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Abstract

An R-link is an n-component link L in S such that Dehn surgery on L yields #"(S! x §?).
Every R-link L gives rise to a geometrically simply-connected homotopy 4-sphere X,
which in turn can be used to produce a balanced presentation of the trivial group. Adapting
work of Gompf, Scharlemann, and Thompson, Meier and Zupan produced a family of R-
links L(p, q; c/d), where the pairs (p, g) and (c, d) are relatively prime and c is even.
Within this family, L(3,2;2n/(2n + 1)) induces the infamous trivial group presentation
(x,y|xyx = yxy, x"™1 = y") a popular collection of potential counterexamples to the
Andrews—Curtis conjecture forn > 3. In this paper, we use 4-manifold trisections to show that
the group presentations corresponding to a different subfamily, L(3, 2; 4/d), are Andrews—
Curtis trivial for all d.
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1 Introduction

The famous Andrews—Curtis conjecture [2] asserts that any balanced presentation

(CoT b ST )

of the trivial group can be converted to the trivial presentation (xi, ..., x, | X1, ..., X,) by a
finite sequence of the following moves:

1. Replace a relator r; by rl._l;
2. Replace a relator r; by r;r;j, where i # j;

; ; and

3. Replace a relator r; by xr;x
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Fig.1 Atleft, the curve 15,1 contained in S, with cone points at the corners. Atright, the lift A4/} in the fiber

F C F, where opposite edges are identified to form a genus-2 surface with one boundary component. The
square knot Q = 0 F is depicted as the small purple circle

4. Add or delete a trivial generator/relator pair x,41 and r,+1 = Xp41.

A presentation P that admits such a trivialization is called AC-trivial. Although the conjec-
ture remains open, there are interesting families of potential counterexamples, many arising
from constructions in low-dimensional topology. Perhaps the best known family in this cat-
egory is the set of presentations

Py = (x,y|xyx = yxy, x"th = "),

coming from a collection H,, of handle decompositions of the 4-sphere, each with two 1-
handles and two 2-handles [1, 7]. The presentations P, are not known to be AC-trivial for
n > 3, and they form a well-studied collection of possible counterexamples to the Andrews—
Curtis conjecture (see, for instance, the discussion in [1] or [19]).

A related notion is that of an R-link, an n-component link L C §3 such that some Dehn
surgery on L yields #'(S' x 5?). Every R-link L naturally gives rise to a balanced presentation
P (L) of the trivial group, and in [8], the authors constructed a family of R-links L,, with the
property that P(L,) = P,, the presentations given above. This construction was generalized
by Jeffrey Meier and the second author to produce an R-link L(p, ¢g; ¢/d) for any co-prime
p and g and c/d € QQ with ¢ even. With these parameters, L(3, 2; 2n/(2n + 1)) is stably
equivalent (defined below) to the Gompf—Scharlemann—-Thompson links L, [15].

The links L(p, g; c/d) are defined as follows: Let Q0 = Tp q#Tp q be a generalized
square knot, with fiber F. The closed fiber F obtained by capping off F with a disk admits
a branched covering map p to a sphere S with four cone points. Curves in S avoiding the
cone points can be parameterized by the extended rational numbers Q, and any curve Mej2)/d
with ¢ even lifts to a collection of curves A,y C F C F , in turn giving rise to the link
L(p,q;c/d) = QUA,/qin S3. This construction is described in greater detail in [15], and
an example is shown in Figs. 1 and 2.
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Fig.2 Thelink L(3,2;4/1) in $3. Colored vertices correspond to the vertices and gray dotted arcs represent
the inner and outer edges at right in Fig. 1

Let P(p,q;c/d) denote the presentation P(L(p,q;c/d)) induced by the R-link
L(p, q; c/d). We have the following natural question:

Question T Which presentations P(p, ¢; c¢/d) can be AC-trivialized?

In [8], the authors showed that the link L(3,2;0/1) is handle-slide equivalent to the
unlink, and in forthcoming work, the second author and collaborators show that for all d,
the links L (3, 2; 2/d) have the same property, from which it follows that the presentations
P(3,2;0/d) and P(3,2;2/d) are AC-trivial [10]. The case ¢ = 4 is more complicated, and
the corresponding question for the links L (3, 2; 4/d) remains open. However, in this paper,
we prove

Theorem 1 Every presentation of the form P (3, 2;4/d) is AC-trivial.

The proof breaks into two cases, separated into Proposition 2 (dealing with the case
d = 4n + 1) and Proposition 3 (dealing with the case d = 4n + 3). For both proofs, we
use trisections of the closed 4-manifolds X (3 2,4/4) arising from the R-links L(3, 2; 4/d) in
order to construct the presentations P (3, 2; 4/d).

Remark 1 Various sources in the literature differ on whether to allow move (4); in some
cases, AC-triviality is defined only with moves (1)—(3), and those sources often use stable
AC-triviality to allow move (4) as well. In this paper, AC-triviality will always allow moves

(D).

1.1 Organization
In Sect. 2, we establish the necessary background material for the paper. Section 3 deals with

the first case of the main theorem, while Sect. 4 deals with the second case. We conclude in
Sect. 5 with several questions for further investigation.
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2 Preliminaries

We work in the smooth category throughout.

2.1 AC-equivalence and automorphisms

If P and P’ are two group presentations related by moves (1)—(4) above, we say that P and
P’ are AC-equivalent, and we write P ~ P’. There is an additional move, the transformation
move, that we can apply to a group presentation P = (X1, ..., X, |F1, ..., p):

(5) For an automorphism 1 of the free group Fj, generated by xi, ..., x,, replace every
relator r; with its image v (r;).

Equivalence of presentations allowing moves (1)—(5) is called Q**-equivalence [5, 16, 17].
To our knowledge, it remains open whether Q**-equivalence is stronger than AC-equivalence;
a detailed discussion can be found in Section 3 of [20]. However, the following is known:

Lemma 1 /3, 18] If a presentation P can be converted to the trivial presentation via moves
(1)—(3) and (5), then P can be converted to the trivial presentation via moves (1)—(3).

As a corollary, we have

Corollary 1 If a presentation P is Q**-equivalent to the trivial presentation, then P is AC-
trivial.

Proof Suppose that P = (x1,...,x, |r1, ..., ) admits a sequence of moves (1)—(5) con-
verting P to the trivial presentation. Observe that any instances of additions via move (4)
can be carried out before any of the other moves, since any automorphism i used in move
(5) extends by the identity over generators added after the automorphism would have been
applied, and instances of deletions via move (4) need not be carried out, because any pre-
sentation equivalent to a trivial presentation after a deletion is also equivalent to a trivial
presentation of longer length before the deletion. Thus, it follows that for some m > n, the
presentation

/
P = (x1,. .o, Xn, Xng1 oo s X | T1s oo o s Py X1y o5 Xim)

can be converted to the trivial presentation by moves of types (1)—(3) and (5). By Lemma 1,
P’ is AC-trivial, and since P and P’ are related by moves of type (4), it follows that P is
AC-trivial as well. O

2.2 R-links

As mentioned above, an R-link is an n-component link L C $3 such that L has a Dehn
surgery yielding #"(S! x §2). Every R-link gives rise to a closed 4-manifold X; built with
one 0-handle, n 2-handles, n 3-handles, and one 4-handle, where L is the attaching link for
the 2-handles, with framings giving by the Dehn surgery coefficients. In this case, we have
x(Xr) = 14+n—n+1 = 2,andsince X is simply-connected, 81 (X1) = B3(X1) = 0, which
means that H> (X ; Z) = ZAX1) = 0. It follows from Theorem 1.2.25 of [9] (Whitehead’s
Theorem) that X is a homotopy 4-sphere, as X and S* have identical intersection forms.

Inverting the handle decomposition of X yields one 0-handle, n 1-handles, n 2-handles,
and one 4-handle, which can be used to produce a balanced presentation for 71 (X1 ), the trivial
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group. In general, an R-link L does not induce a unique such presentation; for instance, a
choice of co-cores of the 1-handles in the inverted handle decomposition determines a choice
of the generators xp, ..., x, in the presentation P(L), and a different choice induces an
automorphism of the free group F;,, the fundamental group of the union of the 0-handle and
the n 1-handles. Nevertheless, we can prove the following:

Lemma2 Let L be an R-link, and suppose that P and P’ are two different presentations
induced by L. Then P and P’ are Q**-equivalent.

Proof Suppose that P = (x1, ..., X, |r1,...,myand P = (y1,...yn |S1,...,s,) are two
presentations induced by L. In the context of the AC-moves, we assume that all groups have
the same generating set. Thus, let ¢ : (y1, ..., y) = (x1,...,Xx,) be the map ¢(y;) = x;,
and let P” = 1((P') = (x1,...,xn|t(s1),...,t(sy)), so that P” is identical to P’ but uses

x;’s instead of y;’s.

There are several sets of choices we make to extract P and P’ from L: A choice of co-cores
of the 1-handles in the inverted handle decomposition, a choice of a base point for Xy, a
path from the base point to each component of the attaching link L* for the 2-handles in the
inverted handle decomposition, and an orientation for each component, since we need a place
to begin and a direction when using each component of L* to read off a relator. Different
choices of orientations yield relators related by a move of type (1). Likewise, any two choices
of base points and paths can be related by conjugating the relators by generators, and as such
these relators are related by moves of type (3). Thus, we may assume that P and P’ arise
from identical choices of base points and orientations of L*, and in practice, we read off the
relators by only considering components of L*, ignoring the base point and paths.

Regarding the choices of co-cores of the 1-handles, there is a diffeomorphism of the
boundary of the union of the O-handle and 1-handles sending one choice to any other, inducing
an automorphism o of the free group. In other words, each x; can be expressed as a word in
the y;’s,and let o : (x1,...,x,) = (J1, .., Yn) be the isomorphism such that o (x;) is the
expression of x; as this word. Observe that the relators in both presentations are determined
by the fixed attaching link L* with the same base point, paths, and orientations, it follows
that (possibly after reindexing), we have o (r;) = s;.

Finally, define ¢ = ¢ o . Then we have

(X1 ooy X WD)y oo () = (X1, ooy X | L(ST), ... L(SR)) = P”.

We conclude that P and P” are related by a move of type (5), and thus any two such
presentations P and P” are Q**-equivalent. O

In view of Lemma 2, the Q**-equivalence class of the the presentation induced by the R-
link L is well-defined, and so we use P (L) to denote this equivalence class. By Corollary 1,
if we can show that some presentation in the equivalence class P(L) is AC-trivial, then
every presentation in P (L) is AC-trivial. For this reason and for the purposes of proving AC-
triviality, we often blur the distinction and abuse notation to let P (L) denote any representative
of the equivalence class P(L).

There are also moves on the R-link L that leave P (L) invariant: If L and L’ are related by
a sequence of handle-slides, we say L and L’ are handle-slide equivalent. More generally,
if L and L’ are R-links (possibly with different numbers of components) and U and U’ are
unlinks, such that the split links L U U and L’ 1 U’ are handle-slide equivalent, we say that
L and L' are stably equivalent. We have the following well-known lemma.

Lemma3 If L and L’ are stably equivalent, then P(L) = P(L’).
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Proof Any handle-slide of L over L’ induces a handle-slide of (L’)* over L*, the dual attach-
ing links in the inverted handle decompositions. As such, the corresponding presentations
can be related by moves of type (2) (and possibly other moves corresponding to the choices
referenced in the proof of Lemma 2). If L and L’ are stably handle-slide equivalent, then
there are unlinks U and U’ such that L U U and L’ L U’, are handle-slide equivalent, so that
P(LuU) = P(L'uU’). In this case, P(L) and P(L U U) are related by moves of type (4);
thus, P(L) = P(L u U). Similarly, P(L") = P(L' u U’), completing the proof. O

The generalized Property R conjecture (GPRC) asserts that every R-link L is handle-slide
equivalent to an unlink, and the stable version of the GPRC asserts that L is stably handle-slide
equivalent to an unlink. Both conjectures, if true, would imply that every presentation P (L)
arising in this way is AC-trivial. For a detailed discussion of R-links and the AC-conjecture,
the reader is encouraged to refer to [8, 11].

2.3 The family L(3, 2; ¢/d)

In [14], Meier and the second author used work in [8, 21] to introduce the family L(3, 2; c¢/d)
of R-links, and in [15], they extended the construction to L(p, ¢g; ¢/d). The construction is
described in much greater detail in [14, 15] but we briefly summarize here: Let O be the square
knot 31#31, and let F be the fiber for Q in S3, a surface with genus two and one boundary
component. Then §; 3(0), the closed 3-manifold resulting from O-surgery on Q, is fibered with
fiber F, the closed genus two surface obtained by capping off the boundary component of F
with a disk. Viewing F as the quotient of an annulus with hexagonal boundary components
identified in opposite pairs as shown in Fig.3 below, the closed monodromy ¢ : F — F
associated to Sg (Q) is a clockwise rotation of /3 radians.

In addition, if S represents the 2-sphere with four cone points of order three, there is a
branched covering map p : F — S with the property that p o @ = p. The map p can be
understood from Fig. 1; each of the six quadrilateral regions cut out by the dotted lines at right
maps to the front or back of the pillowcase at left by identifying the appropriate color-coded
vertices. Curves in S that avoid the cone points are parametrized by the extended rational
numbers Q, and for ¢ even, the curve A(c/2)/a corresponding to the rational number (c/2)/d
lifts via p to three curves V4, V. /¢ and VC} 4 contained in F and permuted by ¢. These

curves can be chosen to lie in F', and as such the link Q U V¢4 U ch/d U V’}d c S3isan
R-link, stably handle-slide equivalent to any of its two component sublinks by Lemma 17 of
[14]. This lemma is proved by noting that slides in F' can be used to convert Q and another
component of Vg U V! JaY %4 Ja to trivial curves in Q, in addition to observing that since
@ permutes V/q, Vc’/d, and Vc/d, they are isotopic in Sg(Q), and so any two of these three
curves can be eliminated by isotopy and slides over Q. In[15], the link L (3, 2; ¢/d) is defined
to be Vg U VLf Jd> but for the purposes of determining whether P (3, 2; ¢/d) is AC-trivial,
we can use any of these links by Lemmas 2 and 3.

Remark 2 The convention here for c/d agrees with [15] but differs from [14, 21] in that the
numerator ¢ is doubled in our setting. This doubling is explained in detail in Remarks 4.1
and 4.12 of [15].

Remark 3 Tt was proved in [21] that the links L(3, 2; 2n/(2n + 1)) are stably handle-slide

equivalent to the links L, appearing in [8], and thus P(3,2;2n/(2n + 1)) is equivalent to
the famous presentation P, described in the introduction.
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Fig.3 At left, curves V1 (red), V(; /1 (blue), and V(;//] (green). At right, their images under the monodromy

. Note that while the closed monodromy ¢ permutes the three curves, the monodromy ¢ does not. (Color
figure online)

2.4 Trisecting X 3,2;¢/d)

Gay and Kirby introduced 4-manifold trisections in [6]. A (g; k1, k2, k3)-trisection T of a
closed, smooth 4-manifold X is a decomposition X = X| U X, U X3 with the properties

1. Each X; is a 4-dimensional 1-handlebody with rk(m (X;)) = ;3
2. Each H; = X;_1 N X; is a 3-dimensional genus g handlebody; and
3. ¥ = XN X>N X3 isagenus g surface.

A trisection 7 is determined by the union H; U H, U H3, which is in turn determined by
a collection of three cut systems, «, 8, and y, contained in X, called the central surface of
the trisection. The triple («, B, y) is called a trisection diagram.

We have already discussed the closed monodromy ¢ : F — F for the square knot Q,
but in this setting, we will need to use the monodromy ¢ : F — F for Q, which is required
to be the identity on d F = Q. The monodromy ¢ consists of a /3 rotation as before, but
this time followed by an isotopy that drags the boundary component of F' back to where it
started. The curves Vo1, V) /1» and V1 and their images under ¢ are shown in Fig.3. (See
also Figure 9 of [21].)

Next, we define three cut systems, which will determine a trisection diagram for a trisection
T (c/d) for X1,(3,2;c/ay- Define ¥ = d(F x I), where 9 F x I has been crushed to the single
curve d F, so that we may view X as F’ #F. For a curve or arc a embedded in F, let @ denote
the mirror image of a contained in F.Letay, as, a3, as be four pairwise disjoint arcs in F
cutting F into a disk, and define

a = {p(ay) Uar, p(az) Uaz, ¢(az) Uas, p(as) U ag}
B ={a1VUai, apUaz, a3 Uas, as Uag)

vy = {Veya, Vc//d, Veyas Vc//d}'

Then we have the following, which is Proposition 19 from [14].

Proposition 1 The triple («, B, v) is a (4; 0, 2, 2)-trisection diagram for a trisection T (c/d)
of XL3.2:¢/d)-

@ Springer



45 Page8of 15 Geometriae Dedicata (2024) 218:45

Finally, we will need a tool which we can use to extract a handle decomposition from a
trisection, a restatement of parts of Lemma 13 from [6].

Lemma4 Suppose X = X1 U X, U X3 isa (g; ki, ko, k3)-trisection, with H; = X;_1 N X;.
Then X has a handle decomposition with

1. One 0-handle and ki 1-handles (contained in X1 ),
2. g — kp 2-handles (contained in X3), and
3. k3 3-handles and a 4-handle (contained in X3).

In addition, a choice of ki pairwise disjoint and mutually nonseparating curves C in X
bounding disks in both Hy and H» represent the intersections of k1 co-cores of the 1-handles
with X. Finally, an attaching link L for the 2-handles can be obtained by choosing g — k»
curves bounding disks in H3 that are dual to g — ky curves bounding disks in Hy, and viewing
L as a framed link (with framing given by the surface X) in the 3-manifold 9 X .

The lemma can also be applied by any permutation of {1,2, 3} to the indices of the
components X;. An example that carries out this procedure appears in Subsection 2.6 of
[13].

3 Thecased =4n + 1

We break the proof of the main theorem into two cases. First, in this section we consider
c/d of the form 4/(4n + 1). In the next section, we examine c/d of the form 4/(4n + 3).
The proofs are quite similar but the specific curves and computations are different. For the
remainder of this section, we will label curves and arcs in the surface F at bottom in Fig.4
as follows:

1. The red arc is aj, an(ﬂhe pink arc is a;. -
2. The dark blue arc is by, and the light blue arc is b;.
3. The dark green curve is V4,1 and the light green curve is V, e

The arcs a1, az, by, and by in F are the mirror images of ay, az, by, and by, respectively.
In addition, we let az and a4 denote the red and pink arcs, respectively, in the top frame of
Fig.4, noting that a3 = ¢(a;), as = ¢(az), and the dark blue and light blue arcs in F are
the arcs by and by. We also let T : F — F to be the product of right-handed Dehn twists
about the pairwise disjoint collection of curves Vo1 U V; N0y V(;’/], sothat7 : F — F is the

product of left-handed Dehn twists about Vo, U Vj U V(;’/l, shown as dotted purple curves
in Fig.4. Define V(;k/] to be the curve obtained by sliding Vy,1 over Q (equivalently, V(;k/] is

the image of Vé’/ | under ¢ as in Fig.3), and let 7, : FF — F be identical to T except for
replacing the Dehn twist about Vp,; with a Dehn twist about VO*/1 , shown in dotted orange in

the same figure. Since ¢ (Vo1 U V(;/l U Vé’/l) = Vé/l U 6//1 U Vgy. it follows from Section
3.5 of [4] that

QoT =T4i00. (1
In Lemmas 4.7 and 4.8 of [15], it was shown that

Lemma5 For the curves Vy q and V‘{/d in X, we have

" (Vaga) = Vaja+ay and " (Vy0) = Viasay-
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(b) F
Fig.4 Curves and arcs in ¥ = F#F used to compute P (3,2; 4/(4n + 1))

Using the symmetry of X, it follows that
T (Vaya) = Vaja+ay and T (Ve = Vi

as well. This relationship is precisely why we need to address two cases, when d = 4n + 1
and when d = 4n + 3. The observant reader may note that our t differs from 7¢ in [15], in
which 7 is defined to be a left-handed twist about a six-component multicurve consisting of
two copies of each of V1, Vé/l, and Vé’/l. It follows that 72 = 1.
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Lemma 6 The trisection T (4/(4n + 1)) gives rise to an inverted handle decomposition of
X1(3,2;4/(4n+1y) With two I-handles and two 2-handles, where co-cores of the I-handles
meet the central surface X in the curves T (b1) U T"%(b1) and t"(by) U T"(b,), while an
attaching link for the 2-handles is determined by t! (a3) UT" (ay) and t} (as) UT"(az). The
corresponding group presentation P(3,2;4/(4n + 1)) is

P(3,2;4/(n+ 1)) = (x, y [XOX)" YO0y, x(yX)" y(xy)").

Proof By Proposition 1, there exists a trisection diagram («, 8, y) for 7 (4n/(4n + 1)) such
that « contains fori = 1, 2 the curves o; = @(t"(a;)) Ut"(a;) = ¢(t"(a;)) UT"(a;), which
bound disks in H;. Applying Eq. 1 repeatedly, we have

o (a3) UT" @) =t (p(ar) UT" @) = p(x"(a1)) UT" @) = i3
7 (as) UT" (@) = 7 (p(a2)) UT"(a2) = ¢(t"(@2)) UT" (a2) = aa.
Additionally, for i = 1, 2, the curves 8; = t"(b;) U t"(b;) = 1" (b;) UT" (b;) are curves in

B, which bound in H>, and f; and B, are disjoint from the curves in y = {y1, y2, ¥3, ¥3},
the curves

{Vayan+1)s Vayansrys Vaantns Vasanany = (T (Vay), T (Va ), T (Vag), T (Vg )

as asserted by Lemma 5. Thus, the curves 1 and 8, bound disks in the handlebody H3 as
well.

Now, observe that | meets | once and avoids y», while «; meets y» once and avoids y;. By
Lemma 14 of [6], the handle decomposition of X (3,2;4/4n+1)) determined by L(3, 2; 4/(4n+
1)) is compatible with the handle decomposition determined by 7 (4/(4n + 1)), with no 1-
handles (contained in the 4-ball X), two 2-handles (contained in X3), and two 3-handles
(contained in X»). It follows that in the inverted handle decomposition, the two 1-handles
are in X», while the two 2-handles can be viewed in X3. Since 0 X, = Hy U H3, determined
by S and y, the curves 1 and B, above can be chosen as the intersections of co-cores of the
1-handles with X. Moreover, the curves o; and o are dual to y; and y», so that an attaching
link for the 2-handles is o1 U oy by Lemma 4.

Finally, using Fig.4 with orientation as shown, we can read off the relators determined
by a and az. To compute oriented intersections, we find the sign of each point of o; N B;,
where the direction of «; is the first element of a standardly oriented ordered basis. Note
that the multi-twists T and 7, differ only at the curves Vp,; (which twists 8; but not o;)
and VO*/1 (which twists «; but not 8;). We have included an illustration of the twisting in a
neighborhood of these curves in Fig.5 to aid in our computation.

We use the generators x and y for 81 and B,, respectively, and we read the relators » and
s from o and a», respectively, starting in F' at Q and following the orientations (note that
there are no intersections to be seen in F). We have

r=x(x0)"yx)"y;
s = X0 " Y(xyyy)" =x(X)" yEy)"

Next, we trivialize our computed presentation.

Proposition 2 The presentation P (3, 2; 4/(4n + 1)) is AC-trivial.
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(a) Dehn twisting b1 and bz about Vj,/q (b) Dehn twisting a3 and a4 about Vi,

Fig.5 Images of Dehn twists to aid in computations for Lemma 6

Proof Let (rg, so) = (r, s) be the relators from Lemma 6. First, perform a move of type (1),
letting r; = ry !'so that

ry=yEy)" yxy)x.

Next, perform a move of type (2) and let r, = rys9, yielding
r = (EY)" y(x )" )EGD)" YY) = yEy)" ()"
Regroup the terms in sq to get
so =x(yX)" y(xy)" =x(rx)" ()"

Now, use a type (3) move to cyclically permute sq to get

s1= (yX)" (yx)"yx,
and then use another type (2) move, letting 73 = rs;. Thus,

r3 = (F@)" @)D" (0)"FT) =777

At this point, r3 is the relator x = 32, and we can use a combination of type (3) moves to
cyclically permute s1 so that x or X appears as its last term. Then, we use a type (3) move to
cyclically permute r3 and a type (2) move to multiply s; by Wz, or we use type (1), (2), and
(3) moves to multiply s; by xy2. Repeating this process eventually converts s; to s = y,

which in turn lets us use type (1), (2), and (3) moves to convert 3 to 74 = x, completing the
proof. O

4 Thecased =4n+3

We proceed in a manner nearly identical to that of Sect. 3, but starting with different curves
and arcs in 2. For the remainder of this section, we will label curves and arcs in the surface
F at bottom in Fig. 6 as follows:

1. The red arc is ay, and the pink arc is a3.
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(a) F

(b) F

Fig.6 Curves and arcs in ¥ = F#F used to compute P (3,2; 4/(4n + 3))

2. The dark blue arc is by, and the light blue arc is bs.
3. The dark green curve is V4,3 and the light green curve is VA( /3

In addition, we let a3 and a4 denote the red and pink arcs at top in Fig.6; as before,
az = ¢(ay), as = @(az), and the dark blue and light blue arcs in F are the arcs by and b;.
Recall the definitions of t and 7, from Sect. 3.

Lemma 7 The trisection T (4/(4n + 3)) gives rise to an inverted handle decomposition of
X1(3,2;4/(4n+3)) With two I-handles and two 2-handles, where co-cores of the I-handles
meet the central surface X in the curves T (b1) U T"(b1) and t"(by) U T"(b,), while an
attaching link for the 2-handles is determined by t! (a3) UT" (ay) and t}} (as) UT"(az). The
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(a) Dehn twisting b1 and bz about V{/; (b) Dehn twisting a3 and a4 about VO*/l

Fig.7 Images of Dehn twists to aid in computations for Lemma 7

corresponding group presentation P(3,2;4/(4n + 3)) is
P(3,2;4/(4n +3)) = (x, y | YEYD)" (32" yx, TOF)"yxy(xyx)"xy)

Proof As in the proof of Lemma 6, there is a trisection diagram («, 8, y) for 7 (4n/(4n +3))
that includes (fori = 1,2) o; = ¢(t"(a;)) U T"(a;) as curves in « bounding disks in Hj,
and by the same argument, we have

7 (a3) UT" (@) = ay;

T/ (a) UT" (@) = 2.
Fori = 1,2, the curves B; = t"(b;) U T"(b;) are curves in B, disjoint from the curves in
Y = {v1, v2, v3, v3}, the curves

{T"(Vap3), T (Vay3), T (Vap), T (Vy 3},

as asserted by Lemma 5. Thus, 81 and 8, bound disks in the handlebody H3 as well.

Since o1 meets y; once and avoids y», while oy meets y, once and avoids yj, the same
argument as in Lemma 6 can be used to show that in the inverted handle composition coming
from L(3, 2; 4/(4n + 3)), co-cores of the 1-handles meet ¥ in B and B, and an attaching
link for the 2-handles consists of o1 and «. Now, using Figs.6 and 7, we can read off the
relators r and s (following orientations and starting in F at Q),

r =Yy (yxyyx)"yx = YD) (px7)" yx
s = XX yxy(xyxyy)'xy = ¥(3x)" yXy (xyx)"xy

Proposition 3 The presentation P (3, 2; 4/(4n + 3)) is AC-trivial.

Proof Let (r,s) = (ro, So) be the relators from Lemma 7, and note that we can regroup terms
to express and rg and sq as

ro = y(@xyx)"yx(xyx)";
so = (XyxX)"Xyxy(xyx)"xy.
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Next, we let 1 and 51 be the result of cyclic permutations of rg and s, respectively, so that
ri = (xyx)" yx(xyx)"y;
s1 = xy(xyx)" xyxy(xyx)".
Letting so = 5171, we have
52 = (xy(xyx)"Xyxy (xyx)") (xyx)" yx (xyx)"y) = xy(xyx)"xy(xyx)"y.
Cyclically permuting s; to get s3 yields
53 = yxy(xXyx)"xy(xyx)",
and letting s4 = s3771,
s4 = xy(xyx)" Xy (xyx)" ) ((Xyx)" yx (xyx)"y) = yxy(xyx)" (xyx)"y = yx.
Finally, s4 is the relator y = x, and so we can use AC moves to transform r; into
ry = %" x2x3M% = x.

It follows that P (3, 2; 4/(4n + 3)) is AC-trivial. O

5 Conclusion

We conclude with a couple of questions to motivate future research in this area. Recall from
the introduction that the GPRC and the Andrews—Curtis conjecture are closely connected.
We have simplified the group presentations, but the motivation was the following related
question about the related links.

Question 2 Are the links L (3, 2; 4/d) handle-slide equivalent or stably equivalent to unlinks?

One way to answer this question would be to show that the trisections 7 (4/d) are standard
and invoke Theorem 3 from [14] (for a definition of a standard trisection, see [14].)

Question 3 Are the trisections 7 (4/d) standard?

Notably, it remains open whether there exists a nonstandard trisection of S*.

Finally, it would be interesting to understand whether these techniques can be applied
to other families of group presentations, in particular, because in forthcoming work, Meier
and the second author are able to show an number of unexpected equivalences between
P(p1,q1; c1/dy) and P(p2, q2; ca/d>) for various parameters [12].

Question 4 Can these techniques be extended to show that any presentations of the form
P(5,2;4/d) are AC trivial? What about presentations of the form P (p, 2; 4/d)?
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