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Abstract

An R-link is an n-component link L in S3 such that Dehn surgery on L yields #n(S1 × S2).

Every R-link L gives rise to a geometrically simply-connected homotopy 4-sphere X L ,

which in turn can be used to produce a balanced presentation of the trivial group. Adapting

work of Gompf, Scharlemann, and Thompson, Meier and Zupan produced a family of R-

links L(p, q; c/d), where the pairs (p, q) and (c, d) are relatively prime and c is even.

Within this family, L(3, 2; 2n/(2n + 1)) induces the infamous trivial group presentation

〈x, y | xyx = yxy, xn+1 = yn〉, a popular collection of potential counterexamples to the

Andrews–Curtis conjecture for n ≥ 3. In this paper, we use 4-manifold trisections to show that

the group presentations corresponding to a different subfamily, L(3, 2; 4/d), are Andrews–

Curtis trivial for all d .
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1 Introduction

The famous Andrews–Curtis conjecture [2] asserts that any balanced presentation

〈x1, . . . , xn | r1, . . . , rn〉

of the trivial group can be converted to the trivial presentation 〈x1, . . . , xn | x1, . . . , xn〉 by a

finite sequence of the following moves:

1. Replace a relator ri by r−1
i ;

2. Replace a relator ri by rir j , where i �= j ;

3. Replace a relator ri by x jri x−1
j ; and
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Fig. 1 At left, the curve λ2/1 contained in S, with cone points at the corners. At right, the lift �4/1 in the fiber

F ⊂ F̂ , where opposite edges are identified to form a genus-2 surface with one boundary component. The

square knot Q = ∂ F is depicted as the small purple circle

4. Add or delete a trivial generator/relator pair xn+1 and rn+1 = xn+1.

A presentation P that admits such a trivialization is called AC-trivial. Although the conjec-

ture remains open, there are interesting families of potential counterexamples, many arising

from constructions in low-dimensional topology. Perhaps the best known family in this cat-

egory is the set of presentations

Pn = 〈x, y | xyx = yxy, xn+1 = yn〉,

coming from a collection Hn of handle decompositions of the 4-sphere, each with two 1-

handles and two 2-handles [1, 7]. The presentations Pn are not known to be AC-trivial for

n ≥ 3, and they form a well-studied collection of possible counterexamples to the Andrews–

Curtis conjecture (see, for instance, the discussion in [1] or [19]).

A related notion is that of an R-link, an n-component link L ⊂ S3 such that some Dehn

surgery on L yields #n(S1×S2). Every R-link L naturally gives rise to a balanced presentation

P(L) of the trivial group, and in [8], the authors constructed a family of R-links Ln with the

property that P(Ln) = Pn , the presentations given above. This construction was generalized

by Jeffrey Meier and the second author to produce an R-link L(p, q; c/d) for any co-prime

p and q and c/d ∈ Q with c even. With these parameters, L(3, 2; 2n/(2n + 1)) is stably

equivalent (defined below) to the Gompf–Scharlemann–Thompson links Ln [15].

The links L(p, q; c/d) are defined as follows: Let Q = Tp,q#Tp,q be a generalized

square knot, with fiber F . The closed fiber F̂ obtained by capping off F̂ with a disk admits

a branched covering map ρ to a sphere S with four cone points. Curves in S avoiding the

cone points can be parameterized by the extended rational numbers Q, and any curve λ(c/2)/d

with c even lifts to a collection of curves �c/d ⊂ F ⊂ F̂ , in turn giving rise to the link

L(p, q; c/d) = Q ∪ �c/d in S3. This construction is described in greater detail in [15], and

an example is shown in Figs. 1 and 2.
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Fig. 2 The link L(3, 2; 4/1) in S3. Colored vertices correspond to the vertices and gray dotted arcs represent

the inner and outer edges at right in Fig. 1

Let P(p, q; c/d) denote the presentation P(L(p, q; c/d)) induced by the R-link

L(p, q; c/d). We have the following natural question:

Question 1 Which presentations P(p, q; c/d) can be AC-trivialized?

In [8], the authors showed that the link L(3, 2; 0/1) is handle-slide equivalent to the

unlink, and in forthcoming work, the second author and collaborators show that for all d ,

the links L(3, 2; 2/d) have the same property, from which it follows that the presentations

P(3, 2; 0/d) and P(3, 2; 2/d) are AC-trivial [10]. The case c = 4 is more complicated, and

the corresponding question for the links L(3, 2; 4/d) remains open. However, in this paper,

we prove

Theorem 1 Every presentation of the form P(3, 2; 4/d) is AC-trivial.

The proof breaks into two cases, separated into Proposition 2 (dealing with the case

d = 4n + 1) and Proposition 3 (dealing with the case d = 4n + 3). For both proofs, we

use trisections of the closed 4-manifolds X L(3,2;4/d) arising from the R-links L(3, 2; 4/d) in

order to construct the presentations P(3, 2; 4/d).

Remark 1 Various sources in the literature differ on whether to allow move (4); in some

cases, AC-triviality is defined only with moves (1)–(3), and those sources often use stable

AC-triviality to allow move (4) as well. In this paper, AC-triviality will always allow moves

(1)–(4).

1.1 Organization

In Sect. 2, we establish the necessary background material for the paper. Section 3 deals with

the first case of the main theorem, while Sect. 4 deals with the second case. We conclude in

Sect. 5 with several questions for further investigation.
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2 Preliminaries

We work in the smooth category throughout.

2.1 AC-equivalence and automorphisms

If P and P ′ are two group presentations related by moves (1)–(4) above, we say that P and

P ′ are AC-equivalent, and we write P ∼ P ′. There is an additional move, the transformation

move, that we can apply to a group presentation P = 〈x1, . . . , xn | r1, . . . , rn〉:

(5) For an automorphism ψ of the free group Fn generated by x1, . . . , xn , replace every

relator ri with its image ψ(ri ).

Equivalence of presentations allowing moves (1)–(5) is called Q∗∗-equivalence [5, 16, 17].

To our knowledge, it remains open whether Q∗∗-equivalence is stronger than AC-equivalence;

a detailed discussion can be found in Section 3 of [20]. However, the following is known:

Lemma 1 [3, 18] If a presentation P can be converted to the trivial presentation via moves

(1)–(3) and (5), then P can be converted to the trivial presentation via moves (1)–(3).

As a corollary, we have

Corollary 1 If a presentation P is Q∗∗-equivalent to the trivial presentation, then P is AC-

trivial.

Proof Suppose that P = 〈x1, . . . , xn | r1, . . . , rn〉 admits a sequence of moves (1)–(5) con-

verting P to the trivial presentation. Observe that any instances of additions via move (4)

can be carried out before any of the other moves, since any automorphism ψ used in move

(5) extends by the identity over generators added after the automorphism would have been

applied, and instances of deletions via move (4) need not be carried out, because any pre-

sentation equivalent to a trivial presentation after a deletion is also equivalent to a trivial

presentation of longer length before the deletion. Thus, it follows that for some m ≥ n, the

presentation

P ′ = 〈x1, . . . , xn, xn+1 . . . , xm | r1, . . . , rn, xn+1, . . . , xm〉

can be converted to the trivial presentation by moves of types (1)–(3) and (5). By Lemma 1,

P ′ is AC-trivial, and since P and P ′ are related by moves of type (4), it follows that P is

AC-trivial as well. �


2.2 R-links

As mentioned above, an R-link is an n-component link L ⊂ S3 such that L has a Dehn

surgery yielding #n(S1 × S2). Every R-link gives rise to a closed 4-manifold X L built with

one 0-handle, n 2-handles, n 3-handles, and one 4-handle, where L is the attaching link for

the 2-handles, with framings giving by the Dehn surgery coefficients. In this case, we have

χ(X L ) = 1+n−n+1 = 2, and since X is simply-connected, β1(X L) = β3(X L) = 0, which

means that H2(X L ; Z) = Zβ2(X L ) = 0. It follows from Theorem 1.2.25 of [9] (Whitehead’s

Theorem) that X L is a homotopy 4-sphere, as X L and S4 have identical intersection forms.

Inverting the handle decomposition of X L yields one 0-handle, n 1-handles, n 2-handles,

and one 4-handle, which can be used to produce a balanced presentation for π1(X L), the trivial

123



Geometriae Dedicata (2024) 218 :45 Page 5 of 15 45

group. In general, an R-link L does not induce a unique such presentation; for instance, a

choice of co-cores of the 1-handles in the inverted handle decomposition determines a choice

of the generators x1, . . . , xn in the presentation P(L), and a different choice induces an

automorphism of the free group Fn , the fundamental group of the union of the 0-handle and

the n 1-handles. Nevertheless, we can prove the following:

Lemma 2 Let L be an R-link, and suppose that P and P ′ are two different presentations

induced by L. Then P and P ′ are Q∗∗-equivalent.

Proof Suppose that P = 〈x1, . . . , xn | r1, . . . , rn〉 and P ′ = 〈y1, . . . yn | s1, . . . , sn〉 are two

presentations induced by L . In the context of the AC-moves, we assume that all groups have

the same generating set. Thus, let ι : 〈y1, . . . , yn〉 → 〈x1, . . . , xn〉 be the map ι(yi ) = xi ,

and let P ′′ = ι(P ′) = 〈x1, . . . , xn | ι(s1), . . . , ι(sn)〉, so that P ′′ is identical to P ′ but uses

xi ’s instead of yi ’s.

There are several sets of choices we make to extract P and P ′ from L: A choice of co-cores

of the 1-handles in the inverted handle decomposition, a choice of a base point for X L , a

path from the base point to each component of the attaching link L∗ for the 2-handles in the

inverted handle decomposition, and an orientation for each component, since we need a place

to begin and a direction when using each component of L∗ to read off a relator. Different

choices of orientations yield relators related by a move of type (1). Likewise, any two choices

of base points and paths can be related by conjugating the relators by generators, and as such

these relators are related by moves of type (3). Thus, we may assume that P and P ′ arise

from identical choices of base points and orientations of L∗, and in practice, we read off the

relators by only considering components of L∗, ignoring the base point and paths.

Regarding the choices of co-cores of the 1-handles, there is a diffeomorphism of the

boundary of the union of the 0-handle and 1-handles sending one choice to any other, inducing

an automorphism σ of the free group. In other words, each xi can be expressed as a word in

the yi ’s, and let σ : 〈x1, . . . , xn〉 → 〈y1, . . . , yn〉 be the isomorphism such that σ(xi ) is the

expression of xi as this word. Observe that the relators in both presentations are determined

by the fixed attaching link L∗ with the same base point, paths, and orientations, it follows

that (possibly after reindexing), we have σ(ri ) = si .

Finally, define ψ = ι ◦ σ . Then we have

〈x1, . . . , xn | ψ(r1), . . . ψ(rn)〉 = 〈x1, . . . , xn | ι(s1), . . . ι(sn)〉 = P ′′.

We conclude that P and P ′′ are related by a move of type (5), and thus any two such

presentations P and P ′′ are Q∗∗-equivalent. �


In view of Lemma 2, the Q∗∗-equivalence class of the the presentation induced by the R-

link L is well-defined, and so we use P(L) to denote this equivalence class. By Corollary 1,

if we can show that some presentation in the equivalence class P(L) is AC-trivial, then

every presentation in P(L) is AC-trivial. For this reason and for the purposes of proving AC-

triviality, we often blur the distinction and abuse notation to let P(L)denote any representative

of the equivalence class P(L).

There are also moves on the R-link L that leave P(L) invariant: If L and L ′ are related by

a sequence of handle-slides, we say L and L ′ are handle-slide equivalent. More generally,

if L and L ′ are R-links (possibly with different numbers of components) and U and U ′ are

unlinks, such that the split links L 
 U and L ′ 
 U ′ are handle-slide equivalent, we say that

L and L ′ are stably equivalent. We have the following well-known lemma.

Lemma 3 If L and L ′ are stably equivalent, then P(L) = P(L ′).
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Proof Any handle-slide of L over L ′ induces a handle-slide of (L ′)∗ over L∗, the dual attach-

ing links in the inverted handle decompositions. As such, the corresponding presentations

can be related by moves of type (2) (and possibly other moves corresponding to the choices

referenced in the proof of Lemma 2). If L and L ′ are stably handle-slide equivalent, then

there are unlinks U and U ′ such that L 
 U and L ′ 
 U ′, are handle-slide equivalent, so that

P(L 
 U ) = P(L ′ 
 U ′). In this case, P(L) and P(L 
 U ) are related by moves of type (4);

thus, P(L) = P(L 
 U ). Similarly, P(L ′) = P(L ′ 
 U ′), completing the proof. �


The generalized Property R conjecture (GPRC) asserts that every R-link L is handle-slide

equivalent to an unlink, and the stable version of the GPRC asserts that L is stably handle-slide

equivalent to an unlink. Both conjectures, if true, would imply that every presentation P(L)

arising in this way is AC-trivial. For a detailed discussion of R-links and the AC-conjecture,

the reader is encouraged to refer to [8, 11].

2.3 The family L(3, 2; c/d)

In [14], Meier and the second author used work in [8, 21] to introduce the family L(3, 2; c/d)

of R-links, and in [15], they extended the construction to L(p, q; c/d). The construction is

described in much greater detail in [14, 15] but we briefly summarize here: Let Q be the square

knot 31#31, and let F be the fiber for Q in S3, a surface with genus two and one boundary

component. Then S3
0(Q), the closed 3-manifold resulting from 0-surgery on Q, is fibered with

fiber F̂ , the closed genus two surface obtained by capping off the boundary component of F

with a disk. Viewing F̂ as the quotient of an annulus with hexagonal boundary components

identified in opposite pairs as shown in Fig. 3 below, the closed monodromy ϕ̂ : F̂ → F̂

associated to S3
0 (Q) is a clockwise rotation of π/3 radians.

In addition, if S represents the 2-sphere with four cone points of order three, there is a

branched covering map ρ : F̂ → S with the property that ρ ◦ ϕ̂ = ρ. The map ρ can be

understood from Fig. 1; each of the six quadrilateral regions cut out by the dotted lines at right

maps to the front or back of the pillowcase at left by identifying the appropriate color-coded

vertices. Curves in S that avoid the cone points are parametrized by the extended rational

numbers Q, and for c even, the curve λ(c/2)/d corresponding to the rational number (c/2)/d

lifts via ρ to three curves Vc/d , V ′
c/d , and V ′′

c/d contained in F̂ and permuted by ϕ̂. These

curves can be chosen to lie in F , and as such the link Q ∪ Vc/d ∪ V ′
c/d ∪ V ′′

c/d ⊂ S3 is an

R-link, stably handle-slide equivalent to any of its two component sublinks by Lemma 17 of

[14]. This lemma is proved by noting that slides in F can be used to convert Q and another

component of Vc/d ∪ V ′
c/d ∪ V ′′

c/d to trivial curves in Q, in addition to observing that since

ϕ̂ permutes Vc/d , V ′
c/d , and V ′′

c/d , they are isotopic in S3
0(Q), and so any two of these three

curves can be eliminated by isotopy and slides over Q. In [15], the link L(3, 2; c/d) is defined

to be Vc/d ∪ V ′
c/d , but for the purposes of determining whether P(3, 2; c/d) is AC-trivial,

we can use any of these links by Lemmas 2 and 3.

Remark 2 The convention here for c/d agrees with [15] but differs from [14, 21] in that the

numerator c is doubled in our setting. This doubling is explained in detail in Remarks 4.1

and 4.12 of [15].

Remark 3 It was proved in [21] that the links L(3, 2; 2n/(2n + 1)) are stably handle-slide

equivalent to the links Ln appearing in [8], and thus P(3, 2; 2n/(2n + 1)) is equivalent to

the famous presentation Pn described in the introduction.
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Fig. 3 At left, curves V0/1 (red), V ′
0/1 (blue), and V ′′

0/1 (green). At right, their images under the monodromy

ϕ. Note that while the closed monodromy ϕ̂ permutes the three curves, the monodromy ϕ does not. (Color

figure online)

2.4 Trisecting XL(3,2;c/d)

Gay and Kirby introduced 4-manifold trisections in [6]. A (g; k1, k2, k3)-trisection T of a

closed, smooth 4-manifold X is a decomposition X = X1 ∪ X2 ∪ X3 with the properties

1. Each X i is a 4-dimensional 1-handlebody with rk(π1(X i )) = ki ;

2. Each Hi = X i−1 ∩ X i is a 3-dimensional genus g handlebody; and

3. 
 = X1 ∩ X2 ∩ X3 is a genus g surface.

A trisection T is determined by the union H1 ∪ H2 ∪ H3, which is in turn determined by

a collection of three cut systems, α, β, and γ , contained in 
, called the central surface of

the trisection. The triple (α, β, γ ) is called a trisection diagram.

We have already discussed the closed monodromy ϕ̂ : F̂ → F̂ for the square knot Q,

but in this setting, we will need to use the monodromy ϕ : F → F for Q, which is required

to be the identity on ∂ F = Q. The monodromy ϕ consists of a π/3 rotation as before, but

this time followed by an isotopy that drags the boundary component of F back to where it

started. The curves V0/1, V ′
0/1, and V ′′

0,1 and their images under ϕ are shown in Fig. 3. (See

also Figure 9 of [21].)

Next, we define three cut systems, which will determine a trisection diagram for a trisection

T (c/d) for X L(3,2;c/d). Define 
 = ∂(F × I ), where ∂ F × I has been crushed to the single

curve ∂ F , so that we may view 
 as F#F . For a curve or arc a embedded in F , let a denote

the mirror image of a contained in F . Let a1, a2, a3, a4 be four pairwise disjoint arcs in F

cutting F into a disk, and define

α = {ϕ(a1) ∪ a1, ϕ(a2) ∪ a2, ϕ(a3) ∪ a3, ϕ(a4) ∪ a4}

β = {a1 ∪ a1, a2 ∪ a2, a3 ∪ a3, a4 ∪ a4}

γ = {Vc/d , V ′
c/d , Vc/d , V ′

c/d}.

Then we have the following, which is Proposition 19 from [14].

Proposition 1 The triple (α, β, γ ) is a (4; 0, 2, 2)-trisection diagram for a trisection T (c/d)

of X L(3,2;c/d).
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Finally, we will need a tool which we can use to extract a handle decomposition from a

trisection, a restatement of parts of Lemma 13 from [6].

Lemma 4 Suppose X = X1 ∪ X2 ∪ X3 is a (g; k1, k2, k3)-trisection, with Hi = X i−1 ∩ X i .

Then X has a handle decomposition with

1. One 0-handle and k1 1-handles (contained in X1),

2. g − k2 2-handles (contained in X2), and

3. k3 3-handles and a 4-handle (contained in X3).

In addition, a choice of k1 pairwise disjoint and mutually nonseparating curves C in 


bounding disks in both H1 and H2 represent the intersections of k1 co-cores of the 1-handles

with 
. Finally, an attaching link L for the 2-handles can be obtained by choosing g − k2

curves bounding disks in H3 that are dual to g−k2 curves bounding disks in H2, and viewing

L as a framed link (with framing given by the surface 
) in the 3-manifold ∂ X1.

The lemma can also be applied by any permutation of {1, 2, 3} to the indices of the

components X i . An example that carries out this procedure appears in Subsection 2.6 of

[13].

3 The case d = 4n + 1

We break the proof of the main theorem into two cases. First, in this section we consider

c/d of the form 4/(4n + 1). In the next section, we examine c/d of the form 4/(4n + 3).

The proofs are quite similar but the specific curves and computations are different. For the

remainder of this section, we will label curves and arcs in the surface F at bottom in Fig. 4

as follows:

1. The red arc is a1, and the pink arc is a2.

2. The dark blue arc is b1, and the light blue arc is b2.

3. The dark green curve is V4/1 and the light green curve is V ′
4/1.

The arcs a1, a2, b1, and b2 in F are the mirror images of a1, a2, b1, and b2, respectively.

In addition, we let a3 and a4 denote the red and pink arcs, respectively, in the top frame of

Fig. 4, noting that a3 = ϕ(a1), a4 = ϕ(a2), and the dark blue and light blue arcs in F are

the arcs b1 and b2. We also let τ : F → F to be the product of right-handed Dehn twists

about the pairwise disjoint collection of curves V0/1 ∪ V ′
0/1 ∪ V ′′

0/1, so that τ : F → F is the

product of left-handed Dehn twists about V0/1 ∪ V ′
0/1 ∪ V ′′

0/1, shown as dotted purple curves

in Fig. 4. Define V ∗
0/1 to be the curve obtained by sliding V0/1 over Q (equivalently, V ∗

0/1 is

the image of V ′′
0/1 under ϕ as in Fig. 3), and let τ∗ : F → F be identical to τ except for

replacing the Dehn twist about V0/1 with a Dehn twist about V ∗
0/1, shown in dotted orange in

the same figure. Since ϕ(V0/1 ∪ V ′
0/1 ∪ V ′′

0/1) = V ′
0/1 ∪ V ′′

0/1 ∪ V ∗
0/1, it follows from Section

3.5 of [4] that

ϕ ◦ τ = τ∗ ◦ ϕ. (1)

In Lemmas 4.7 and 4.8 of [15], it was shown that

Lemma 5 For the curves V4/d and V ′
4/d in 
, we have

τ n(V4/d) = V4/(d+4) and τ n(V ′
4/d) = V ′

4/(d+4).
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Fig. 4 Curves and arcs in 
 = F#F used to compute P(3, 2; 4/(4n + 1))

Using the symmetry of 
, it follows that

τ n(V4/d) = V4/(d+4) and τ n(V ′
4/d) = V ′

4/(d+4)

as well. This relationship is precisely why we need to address two cases, when d = 4n + 1

and when d = 4n + 3. The observant reader may note that our τ differs from τ0 in [15], in

which τ0 is defined to be a left-handed twist about a six-component multicurve consisting of

two copies of each of V0/1, V ′
0/1, and V ′′

0/1. It follows that τ−2 = τ0.
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Lemma 6 The trisection T (4/(4n + 1)) gives rise to an inverted handle decomposition of

X L(3,2;4/(4n+1)) with two 1-handles and two 2-handles, where co-cores of the 1-handles

meet the central surface 
 in the curves τ n(b1) ∪ τ n(b1) and τ n(b2) ∪ τ n(b2), while an

attaching link for the 2-handles is determined by τ n
∗ (a3) ∪ τ n(a1) and τ n

∗ (a4) ∪ τ n(a2). The

corresponding group presentation P(3, 2; 4/(4n + 1)) is

P(3, 2; 4/(4n + 1)) = 〈x, y | x(yx)n y(yx)n y, x(yx)n y(x y)n〉.

Proof By Proposition 1, there exists a trisection diagram (α, β, γ ) for T (4n/(4n + 1)) such

that α contains for i = 1, 2 the curves αi = ϕ(τ n(ai ))∪ τ n(ai ) = ϕ(τ n(ai ))∪ τ n(ai ), which

bound disks in H1. Applying Eq. 1 repeatedly, we have

τ n
∗ (a3) ∪ τ n(a1) = τ n

∗ (ϕ(a1)) ∪ τ n(a1) = ϕ(τ n(a1)) ∪ τ n(a1) = α1;

τ n
∗ (a4) ∪ τ n(a2) = τ n

∗ (ϕ(a2)) ∪ τ n(a2) = ϕ(τ n(a2)) ∪ τ n(a2) = α2.

Additionally, for i = 1, 2, the curves βi = τ n(bi ) ∪ τ n(bi ) = τ n(bi ) ∪ τ n(bi ) are curves in

β, which bound in H2, and β1 and β2 are disjoint from the curves in γ = {γ1, γ2, γ3, γ3},

the curves

{V4/(4n+1), V ′
4/(4n+1), V4/(4n+1), V4/(4n+1)} = {τ n(V4/1), τ

n(V ′
4/1), τ

n(V4/1), τ
n(V ′

4/1)},

as asserted by Lemma 5. Thus, the curves β1 and β2 bound disks in the handlebody H3 as

well.

Now, observe thatα1 meetsγ1 once and avoidsγ2, whileα2 meetsγ2 once and avoidsγ1. By

Lemma 14 of [6], the handle decomposition of X L(3,2;4/(4n+1)) determined by L(3, 2; 4/(4n+

1)) is compatible with the handle decomposition determined by T (4/(4n + 1)), with no 1-

handles (contained in the 4-ball X1), two 2-handles (contained in X3), and two 3-handles

(contained in X2). It follows that in the inverted handle decomposition, the two 1-handles

are in X2, while the two 2-handles can be viewed in X3. Since ∂ X2 = H2 ∪ H3, determined

by β and γ , the curves β1 and β2 above can be chosen as the intersections of co-cores of the

1-handles with 
. Moreover, the curves α1 and α2 are dual to γ1 and γ2, so that an attaching

link for the 2-handles is α1 ∪ α2 by Lemma 4.

Finally, using Fig. 4 with orientation as shown, we can read off the relators determined

by α1 and α2. To compute oriented intersections, we find the sign of each point of αi ∩ β j ,

where the direction of αi is the first element of a standardly oriented ordered basis. Note

that the multi-twists τ and τ∗ differ only at the curves V0/1 (which twists βi but not αi )

and V ∗
0/1 (which twists αi but not βi ). We have included an illustration of the twisting in a

neighborhood of these curves in Fig. 5 to aid in our computation.

We use the generators x and y for β1 and β2, respectively, and we read the relators r and

s from α1 and α2, respectively, starting in F at Q and following the orientations (note that

there are no intersections to be seen in F). We have

r = x(yx)n y(yx)n y;

s = x(yx)n y(xyyy)n = x(yx)n y(x y)n

�


Next, we trivialize our computed presentation.

Proposition 2 The presentation P(3, 2; 4/(4n + 1)) is AC-trivial.
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Fig. 5 Images of Dehn twists to aid in computations for Lemma 6

Proof Let (r0, s0) = (r , s) be the relators from Lemma 6. First, perform a move of type (1),

letting r1 = r−1
0 so that

r1 = y(x y)n y(x y)n x .

Next, perform a move of type (2) and let r2 = r1s0, yielding

r2 = (y(x y)n y(x y)n x)(x(yx)n y(x y)n) = y(x y)n(x y)n .

Regroup the terms in s0 to get

s0 = x(yx)n y(x y)n = x(yx)n(yx)n y.

Now, use a type (3) move to cyclically permute s0 to get

s1 = (yx)n(yx)n yx,

and then use another type (2) move, letting r3 = r2s1. Thus,

r3 = (y(x y)n(x y)n)(yx)n((yx)n yx) = y2x .

At this point, r3 is the relator x = y2, and we can use a combination of type (3) moves to

cyclically permute s1 so that x or x appears as its last term. Then, we use a type (3) move to

cyclically permute r3 and a type (2) move to multiply s1 by x y2, or we use type (1), (2), and

(3) moves to multiply s1 by xy2. Repeating this process eventually converts s1 to s2 = y,

which in turn lets us use type (1), (2), and (3) moves to convert r3 to r4 = x , completing the

proof. �


4 The case d = 4n + 3

We proceed in a manner nearly identical to that of Sect. 3, but starting with different curves

and arcs in 
. For the remainder of this section, we will label curves and arcs in the surface

F at bottom in Fig. 6 as follows:

1. The red arc is a1, and the pink arc is a2.
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Fig. 6 Curves and arcs in 
 = F#F used to compute P(3, 2; 4/(4n + 3))

2. The dark blue arc is b1, and the light blue arc is b2.

3. The dark green curve is V4/3 and the light green curve is V ′
4/3.

In addition, we let a3 and a4 denote the red and pink arcs at top in Fig. 6; as before,

a3 = ϕ(a1), a4 = ϕ(a2), and the dark blue and light blue arcs in F are the arcs b1 and b2.

Recall the definitions of τ and τ∗ from Sect. 3.

Lemma 7 The trisection T (4/(4n + 3)) gives rise to an inverted handle decomposition of

X L(3,2;4/(4n+3)) with two 1-handles and two 2-handles, where co-cores of the 1-handles

meet the central surface 
 in the curves τ n(b1) ∪ τ n(b1) and τ n(b2) ∪ τ n(b2), while an

attaching link for the 2-handles is determined by τ n
∗ (a3) ∪ τ n(a1) and τ n

∗ (a4) ∪ τ n(a2). The
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Fig. 7 Images of Dehn twists to aid in computations for Lemma 7

corresponding group presentation P(3, 2; 4/(4n + 3)) is

P(3, 2; 4/(4n + 3)) = 〈x, y | y(x yx)n(yx2)n yx, x(yx2)n yx y(xyx)n xy〉

Proof As in the proof of Lemma 6, there is a trisection diagram (α, β, γ ) for T (4n/(4n +3))

that includes (for i = 1, 2) αi = ϕ(τ n(ai )) ∪ τ n(ai ) as curves in α bounding disks in H1,

and by the same argument, we have

τ n
∗ (a3) ∪ τ n(a1) = α1;

τ n
∗ (a4) ∪ τ n(a2) = α2.

For i = 1, 2, the curves βi = τ n(bi ) ∪ τ n(bi ) are curves in β, disjoint from the curves in

γ = {γ1, γ2, γ3, γ3}, the curves

{τ n(V4/3), τ
n(V ′

4/3), τ
n(V4/3), τ

n(V ′
4/3)},

as asserted by Lemma 5. Thus, β1 and β2 bound disks in the handlebody H3 as well.

Since α1 meets γ1 once and avoids γ2, while α2 meets γ2 once and avoids γ1, the same

argument as in Lemma 6 can be used to show that in the inverted handle composition coming

from L(3, 2; 4/(4n + 3)), co-cores of the 1-handles meet 
 in β1 and β2, and an attaching

link for the 2-handles consists of α1 and α2. Now, using Figs. 6 and 7, we can read off the

relators r and s (following orientations and starting in F at Q),

r = y(x yx)n(yxyyx)n yx = y(x yx)n(yx2)n yx

s = x(yx2)n yx y(xyxyy)n xy = x(yx2)n yx y(xyx)n xy

�


Proposition 3 The presentation P(3, 2; 4/(4n + 3)) is AC-trivial.

Proof Let (r , s) = (r0, s0) be the relators from Lemma 7, and note that we can regroup terms

to express and r0 and s0 as

r0 = y(x yx)n yx(xyx)n;

s0 = (x yx)n x yx y(xyx)n xy.
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Next, we let r1 and s1 be the result of cyclic permutations of r0 and s0, respectively, so that

r1 = (x yx)n yx(xyx)n y;

s1 = xy(x yx)n x yx y(xyx)n .

Letting s2 = s1r1, we have

s2 = (xy(x yx)n x yx y(xyx)n)((x yx)n yx(xyx)n y) = xy(x yx)n x y(xyx)n y.

Cyclically permuting s2 to get s3 yields

s3 = yxy(x yx)n x y(xyx)n,

and letting s4 = s3r1,

s4 = (yxy(x yx)n x y(xyx)n)((x yx)n yx(xyx)n y) = yxy(x yx)n(xyx)n y = yx .

Finally, s4 is the relator y = x , and so we can use AC moves to transform r1 into

r2 = x3n x2x3n x = x .

It follows that P(3, 2; 4/(4n + 3)) is AC-trivial. �


5 Conclusion

We conclude with a couple of questions to motivate future research in this area. Recall from

the introduction that the GPRC and the Andrews–Curtis conjecture are closely connected.

We have simplified the group presentations, but the motivation was the following related

question about the related links.

Question 2 Are the links L(3, 2; 4/d) handle-slide equivalent or stably equivalent to unlinks?

One way to answer this question would be to show that the trisections T (4/d) are standard

and invoke Theorem 3 from [14] (for a definition of a standard trisection, see [14].)

Question 3 Are the trisections T (4/d) standard?

Notably, it remains open whether there exists a nonstandard trisection of S4.

Finally, it would be interesting to understand whether these techniques can be applied

to other families of group presentations, in particular, because in forthcoming work, Meier

and the second author are able to show an number of unexpected equivalences between

P(p1, q1; c1/d1) and P(p2, q2; c2/d2) for various parameters [12].

Question 4 Can these techniques be extended to show that any presentations of the form

P(5, 2; 4/d) are AC trivial? What about presentations of the form P(p, 2; 4/d)?
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