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Abstract

In many scientific experiments, multi-armed bandits are used as an adaptive data collec-

tion method. However, this adaptive process can lead to a dependence that renders many

commonly used statistical inference methods invalid. An example of this is the sample

mean, which is a natural estimator of the mean parameter but can be biased. This can

cause test statistics based on this estimator to have an inflated type I error rate, and the

resulting confidence intervals may have significantly lower coverage probabilities than their

nominal values. To address this issue, we propose an alternative approach called random-

ized multiarm bandits (rMAB). This combines a randomization step with a chosen MAB

algorithm, and by selecting the randomization probability appropriately, optimal regret can

be achieved asymptotically. Numerical evidence shows that the bias of the sample mean

based on the rMAB is much smaller than that of other methods. The test statistic and

confidence interval produced by this method also perform much better than its competitors.

Keywords: Multiarmed bandits. Biased estimator. Optimal regret. Type I error. Statistical
inference.

1 Introduction

Adaptive data collection has been widely used to optimize experimental resources and enhance
user experience. It has been applied in various domains, including clinical trials, recommendation
systems, and online advertising (Zeng et al. [2016], Lamprier et al. [2019], Li et al. [2010],
Suhr et al. [2015], Jonker et al. [2016]). For instance, in clinical trials, adaptive designs allow
researchers to address uncertainties in the planning phase and modify the trial’s characteristics
based on the accumulating information (Suhr et al. [2015], Jonker et al. [2016]). This approach
is especially beneficial for rare diseases, such as orphan diseases, where the pool of subjects
is limited. Examples of successful applications of the adaptive designs can be seen in recent
trials such as BATTLE for lung cancer (Kim et al. [2011]) and I-SPY2 for breast cancer (Barker
et al. [2009]). Additionally, adaptive data collection techniques are employed in scenarios such
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as finding the strategy that maximizes the reward of a gambler in the presence of multiple slot
machines (Lai and Robbins [1985], Katehakis and Arthur F. Veinott [1987], Sutton and Barto
[2018]). In the tech industry, these data-driven decisions for continuous improvement are referred
to as A/B testing (Bubeck and Cesa-Bianchi [2012]). Recent research has uncovered a major
issue concerning the relationship between decision-making processes and past information in
adaptive data collection. This connection leads to a bias when attempting to calculate mean
parameters using sample means (Xu et al. [2013], Nie et al. [2018], Neel and Roth [2018], Shin
et al. [2019]). As discussed in Section 2, numerical evidence shows that this bias causes a variety
of problems, such as misidentifying treatment e↵ects, increasing false positive errors in hypothesis
testing, and reducing the accuracy of confidence intervals. Therefore, it is essential to address
the pressing need to reduce the size of the bias while still preserving the inherent features of
adaptive data collection techniques.

The emergence of bias can be attributed to the fact that the choice of an arm at a given
time is based on historical data. To address this issue, several approaches have been proposed in
recent years to reduce such dependence. For example, in Nie et al. [2018], a method called cMLE
was introduced, which uses an MCMC-based approach. At each time step, a Gumbel noise is
added to the statistic to determine the arm selection for that particular time. In another study
Neel and Roth [2018], a method based on Di↵erential Privacy (DP) was developed, providing
a bound on bias in relation to the DP parameter. Both of these approaches introduce noise
into the adaptive sequence to reduce bias; however, this noise addition may a↵ect the regret to
some degree. Therefore, there is a strong interest in developing bias-mitigating approaches that
minimize the loss of regret, finding a balance between the two objectives.

This paper presents a novel approach, referred to as rMAB, which seeks to reduce the re-
liance on historical data in multi-armed bandit (MAB) algorithms. The rMAB method combines
a randomization step (independent of historical data) with an MAB algorithm (dependent on
historical data). This approach has several advantages: (i) the randomization component weak-
ens the correlation between data points, leading to a significant decrease in the bias of the
sample mean and improved inferential properties; (ii) by selecting the randomization probability
appropriately, the regret of the rMAB method remains optimal asymptotically, guaranteeing the
preservation of performance guarantees.

This paper is structured as follows. Section 2 provides an overview of the adaptive data
collection framework and examines the e↵ects of bias on statistical inferences. Section 3 intro-
duces the randomization-based approach, rMAB, which e↵ectively reduces bias, and provides
upper bounds on the regret for these algorithms. Section 4 presents a numerical comparison
between rMAB and existing methods. Section 5 o↵ers concluding remarks and a discussion of
the findings. The technical proofs and additional numerical results are included in the Appendix.

2 Challenges in Statistical Inference for Adaptive Data
Collection

Assuming a multi-armed bandit (MAB) algorithm with K arms, each corresponding to a distri-
bution Pk for k = 1, 2, . . . ,K, we denote It 2 {1, 2, . . . ,K} as the index of the arm chosen at
time t. A random real-valued reward XIt(t) is generated from the distribution PIt . The mean
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and variance of the rewards obtained when drawing from arm k are denoted by µk and �2
k, re-

spectively. It is important to note that rewards obtained by repeatedly playing a specific arm are
independent and identically distributed, and they are independent of rewards from other arms.
The regret R(T ) for a specific algorithm over a total time horizon T is the di↵erence between the

total reward that could have been obtained by always choosing the best arm (maxk
PT

t=1 Xk(t))

and the actual cumulative reward achieved by the chosen arms (
PT

t=1 XIt(t)) during the time
horizon T . It is defined as:

R(T ) = max
k

TX

t=1

Xk(t)�
TX

t=1

XIt(t).

Without any loss of generality, assume that the first arm is the optimal one and define
�k = µ1 � µk as the di↵erence between the mean reward of the optimal arm and the k-th arm.
We denote Nk(T ) as the number of times the k-th arm is pulled within the time horizon T , i.e.,

Nk(T ) =
PT

t=1 1(It = k), where 1(·) is the indicator function. The expected pseudo-regret can
then be expressed as:

E[R(T )] = E
"
Tµ1 �

KX

k=2

Nk(T )µk

#
=

KX

k=2

E[Nk(T )]�k,

which is the sum of the expected number of times each suboptimal arm k is pulled, multiplied
by the corresponding di↵erence �k.

For arm k, the sample mean is usually used to estimate the parameter µk. This is expressed
as:

µ̂k =
1

Nk

TX

t=1

XIt(t)1(It = k). (1)

In the case of independent data, µ̂k is an unbiased estimator of µk. However, when the data is
collected adaptively, this estimator is no longer unbiased (Neel and Roth [2018]). The adaptive
nature of the data collection process creates a connection between the selection of arms and the
past data, resulting in distorted estimates.

Such bias can have a significant impact on the validity of statistical inference methods. To
illustrate this point, consider the following experimental scenario:

Gaussian: K = 2, Xt ⇠ N(µIt ,�
2) where � = 1, µ1 = 1, µ2 = 0.5, t = 1, 2, · · · , T = 500. (2)

We test the hypothesis

H0 : µ1 � µ2 = 0.5, vs H1 : µ1 � µ2 > 0.5 (3)

at a significance level of ↵ = 0.05. We employ the two-sample T-test statistic to calculate
the p-value based on the data collected. This process is repeated 1,000 times to evaluate the
type I error rates for four popular MAB algorithms: Greedy (Bubeck and Cesa-Bianchi [2012]),
✏t-Greedy (Auer [2002]), Thompson Sampling (TS, Thompson [1933]), and lil-UCB (Jamieson
et al. [2014]). The obtained type I error rates for these algorithms are: Greedy (0.373), ✏t-Greedy
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(0.101), Thompson Sampling (0.226), and lil-UCB (0.108). These error rates are higher than the
desired nominal level of 0.05.

We also construct a 95% confidence interval for µ1 � µ2 under the same experimental condi-
tions. The coverage probabilities for Greedy, ✏t-Greedy, Thompson Sampling, and lil-UCB are
0.533, 0.892, 0.764, and 0.903, respectively. These probabilities are substantially lower than the
expected level, suggesting a lack of confidence in the estimated intervals.

Indeed, the examples highlight the failure of traditional statistical inference methods when
applied to adaptively collected data using commonly used MAB algorithms. The bias, inflated
type I error, and low coverage probability pose challenges in drawing valid statistical inferences.

3 Randomized Multi-Armed Bandits

This section introduces a novel approach to adaptively collect data, with the aim of substantially
reducing the bias in the sample means and improving the resulting inference methods, such as
hypothesis testing and confidence interval estimation. The bias in the sample means is caused by
the dependence between the choice of an arm at a given time and the historical data. To address
this, we propose a method called randomized MAB (rMAB), which combines a randomization
step with an MAB algorithm. At each time t, a certain probability �t is used to enter the
randomization step. In this step, an arm is randomly chosen and data is collected from it. The
remaining probability of 1� �t is used for the following MAB algorithm to select the arm based
on the historical data. By introducing randomization independent of the past data, the rMAB
approach weakens the dependence between the decision-making function and the historical data.
This randomization step helps reduce the bias in the sample means and improves the accuracy
of statistical inference. The rMAB method provides a practical solution to address the issues of
bias and validity in adaptive data collection.

A flowchart of the rMAB approach is shown in Figure 1, which demonstrates how the ran-
domization step is incorporated into the MAB algorithm.

Input: K � 2; t = 1, ....T ; randomization probability �t.
for t = 1, ..., T do

if t  K then
Pull t-th arm;

else
Draw a random number u ⇠ Unif [0, 1];
if u  �t then

Pull the arm through randomized allocation policy (Uniformly Sampling,
Water-Filling)

else
Pull the arm through regular MAB algorithms (TS, UCB, and etc).

end
end

end
Algorithm 1: The rMAB algorithm.

We investigate two di↵erent strategies for randomization: uniform sampling (US) and a
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Figure 1: Flowchart of rMAB procedure.
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water-filling algorithm (WF) based on the number of pulls. US randomly selects sub-optimal
arms with an equal probability, ensuring a fair and unbiased selection process. WF, as proposed
in Gai and Krishnamachari [2012], selects arms based on the smallest number of pulls, aiming to
allocate more pulls to arms that have been selected less frequently. To denote the combination
of the randomization step and the MAB algorithm, we use the notation rX(Y), where X is the
MAB algorithm (e.g. UCB) and Y is the randomization strategy (US or WF). For example,
rUCB (US) is the randomized algorithm that utilizes the UCB algorithm for the MAB part and
uniform sampling for the randomization step. Similarly, rTS (WF) is the randomized algorithm
that combines the Thompson Sampling algorithm with the water-filling randomization strategy.
By considering di↵erent combinations of MAB algorithms and randomization strategies, we can
explore a range of rMAB variants that o↵er flexibility and adaptability to di↵erent scenarios and
datasets.

The trade-o↵ between bias and regret is a key factor in the rMAB approach. Randomization
reduces the bias by weakening the reliance on past data, but it also increases the regret due
to decreased exploitation. The e↵ect of the randomization step on regret is determined by the
allocation probabilities �t. When �t is close to zero, there is minimal randomization, and both
the regret and bias remain unchanged. As �t increases, the magnitude of the bias decreases,
but the regret also increases. To achieve a balance, we suggest setting the allocation probability
�t = K

t , which gives a higher allocation probability at the beginning of the experiment. This
allows for more randomization in the initial phase of the experiment, reducing bias, while still
keeping the regret at a reasonable level. It is important to note that in the long run, the total
number of arms pulled due to randomization is limited to (K�1) log T , which does not a↵ect the
asymptotic order of regret. Based on these considerations, we present the following theorems to
analyze the properties of the rMAB approach and guide the selection of appropriate allocation
probabilities.

Theorem 3.1 Suppose there are total K arms and the reward of k-th arm follows the distribu-
tion Bernoulli(µk). Without loss of generality, assume that the first arm is optimal. Then the
upper bound of expected pseudo-regret of the rTS is

E[R(T )] 
KX

k=2

✓
(1 + ✏)2

d(µk, µ1)
+ 1

◆
· log T +O(1 +

1

✏2
)

�
�k,

where d(µk, µ1) = µk log
µk

µ1
+ (1� µk) log

1�µk

1�µ1
.

Similarly, if the reward of the k-th arm follows Gaussian distribution with a mean of µk and
variance of one, the upper bound of the regret of the rTS is

E[R(T )] 
KX

k=2

✓
log T�k +

18 log(T�2
k)

�k

◆
+

13

2�k
+O(1)

�
.

According to Lai and Robbins [1985], the expected regret for multi-armed bandit problems
has a lower bound of log T . Theorem 3.1 demonstrates that the rTS method is rate optimal
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in terms of regret, implying that it achieves optimal performance. The subsequent theorem
provides an upper bound on the rate of the expected regret for the rUCB method, and shows
that it is optimal. These results demonstrate the e↵ectiveness and optimality of the proposed
rMAB approaches in terms of bias reduction and regret optimization.

Theorem 3.2 Suppose that there are total K arms and the reward of the k-th arm follows a
distribution Pk with support in [0,1]. Without loss of generality, assume that the first arm is
optimal. Then the upper bound of the expected regret of rUCB is

E[R(T )] 
KX

k=2


(
8

�k
+�k) log T + (

⇡2

3
+ 1)�k

�
.

4 Numerical results

In this section, we showcase the results of our numerical experiments, which assess the e�cacy
of various methods based on metrics such as biases of the sample mean, expected regrets, type
I error rates, and coverage probabilities. These experiments provide valuable insights into how
di↵erent methods perform across various scenarios. We analyze the following settings:

• Gaussian: Xt ⇠ N(µIt ,�
2),�2 = 1, It 2 {1, 2, · · · ,K},

– K = 2, µ1 = 1, and µ2 = 0.5;

– K = 5, µ1 = 1, µ2 = 0.75, µ3 = 0.5, µ4 = 0.375, and µ5 = 0.25.

• Bernoulli: Xt ⇠ Bernoulli(pIt),

– K = 2, p1 = 0.8 and p2 = 0.2,

– K = 5, p1 = 0.9, p2 = 0.7, p3 = 0.5, p4 = 0.3, and p5 = 0.1.

4.1 Bias Reduction

This section compares the biases of three methods: the rMAB, the MAB algorithm with the
Conditional Maximum Likelihood Estimator (cMLE, Nie et al. [2018]), and the MAB algorithms
with ✏�di↵erential privacy (DP, Neel and Roth [2018]). The MAB algorithms include Greedy,
✏t-Greedy, Thompson Sampling (TS), and lil-UCB. We use the code provided by the authors
Nie et al. [2018] to assess the performance of cMLE. However, the code does not incorporate
the ✏t-Greedy algorithm. To ensure a fair comparison, we choose the scale parameter of the
Gumbel noise in cMLE and the di↵erential privacy parameter so that the regrets of cMLE, DP,
and rMAB are in the same range (Table 1). The DP method’s parameter is selected to ensure
its regret is comparable to that of the rMAB algorithm.

When T = 100, Table 1 shows that rMAB algorithms outperform their competitors signif-
icantly. For instance, for the fifth arm when using lilUCB as the MAB algorithm, the biases
obtained with original lilUCB, DP, and cMLE are -0.336, -0.237, and -0.272 respectively. On the
other hand, the biases using rlilUCB (US) and rlilUCB (WF) are -0.083 and -0.057 respectively.
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MAB True Mean MAB DP rMAB(US) rMAB(WF) cMLE

lilUCB

1.0 -0.141 -0.049 -0.019 -0.031 -0.088
0.75 -0.196 -0.158 -0.056 -0.047 -0.162
0.5 -0.294 -0.193 -0.064 -0.046 -0.242
0.375 -0.341 -0.264 -0.076 -0.043 -0.267
0.25 -0.356 -0.240 -0.083 -0.057 -0.272

Regret 0.310 0.324 0.335 0.343 0.338

TS

1.0 -0.232 -0.238 -0.138 -0.089 -0.086
0.75 -0.393 -0.372 -0.184 -0.146 -0.223
0.5 -0.410 -0.384 -0.173 -0.110 -0.253
0.375 -0.410 -0.394 -0.129 -0.096 -0.248
0.25 -0.407 -0.408 -0.148 -0.080 -0.277

Regret 0.166 0.168 0.196 0.197 0.231

✏t-Greedy

1 -0.336 -0.313 -0.146 -0.107 NA
0.75 -0.386 -0.38 -0.189 -0.137 NA
0.5 -0.317 -0.334 -0.143 -0.083 NA
0.375 -0.284 -0.307 -0.101 -0.081 NA
0.25 -0.226 -0.261 -0.087 -0.038 NA

Regret 0.191 0.193 0.196 0.193 NA

Greedy

1.0 -0.459 -0.352 -0.161 -0.111 -0.279
0.75 -0.452 -0.468 -0.209 -0.163 -0.407
0.5 -0.396 -0.406 -0.162 -0.104 -0.429
0.375 -0.349 -0.434 -0.110 -0.079 -0.411
0.25 -0.331 -0.359 -0.111 -0.045 -0.277

Regret 0.206 0.189 0.192 0.185 0.201

Table 1: When considering the Gaussian design with five arms, we simulated the biases of the
original MAB algorithms, DP, rMAB(US), rMAB(WF), and cMLE by setting T to 100 and
conducting 1,000 replications. The parameters for cMLE and DP were appropriately selected
such that the regret of these two methods is similar to that of the rMAB algorithms.

We also plot the biases when T varies from 10 to 500 in Figure 2. The cMLE is not included
because of its high computational cost when T is large. It is evident that rMAB algorithms
(red dotdash line and green dotted line) outperform the DP method (blue dashed line) and the
original MAB algorithms (black solid line) in all settings. In Figure 3, we plot the biases of
various methods assuming the 5-arm Bernoulli model. A similar pattern is observed.

4.2 Regret

We carry out a numerical study to examine the regret of the rMAB algorithms. We set T as
500 and 10,000 to illustrate the long-term trend. The computation of regret for the cMLE is
extremely time-consuming for large values of T, and therefore it has been omitted from the
comparison. The results are shown in Figure 4 and others in the appendix. We can see that the
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Figure 2: The biases of various methods (lilUCB, DP, rMAB-lilUCB(US), and rMAB-
lilUCB(WF)) were assessed for the 5-arm Gaussian case with T = 500 and 1,000 replications.
The means of the five arms are set as 1, 0.75, 0.5, 0.38, and 0.25 respectively. Four curves
correspond to lilUCB (Black solid), DP (blue dashed), rMAB-lilUCB(US) (green dotted), and
rMAB-lilUCB(WF) (red, dotdash).
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Figure 3: The biases of various methods (lilUCB, DP, rMAB-lilUCB(US), and rMAB-
lilUCB(WF)) were assessed for the 5-arm Bernoulli case with T = 500 and 1,000 replications.
The parameters of the five arms are set as 0.9, 0.7, 0.5, 0.3, and 0.1 respectively. Four curves
correspond to lilUCB (Black solid), DP (blue dashed), rMAB-lilUCB(US) (green dotted), and
rMAB-lilUCB(WF) (red, dotdash).
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di↵erence between rTS and TS is negiligible. It is noteworthy that TS reaches optimal levels of
regret (Auer [2002], Agrawal and Gpyal [2013]). Thus, the extra regret incurred when using rTS
is small.

It is remarkable that the Greedy algorithm has the capacity to reduce both bias and regret
at the same time. We believe that the rMAB algorithm increases the rate of exploration, par-
ticularly in the initial stages, which helps to prevent being stuck in sub-optimal arms. This
improvement in exploration leads to a decrease in regret.

4.3 Statistical Inference

We conduct a hypothesis test (Equation 3) to evaluate the properties of statistical inferene on the
parameter µ1 � µ2. The number of replications of the experiment is 1,000. For each replication,
we compute the two-sample T-statistic and its associated p-value. We reject the null hypothesis
if the p-value is less than or equal to ↵, which is set to 0.05. Additionally, we construct the 95%
confidence interval for the parameter µ1 � µ2 and calculate the empirical coverage probability
based on 1,000 replications. The results are reported in Figure 5 and others in the appendix,
with the left panel showing the Type I error rates of di↵erent methods and the right panel
showing the coverage probabilities. It is evident that both the original MAB algorithm and the
DP result in an inflated Type I error rate and a lower coverage probability than expected. The
rMAB algorithm substantially improves to achieve the nominal level. In Figure 6, we reported
these quantities of various methods for the 5-arm Bernoulli case. A similar pattern is observed.
Due to the page limit, extensive numerical results are reported in Section 6.2 of the appendix.

The codes for the simulation studies are made available via github (https://github.com/
zhaozhg81/rMAB).

5 Discussion

The presence of bias in the sample mean of the adaptively collected data can lead to significant
issues in subsequent statistical inferences, such as an increase in type I error and low coverage
probabilities when constructing confidence intervals. To address this, we propose a randomized
Multi-Armed Bandit (rMAB) algorithm that aims to reduce the dependence and bias present in
adaptively collected data. We focus on the rUCB and rTS algorithms, which have been shown
to achieve optimality in terms of regret when the allocation probability is chosen correctly.
Our numerical investigations demonstrate that the rMAB approach substantially reduces the
magnitude of bias and exhibits favorable performance in subsequent inferential methods. These
results suggest that rMAB may be a promising solution to address bias in adaptive data collection
scenarios.

The concept of rMAB can be extended to other adaptive data collection settings. By incor-
porating randomization into the data collection process, we can potentially mitigate bias and
improve the overall performance of statistical inference in a wide range of scenarios.

Existing research mainly focuses on mitigating bias through modifications in the data col-
lection procedure, usually during the pre-data stage. However, in practical scenarios, we often
encounter situations where the data has already been collected using standard MAB algorithms.
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Figure 4: The regret of various methods (MAB, DP, rMAB(US), and rMAB(WF)) was evaluated
for the 5-arm Gaussian case with T = 500 and 1,000 replications. The means of the five arms
are set as 1, 0.75, 0.5, 0.38, and 0.25 respectively. There are four panels corresponding to four
di↵erent MAB algorithms from top-left to bottom-right: greedy, ✏t-greedy, TS, and lil-UCB.
In each panel, four curves represent MAB (Black solid), DP (blue dashed), rMAB(US) (green
dotted), and rMAB(WF) (red, dotdash).
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Figure 5: We compared the Type I Error rate (left panel) and coverage probability (right panel)
for the parameter µ2 � µ1 in the Gaussian design with K = 5. We set T to 500 and conducted
1,000 replications. The targeted Type I error rate is 0.05, and the nominal coverage probability
is 0.95.

Figure 6: We compared the Type I Error rate (left panel) and coverage probability (right panel)
for the parameter p2 � p1 in the Bernoulli design with K = 5. We set T to 500 and conducted
1,000 replications. The targeted Type I error rate is 0.05, and the nominal coverage probability
is 0.95.
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Addressing the issue of bias at the post-data stage is an important and challenging question that
requires further investigation. Developing e↵ective methodologies to tackle bias in adaptively
collected data post-data collection is an important area for future research.
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6 Appendix

6.1 Technical Proofs

6.1.1 Notations

Without loss of generality, we assume that the first-arm is the optimal arm. Before proving
Theorems 3.1 & 3.2, we define some notations:

• T : The total time horizontal.

• K: The total number of arms.

• Filtration Ft�1 = {I!, rI! (!); I! = 1, ...,K,! = 1, ..., t�1}: the history of plays until time
t� 1 , where I! denotes the arm played at time t, and rk(t) denotes the reward observed
for arm k at time t.

• Nk(T ) =
PT

t=1 1(It = k): the number of pulls for k-th arm.

• E[Nk(T )] =
PT

t=1 P (It = k)

• �k = µ1 � µk

• d(µk, µ1) = µklog
µk

µ1
+ (1� µk)log

1�µk

1�µ1

• Em(t): The event that the algorithm would enter into the MAB part.

• Er(t): The event that the algorithm would enter into the randomzied part.

• Ets
m(t): The event that the algorithm would enter into the MAB part and corresponding

MAB algorithm is set as TS in advance.

• Eucb
m (t): The event that the algorithm would enter into the MAB part and corresponding

MAB algorithm is set as UCB1 in advance.

For the k-th arm, the number of pulls Nk(T ) can be divided as 2 parts: Nr
k (T ), the total

number of plays of arm k implemented by Random Process, and Nm
k (T ), the number of pulls

from MAB Process. Then, we have

E[Nk(T )] = E
(

TX

t=1

(1(It = k,Em(t)) + 1(It = k,Er(t))

)
= E[Nr

k (T )] + E[Nm
k (T )]. (4)

Note that

E[Nr
k (T )] =

TX

t=1

P(It = k|Er(t)) · P(Er(t)) 
TX

t=1

�(t)  K log T. (5)

Thus the remaining work is try to get the bound of E[Nm
k (T )].
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6.1.2 Proof for Theorem 3.1.

In additional to the notations we introduce before, we further define the following notations for
Thompson Sampling Algorithm:

• nk(t): The number of plays of arm k, until time t� 1. Also equals to NK(t� 1).

• Sk(t): The number of successes(reward=1) observed at time t for the k-th arm.

• Fk(t): The number of failures(reward=0) observed at time t for the k-th arm.
Specifically, nk(t) = Sk(t) + Fk(t).

• µ̂k(t) =
Sk(t)

Nk(t)

• For each arm k, we will choose two thresholds xk and yk, such that µk < xk < yk < µ1.

• Lk(T ) =
lnT

d(xk,yk)

• ✓k(t): For each arm k, the sample from corresponding distribution at time t.

• pk,t = P[✓1(t) > yk|F 0
t�1;Pro(t) = TS]

• ⌧j : The time stamp at which j-th pull of the optimal arm happens.

• Eµ
k (t): the event µ̂k(t) > xk; E

µ
k (t): the event µ̂k(t)  xk.

• E✓
k(t): the event ✓k(t) > yk; E✓

k(t): the event ✓k(t)  yk.

• E✓
kj(t): The event ✓k(t) � ✓j(t).

Step 1.
Note that E[Nm

k (T )] can be written as

E[Nm
k (T )] =

TX

t=1

P(It = k;Ets
m(t)) 

TX

t=1

P(It = k|Ets
m(t))

=
TX

t=1

P(It = k;Eµ
k (t)|E

ts
m(t)) +

TX

t=1

P(It = k;Eµ
k (t)|E

ts
m(t))

=
TX

t=1

P(It = k;Eµ
k (t);E

✓
k(t)|E

ts
m(t)) +

TX

t=1

P(It = k;Eµ
k (t);E

✓
k(t)|Ets

m(t)) +
TX

t=1

P(It = k;Eµ
k (t)|E

ts
m(t)).

(6)

Three terms in the last expression will be bounded in Step 2, Step 3 and Step 4 respectively.
Step 2. To get a bound for the first term, we state the following two lemmas.
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Lemma 6.1 Given 8t 2 [1, T ], and k 6= 1,

P(It = k;Eµ
k (t);E

✓
k(t)|Ft�1;E

ts
m(t))  1� pk,t

pk,t
· P(It = 1;Eµ

k (t);E
✓
k(t)|Ft�1;E

ts
m(t)),

where

pk,t = P(✓1(t) > yk|Ft�1;E
ts
m(t)) = P(E✓

1(t)|Ft�1;E
ts
m(t))

Lemma 6.2

E[ 1

pk,⌧q
|Ets

m(⌧q)] 

8
><

>:

1 + 3
�0

k
, q < 8

�0
k
,

1 +⇥
�
e��0

k
2q/2 +

e�Dkq

(q + 1)�0
k
2 +

1

e�
0
k
2q/4 � 1

�
, q � 8

�0
k
,

where �0
k = µ1 � yk, Dk = yk log

yk

µ1
+ (1� yk) log

1�yk

1�µ1
and ⌧q represents the time stamp at

which the q-th pull happens for arm k.

Together with Lemma 6.1 and Lemma 6.2, we have the following,

TX

t=1

P(It = k;Eµ
k (t);E

✓
k(t)|E

ts
m(⌧q)) 

TX

t=1

1� pk,t
pk,t

P(It = 1;Eµ
k (t);E

✓
k(t)|E

ts
m(⌧q))

=
TX

t=1

E[ 1� pk,t
pk,t

1(It = 1);Eµ
k (t);E

✓
k(t)|E

ts
m(⌧q)] 

TX

q=0

E[
1� pk,⌧q
pk,⌧q

1(I⌧q+1 = 1);Eµ
k (⌧q);E

✓
k(⌧q)|E

ts
m(⌧q)]


TX

q=0

E[
1� pk,⌧q
pk,⌧q

|Ets
m(⌧q)]

=
TX

q=0

E[ 1

pk,⌧q
� 1|Ets

m(⌧q)] =

8/�k
0

X

q=0

E[ 1

pk,⌧q
� 1|Ets

m(⌧q)] +
TX

q=8/�k
0

E[ 1

pk,⌧q
� 1|Ets

m(⌧q)]

 8

�k
0 (1 +

3

�k
0 � 1) +

TX

j=0

⇥
�
e��0

k
2q/2 +

e�Dkq

(q + 1)�0
k
2 +

1

e�
0
k
2q/4 � 1

�

=
24

�0
k
2 +

TX

j=0

⇥
�
e��0

k
2q/2 +

e�Dkq

(q + 1)�0
k
2 +

1

e�
0
k
2q/4 � 1

�
. (7)

Step 3. Now, we consider the second term in (6). Note that
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TX

t=1

P(It = k,Eµ
k (t);E

✓
k(t)|Ets

m(t))

=
⌧X

t=1

P(It = k;Eµ
k (t);E

✓
k(t)|Ets

m(t)) +
TX

t=⌧+1

P(It = k;Eµ
k (t);E

✓
k(t)|Ets

m(t))


⌧X

t=1

P(It = k|Ets
m(t)] +

TX

t=⌧+1

P[It = k;Eµ
k (t);E

✓
k(t)|Ets

m(t))


⌧X

t=1

P(It = k|Ets
m(t)] +

TX

t=⌧+1

P[It = k;E✓
k(t)|E

µ
k (t);E

ts
m(t)). (8)

For the second term, note that

P(It = k;E✓
k(t)|E

µ
k (t);E

ts
m(t))  P(E✓

k(t)|E
µ
k (t);E

ts
m(t)) = P(Beta(Sk(t) + 1, Fk(t) + 1) > yk|Eµ

k (t))

= P(Beta(qk(t)µ̂k(t) + 1, qk(t)(1� µ̂k(t)) + 1)|Eµ
k (t))  P(Beta(qk(t)xk + 1, qk(t)(1� xk) + 1) > yk)

= FBin
qk(t)+1,yk

(qk(t) · xk) = P(
qk(t)+1X

j=1

Zj  qk(t)xk) = P(
qk(t)+1X

j=1

Zj � (qk(t) + 1)yk  qk(t)xk � (qk(t) + 1)yk)

 P(
qk(t)+1X

j=1

Zj � (qk(t) + 1)yk  �(qk(t) + 1)(yk � xk))  e
�2(qk(t)+1)2(yk�xk)2

qk(t)+1 = e�2(qk(t)+1)(yk�xk)
2

 e�(qk(t)+1)d(xk,yk). (9)

In the derivation of (9), Zj represents the variable following Bernoulli(qk(t) · xk). Based on
Lk(T ) =

lnT
d(xk,yk)

, if we choose ⌧ = qk(t) > Lk(t), then

(qk(t) + 1)d(xk, yk) > Lk(t)d(xk, yk) = lnT

i.e.,

e�(qk(t)+1)d(xk,yk)  e�lnT =
1

T
.

As a result,

TX

t=1

P(It = k;Eµ
k (t);E

✓
k(t)|Ets

m(t)) 
⌧X

t=1

P(It = k|Ets
m(t)) +

TX

t=⌧+1

P(It = k;E✓
k(t)|E

µ
k (t);E

ts
m(t))

 E[
⌧X

t=1

1(It = k|Ets
m(t))] +

TX

t=⌧+1

1

T
 Lk(T ) + 1. (10)

Step 4. Now, we consider the thrid term in (6). Note that
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TX

t=1

P(It = k;Eµ
k (t)|E

ts
m(t))  E

8
<

:

T�1X

q=0

⌧q+1X

t=⌧q+1

1(It = k;Eµ
k (t)|E

ts
m(t))

9
=

;

= E

8
<

:

T�1X

q=0

⌧q+1X

t=⌧q+1

1(It = k|Ets
m(t)) · 1(Eµ

k (t)|E
ts
m(t))

9
=

;

= E
(

T�1X

q=0

1(µ̂k(⌧q+1) > xk|Ets
m(t))

)
 1 + E

(
T�1X

q=1

1(Eµ
k (⌧q+1)|Ets

m(t))

)

= 1 +
T�1X

q=1

P(Eµ
k (⌧q+1)|Ets

m(t)) = 1 +
T�1X

q=1

P(Sk(⌧q+1)

q + 1
> µk + xk � µk|Ets

m(t))

= 1 +
T�1X

q=1

P(Sk(⌧q+1) > (q + 1)µk + (q + 1)(xk � µk)|Ets
m(t))

 1 +
T�1X

q=1

e�(q+1)d(xk,µk)  1 +
1

d(xk, µk)
. (11)

Note that the first equality holds because given t 2 [⌧q + 1, ⌧q+1], It = k can only happen at
time ⌧q+1 which means It = k is independent of Eµ

k (t).
Step 5. Combine results in Steps 2, 3 and 4 together. For any 0 < ✏ < 1, choose xk 2 (µk, µ1)

such that d(xk, µ1) =
d(µk,µ1)

1+✏ . Choose yk 2 (xk, µ1) such that d(xk, yk) =
d(xk,µ1)

1+✏ = d(µk,µ1)
(1+✏)2 .

Then,

Lk(T ) =
lnT

d(xk, yk)
= (1 + ✏)2

lnT

d(µk, µ1)
.

Some algebraic manipulations on d(xk, µ1) =
d(µk,µ1)

1+✏ leads to

xk � µk � ✏

1 + ✏
· d(µk, µ1)

ln
�µ1(1�µk)
µk(1�µ1)

� .
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Hence,

E[Nm
k (T )] =

TX

t=1

P(It = k;Eµ
k (t);E

✓
k(t)|E

ts
m(t)) +

TX

t=1

P(It = k;Eµ
k (t);E

✓
k(t)|Ets

m(t))

+
TX

t=1

P(It = k;Eµ
k (t)|E

ts
m(t))

 24

�0
k
2 +

TX

j=0

⇥
�
e��0

k
2j/2 +

e�Dkj

(j + 1)�0
k
2 +

1

e�
0
k
2j/4 � 1

�
+ Lk(T ) + 1 +

1

d(xk, µk)
+ 1

 { 24

�0
k
2 +⇥

� 1

�0
k
2 +

1

�0
k
2D

+
1

�0
k
4 +

1

�0
k
2

�
+ (1 + ✏)2

lnT

d(µk, µ1)
+O(

1

✏2
)}

= O(1) + (1 + ✏)2
lnT

d(µk, µ1)
+O(

1

✏2
). (12)

Finally, the expected average regret for the TS algorithm is

E[Nk(T )] = E[Nr
k (T )] + E[Nm

k (T )]  log T +O(1) + (1 + ✏)2
lnT

d(µk, µ1)
+O(

1

✏2
)

 (
(1 + ✏)2

d(µk, µ1)
+ 1) log T +O(1 +

1

✏2
), (13)

and

E[R(T )] =
KX

k=2

�kE[Nk(T )] 
KX

k=2

[
� (1 + ✏)2

d(µk, µ1)
+ 1) log T +O(1 +

1

✏2
�
]�k. (14)

For Gaussian distribution, similarly using the idea of Theorem 3 in Agrawal and Gpyal [2013],
we can get the regret upper bound:

E[R(T )] 
KX

k=2

[
�
log T�k +

18 log(T�2
k)

�k

�
+ (e11 + 5 +

13

2�k
)]. (15)

6.1.3 Proof for Theorem 3.2.

Our proof of the regret bound is based on the same technique used in the UCB1 algorithm Auer
[2002]. We demonstrate that the upper bound of regret is not adversely a↵ected when the UCB1
algorithm is applied in the rMAB framework. For any positive constant value l, we can write
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E[Nm
k (T )] as:

E[Nm
k (T )] = E

TX

t=1

1(It = k;Eucb
m (t))

= 1 + E
TX

t=K+1

1(It = k,Eucb
m (t))  1 + E

TX

t=K+1

1(It = k|Eucb
m (t)) (16)

 1 + E
TX

t=K+1

1(It = k,Nk(t� 1) < l|Eucb
m (t)) + E

TX

t=K+1

1(It = k,Nk(t� 1) � l|Eucb
m (t)).

Notice that

E
TX

t=K+1

1(It = k,Nk(t� 1) < l|Eucb
m (t) = E

⌧lX

t=K+1

1(It = k,Nk(t� 1) < l|Eucb
m (t))  l� 1. (17)

which does not rely on �(t). Hence:

E[Nm
k (T )]  l + E

TX

t=K+1

1(It = k,Nk(t� 1) � l|Eucb
m (t)). (18)

Next apply Cherno↵-Hoe↵ding Inequality on µ̂k(t) to get the bound. Follow the proof of

UCB1, set l =
8 log T

�2
k

, then

E[Nm
k (T )]  8 log T

�2
k

+
⇡2

3
+ 1. (19)

Put everything together, we know that

E[Nk(T )] = E[Nr
k (T )] + E[Nm

k (T )]

 log T +
8 log T

�2
k

+
⇡2

3
+ 1  (

8

�2
k

+ 1) log T +
⇡2

3
+ 1, (20)

and

E[R(T )] 
KX

k=2


(
8

�k
+�k) log T + (

⇡2

3
+ 1)�k

�
. (21)

Proof of Lemma 6.1.
Note that whether Eµ

k (t) is true or not has already been decided by Ft�1, while E✓
k(t) does not.

Thus we can assume Ft�1 is such that Eµ
k (t) is true (otherwise the probability on the left hand

side is 0 and the inequality is trivially true). It then su�ces to prove the following inequalities
(22), (23), and (24):

P(It = k;E✓
k(t)|Ft�1;E

ts
m(t))  1� pk,t

pk,t
· P(It = 1;E✓

k(t)|Ft�1;E
ts
m(t)) (22)
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pk,t · P(I 0t = k|E✓
k(t);Ft�1;E

ts
m(t)) · P(E✓

k(t)|Ft�1;E
ts
m(t))

 (1� pk,t) · P(I 0t = 1|E✓
k(t);Ft�1;E

ts
m(t)) · P(E✓

k(t)|Ft�1;E
ts
m(t)), (23)

and

pk,t · P(It = k|E✓
k(t);Ft�1;E

ts
m(t))  (1� pk,t) · P(It = 1|E✓

k(t);Ft�1;E
ts
m(t)). (24)

The inequality (24) can be derived based on the following two inequalities:

P(It = 1|E✓
k(t);Ft�1;E

ts
m(t)) � pk,t · P(E✓

kj(t), 8j 6= 1|E✓
k(t);Ft�1;E

ts
m(t)), (25)

and
P(It = k|E✓

k(t);Ft�1;E
ts
m(t))  (1� pk,t) · P(E✓

kj(t), 8j 6= 1|E✓
k(t);Ft�1;E

ts
m(t)). (26)

To prove (25), note that

P(It = 1|E✓
k(t);Ft�1;E

ts
m(t)) � P(It = 1;E✓

kj(t), 8j 6= 1|E✓
k(t);Ft�1;E

ts
m(t)) (27)

= P(It = 1|E✓
kj(t), 8j 6= 1;E✓

k(t);Ft�1;E
ts
m(t)) · P(E✓

kj(t), 8j 6= 1|E✓
k(t);Ft�1;E

ts
m(t)).

Now given the event: E✓
kj(t): ✓k(t) � ✓j(t), 8j 6= 1; ✓k(t)  yk, it holds that for all j 6= k,

j 6= 1,
✓j(t)  ✓k(t)  yk

Then

P(It = 1|✓k(t) � ✓j(t), 8j 6= 1;E✓
k(t);Ft�1;E

ts
m(t)])

�P(✓1(t) > yk|✓k(t) � ✓j(t), 8j 6= 1;E✓
k(t);Ft�1;E

ts
m(t))

�P(✓1(t) > yk|Ft�1;E
ts
m(t)) = pk,t.

(28)

The second last equality in (28) follows because given Ft�1, ✓1(t) is independent of all the
other ✓j(t), j 6= 1 and hence independent of these events ✓k(t) � ✓j(t), 8j 6= 1 and ✓1(t) > yk.
This together with (27) gives(25).

For (26), note that

P(It = k|E✓
1(t);Ft�1;E

ts
m(t)) = P(E✓

kj(t), 8j 6= k|E✓
1(t);Ft�1;E

ts
m(t))

 P[E✓
kj(t), 8j 6= 1;E✓

1(t); |E✓
1(t);Ft�1;E

ts
m(t)]

= P(E✓
1(t)|E✓

1(t);Ft�1;E
ts
m(t)) · P(E✓

kj(t), 8j 6= 1|E✓
k(t);Ft�1;E

ts
m(t))

= (1� pk,t) · P(E✓
kj(t), 8j 6= 1|E✓

1(t);Ft�1;E
ts
m(t)). (29)

Combine (25) and (26) and we complete the proof.
Proof of Lemma 6.2.
The proof relies on the relationship between the Beta distribution and the cumulative probability
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distribution of the Binomial distribution. Note that FBeta
↵,� (y) = 1 � FBin

↵+��1,y(↵ � 1), for all
integers ↵,�. Then

pk,⌧q = P(✓1(⌧q) > yk|F⌧q�1;E
ts
m(⌧q)) = P(E✓

k(⌧q)|F⌧q�1;E
ts
m(⌧q))

= 1� FBeta
s1(⌧q),f1(⌧q)

(yk) = FBin
q1(⌧q),yk

(s1(⌧q)). (30)

For simplicity, we denote yk = y and S1(t) = SBin is a random variable which follows
Bin(k, µ1). In addition, P (SBin > s) is a fixed value with the given s. Therefore:,

E[ 1

pk,⌧q
|Ets

m(⌧q)] = E[ 1

P(✓1(⌧q) > yk|F⌧q�1;Ets
m(⌧q)

)

= E[ 1

1� FBeta
s1(⌧q),f1(⌧q)

(yk)
] = E[ 1

FBin
q(⌧q),yk

(s1(⌧q))
]

= E[ 1

P(SBin  s1(⌧q))
] =

qX

s=0

P(S = s)

P(SBin  s1(⌧q))

=
qX

s=0

P(S = s)

FBin
q+1,y(s)

=
qX

s=0

fBin
q,µ1

(s)

FBin
q+1,y(s)

. (31)

According to Agrawal and Gpyal [2013], we know that
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6.2 More numerical results

In this section, we will present additional comprehensive numerical results to illustrate the ad-
vantages of randomized MAB algorithms. Due to its computational ine�ciency, the cMLE has
been omitted from our analysis.

6.2.1 Bias.

Figures 7-14 provide the bias of various methods under di↵erent parameter settings.
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Figure 7: The biases of various methods (lilUCB, DP, rMAB-lilUCB(US), and rMAB-
lilUCB(WF)) were assessed for the 2-arm Bernoulli case with T = 500 and 1,000 replications.
The true parameters of the arms are set as 0.8 and 0.2. Four curves correspond to lilUCB (Black
solid), DP (blue dashed), rMAB-lilUCB(US) (green dotted), and rMAB-lilUCB(WF) (red, dot-
dash).
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Figure 8: The biases of various methods (lilUCB, DP, rMAB-lilUCB(US), and rMAB-
lilUCB(WF)) were assessed for the 2-arm Bernoulli case with T = 10, 000 and 1,000 replications.
The true parameters of the arms are set as 0.8 and 0.2. Four curves correspond to lilUCB (Black
solid), DP (blue dashed), rMAB-lilUCB(US) (green dotted), and rMAB-lilUCB(WF) (red, dot-
dash).
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Figure 9: The biases of various methods (lilUCB, DP, rMAB-lilUCB(US), and rMAB-
lilUCB(WF)) were assessed for the 5-arm Bernoulli case with T = 500 and 1,000 replica-
tions. The true parameters of the arms are set as 0.9, 0.7, 0.5, 0.3, and 0.1. Four curves
correspond to lilUCB (Black solid), DP (blue dashed), rMAB-lilUCB(US) (green dotted), and
rMAB-lilUCB(WF) (red, dotdash).
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Figure 10: The biases of various methods (lilUCB, DP, rMAB-lilUCB(US), and rMAB-
lilUCB(WF)) were assessed for the 5-arm Bernoulli case with T = 10, 000 and 1,000 replica-
tions. The true parameters of the arms are set as 0.9, 0.7, 0.5, 0.3, and 0.1. Four curves
correspond to lilUCB (Black solid), DP (blue dashed), rMAB-lilUCB(US) (green dotted), and
rMAB-lilUCB(WF) (red, dotdash).
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Figure 11: The biases of various methods (lilUCB, DP, rMAB-lilUCB(US), and rMAB-
lilUCB(WF)) were assessed for the 5-arm Gaussian case with T = 500 and 1,000 replications.
The true parameters of the arms are set as 1.0 and 0.5. Four curves correspond to lilUCB (Black
solid), DP (blue dashed), rMAB-lilUCB(US) (green dotted), and rMAB-lilUCB(WF) (red, dot-
dash).
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Figure 12: The biases of various methods (lilUCB, DP, rMAB-lilUCB(US), and rMAB-
lilUCB(WF)) were assessed for the 5-arm Gaussian case with T = 10, 000 and 1,000 replications.
The true parameters of the arms are set as 1.0 and 0.5. Four curves correspond to lilUCB (Black
solid), DP (blue dashed), rMAB-lilUCB(US) (green dotted), and rMAB-lilUCB(WF) (red, dot-
dash).
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Figure 13: The biases of various methods (lilUCB, DP, rMAB-lilUCB(US), and rMAB-
lilUCB(WF)) were assessed for the 5-arm Gaussian case with T = 500 and 1,000 replications.
The true parameters of the arms are set as 1.0, 0.75, 0.5, 0.38, and 0.25. Four curves cor-
respond to lilUCB (Black solid), DP (blue dashed), rMAB-lilUCB(US) (green dotted), and
rMAB-lilUCB(WF) (red, dotdash).
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Figure 14: The biases of various methods (lilUCB, DP, rMAB-lilUCB(US), and rMAB-
lilUCB(WF)) were assessed for the 5-arm Bernoulli case with T = 10000 and 1,000 replica-
tions. The true parameters of the arms are set as 1.0, 0.75, 0.5, 0.38, and 0.25. Four curves
correspond to lilUCB (Black solid), DP (blue dashed), rMAB-lilUCB(US) (green dotted), and
rMAB-lilUCB(WF) (red, dotdash).
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6.2.2 Regret.

In this section, we provide the numerical result to compare the regret of various methods from
Figure 15 - 22.

6.2.3 Statistical Inference.

In this section, we plot the result on type I errors and coverage probabilities based various
methods in Figure 23-30.
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Figure 15: The regret of various methods (MAB, DP, rMAB(US), and rMAB(WF)) was evalu-
ated for the 2-arm Bernoulli case with T = 500 and 1,000 replications. The true parameters of
the arms are set as 0.8 and 0.2 respectively. There are four panels corresponding to four di↵er-
ent MAB algorithms from top-left to bottom-right: greedy, ✏t-greedy, TS, and lil-UCB. In each
panel, four curves represent MAB (Black solid), DP (blue dashed), rMAB(US) (green dotted),
and rMAB(WF) (red, dotdash).
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Figure 16: The regret of various methods (MAB, DP, rMAB(US), and rMAB(WF)) was evalu-
ated for the 2-arm Bernoulli case with T = 10, 000 and 1,000 replications. The true parameters
of the arms are set as 0.8 and 0.2 respectively. There are four panels corresponding to four
di↵erent MAB algorithms from top-left to bottom-right: greedy, ✏t-greedy, TS, and lil-UCB.
In each panel, four curves represent MAB (Black solid), DP (blue dashed), rMAB(US) (green
dotted), and rMAB(WF) (red, dotdash).

36



0 100 200 300 400 500

0.
05

0.
15

0.
25

0.
35

Greedy

T

R
eg
re
t

0 100 200 300 400 500
0.
05

0.
15

0.
25

0.
35

εt−Greedy

T
R
eg
re
t

0 100 200 300 400 500

0.
05

0.
15

0.
25

0.
35

TS

T

R
eg
re
t

0 100 200 300 400 500

0.
10

0.
20

0.
30

lil−UCB

T

R
eg
re
t

Figure 17: The regret of various methods (MAB, DP, rMAB(US), and rMAB(WF)) was evalu-
ated for the 5-arm Bernoulli case with T = 500 and 1,000 replications. The true parameters of
the arms are set as 0.9, 0.7, 0.5, 0.3, and 0.1 respectively. There are four panels corresponding to
four di↵erent MAB algorithms from top-left to bottom-right: greedy, ✏t-greedy, TS, and lil-UCB.
In each panel, four curves represent MAB (Black solid), DP (blue dashed), rMAB(US) (green
dotted), and rMAB(WF) (red, dotdash).
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Figure 18: The regret of various methods (MAB, DP, rMAB(US), and rMAB(WF)) was evalu-
ated for the 5-arm Bernoulli case with T = 10, 000 and 1,000 replications. The true parameters
of the arms are set as 0.9, 0.7, 0.5, 0.3, and 0.1 respectively. There are four panels correspond-
ing to four di↵erent MAB algorithms from top-left to bottom-right: greedy, ✏t-greedy, TS, and
lil-UCB. In each panel, four curves represent MAB (Black solid), DP (blue dashed), rMAB(US)
(green dotted), and rMAB(WF) (red, dotdash).
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Figure 19: The regret of various methods (MAB, DP, rMAB(US), and rMAB(WF)) was eval-
uated for the 2-arm Gaussian case with T = 500 and 1,000 replications. The means of the five
arms are set as 1 and 0.5 respectively. There are four panels corresponding to four di↵erent
MAB algorithms from top-left to bottom-right: greedy, ✏t-greedy, TS, and lil-UCB. In each
panel, four curves represent MAB (Black solid), DP (blue dashed), rMAB(US) (green dotted),
and rMAB(WF) (red, dotdash).
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Figure 20: The regret of various methods (MAB, DP, rMAB(US), and rMAB(WF)) was eval-
uated for the 2-arm Gaussian case with T = 10, 000 and 1,000 replications. The means of the
five arms are set as 1 and 0.5 respectively. There are four panels corresponding to four di↵er-
ent MAB algorithms from top-left to bottom-right: greedy, ✏t-greedy, TS, and lil-UCB. In each
panel, four curves represent MAB (Black solid), DP (blue dashed), rMAB(US) (green dotted),
and rMAB(WF) (red, dotdash).

40



0 100 200 300 400 500

0.
10

0.
20

0.
30

0.
40

Greedy

T

R
eg
re
t

0 100 200 300 400 500
0.
10

0.
20

0.
30

0.
40

εt−Greedy

T
R
eg
re
t

0 100 200 300 400 500

0.
10

0.
20

0.
30

0.
40

TS

T

R
eg
re
t

0 100 200 300 400 500

0.
25

0.
30

0.
35

0.
40

lil−UCB

T

R
eg
re
t

Figure 21: The regret of various methods (MAB, DP, rMAB(US), and rMAB(WF)) was eval-
uated for the 5-arm Gaussian case with T = 500 and 1,000 replications. The means of the five
arms are set as 1, 0.75, 0.5, 0.38, and 0.25 respectively. There are four panels corresponding to
four di↵erent MAB algorithms from top-left to bottom-right: greedy, ✏t-greedy, TS, and lil-UCB.
In each panel, four curves represent MAB (Black solid), DP (blue dashed), rMAB(US) (green
dotted), and rMAB(WF) (red, dotdash).
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Figure 22: The regret of various methods (MAB, DP, rMAB(US), and rMAB(WF)) was evalu-
ated for the 5-arm Gaussian case with T = 10, 000 and 1,000 replications. The means of the five
arms are set as 1, 0.75, 0.5, 0.38, and 0.25 respectively. There are four panels corresponding to
four di↵erent MAB algorithms from top-left to bottom-right: greedy, ✏t-greedy, TS, and lil-UCB.
In each panel, four curves represent MAB (Black solid), DP (blue dashed), rMAB(US) (green
dotted), and rMAB(WF) (red, dotdash).
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Figure 23: We compared the Type I Error rate (left panel) and coverage probability (right panel)
for the parameter p2 � p1 in the Bernoulli design with K = 2. We set T to 500 and conducted
1,000 replications. The targeted Type I error rate is 0.05, and the nominal coverage probability
is 0.95.

Figure 24: We compared the Type I Error rate (left panel) and coverage probability (right panel)
for the parameter p2�p1 in the Bernoulli design with K = 2. We set T to 10,000 and conducted
1,000 replications. The targeted Type I error rate is 0.05, and the nominal coverage probability
is 0.95.
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Figure 25: We compared the Type I Error rate (left panel) and coverage probability (right panel)
for the parameter p2 � p1 in the Bernoulli design with K = 5. We set T to 500 and conducted
1,000 replications. The targeted Type I error rate is 0.05, and the nominal coverage probability
is 0.95.

Figure 26: We compared the Type I Error rate (left panel) and coverage probability (right panel)
for the parameter p2�p1 in the Bernoulli design with K = 5. We set T to 10,000 and conducted
1,000 replications. The targeted Type I error rate is 0.05, and the nominal coverage probability
is 0.95.
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Figure 27: We compared the Type I Error rate (left panel) and coverage probability (right panel)
for the parameter µ2 � µ1 in the Gaussian design with K = 2. We set T to 500 and conducted
1,000 replications. The targeted Type I error rate is 0.05, and the nominal coverage probability
is 0.95.

Figure 28: We compared the Type I Error rate (left panel) and coverage probability (right panel)
for the parameter µ2�µ1 in the Gaussian design with K = 2. We set T to 10,000 and conducted
1,000 replications. The targeted Type I error rate is 0.05, and the nominal coverage probability
is 0.95.
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Figure 29: We compared the Type I Error rate (left panel) and coverage probability (right panel)
for the parameter µ2 � µ1 in the Gaussian design with K = 5. We set T to 500 and conducted
1,000 replications. The targeted Type I error rate is 0.05, and the nominal coverage probability
is 0.95.

Figure 30: We compared the Type I Error rate (left panel) and coverage probability (right panel)
for the parameter µ2�µ1 in the Gaussian design with K = 5. We set T to 10,000 and conducted
1,000 replications. The targeted Type I error rate is 0.05, and the nominal coverage probability
is 0.95.
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