..., f;) is an ideal in Zy[x1,...,xy] and if we put ord, = minj_; ordy,,
then
(7) Zp(a;s) = Z up(orda_l(m))p_ms.

mEZzO

We can now prove the main result of this section.

Proof of Theorem 1./. The key point is the computation of the p-adic measure of ordgl(m) -
Zy+ for each m > 0. Since g = > 7 fiyi, it follows that if (u,vy,...,v.) € Zp*" lies in
ord;l(m), then
,
ordg(u) = mi{l ordy, (u) < m.
1=
Suppose now that u € Zj is such that min;_, ordy(u;) = d < m. We want to describe the
set Wy (m) consisting of those v = (v1,...,v,) € Zj such that ordy(uivy + ... + uv,) = m.
Suppose that j is such that ord,(u;) = d. By assumption, we can write u; = tdul for 1 <i<r
and u} € Z,, with u; invertible. In this case, we have ord,(ujv; +...+u,v,) = m if and only
if ordp(ujvi + ... +upvy) = m — d. Since uj is invertible, this means that vi,...,0j,..., v,
can be chosen arbitrarily and then the class of v; in Z/ p"~41Z can take precisely (p — 1)
values (and then every lift of this class satisfies the desired condition). We thus conclude
that Wy, (m) C Zj is a cylinder whose p-adic measure is pmp_%ﬂ.
The projection Z; x Z;, — Z; onto the first component induces a map

T: ord |_| ord

If we decompose each ord;l(d) as a disjoint union of cylinders such that on each of these
cyclinders min; ordy, is achieved by some fixed 7, then for every such cylinder C' C ord;l(d),
the subset 771(C) C Z7 x Zj is a cylinder with

(0 = ml©) - L

Therefore we have

-1
Hp (ord Zup ord 'pm o1

Using the formulas (6) and (7), we obtaln

-1
Z pms Z,upord W

m>0

p—1 Z pip (ord; *(d)) Z 1 1—
= ' ds ' m—d)(s+1) 1 _ s+1 (Cl; S)'
D = P = pl )(s+1) 1—p- ( +1)

This gives the first assertion in the theorem.

The formula relating Z,(g; s) and Z,(a; s) shows that if we denote by n,(g; \) and n,(a; \)
the order of X as a pole of Z,(g;s) and Z,(a;s), respectively, then n,(g; \) = ny(a; \) for
A # —1; moreover, if n,(a; —1) > 1, then n,(g; —1) = np(a; —1) + 1. The second assertion in
the theorem follows from this and Theorem 1.1. O
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Remark 3.1. For the sake of simplicity, we assumed in Theorem 1.4 that a is an ideal
in Zp[zi,...,z,]. A similar formula holds, with the same proof, if we assume that f €
Oklx1,...,2y], where Of is the ring of integers of a p-adic field K. Moreover, the proof gen-
eralizes immediately to the case of the motivic zeta functions of Denef and Loeser [DLI8]. In
this case, we see that if X is a smooth complex algebraic variety, a is the coherent ideal gen-
erated by fi,..., fr € Ox(X), and g = Y, fiyi, then the motivic zeta functions Zmot(g; s)
and Zmot(a;s) of g and a, respectively, are related by the following formula
1-L™!

mzmot<a; S).
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