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ABSTRACT

The disease progression dynamics observed in electronic health records often reflect patients’
health condition evolution, holding the promise of enabling the development of clinical predictive
models. These dynamics, however, generally display significant variability among patients, due to
some critical factors (e.g., gender and age) and patient-level heterogeneity. Moreover, future health
state may not only depend on the current state, but also more distant history states due to the
complicated disease progression. To capture this complex transition behavior and address mixed
effects in clinical prediction problems, we propose a novel and flexible Bayesian Mixed-Effect
Higher-Order Hidden Markov Model (MHOHMM), and develop a classifier based on MHOHMMs. A
range of MHOHMM s are designed to capture different data structures and the optimal one is iden-
tified by using the k-fold cross-validation approach. An effective two-stage Markov chain Monte
Carlo (MCMC) sampling algorithm is designed for model inference. A simulation study is conducted
to evaluate the performance of the proposed sampling algorithm and the MHOHMM-based classifi-
cation method. The practical utility of the proposed framework is demonstrated by a case study on
the acute hypotensive episode prediction for intensive care unit patients. Our results show that the
MHOHMM-based framework provides good prediction performance.
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1. Introduction

The rapid growth in the development of healthcare informa-
tion systems has led to an increasing interest in using the
patients’ Electronic Health Records (EHRs) for clinical pre-
diction research (Jensen et al., 2012; Miotto et al., 2016;
Rajkomar et al., 2018). In particular, the temporal nature of
EHRs can potentially enable the development of predictive
models, which offer great promise for making informed
clinical decisions and improving healthcare quality (Zhou
and Hripcsak, 2007). Among available EHRs, physiological
signals have been widely used in clinical prediction tasks, as
the disease progression dynamics in these signals often
reflect the evolution of patients’ health conditions and can
thus provide significant predictive information (Xue et al.,
2019). However, the health evolution patterns generally
show significant variability among patients, due to some
critical factors (e.g., gender and age) and patient-level het-
erogeneity. For example, there exist gender differences in
the trajectory of recovery among young patients with acute
myocardial infarction and such differences persist through-
out the entire year after discharge (Dreyer et al., 2015).
Ignoring these effects may lead to inaccurate prediction
results and in addition result in inferior treatments.

Moreover, patients’ health trajectories inherently have long-
term temporal dependencies and their future outcomes may
critically depend on historical health conditions, especially
for chronic diseases such as diabetes and cancer (Pham
et al., 2017). Therefore, models that can capture this history-
dependent transition behavior and describe the mixed effects
of critical factors and heterogeneity are of great clinical
importance.

Many regression-based approaches have been developed
for the modeling of health trajectories, including Bayesian
mixed-effects models (McNeish and Matta, 2018) and the
collaborative modeling approach (Lin et al., 2017). However,
these models typically focus on the observed trajectories/sig-
nals and cannot capture the hidden state transition dynam-
ics that often contain significant predictive information on
patients’ future outcomes. The Hidden Markov Model
(HMM) approach is also a powerful statistical tool to ana-
lyze sequential data, and has been widely used for prediction
tasks in healthcare (Singh et al, 2010; Song et al., 2015;
Forkan and Khalil, 2017; Ghosh et al., 2017; Marchuk et al.,
2018; Sotoodeh and Ho, 2019). The HMM characterizes
doubly stochastic processes, namely, the observed and hid-
den processes, and has the ability to infer hidden states
from observed data.The HMM-based prediction methods
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directly focus on the data-generating process, excluding the
need for feature extraction or distance calculation as
required in other time series classifiers (Wang et al., 2022).
The prediction is performed based on the disease progres-
sion dynamics learned from the HMMs. For example,
Forkan and Khalil (2017) use six physiological signals to
train HMMs for some defined clinical events and develop
an HMM-based predictive method to detect future abnormal
events for continuously monitored patients. These works,
however, ignore the varying patterns that may exist in
physiological signals due to the mixed effects of some crit-
ical factors and patient-level heterogeneity. To address this
problem, Mixed-effect HMMs (MHMMs) are developed to
simultaneously model multiple processes and capture the
differences among these processes. Attempting to provide a
general framework for multiple processes modeling, Altman
(2007) uses Generalized Linear Mixed Models (GLMMs) to
include covariates and random effects in both hidden and
observed processes. In Altman’s work, conditioning on the
random effects and hidden states, the observations are inde-
pendent and assumed to follow a distribution within the
exponential family. For the hidden process, each transition
probability is modeled by a multinominal logit link function
to incorporate mixed effects, in which the random effects
are assumed to be state-dependent.

The MHMM proposed by Altman has two major limita-
tions. First, the MHMM typically uses likelihood-based
methods to estimate model parameters, which brings signifi-
cant difficulties of marginalizing out the random effects in
likelihood computation. As the number of random effects
increases, the MHMM may become computationally intract-
able. The simulation study and the real data application in
Altman’s paper (Altman, 2007) are limited to two hidden
states and two random effects. There are several attempts to
address the computational issues arising in parameter esti-
mation by making restrictive assumptions (Maruotti and
Rocci, 2012; Jackson et al, 2015; DeRuiter et al, 2017).
Jackson et al. (2015) consider a two-state MHMM with one
shared random effect in observed and hidden processes.
Maruotti and Rocci (2012) and DeRuiter et al. (2017)
assume that the random effect follows a discrete distribution
instead of a continuous one for computational tractability.
Recently, Sarkar et al. (2018) develop a novel, alternative
approach to model mixed effects in the context of Markov
models. They use a convex combination form to model fac-
tor-dependent and subject-specific transition probability vec-
tors. By assuming Dirichlet-distributed random effects,
Sarkar et al. (2018) propose a Bayesian hierarchical formula-
tion and design efficient Markov Chain Monte Carlo
(MCMC) sampling algorithms for model inference.
Modeling mixed effects directly on the scale of probability
vectors helps avoid choosing link functions, which substan-
tially decreases computational complexity. Second, existing
MHMM models have overlooked the fact that higher-order
transition behaviors commonly exist in complex transition
dynamics such as chronic diseases progression. However,
modeling higher-order transition behaviors directly in the

MHMM is computationally intractable not only because it
greatly increases the computational complexity by introduc-
ing a large number of parameters, but also because it leads
to a new challenge of inferring the transition order from the
observed data. On the other hand, the Higher-Order HMM
(HOHMM) (Sarkar and Dunson, 2018) allows higher-order
transition behaviors in which the transition order can be
determined by the inference algorithms, but it cannot cap-
ture the variability among different trajectories due to mixed
effects.

To fill the gap, we develop a general, flexible Bayesian
Mixed-effect HOHMM (MHOHMM) to describe complex
disease progression with higher-order transition behaviors
and mixed effects. Specifically, we combine the strengths of
the HOHMM in Sarkar and Dunson (2018) and the mixed
effects modeling approach in Sarkar et al. (2018), and model
the transition probability vector as a convex combination of
a factor-dependent fixed effect and a patient-specific random
effect. For the observed process, we use the GLMMs to
incorporate the mixed effects. By having different combina-
tions of fixed and/or random effects in the hidden and/or
observed processes, we can have a range of MHOHMMs to
capture different temporal structures. There are many strat-
egies for statistical inference on HMMs, including the
sequential Monte Carlo, also known as particle filters
(Fearnhead and Clifford, 2003; Kantas et al., 2009; Chan
and Lai, 2013), and dynamic message passing (Rabiner,
1989; Johnson and Willsky, 2013). However, these methods
assume a restrictive first-order Markovian assumption on
the models and thus cannot be directly applied to
MHOHMM inference. Inspired by the two-stage method
proposed for HOHMM inference in Sarkar and Dunson
(2018), we similarly design a two-stage MCMC sampling
algorithm to address the inferential challenges for
MHOHMMs that are caused by considering mixed effects
and higher-order transition dynamics. This Bayesian infer-
ence technique offers several benefits, including (i) the abil-
ity to infer the true transition order from observed data and
(if) accommodating unknown state space by using an infin-
ite dimensional Dirichlet process prior in the hidden pro-
cess. Based on the Bayesian MHOHMM, we develop a
framework to predict patients’ future events of interest. A
simulation study is conducted to evaluate the performance
of the proposed sampling algorithm and the MHOHMM-
based classification method. We investigate the impacts of
mixed effects on parameter estimation by comparing the
estimates under different models. The optimal MHOHMM
that achieves the best classification performance is identified
by using the k-fold cross-validation method. We benchmark
the optimal MHOHMM with two baseline models HOHMM
and MHMM. Our results show that considering mixed
effects and higher-order transition behaviors leads to better
classification performance. The utility of the proposed
MHOHMM-based framework is further demonstrated by
predicting Acute Hypotensive Episodes (AHEs) in Intensive
Care Units (ICUs) wusing the MIMIC-III (Medical



Information Mart for Intensive Care) database (Johnson
et al., 2016).
The main contributions of this article are two-fold:

1. Development of a novel and flexible MHOHMM to cap-
ture the complex disease progression dynamics in patients’
physiological signals. The proposed MHOHMM considers
higher-order transition dynamics and mixed effects and
includes the HOHMM and MHMM as two special cases.

2. Design of effective MCMC sampling algorithms for
MHOHMM inference and MHOHMM-based classifica-
tion. The simulation study shows that considering the
impacts of mixed effects and higher-order transition
behaviors in sequential data modeling significantly
improves the classification performance when such
impacts exist in the data. The case study on AHE pre-
diction demonstrates the practical utility and the advan-
tage of the proposed prediction framework.

The remainder of this article is organized as follows.
Section 2 provides preliminaries on the HOHMM. In Section 3,
we develop the MHOHMM by incorporating mixed effects in
both hidden and observed processes. Section 4 constructs the
MHOHMM in a Bayesian hierarchical formulation, designs a
two-stage MCMC sampling algorithm for model inference,
and presents the MHOHMM-based classification framework.
A simulation study is conducted in Section 5 to evaluate the
performance of the proposed sampling algorithm and the
performance of the MHOHMM-based classifier. In Section 6,
we demonstrate the proposed prediction framework with a
case study on AHE prediction in ICUs. Section 7 outlines the
concluding remarks and future works.

2. Preliminaries on the HOHMM

The basic HMM consists of two stochastic processes: a hid-
den process ct}thl and a potentially multivariate observed
process {y,},_,- The hidden state space is assumed to be
discrete and finite, denoted by C = {1,...,C}. The hidden
process is governed by a first-order Markov chain and the
observation y, follows a specific emission distribution,
depending only on the current state,

pleilers .. pledle-r)s (1)

pWilers oy yiy) = piler). (2)

To allow more distant history-dependence, the HOHMM
(Sarkar and Dunson, 2018; Liao et al, 2020; Liao et al,
2021) relaxes the restrictive first-order Markovian assump-
tion of the HMM. An HOHMM of true maximal order g
has the following conditional independence assumption in
the hidden process,

> C[—l) =

:(t-1))- (3)

Note that an HOHMM is said to be of true maximal
order q if the distribution of ¢, depends on a subset of
{¢i-15 .- €—g} and this subset includes ¢;—;. Allowing higher-
order dependence leads to significant dimensionality chal-
lenge as the transition probabilities p(c:|c(—g).(1-1)) are now

p(Ct‘Cl, ceny C[_l) :p(C[‘C(t_
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indexed by C? different possible combinations of the lags
C(1—q):(-1)- To address this problem, Sarkar and Dunson
(2018) introduce latent allocation variables {z; t} Climgr1 tO
reduce the total number of parameters required to model the
transition probabilities. The basic idea is to cluster the pos-
sible states of ¢;_; that have similar effects on the distribution
of ¢, for each lag j = 1,...,q. The latent variable z;;, taking
values from {1,..,k;j} (1 <k; <C), is the respective latent
class into which a particular state of c;_; is allocated. Based
on the allocation variables z; ;’s, the hidden states ¢/'s are con-
ditionally independent. For example, in a second-order HMM
(q=2) as illustrated in Figure 1, the distribution of ¢
depends on the values of z;;, and z,, instead of directly
depending on ¢;—; and ¢, in which z;; and z,, are the
latent classes into which ¢;—; and ¢;—, are allocated, respect-
ively. The total number of the latent classes k; is then an
important lag indicator, determining the inclusion of the jth
lag ¢;_; for modeling the distribution of c,. Specifically, if k; =
1, all possible states of c;_; are clustered together and the dis-
tribution of ¢, does not vary with the states of ¢;_j, but if
ki > 1, the jth lag c;; is identified as important. These clus-
tering behaviors are captured by a probabilistic model (ie.,
soft allocation). Specifically, 7/(h;|c;—;) denotes the probability
that the jth lag Cr—j is allocated into the latent class hj, that is,
W (hjlei—j) £p(z, = hilci—j),  where  ¢; € {1,..,C}h €
{l,..,k}, and j=1,..,q. Given the g allocated classes
(hy,....hg), the transition probability is denoted by
A(ctlhy, ... hy). Thus, the transition behaviors in a g-order
HMM can be structured by the following hierarchical formu-
lation,

(Z]"t‘Ct_]‘) ~ Mult({l, ceesy k]}, nj(1|Ct_]‘), veey TCj(kjlct_j)), (4)
(ctlzie = hjpj = 1,...,9) ~ Mult({1, ..., C},

A1y oo hg)s oo A(Clhyy o hg)).

In such a factorization, the number of parameters is
reduced to (C—1) ki + Czq 1(kj = 1), which is much
smaller than (C - I)C‘f 1f H ki < Cq Marginalizing out
the variables z; ;’s, the transition probablhty can be written as

(5)

q
plerleg- Z Z ct|h1,...,hq)an(hj\c,_j).
=1 =1 =1
(6)
Let f(y,10.,) = p(y,|c;,0) represent the generic form of

the emission distribution, where 0 = {0.} .. Given model
parameters (4,7, k,0), the joint distribution of the observa-
tion sequence y = {)’r}t ,» the hidden state sequence ¢ =
{ct}tT_qH, and latent allocation variables z = {z; t}] L i=gt1
has the following factorization,

T 1

H clzi s o 2g,1) H (2j,t|ci—j)

t=q+1 j=1

p(y, 6. z|A,m k, 0) =

T
[Lr0ilo.).
7)

The conditional independence relationships encoded in
this factorization are used in designing MCMC algorithms
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Allocation variable

Hidden state

Observation

Figure 1. lllustration of a second-order HMM.

to draw samples from the posteriors Sarkar and Dunson
(2018).

3. The MHOHMM

In this section, we develop the Bayesian MHOHMM where
the transition probability vector is modeled as a convex
combination of a factor-dependent fixed effect and a
patient-specific random effect in the hidden process. In the
observed process, the mean parameters of emission distribu-
tions are modeled by wusing the GLMMs. Different
MHOHMMs are designed based on whether the fixed and/
or random effects are included in hidden and/or observed
processes.

3.1. Model for the hidden process

We first incorporate mixed effects in the hidden process.
Consider a collection of observed physiological signals
{y?}tT;’l{Va:l from a total of N patients, where T, is the signal
length for patient a. Let ¢! € C = {1,...,C}, represent the
hidden state associated with patient a at time ¢.

The hidden state transition dynamics are often influenced
by some factors and have patient-level heterogeneity. In
clinical practices, categorical and time-invariant factors such
as gender and age are generally considered as predictors. All
patients can be grouped based on the corresponding com-
bination of the considered factors. We use X = {1,...,d} to
represent the group set where d is the total number of
groups. The group for patient a is denoted by X, € X It is
important to note that the true transition order may be
dependent on the factors. We thus use g, to denote the
transition order for group x, and g, is shared among
patients in group x, x € X. To reduce the number of param-
eters in transition probabilities, we use latent allocation vari-
ables. Let z]‘ft,j =1,...,q9c and t =g, + 1,...,T,, denote the
latent class into which a particular state ¢f_; is allocated. The
allocation variable z{, takes values from {1,...k;} and k;
(1 <kj <C) is the important lag indicator of the jth lag.
For group x, all important lag indicators are denoted
by k. = {kj qul

Borrowing the idea in Sarkar et al. (2018) that uses a
convex combination form to incorporate mixed effects, we
introduce a group-level baseline probability kernel 4, and a
Dirichlet-distributed random effect A%, and model the hid-
den state transition dynamics of the MHOHMM using the
following hierarchical formulation,

(c¢f|Xa = %27, = hjpj = 1,...,qx) ~ Mult({L, ..., C},

8
P(1|hy), ... P (Clhy)), ®

(25| Xa = x, ;) ~ Mult({1, ...,kj},nf;c(1|cf_j), ...,n{c(kj|c?_j)),

9)

where
PO (-[hy) = 0\ de(|he) + 024 (|hy), (10)
A9 ( k) ~ Dir{ali2(1), ..., 022%(C)}, Vh,, (11)

and h, represents the history information (hy,...,h,,),
which is the combination of the latent allocation classes.
The allocation probabilities m, = {my(hjlc) : hj = 1,....k;,j =
1,....qx ¢ € C} are assumed to be the same for all patients
in group x. Parameters m, characterize the clustering behav-
iors of the history states for future state transitions.
Equation (10) models the patient-specific probability kernel
P as a convex combination of the baseline kernel 4, and
the random effect 4, with weights w! and @ =1 - ),
respectively. The baseline component 4, is common to all
patients in group x, providing a type of fixed-effect term.
The random effect A\ (-|h,) is assumed to follow a Dirichlet
distribution having the mean 42 = {22(1),...,22(C)}, and 4
is independent of the history h,. The parameter 4] can be
interpreted as the state prevalence probabilities in group x
regardless of the history states. This formulation allows
information to be better shared among different history-
dependent transition distributions in each group, leading to
improved performance and less computational complexity
comparing to the model with an independent distribution
for each history h,. The weight ®? quantifies the amount of
patient-level heterogeneity in group x. The convex structure
in transition probabilities facilitates computation in model
inference and improves model interpretability. Marginalizing



out the allocation variables, the patient-specific transition
probability is given by

ki
P Img o) = D

h=1

o
ZP(“ ¢ |hy) Hn (hilci)s
hy—1

(12)
where 1 <k; < Cforallj=1,..,4gx.

3.2. Model for the observed process

Next, we model mixed effects in the observed process. In
clinical practices, multiple physiological signals are typically
monitored simultaneously to evaluate the health conditions
of patients. With large amounts of measurements, it is rea-
sonable to assume that the measurement at each time point
follows a multivariate normal distribution given a hidden
state. Given the hidden state associated with patient a at
time ¢ (say ¢/ = c), the observation y{ is assumed to follow
a multivariate normal distribution,

(2|ct = . Xo = x) ~ N (p + px + pl9, o), (13)

9~ N(0,%,),

where ¢ € C and x € X. Given hidden state ¢, parameters p,
and X, are the same for all patients, providing the baseline
emission distribution. These state-specific ~parameters
(u,X;) capture the relationships between the observed
measurements and the corresponding hidden states. The
second term Bx plays a role of fixed effects and models how
the mean measurement is varied with the factors. The third
term ul® captures the random effect in the observed pro-
cess. The random effect u(@ is assumed to follow a multi-
variate normal distribution having zero mean and
covariance X, for all patients. We assume that the coefficient
B and the distribution A(0,X,) are independent of the hid-
den state.

(14)

4, MHOHMM inference and MHOHMM-based
classifier

The MHOHMM inference is computationally challenging,
due to the incorporation of mixed effects and higher-order
transition dynamics. Allowing higher-order dependence
leads to a significant dimensionality challenge as the transi-
tion distributions depend on different possible combinations
of the history states. Given state space size C and transition
order g,, the total number of parameters in transition distri-
butions is (C — 1)C% for group x. Latent allocation variables
of the history states are introduced to address this dimen-
sionality challenge. Although the latent allocation variable
substantially reduces the total number of parameters
required to model the transition probabilities, it introduces
new challenges. The numbers of latent allocation classes
(k, = {kj}jq;l) are unknown but control the model size—
varying values of k, result in varying dimensional models. It
is thus difficult to adapt conventional strategies (e.g.,
dynamic message passing and sequential Monte Carlo
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algorithms used for first-order HMM inference) to infer k..
Even if k, are known, these algorithms cannot be straight-
forwardly adapted to higher-order setting due to prohibitive
computational difficulties. Inspired by the two-stage method
proposed for HOHMM inference in Sarkar and Dunson
(2018), we similarly design a two-stage MCMC sampling
algorithm to address the challenges in MHOHMM infer-
ence. Specifically, the first stage determines the values of k,
by using a stochastic search variable selection method
(George and McCulloch, 1997) to sample k, based on an
approximated version of the MHOHMM that forces hard
allocation and ignores random effects in the hidden process.
In the second stage, we sample other model parameters
from the corresponding posteriors given the inferred values
of k,. Furthermore, incorporating mixed effects introduces
additional parameters in both processes. In the designed
MHOHMM sampler, we assign appropriate priors to these
parameters and derive the corresponding conditionals for
efficient posterior sampling. The supplemental materials
provide the computational details of this two-stage
MHOHMM sampler.

4.1. Joint distribution factorization

To facilitate posterior computation, an auxiliary variable
Y7 € {0,1} is introduced for each state ¢/,t =g, + 1,..., T,.
We rewrite (8) as follows,

(X, = %28, =hy, j=1,.q0f)
Mult({l, s Ch (1R, o 2 (ClRy) i Y% =1,
Mult({1,...,C}, A9 (1|hy), ..., A9 (Clh,) if Y% =0,
(15)
Y~ Mult({0, 1}, 0%, wl). (16)
Let § = {(ky Ax, 00 A2 T @x) > 1 B, £, X, } represent the

model parameters, where o,= {0 w!} and u=
{u.}ecor X = {E:} ¢ Given model parameters ¢, for patient
a in group x, the joint distribution of the observed data
¥ = {y2}!, hidden states ¢ = {c?}* g1 latent allocation

x> T,
] 1, t=g,+1>

{M}Q%H, and random effects (¥
ing factorization,

variables 2 = {zf, auxiliary variables y* =

and p@ has the follow-

L2 p(y e,z A, W)

=p(*|c", B T, ' )p (“|Z” MRS 17)
p(e|d m)p(b° | )p (247, 00)p ()| E,),
where d* = {d, ]”lT”; g1 and df, = cf_, representing the

history state. Suppose we have one observed sequence from
each patient. Assuming that these sequences are independ-

ent, the joint distribution of all sequences is L = [\, L°.
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4.2. Prior assignments

In the hidden process, we assign independent priors on the
allocation probabilities for the jth lag in group x as

w(1e) = {=L (1), W le) } ~ Dir(3 7))

for all (j, ¢, x) where j=1,..,49,c€C, and x € X. The
dimension of 7, varies with the number of clusters (kj) for
each lag j. The values of k;’s are determined in the first stage
based on the posterior samples drawn from the sampling
algorithm. For each group x, independent priors are
assigned on k;’s,

(18)

Pa(kj) o exp (= jk;), (19)
where k; = 1,...,C,j = 1,...,4x, and @ > 0. The convex struc-
ture in Equation (10) is interpreted as a two-component mix-
ture of a baseline component A, and a random-effect
component 4@ ~ Dir{a?/%(1),...,022%(C)}. To capture the
overall state prevalence in group x, we assume that the prior
for A, is also centered around the mean /12. Therefore, condi-
tionally conjugate priors for A,(-|h,) are specified as
A(-|hy) ~ Dir{l22(1), ..., a122(C)}, Vh,. (20)
Furthermore, some states in C may be more preferred to
others among all groups, which is described by Ay =
{200(1), ..., 200(C) }. We assign a hierarchical Dirichlet prior
on A = {22(1),...,22(C)} as

lg ~ Dir{dooloo(l), ...,O{OO;LOO(C)},VX €A, (21)

loo = {}voo(l), .

Finally, we assign a conditionally conjugate beta prior on
weight !, and gamma priors on (hyper)parameters o and
ol for all x € X,

2 J00(C)} ~ Dir{1/C,...1/C}.  (22)

ol ~ Beta(a,b), o ~ Ga(ag,by), ol ~ Ga(ay,b;). (23)

In the observed process, we assign conditionally conju-
gate multivariate normal priors on the mean parameters
(n., ) and inverse-Wishart priors on the covariance matri-
ces (X, X,) as

(o Z) ~ N (g Ze /o) x W (Wo ), Ve €C, (24)

B~ N(wnXr), E ~W (Y0, (25)

where W' (W, v) denotes the inverse-Wishart distribution
with scale matrix ¥ and degrees of freedom v. As a special
case, the univariate distribution with mixed effects is given
as

0flef = 6. Xa = x) ~ N(t + px+ ', a7), (26)

w ~ N(0,07), (27)

and the corresponding prior distributions of the parameters
are assigned as follows,

(1t 02) ~ N(po, 05) x Inv — Ga(xo, By), Ve € C, (28)

p~ N(,uf, Ufz), o> ~ Inv — Ga(k,, B,). (29)

The complete Bayesian hierarchical formulation of the
MHOHMM is then summarized as
((fXe=xz2l,=hy, j=1..9uY])

Mult({1,...,C}, Ac(1|hy), s Ae(Clhy)  if Y9 =1,
Mult({1, ...,C}, A9 (1|hy), ... A9 (Clhy) if Y& =0,

W~ Muli({0, 1}, %, ),
(7 | Xa = %, ¢f)) ~ Mult({1, .., ki }, W (1]ef ), oo W (Kjlel)),s
(|0) = {m(1]c), ... W (ksle)} ~ Dir(pj, .., 7)),

A (|hy) ~ Dir{e®22(1), ..., 0222(C)}, o ~ Ga(ag, by),
A1) ~ Dir{el22(1),...,al22(C)}, ol ~ Ga(ay, by),
2= {2(1), . (O} ~ Dir{a000(1), ---» %00 400(C) },

400 = {Aoo(1), ..., 200(C)} ~ Dir{1/C, ..., 1/C},
(16 = 6. X0 = x) ~ N+ B+ 19,5, @ ~ N(0,5,),
(Mo Ze) ~ N (g, Ee/&o) x W (Wo,v0), B~ Ny Ep),
I ~ WY, 0,).

In this MHOHMM, the mixed effects are included in
both processes. The model can be easily tailored to handle
different structures. For example, if a random effect is not
included in the hidden process, the variables A,y w,
and corresponding priors are removed and all patients in
group x have the common transition parameters 4,, ie.,
P@ =), for all X, = x.

w}c ~ Beta(a, b),

4.3. Posterior computation

We exploit the conditional independence relationships
encoded in L to develop a two-stage MCMC sampling algo-
rithm for MHOHMM inference by drawing samples from
posteriors. In the proposed MCMC sampler, the first stage
determines the number of latent classes (k,,x € X)) that the
hidden state at each lag can be allocated into in a coarser
version of the proposed model. Given determined values of
k., we draw posterior samples of other parameters in the
second stage.

In the first stage, we sample k, = {k; jq;l in an approxi-
mated version of the proposed model. The transition order
(gx) is generally unknown, so we set a relatively large upper
bound on g, for all group x (denoted by gm.) in the
designed sampling algorithm to infer the transition order
from the posterior. For example, suppose we set gmax = 5
and the derived posterior mode of k. = (ki,....kg ) is
(3,1,2,1,1). The inferred transition order is three because
ki > 1 and k; > 1 imply that the first and third lags are
identified as being important for hidden state transitions.
We will investigate the impacts of gmax by conducting a sen-
sitivity analysis on this hyperparameter in the simulation
study. The approximated model forces hard allocation of the



history states and ignores random effects in the hidden pro-
cess. Hard allocation means that, for the jth lag of ¢, each
possible state of ¢f . is allocated into one class with probabil-
ity 1. In soft allocation of the proposed model, one state can
be allocated into several possible classes with some probabil-
ities. The hard allocation probabilities in the approximated
model are denoted by #,. Furthermore, transition parame-
ters of fixed effect A, and random effect A” have the same
dimension that varies with k,, where k, is updated at each
iteration. For computational simplicity and efficiency, we
exclude ¥ and only consider 4, to characterize the transi-
tion behaviors for group x when updating k,. Therefore,
this approximation has the ability to identify the important
lags and greatly facilitates the sampling as it reduces the
number of parameters.

Given the values of k, obtained from the first stage, we
sample parameters (4, /12, ocg, ok, Aoo> T, Ox, 1, B, B, X,), hid-
den variables (Y%, z%, ¢?), and random effects (/l(“), ,u<“)) itera-
tively in the second stage for the proposed model. The
transition parameters (4, /l(“),lg, Ago) are updated by modi-
fying the existing sampling mechanisms in Hierarchical
Dirichlet Process (HDP) models (Teh et al, 2006). The sup-
plemental materials outline the proposed two-stage MCMC
algorithm that is developed based on a known state space
MHOHMM (i.e., C = {1,...,C}). By setting a relatively large
value of C, the proposed sampling algorithm provides a
weak limit approximation to the MHOHMM with unknown
state space that is modeled using infinite dimensional HDP
priors (Johnson and Willsky, 2013).

4.4. MHOHMM-based classifier

The two-stage MCMC sampling algorithm is designed to
estimate the parameters of the MHOHMM. Based on the
MHOHMMs trained on patients’ history physiological sig-
nals, we develop a sequence classifier to predict their future
events.  Specifically, we separately train different
MHOHMMs on the signals for patients who have different
future events. For a patient with unknown future outcomes,
the prediction is done by classifying his/her observed signal
based on the learned MHOHMMs.

To build the MHOHMM-based classifier, we first train
an MHOHMM using the labeled sequences for each class s,
s=1,..,S. The learned model parameters of class s are
denoted by {*. Given a new patient a’ with an observation
sequence y*, we use each learned model to decode the hid-
den state sequence ¢”. The decoding procedure proceeds as
follows. Given model parameters {* for each class s, we fol-
low the same sampling strategy in Stage 2 (shown in the
supplemental materials) to decode the hidden state sequence
by drawing posterior samples of hidden variables ¢?,z%, "
and random effects A, p(@), iteratively. The collected pos-
terior samples of ¢* and u(@) under model s are denoted by
s = {¢" M and p@)s = {[lga M}?il, where M is the
number of posterior samples. Given posterior samples ¢*>*
and u@)»s, the likelihood p(y”|(°) is estimated using the
Monte Carlo integration method as follows,
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p(ya’|CS) _ J )p(ya')ca"”(a')KS)

(C“/, ”(al)

1 X e (@
~ sz(y“ & 1w B )
i=1

Next, the sequence y* is assigned into class s* that pro-
vides the best data description performance (i.e., the largest
likelihood value) of this sequence,

(30)

s* = argmax p(y”|°). (31)
N
The supplemental materials present the algorithm of the
MHOHMM-based classifier.

5. Simulation study

In this simulation study, we design experiments to evaluate
(i) the performance of the proposed sampling algorithm for
model inference and (ii) the performance of the
MHOHMM-based classification method. By including fixed
(f) and/or random effects (r) in the hidden (H) and/or
observed (O) processes, we consider eight different models:
(Hf), (Hfr), (Hf.Of), (Hfr.Of), (Hf.Or), (Hfr.Or), (Hf.Ofr),
and (Hfr.Ofr). For example, model (Hf.Or) represents the
MHOHMM with fixed effect in the hidden process (Hf) and
random effect in the observed process (Or). We will also
investigate the impacts of mixed effects on the parameter
estimation and sequence classification.

5.1. Parameter estimation

We generate observation sequences under model (Hfr.Ofr)
and fit the simulated data using all the aforementioned
models.

Suppose that there are two groups for patients’ factor,
ie, X ={1,2}, the hidden state space is C = {1,2,3}, and
the emission distribution is a univariate normal distribution.
Table 1 summarizes the parameter setting of the transition
dynamics and the emission distributions for two groups
under model (Hfr.Ofr). Before we generate the observation
sequence for patient a (y*) in group x, we first construct the
true transition behaviors to generate the corresponding hid-
den state sequence ¢ using the following mechanisms. The
group-level state prevalence probabilities 47 are generated by
using the stick-breaking construction method, A%(1) = u;
with  u; ~ Beta(1,1),22(2) = up(1 = 22(1))  with  wy ~
Beta(1,1), and 72(3) = 1—22(1) — 22(2), for each x € X.
To generate the true transition probabilities, we consider a

Table 1. Parameter setting for generating data under model (Hfr.Ofr).

Transition dynamics Emission distribution

Group
Order Weight Mean Variance Fixed  Random
effect effect
coefficient variance
qx {wf, oy} (4, M9, 13) (03,03, 03) B a?
x=1 2 {04,06} 0,2,4) (0.5%,0.5%0.5%) 1 0.5?
x=2 4 {0208}
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full-order model in which the distribution of ¢/ depends on
its g, history states c‘(lt_ (=) For each combination of the
history states, we independently generate the fixed effect 4,

and random effect A¥ as follows,

Aa(Clefi_g)s-1)) ~ Dir(025(1), . 0025(3)), (32)

KO (el g ey ~ Dir(a@AY(1), ..., 2922(3)). (33)

Next, the patient-specific transition probability is given
as,

p(cﬂc?t—qx):(t—l)) = w;lc;LX(C?|C?t—qx):(t—1))

O g ym) G

Given the hidden state sequence ¢?, the corresponding
observations are drawn from the emission distributions in
Equations (26) and (27).

We independently generate 80 observation sequences (40
sequences in each group) with equal length T=200. The
simulated sequences are then used to train the aforemen-
tioned eight MHOHMMSs. To provide good initial values for
some critical variables, we use the K-means clustering algo-
rithm to cluster the observations among all sequences across
all groups. The derived clustering label is used as the initial
hidden state for each observation (cf). The state-specific
parameters (i, o.) in emission distributions are then initial-
ized by fitting a Gaussian distribution for each state c.
The (hyper) parameters in the priors are set as og = o, =
o =lLa=b=ay=by=a;=by=Lko=py=x =p,=
1, 7,=1/C for all j and x, and p, = gy = y,05 = a% =
3var(y), where y represents all generated observations from
all patients and y and var(y) represent its sample mean and
variance, respectively. We run 2000 MCMC iterations and
discard the first 1000 iterations as burn-in. The remaining
samples are thinned by retaining every fifth sample after
burn-in to reduce autocorrelation.

It is challenging to derive the complexity bound of
MCMC sampling algorithms because it depends on the
number of parameters, the selected proposal distributions,
and the number of iterations (Matamoros, 2020). Existing
works have established the bounds for the Metropolis—
Hastings algorithm in terms of convergence (Belloni and
Chernozhukov, 2009; Roberts and Rosenthal, 2014). The
proposed MHOHMM sampler is too complicated to theoret-
ically prove its convergence, and thus it is difficult to obtain
its computational complexity. We compute the Potential
Scale Reduction Factor (PSRF) (Gelman and Rubin, 1992) to
diagnose the convergence of the posterior samples generated
by the proposed algorithm. The PSRF plot of several impor-
tant model parameters is presented in the supplemental
materials and has shown good convergence behaviors. We
further examine the algorithm complexity by summarizing
the computational costs of the MHOHMM-based classifier
in the simulation study.

Based on the posterior samples, we compute the sample
modes of the transition orders and sample means of other
model parameters, and use them as parameter estimates.
The estimated parameters and log-likelihood values under

Table 2. Posterior sample mean/mode of parameters under different
MHOHMM:s.
MHOHMM

True value Hf Hfr  Hf.Of Hfr.Of Hf.Or Hfr.Or Hf.Ofr Hfr.Ofr

Transition dynamics in group 1 (x = 1)
q =2 2 2 2 2 2 2 2 2
o =04 NA® 078 NA 075 NA 034 NA 034
wy =0.6 NA 022 NA 025 NA 066 NA 066
}.2(1) =057 044 050 053 061 056 053 057 0.53
}ug(Z) =022 039 034 028 023 029 023 025 0.23
},3(3) =021 017 016 019 016 015 024 018 0.24

Transition dynamics in group 2 (x = 2)
gy = 4 5 5 4 4 4 4 4 4
0)2 =0.2 NA 0.52 NA 0.20 NA 0.17 NA 0.16
oy =0.8 NA 048 NA 080 NA 08 NA 084
)3(1) =048 013 004 044 048 049 050 049 050
2(2)=021 051 055 025 023 023 020 023 022
}.)0((3) =031 036 041 0.31 029 028 030 0.28 0.28

Emission distribution
1y =0 081 078 014 0.09 148 148 049 050
Uy =2 215 217 203 197 347 347 248 249
u; =4 497 503 416 412 546 547 449 448
p=1 NA NA 085 088 NA NA 066 0.60
o1 =05 058 057 066 065 050 050 050 050
g, =05 075 076 069 068 051 050 052 0.50
03 =05 110 106 069 069 050 0.51 050 0.50
g =0.5 NA NA NA NA 068 068 052 053
log £ (x10%) —1.88 —1.86 —1.63 —161 —1.17 —-1.17 =117 =116

2NA means “Not Applicable”.

the eight models are summarized in Table 2. First, we exam-
ine the estimation of the hidden process. Under models (Hf)
and (Hfr) where neither fixed nor random effects are
included in the observed process, the transition order in
group 2 (q,) is not correctly detected and estimates of 4
greatly deviate from the true values. The estimation of these
parameters is significantly improved in the other six models
because the hidden states are decoded from observations
and more accurate modeling of the observations helps to
infer the true transition dynamics. Moreover, correct identi-
fication of the transition order significantly improves the
estimation accuracy of state prevalence probabilities A°. For
example, in group 2, the models that have detected the true
transition order g, (Hf.Of, Hfr.Of, Hf.Or, Hfr.Or, Hf.Ofr,
Hfr.Ofr) achieve much better estimation of /12 than the other
two that have not identified the true order (Hf and Hfr).
Incorporating random effects, however, is not observed to
have significant impacts on the estimation of A0 based on
the posterior sample mean. To further investigate the
impacts of adding random effects, we compare the histo-
grams of posterior samples of A2 between models (Hf.Ofr)
and (Hfr.Ofr) in the supplemental materials. Our results
show that both models include the true values in their pos-
terior sample distributions, but incorporating random effects
in the hidden process (Hfr.Ofr) reduces the estimation error,
as it leads to smaller standard deviations.

Next, we check the parameter estimation in the observed
process. The results show that the estimates of p . are
improved by adding fixed effects in emission distributions
(Hf.Of, Hfr.Of, Hf.Ofr, Hfr.Ofr). Incorporation of random
effects leads to accurate estimates of o. (Hf.Or, Hfr.Or,
Hf.Ofr, Hfr.Ofr), but it affects the accuracy of the estimation
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of f (Hf.Ofr, Hfr.Ofr). In models (Hf.Ofr) and (Hfr.Ofr),
the estimated emission distributions have smaller estimates
of B along with larger estimates of p., comparing with the
true values. Due to the linear form of the mean parameter
in Equation (26), these estimates also provide a good
description of the observations. To better visualize the esti-
mates of emission distributions, we present the estimated
Probability Density Functions (PDFs) under model
(Hfr.Ofr) in the supplemental materials. Our results show
that the estimated PDFs are close to the true ones. In sum-
mary, the true model (Hfr.Ofr), from which the data are
generated, provides satisfactory parameter estimation in
both processes and achieves the best data description per-
formance (i.e., the largest log £).

From this experiment, we can see that the proposed sam-
pling algorithm is effective for MHOHMM inference and
that the incorporation of mixed effects in both processes has
significant impacts on parameter estimation.

5.2. Sequence classification

A binary classification experiment (i.e., $=2) is designed to
evaluate the performance of the MHOHMM-based classifi-
cation framework. To investigate the impacts of the number
of groups (d), we conduct a sensitivity analysis and consider
relatively small values of d. Specifically, we consider four
scenarios, i.e., d € {2,3,4,5}, and repeat the binary classifi-
cation experiment for each d. In each scenario, we construct
two different MHOHMMSs to generate data for two classes
and assume the differences between these two classes exist
only in the transition dynamics. Table 3 shows the param-
eter setting of the transition dynamics in the scenario of
d=>5. For other scenarios, only the first d values of (qy),.y
and (?),., are used. The parameters in emission distribu-
tions remain the same (as shown in Table 1) for all scen-
arios. The true transition probabilities and the observation
sequences are generated following the same mechanisms
presented in Section 5.1. For each class, we independently
generate 80 observation sequences for training and 20
sequences for testing with equal length T=200. To ensure
valid computational comparison, we fix the number of gen-
erated observation sequences (100) and the sequence length
(T'=200) for all scenarios.

To identify the optimal MHOHMM that best discrimi-
nates the sequences between two classes, we use the k-fold
cross-validation method, which is widely adopted for model
selection (Burman, 1989; Jung, 2018; Wong and Yeh, 2019).
By setting k=5 for computational efficiency, the model
selection procedure is performed as follows. The training set
is first randomly divided into five disjoint folds that have
the same number of sequences (i.e., 16 sequences in each
fold). Each fold in turn plays the role of validating the clas-
sifier that is trained on the other four folds, using accuracy

Table 3. Parameter setting of the transition dynamics in the scenario of d=5.
Weight (9), v

(0.4,0.2,0.4,0.2,0.4)
(0.4,0.2,0.4,0.2,0.4)

Class Transition order (qy)

1 (2,3,2,3,2)
2 (2,4,2,4,2)

xeX
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as the evaluation metric. The model that achieves the high-
est average accuracy is identified as the optimal one. Next,
we train the selected model using the entire training set and
evaluate its performance on the testing set.

To examine the impacts of mixed effects and higher-
order transition behaviors, we compare the sequence classifi-
cation performance of the optimal MHOHMM with two
baseline models, HOHMM and MHMM. Note that the
benchmark MHMM is a special case of the optimal
MHOHMM in which the transition order is one. The infer-
ence of the HOHMM and MHMM is done by using the
proposed sampling algorithm for MHOHMMs with different
Bayesian formulations. Specifically, mixed effects are not
considered for the HOHMM whereas the transition order of
the MHMM is fixed as one. Three commonly used metrics,
including Area Under the Receiver Operating Characteristic
(AUROC) curve, accuracy, and Fl-score, are used to evalu-
ate the classification performance on the testing set.

Using the 5-fold cross-validation, the accuracy of
MHOHMM-based classifiers under different models is pre-
sented in Table 4 in the scenario of d=2. The true model
(Hfr.Ofr), from which the data are generated, is correctly
identified as the optimal one. The same result is achieved in
other scenarios. Next, we train the optimal MHOHMM
(Hfr.Ofr) on the entire training set and evaluate its classifi-
cation performance on the testing set. To have more robust
comparison with models HOHMM and MHMM, we inde-
pendently replicate the classification procedure 15 times on
the same data sets in each scenario. Table 5 summarizes the
mean performance metrics and computation time (in
hours), and the corresponding standard errors (shown in
parentheses) for different values of d. We can see that in all
scenarios, the proposed MHOHMM-based classification
method outperforms the HOHMM and MHMM. This indi-
cates that simultaneously considering mixed effects and
higher-order transition dynamics significantly improves the
sequence classification performance when they exist in the
data. We also observe that the classification performance of
the MHOHMM gradually deteriorates as the number of
groups (d) increases. This is because increasing the number
of groups greatly increases the number of model parameters,
which likely leads to overfitting of the MHOHMMs given
the same amount of data. Moreover, we observe that the
computation time of the MHOHMM-based classifier is not
very sensitive to the number of groups. For a large number
of groups (d > 5), which is often the case when multiple fac-
tors of patients are included, the group effects can be

Table 4. The accuracy of MHOHMM-based classifiers under different mod-
els (d=2).

Fold
Model 1 2 3 4 5 Mean
Hf 0.66 0.56 0.63 0.59 0.59 0.61
Hfr 0.78 0.38 0.72 0.56 0.59 0.61
Hf.Of 0.63 0.56 0.53 0.53 0.59 0.57
Hfr.Of 0.75 0.56 0.81 0.75 0.56 0.69
Hf.Or 0.59 0.69 0.75 0.66 0.75 0.69
Hfr.Or 0.81 0.78 0.72 0.72 0.78 0.76
Hf.Ofr 0.75 0.66 0.72 0.72 0.63 0.69
Hfr.Ofr 0.88 0.75 0.81 0.84 0.88 0.83
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Table 5. Classification performance and computation time of the MHOHMM-,
HOHMM-, and MHMM-based classifiers for different numbers of groups (d).

Model d AUROC Accuracy F1-score Time (hours)
MHOHMM (Hfr.Ofr) 2 0.93 (0.03) 0.89 (0.03) 0.89 (0.02) 2.77 (0.05)
3 0.91(0.05) 0.88 (0.04) 0.89 (0.03) 2.78 (0.05)
4 0.91(0.03) 0.85(0.04) 0.85(0.04) 2.82(0.03)
5 0.89 (0.04) 0.81(0.04) 0.79 (0.04) 2.74 (0.04)
HOHMM 2 0.79 (0.06) 0.72 (0.07) 0.66 (0.12) 2.40 (0.05)
3 0.79 (0.03) 0.67 (0.05) 0.72 (0.04) 2.47 (0.03)
4 0.76 (0.06) 0.65 (0.06) 0.62 (0.11) 2.60 (0.02)
5 0.73(0.06) 0.58 (0.05) 0.67 (0.05) 2.55 (0.05)
MHMM (Hfr.Ofr) 2 0.85(0.05) 0.70 (0.04) 0.76 (0.03) 2.25 (0.07)
3 0.60 (0.05) 0.53(0.03) 0.68 (0.02) 2.26 (0.03)
4 0.70 (0.04) 0.68 (0.04) 0.68 (0.05) 2.28 (0.02)
5 059 (0.15) 0.59 (0.10) 0.66 (0.06) 2.27 (0.01)

Table 6. Sensitivty analysis on gnax in the scenario of two groups (d=2).

Gmax AUROC Accuracy F1-score Time (hours)
5 0.93 (0.03) 0.89 (0.03) 0.89 (0.02) 2.77 (0.05)
7 0.92 (0.03) 0.89 (0.03) 0.88 (0.03) 2.86 (0.03)
9 0.95 (0.03) 0.88 (0.04) 0.88 (0.04) 2.93 (0.02)

clustered due to some correlation among these factors. That
is, patients in the same cluster may share similar health con-
dition evolution. A promising method to address the chal-
lenge brought by a large number of groups is to introduce
additional latent clustering variables of patients’ factors to
the proposed MHOHMM. In summary, simultaneously con-
sidering the impacts of mixed effects and higher-order tran-
sition behaviors in sequential data modeling increases the
computational cost, but it can significantly improve the clas-
sification performance when such impacts exist in the data.
Furthermore, we investigate the impacts of gmax by con-
ducting a sensitivity analysis on this hyperparameter in the
scenario of two groups (d=2). Table 6 shows the classifica-
tion performance and computation time of the MHOHMM-
based classifier for gm. =5,7,9. We can see that the
performance of the proposed MHOHMM-based classifier is
not sensitive to the hyperparameter gmax. This indicates that
by setting a relatively large upper bound on g,, the designed
MHOHMM sampler allows the transition order required to
model the data to be inferred from the posterior samples.

6. Case study: AHE prediction

To demonstrate the practical utility of the proposed
MHOHMM-based predictive framework, we conduct a case
study on AHE prediction using the MIMIC-III database
(Johnson et al., 2016). Acute hypotension (abnormal drop in
blood pressure) is a common critical event that occurs in
ICUs, which may result in irreversible organ damage and
death. Prediction of an AHE is of great importance to the
critical care research community, since timely and effective
clinical intervention is important to reduce these risks. The
commonly used definition of AHE, proposed by the annual
Computing in Cardiology/PhysioNet Challenge in 2009
(Moody and Lehman, 2009), is considered in this case study.
An AHE is specified as a period of 30 minutes or more in
which 90% of the Mean Arterial blood Pressure (MAP)
measurements are below 60 mmHg. Figure 2 presents an

annotated AHE in a patient’s MAP signal (yellow dashed
rectangle).

In this case study, we use the freely accessible MIMIC-III
database (Johnson et al, 2016), which comprises clinical
data of ICU patients admitted to the Beth Israel Deaconess
Medical Center between 2001 and 2012. Specifically, we use
the numerical recordings from the MIMIC-III Waveform
Database Matched Subset (PhysioNet, 2020), in which the
clinical information of the corresponding patient is matched
and available in the MIMIC-III Clinical Database
(PhysioNet, 2016). The MIMIC-III Waveform Database
Matched Subset contains 22,247 numerical recordings for
10,282 ICU patients. These recordings include a variety of
vital sign measurements, such as MAP and heart rate, which
are collected with per-minute frequency. Recordings are
organized according to patients’ ID and are divided into 10
directories, namely, p00-p09. In our experiments, we only
use the recordings that contain at least 10-hour MAP meas-
urements in the first three directories (i.e., p00-p02).

Before extracting samples for analysis, we first preprocess
the raw data. For each recording, erroneous measurements
are identified if the values are outside the range 40-
160 mmHg (Chan et al, 2020), or are detected as outliers
using the median-pass filtering method (Cao et al., 2005).
The identified erroneous data points are considered as miss-
ing values. To address missing data points, we use the for-
ward-imputation method (Che et al., 2018) to replace these
data points with the last valid measurement. As a means of
prediction quality assurance, recordings with consecutive
missing values over a long period or more than 10% missing
values are excluded in this analysis.

To train the binary prediction classifier of whether an
AHE will occur, both positive and negative samples need to
be defined and extracted. The data used to make such a pre-
diction are called an observation window. A positive sample
(AHE) is defined as an observation window in which an
AHE occurs at the end of the window. We set the observa-
tion window size (T) to be 120 minutes and illustrate an
example of the positive sample in Figure 2. A negative sam-
ple (Non-AHE) is defined as a 120-minute observation win-
dow with no future AHE development, which is randomly
selected from patients who do not have any AHEs in their
recordings. Note that extracted samples in each class are
from different patients. Furthermore, we normalize each
extracted sample (120 measurements) and smooth the data
by computing the average value every three measurements,
and use these values for MHOHMM training.

In this case study, we are interested in investigating the
impacts of two common and important factors, i.e., age and
gender, on AHE prediction. We consider only adult patients
and categorize the patients into four groups, ie., young
male, young female, elderly male, and elderly female. The
threshold for defining the age group is 65, which is deter-
mined based on the median age of all adult patients and dis-
cussions with medical experts. Finally, 904 samples extracted
from recordings in directories p00-p02 are included in this
study. There are 272 AHE samples (52 young males, 47
young females, 94 elderly males, and 79 elderly females) and
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Figure 2. An example of the AHE sample (120-min observation window).

Table 7. Classification performance comparison on the testing set in the case
study.

Model AUROC Accuracy F1-score

MHOHMM (Hfr) ~ 0.83 (0.82-0.85)  0.76 (0.75-0.78)  0.74 (0.73-0.76)
HOHMM 0.76 (0.73-0.79) 0.67 (0.65-0.70) 0.66 (0.63-0.70)
MHMM (Hfr) 0.81 (0.79-0.83) 0.70 (0.67-0.72) 0.66 (0.61-0.71)

Notes: The model in bold provides the best performance.

632 Non-AHE samples (199 young males, 128 young
females, 185 elderly males, and 120 elderly females). To
build MHOHMM-based classifiers, we separately train two
MHOHMMs for the AHE (s=1) and Non-AHE (s=2)
classes. For each class, we randomly select 80 samples for
training (20 samples in each group) and randomly select
another 20 AHE samples for testing (five samples in each
group).

The 5-fold cross-validation identifies model (Hfr) as the
best performing one. This implies that age and gender affect
the AHE progression dynamics and there exists patient-to-
patient variability in their health state evolution. We further
compare the classification performance of the optimal
MHOHMM with that of the baseline models HOHMM and
MHMM. Table 7 summarizes the performance of these three
classifiers on the testing set. The mean values and the corre-
sponding 95% Cls are reported based on 30 independent
classification experiments. We can see that the MHOHMM
(Hfr) outperforms the HOHMM and MHMM, indicating
that considering the effects of patients’ age, gender, and het-
erogeneity and the effect of higher-order transition dynamics
significantly improves the AHE prediction performance. We
also observe that the MHMM has better prediction results
than the HOHMM. Our conjecture is that identification of
the data structure plays a more important role than consid-
ering higher-order transition behaviors in AHE prediction.
To further explore the clinical insights from the learned
MHOHMMs, we attempt to summarize the inference results
of several critical parameters. Supplemental Materials pre-
sent the parameter inference results for one replicate of the
experiment, which also indicate the the necessity of incorpo-
rating the effects of patient’s age and gender for blood

pressure modeling and AHE prediction. Note that the model
performance in this case study is not as good as that in the
simulation experiments. This is because the real-world clin-
ical data typically contain a variety of noises, which cannot
be fully addressed in the data preprocessing step, and there-
fore, the model performance is often impacted by the quality
of the data.

7. Conclusions

In this article, we develop a novel framework based on the
Bayesian MHOHMM to predict patients’ future events using
the EHR data. The MHOHMM incorporates the mixed
effects of some critical factors and patient-level heterogeneity
in both the hidden and observed processes, and considers
higher-order transition dynamics. Constructing the
MHOHMM in a Bayesian hierarchical formulation, we
design a two-stage MCMC sampling algorithm for model
inference and a decoding algorithm for clinical events pre-
diction. A simulation study is conducted to evaluate the per-
formance of the proposed sampling algorithm and the
MHOHMM-based classification method. Several models are
designed to examine the impacts of mixed effects on param-
eter estimation and sequence classification. The optimal
MHOHMM that provides the highest classification accuracy
is identified by using the k-fold cross-validation method and
is then used to train the final classifier. We benchmark the
optimal MHOHMM with two baseline models HOHMM
and MHMM. The results show that considering the impacts
of mixed effects and higher-order transition dynamics sig-
nificantly improves prediction performance when such
impacts are present in the data. Furthermore, we conduct a
case study on AHE prediction using the MIMIC-III database
to demonstrate the practical utility and the advantage of the
proposed prediction framework. One challenge of applying
the probabilistic generative models in clinical events predic-
tion problems is to ensure the inferred parameters reflect
the disease progression, which may require to incorporate
several factors, leading to significant computational
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difficulties. In the future, we are interested in exploring dif-
ferent inference techniques to make the proposed
MHOHMM more computationally efficient and suitable for
large-scale problems, for example, variational inference
(Zhang et al., 2018), which approximates high-dimensional
Bayesian posterior distributions with a simple variational
distribution by solving an optimization problem, and
sequential Monte Carlo, which is also effective to address
high-dimensional issues and can be extended to allow high-
order transitions.
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