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ABSTRACT 
The disease progression dynamics observed in electronic health records often reflect patients’ 
health condition evolution, holding the promise of enabling the development of clinical predictive 
models. These dynamics, however, generally display significant variability among patients, due to 
some critical factors (e.g., gender and age) and patient-level heterogeneity. Moreover, future health 
state may not only depend on the current state, but also more distant history states due to the 
complicated disease progression. To capture this complex transition behavior and address mixed 
effects in clinical prediction problems, we propose a novel and flexible Bayesian Mixed-Effect 
Higher-Order Hidden Markov Model (MHOHMM), and develop a classifier based on MHOHMMs. A 
range of MHOHMMs are designed to capture different data structures and the optimal one is iden-
tified by using the k-fold cross-validation approach. An effective two-stage Markov chain Monte 
Carlo (MCMC) sampling algorithm is designed for model inference. A simulation study is conducted 
to evaluate the performance of the proposed sampling algorithm and the MHOHMM-based classifi-
cation method. The practical utility of the proposed framework is demonstrated by a case study on 
the acute hypotensive episode prediction for intensive care unit patients. Our results show that the 
MHOHMM-based framework provides good prediction performance.
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1. Introduction

The rapid growth in the development of healthcare informa-
tion systems has led to an increasing interest in using the 
patients’ Electronic Health Records (EHRs) for clinical pre-
diction research (Jensen et al., 2012; Miotto et al., 2016; 
Rajkomar et al., 2018). In particular, the temporal nature of 
EHRs can potentially enable the development of predictive 
models, which offer great promise for making informed 
clinical decisions and improving healthcare quality (Zhou 
and Hripcsak, 2007). Among available EHRs, physiological 
signals have been widely used in clinical prediction tasks, as 
the disease progression dynamics in these signals often 
reflect the evolution of patients’ health conditions and can 
thus provide significant predictive information (Xue et al., 
2019). However, the health evolution patterns generally 
show significant variability among patients, due to some 
critical factors (e.g., gender and age) and patient-level het-
erogeneity. For example, there exist gender differences in 
the trajectory of recovery among young patients with acute 
myocardial infarction and such differences persist through-
out the entire year after discharge (Dreyer et al., 2015). 
Ignoring these effects may lead to inaccurate prediction 
results and in addition result in inferior treatments. 

Moreover, patients’ health trajectories inherently have long- 
term temporal dependencies and their future outcomes may 
critically depend on historical health conditions, especially 
for chronic diseases such as diabetes and cancer (Pham 
et al., 2017). Therefore, models that can capture this history- 
dependent transition behavior and describe the mixed effects 
of critical factors and heterogeneity are of great clinical 
importance.

Many regression-based approaches have been developed 
for the modeling of health trajectories, including Bayesian 
mixed-effects models (McNeish and Matta, 2018) and the 
collaborative modeling approach (Lin et al., 2017). However, 
these models typically focus on the observed trajectories/sig-
nals and cannot capture the hidden state transition dynam-
ics that often contain significant predictive information on 
patients’ future outcomes. The Hidden Markov Model 
(HMM) approach is also a powerful statistical tool to ana-
lyze sequential data, and has been widely used for prediction 
tasks in healthcare (Singh et al., 2010; Song et al., 2015; 
Forkan and Khalil, 2017; Ghosh et al., 2017; Marchuk et al., 
2018; Sotoodeh and Ho, 2019). The HMM characterizes 
doubly stochastic processes, namely, the observed and hid-
den processes, and has the ability to infer hidden states 
from observed data.The HMM-based prediction methods 
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directly focus on the data-generating process, excluding the 
need for feature extraction or distance calculation as 
required in other time series classifiers (Wang et al., 2022). 
The prediction is performed based on the disease progres-
sion dynamics learned from the HMMs. For example, 
Forkan and Khalil (2017) use six physiological signals to 
train HMMs for some defined clinical events and develop 
an HMM-based predictive method to detect future abnormal 
events for continuously monitored patients. These works, 
however, ignore the varying patterns that may exist in 
physiological signals due to the mixed effects of some crit-
ical factors and patient-level heterogeneity. To address this 
problem, Mixed-effect HMMs (MHMMs) are developed to 
simultaneously model multiple processes and capture the 
differences among these processes. Attempting to provide a 
general framework for multiple processes modeling, Altman 
(2007) uses Generalized Linear Mixed Models (GLMMs) to 
include covariates and random effects in both hidden and 
observed processes. In Altman’s work, conditioning on the 
random effects and hidden states, the observations are inde-
pendent and assumed to follow a distribution within the 
exponential family. For the hidden process, each transition 
probability is modeled by a multinominal logit link function 
to incorporate mixed effects, in which the random effects 
are assumed to be state-dependent.

The MHMM proposed by Altman has two major limita-
tions. First, the MHMM typically uses likelihood-based 
methods to estimate model parameters, which brings signifi-
cant difficulties of marginalizing out the random effects in 
likelihood computation. As the number of random effects 
increases, the MHMM may become computationally intract-
able. The simulation study and the real data application in 
Altman’s paper (Altman, 2007) are limited to two hidden 
states and two random effects. There are several attempts to 
address the computational issues arising in parameter esti-
mation by making restrictive assumptions (Maruotti and 
Rocci, 2012; Jackson et al., 2015; DeRuiter et al., 2017). 
Jackson et al. (2015) consider a two-state MHMM with one 
shared random effect in observed and hidden processes. 
Maruotti and Rocci (2012) and DeRuiter et al. (2017) 
assume that the random effect follows a discrete distribution 
instead of a continuous one for computational tractability. 
Recently, Sarkar et al. (2018) develop a novel, alternative 
approach to model mixed effects in the context of Markov 
models. They use a convex combination form to model fac-
tor-dependent and subject-specific transition probability vec-
tors. By assuming Dirichlet-distributed random effects, 
Sarkar et al. (2018) propose a Bayesian hierarchical formula-
tion and design efficient Markov Chain Monte Carlo 
(MCMC) sampling algorithms for model inference. 
Modeling mixed effects directly on the scale of probability 
vectors helps avoid choosing link functions, which substan-
tially decreases computational complexity. Second, existing 
MHMM models have overlooked the fact that higher-order 
transition behaviors commonly exist in complex transition 
dynamics such as chronic diseases progression. However, 
modeling higher-order transition behaviors directly in the 

MHMM is computationally intractable not only because it 
greatly increases the computational complexity by introduc-
ing a large number of parameters, but also because it leads 
to a new challenge of inferring the transition order from the 
observed data. On the other hand, the Higher-Order HMM 
(HOHMM) (Sarkar and Dunson, 2018) allows higher-order 
transition behaviors in which the transition order can be 
determined by the inference algorithms, but it cannot cap-
ture the variability among different trajectories due to mixed 
effects.

To fill the gap, we develop a general, flexible Bayesian 
Mixed-effect HOHMM (MHOHMM) to describe complex 
disease progression with higher-order transition behaviors 
and mixed effects. Specifically, we combine the strengths of 
the HOHMM in Sarkar and Dunson (2018) and the mixed 
effects modeling approach in Sarkar et al. (2018), and model 
the transition probability vector as a convex combination of 
a factor-dependent fixed effect and a patient-specific random 
effect. For the observed process, we use the GLMMs to 
incorporate the mixed effects. By having different combina-
tions of fixed and/or random effects in the hidden and/or 
observed processes, we can have a range of MHOHMMs to 
capture different temporal structures. There are many strat-
egies for statistical inference on HMMs, including the 
sequential Monte Carlo, also known as particle filters 
(Fearnhead and Clifford, 2003; Kantas et al., 2009; Chan 
and Lai, 2013), and dynamic message passing (Rabiner, 
1989; Johnson and Willsky, 2013). However, these methods 
assume a restrictive first-order Markovian assumption on 
the models and thus cannot be directly applied to 
MHOHMM inference. Inspired by the two-stage method 
proposed for HOHMM inference in Sarkar and Dunson 
(2018), we similarly design a two-stage MCMC sampling 
algorithm to address the inferential challenges for 
MHOHMMs that are caused by considering mixed effects 
and higher-order transition dynamics. This Bayesian infer-
ence technique offers several benefits, including (i) the abil-
ity to infer the true transition order from observed data and 
(ii) accommodating unknown state space by using an infin-
ite dimensional Dirichlet process prior in the hidden pro-
cess. Based on the Bayesian MHOHMM, we develop a 
framework to predict patients’ future events of interest. A 
simulation study is conducted to evaluate the performance 
of the proposed sampling algorithm and the MHOHMM- 
based classification method. We investigate the impacts of 
mixed effects on parameter estimation by comparing the 
estimates under different models. The optimal MHOHMM 
that achieves the best classification performance is identified 
by using the k-fold cross-validation method. We benchmark 
the optimal MHOHMM with two baseline models HOHMM 
and MHMM. Our results show that considering mixed 
effects and higher-order transition behaviors leads to better 
classification performance. The utility of the proposed 
MHOHMM-based framework is further demonstrated by 
predicting Acute Hypotensive Episodes (AHEs) in Intensive 
Care Units (ICUs) using the MIMIC-III (Medical 
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Information Mart for Intensive Care) database (Johnson 
et al., 2016).

The main contributions of this article are two-fold:

1. Development of a novel and flexible MHOHMM to cap-
ture the complex disease progression dynamics in patients’ 
physiological signals. The proposed MHOHMM considers 
higher-order transition dynamics and mixed effects and 
includes the HOHMM and MHMM as two special cases.

2. Design of effective MCMC sampling algorithms for 
MHOHMM inference and MHOHMM-based classifica-
tion. The simulation study shows that considering the 
impacts of mixed effects and higher-order transition 
behaviors in sequential data modeling significantly 
improves the classification performance when such 
impacts exist in the data. The case study on AHE pre-
diction demonstrates the practical utility and the advan-
tage of the proposed prediction framework.

The remainder of this article is organized as follows. 
Section 2 provides preliminaries on the HOHMM. In Section 3, 
we develop the MHOHMM by incorporating mixed effects in 
both hidden and observed processes. Section 4 constructs the 
MHOHMM in a Bayesian hierarchical formulation, designs a 
two-stage MCMC sampling algorithm for model inference, 
and presents the MHOHMM-based classification framework. 
A simulation study is conducted in Section 5 to evaluate the 
performance of the proposed sampling algorithm and the 
performance of the MHOHMM-based classifier. In Section 6, 
we demonstrate the proposed prediction framework with a 
case study on AHE prediction in ICUs. Section 7 outlines the 
concluding remarks and future works.

2. Preliminaries on the HOHMM

The basic HMM consists of two stochastic processes: a hid-
den process fctgT

tà1 and a potentially multivariate observed 
process fytg

T
tà1: The hidden state space is assumed to be 

discrete and finite, denoted by C à f1, :::, Cg: The hidden 
process is governed by a first-order Markov chain and the 
observation yt follows a specific emission distribution, 
depending only on the current state,

pÖctjc1, :::, ct−1Ü à p ctjct−1Ö Ü, (1) 

pÖytjc1, :::, ct , y1, :::, yt−1Ü à pÖytjctÜ: (2) 

To allow more distant history-dependence, the HOHMM 
(Sarkar and Dunson, 2018; Liao et al., 2020; Liao et al., 
2021) relaxes the restrictive first-order Markovian assump-
tion of the HMM. An HOHMM of true maximal order q 
has the following conditional independence assumption in 
the hidden process,

pÖctjc1, :::, ct−1Ü à p ctjcÖt−qÜ:Öt−1Ü
� �

: (3) 

Note that an HOHMM is said to be of true maximal 
order q if the distribution of ct depends on a subset of 
fct−1, :::, ct−qg and this subset includes ct−q: Allowing higher- 
order dependence leads to significant dimensionality chal-
lenge as the transition probabilities pÖctjcÖt−qÜ:Öt−1ÜÜ are now 

indexed by Cq different possible combinations of the lags 
cÖt−qÜ:Öt−1Ü: To address this problem, Sarkar and Dunson 
(2018) introduce latent allocation variables fzj, tgq, T

jà1, tàqá1 to 
reduce the total number of parameters required to model the 
transition probabilities. The basic idea is to cluster the pos-
sible states of ct−j that have similar effects on the distribution 
of ct, for each lag j à 1, :::, q: The latent variable zj, t , taking 
values from f1, :::, kjg (1  kj  C), is the respective latent 
class into which a particular state of ct−j is allocated. Based 
on the allocation variables zj, t ’s, the hidden states ct’s are con-
ditionally independent. For example, in a second-order HMM 
(qà 2) as illustrated in Figure 1, the distribution of ct 
depends on the values of z1, t and z2, t instead of directly 
depending on ct−1 and ct−2, in which z1, t and z2, t are the 
latent classes into which ct−1 and ct−2 are allocated, respect-
ively. The total number of the latent classes kj is then an 
important lag indicator, determining the inclusion of the jth 
lag ct−j for modeling the distribution of ct. Specifically, if kj à
1, all possible states of ct−j are clustered together and the dis-
tribution of ct does not vary with the states of ct−j, but if 
kj > 1, the jth lag ct−j is identified as important. These clus-
tering behaviors are captured by a probabilistic model (i.e., 
soft allocation). Specifically, pjÖhjjct−jÜ denotes the probability 
that the jth lag ct−j is allocated into the latent class hj, that is, 
pjÖhjjct−jÜ¢pÖzj, t à hjjct−jÜ, where ct−j 2 f1, :::, Cg, hj 2
f1, :::, kjg, and j à 1, :::, q: Given the q allocated classes 
Öh1, :::, hqÜ, the transition probability is denoted by 
kÖctjh1, :::, hqÜ: Thus, the transition behaviors in a q-order 
HMM can be structured by the following hierarchical formu-
lation,

Özj, tjct−jÜ ⇠ MultÖf1, :::, kjg, pjÖ1jct−jÜ, :::, pjÖkjjct−jÜÜ, (4) 

Öctjzj, t à hj, j à 1, :::, qÜ ⇠ MultÖf1, :::, Cg,
kÖ1jh1, :::, hqÜ, :::, kÖCjh1, :::, hqÜÜ:

(5) 

In such a factorization, the number of parameters is 
reduced to ÖC − 1Ü

Qq
jà1 kj á C

Pq
jà1Ökj − 1Ü, which is much 

smaller than ÖC − 1ÜCq if 
Qq

jà1 kj ⌧ Cq: Marginalizing out 
the variables zj, t ’s, the transition probability can be written as

pÖctjcÖt−qÜ:Öt−1ÜÜ à
Xk1

h1à1
� � �
Xkq

hqà1
kÖctjh1, :::, hqÜ

Yq

jà1
pjÖhjjct−jÜ:

(6) 
Let f ÖytjhctÜ à pÖytjct , hÜ represent the generic form of 

the emission distribution, where h à fhcgc2C: Given model 
parameters Ök, p, k, hÜ, the joint distribution of the observa-
tion sequence y à fytg

T
tà1, the hidden state sequence c à

fctgT
tàqá1, and latent allocation variables z à fzj, tgq, T

jà1, tàqá1 
has the following factorization,

pÖy, c, zjk, p, k, hÜ à
YT

tàqá1
kÖctjz1, t , :::, zq, tÜ

Yq

jà1
pjÖzj, tjct−jÜ

8
<

:

9
=

;

YT

tà1
f ÖytjhctÜ:

(7) 
The conditional independence relationships encoded in 

this factorization are used in designing MCMC algorithms 
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to draw samples from the posteriors Sarkar and Dunson 
(2018).

3. The MHOHMM

In this section, we develop the Bayesian MHOHMM where 
the transition probability vector is modeled as a convex 
combination of a factor-dependent fixed effect and a 
patient-specific random effect in the hidden process. In the 
observed process, the mean parameters of emission distribu-
tions are modeled by using the GLMMs. Different 
MHOHMMs are designed based on whether the fixed and/ 
or random effects are included in hidden and/or observed 
processes.

3.1. Model for the hidden process

We first incorporate mixed effects in the hidden process. 
Consider a collection of observed physiological signals 
fya

t g
Ta , N
tà1, aà1 from a total of N patients, where Ta is the signal 

length for patient a. Let ca
t 2 C à f1, :::, Cg, represent the 

hidden state associated with patient a at time t.
The hidden state transition dynamics are often influenced 

by some factors and have patient-level heterogeneity. In 
clinical practices, categorical and time-invariant factors such 
as gender and age are generally considered as predictors. All 
patients can be grouped based on the corresponding com-
bination of the considered factors. We use X à f1, :::, dg to 
represent the group set where d is the total number of 
groups. The group for patient a is denoted by Xa 2 X : It is 
important to note that the true transition order may be 
dependent on the factors. We thus use qx to denote the 
transition order for group x, and qx is shared among 
patients in group x, x 2 X : To reduce the number of param-
eters in transition probabilities, we use latent allocation vari-
ables. Let za

j, t , j à 1, :::, qx and t à qx á 1, :::, Ta, denote the 
latent class into which a particular state ca

t−j is allocated. The 
allocation variable za

j, t takes values from f1, :::, kjg and kj 
(1  kj  C) is the important lag indicator of the jth lag. 
For group x, all important lag indicators are denoted 
by kx à fkjgqx

jà1:

Borrowing the idea in Sarkar et al. (2018) that uses a 
convex combination form to incorporate mixed effects, we 
introduce a group-level baseline probability kernel kx and a 
Dirichlet-distributed random effect kÖaÜ, and model the hid-
den state transition dynamics of the MHOHMM using the 
following hierarchical formulation,

Öca
t jXa à x, za

j, t à hj, j à 1, :::, qxÜ ⇠ MultÖf1, :::, Cg,

PÖaÜÖ1jhxÜ, :::, PÖaÜÖCjhxÜÜ,
(8) 

Öza
j, tjXa à x, ca

t−jÜ ⇠ MultÖf1, :::, kjg, pj
xÖ1jca

t−jÜ, :::, pj
xÖkjjca

t−jÜÜ,
(9) 

where

PÖaÜÖ�jhxÜ à x1
xkxÖ�jhxÜ á x0

xk
ÖaÜÖ�jhxÜ, (10) 

kÖaÜÖ�jhxÜ ⇠ Dirfa0
xk

0
xÖ1Ü, :::, a0

xk
0
xÖCÜg, 8hx, (11) 

and hx represents the history information Öh1, :::, hqxÜ, 
which is the combination of the latent allocation classes. 
The allocation probabilities px à fpj

xÖhjjcÜ : hj à 1, :::, kj, j à
1, :::, qx, c 2 Cg are assumed to be the same for all patients 
in group x. Parameters px characterize the clustering behav-
iors of the history states for future state transitions. 
Equation (10) models the patient-specific probability kernel 
PÖaÜ as a convex combination of the baseline kernel kx and 
the random effect kÖaÜ, with weights x1

x and x0
x à 1 − x1

x, 
respectively. The baseline component kx is common to all 
patients in group x, providing a type of fixed-effect term. 
The random effect kÖaÜÖ�jhxÜ is assumed to follow a Dirichlet 
distribution having the mean k0

x à fk
0
xÖ1Ü, :::, k

0
xÖCÜg, and k0

x 
is independent of the history hx: The parameter k0

x can be 
interpreted as the state prevalence probabilities in group x 
regardless of the history states. This formulation allows 
information to be better shared among different history- 
dependent transition distributions in each group, leading to 
improved performance and less computational complexity 
comparing to the model with an independent distribution 
for each history hx: The weight x0

x quantifies the amount of 
patient-level heterogeneity in group x. The convex structure 
in transition probabilities facilitates computation in model 
inference and improves model interpretability. Marginalizing 

Figure 1. Illustration of a second-order HMM.
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out the allocation variables, the patient-specific transition 
probability is given by

pÖca
t jca
Öt−qxÜ:Öt−1ÜÜ à

Xk1

h1à1
� � �
Xkqx

hqxà1
PÖaÜÖca

t jhxÜ
Yqx

jà1
pj

xÖhjjca
t−jÜ,

(12) 
where 1  kj  C for all j à 1, :::, qx:

3.2. Model for the observed process

Next, we model mixed effects in the observed process. In 
clinical practices, multiple physiological signals are typically 
monitored simultaneously to evaluate the health conditions 
of patients. With large amounts of measurements, it is rea-
sonable to assume that the measurement at each time point 
follows a multivariate normal distribution given a hidden 
state. Given the hidden state associated with patient a at 
time t (say ca

t à c), the observation ya
t is assumed to follow 

a multivariate normal distribution,

Öya
t jca

t à c, Xa à xÜ ⇠ N Ölc á bxá lÖaÜ, RcÜ, (13) 

lÖaÜ ⇠ N Ö0, RrÜ, (14) 

where c 2 C and x 2 X : Given hidden state c, parameters lc 
and Rc are the same for all patients, providing the baseline 
emission distribution. These state-specific parameters 
Ölc, RcÜ capture the relationships between the observed 
measurements and the corresponding hidden states. The 
second term bx plays a role of fixed effects and models how 
the mean measurement is varied with the factors. The third 
term lÖaÜ captures the random effect in the observed pro-
cess. The random effect lÖaÜ is assumed to follow a multi-
variate normal distribution having zero mean and 
covariance Rr for all patients. We assume that the coefficient 
b and the distribution N Ö0, RrÜ are independent of the hid-
den state.

4. MHOHMM inference and MHOHMM-based 
classifier

The MHOHMM inference is computationally challenging, 
due to the incorporation of mixed effects and higher-order 
transition dynamics. Allowing higher-order dependence 
leads to a significant dimensionality challenge as the transi-
tion distributions depend on different possible combinations 
of the history states. Given state space size C and transition 
order qx, the total number of parameters in transition distri-
butions is ÖC − 1ÜCqx for group x. Latent allocation variables 
of the history states are introduced to address this dimen-
sionality challenge. Although the latent allocation variable 
substantially reduces the total number of parameters 
required to model the transition probabilities, it introduces 
new challenges. The numbers of latent allocation classes 
(kx à fkjgqx

jà1) are unknown but control the model size— 
varying values of kx result in varying dimensional models. It 
is thus difficult to adapt conventional strategies (e.g., 
dynamic message passing and sequential Monte Carlo 

algorithms used for first-order HMM inference) to infer kx:
Even if kx are known, these algorithms cannot be straight-
forwardly adapted to higher-order setting due to prohibitive 
computational difficulties. Inspired by the two-stage method 
proposed for HOHMM inference in Sarkar and Dunson 
(2018), we similarly design a two-stage MCMC sampling 
algorithm to address the challenges in MHOHMM infer-
ence. Specifically, the first stage determines the values of kx 
by using a stochastic search variable selection method 
(George and McCulloch, 1997) to sample kx based on an 
approximated version of the MHOHMM that forces hard 
allocation and ignores random effects in the hidden process. 
In the second stage, we sample other model parameters 
from the corresponding posteriors given the inferred values 
of kx: Furthermore, incorporating mixed effects introduces 
additional parameters in both processes. In the designed 
MHOHMM sampler, we assign appropriate priors to these 
parameters and derive the corresponding conditionals for 
efficient posterior sampling. The supplemental materials 
provide the computational details of this two-stage 
MHOHMM sampler.

4.1. Joint distribution factorization

To facilitate posterior computation, an auxiliary variable 
wa

t 2 f0, 1g is introduced for each state ca
t , t à qx á 1, :::, Ta:

We rewrite (8) as follows,

Öca
t jXa à x, za

j, t à hj, j à 1, :::, qx, wa
t Ü

⇠ MultÖf1, :::, Cg, kxÖ1jhxÜ, :::, kxÖCjhxÜ if wa
t à 1,

MultÖf1, :::, Cg, kÖaÜÖ1jhxÜ, :::, kÖaÜÖCjhxÜ if wa
t à 0,

(

(15) 

wa
t ⇠ MultÖf0, 1g, x0

x, x1
xÜ: (16) 

Let f à fÖkx , kx , a0
x , k0

x , px , xxÜx2X , l, b, R, Rrg represent the 
model parameters, where xx à fx0

x, x1
xg and l à

flcgc2C, R à fRcgc2C: Given model parameters f, for patient 
a in group x, the joint distribution of the observed data 
ya à fya

t g
Ta
tà1, hidden states ca à fca

t g
Ta
tàqxá1, latent allocation 

variables za à fza
j, tg

qx , Ta
jà1, tàqxá1, auxiliary variables wa à

fwa
t g

Ta
tàqxá1, and random effects kÖaÜ and lÖaÜ has the follow-

ing factorization,

La¢ pÖya, ca, za, wa, kÖaÜ, lÖaÜjfÜ
à pÖyajca, b, l, R, lÖaÜÜpÖcajza, kx, kÖaÜ, waÜ

pÖzajda, pxÜpÖwajxxÜpÖkÖaÜjk0
x, a0

xÜpÖlÖaÜjRrÜ,
(17) 

where da à fda
j, tg

qx , Ta
jà1, tàqxá1 and da

j, t à ca
t−j, representing the 

history state. Suppose we have one observed sequence from 
each patient. Assuming that these sequences are independ-
ent, the joint distribution of all sequences is L à

QN
aà1 La:
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4.2. Prior assignments

In the hidden process, we assign independent priors on the 
allocation probabilities for the jth lag in group x as

pj
xÖ�jcÜ à pj

xÖ1jcÜ, :::, pj
xÖkjjcÜ

n o
⇠ DirÖcj, :::, cjÜ, (18) 

for all (j, c, x) where j à 1, :::, qx, c 2 C, and x 2 X : The 
dimension of pj

x varies with the number of clusters (kj) for 
each lag j. The values of kj’s are determined in the first stage 
based on the posterior samples drawn from the sampling 
algorithm. For each group x, independent priors are 
assigned on kj’s,

pxÖkjÜ / exp Ö−ujkjÜ, (19) 

where kj à 1, :::, C, j à 1, :::, qx, and u > 0: The convex struc-
ture in Equation (10) is interpreted as a two-component mix-
ture of a baseline component kx and a random-effect 
component kÖaÜ ⇠ Dirfa0

xk
0
xÖ1Ü, :::, a0

xk
0
xÖCÜg: To capture the 

overall state prevalence in group x, we assume that the prior 
for kx is also centered around the mean k0

x: Therefore, condi-
tionally conjugate priors for kxÖ�jhxÜ are specified as

kxÖ�jhxÜ ⇠ Dirfa1
xk

0
xÖ1Ü, :::, a1

xk
0
xÖCÜg, 8hx: (20) 

Furthermore, some states in C may be more preferred to 
others among all groups, which is described by k00 à
fk00Ö1Ü, :::, k00ÖCÜg: We assign a hierarchical Dirichlet prior 
on k0

x à fk
0
xÖ1Ü, :::, k

0
xÖCÜg as

k0
x ⇠ Dirfa00k00Ö1Ü, :::, a00k00ÖCÜg, 8x 2 X , (21) 

k00 à fk00Ö1Ü, :::, k00ÖCÜg ⇠ Dirf1=C, :::, 1=Cg: (22) 

Finally, we assign a conditionally conjugate beta prior on 
weight x1

x, and gamma priors on (hyper)parameters a0
x and 

a1
x for all x 2 X ,
x1

x ⇠ BetaÖa, bÜ, a0
x ⇠ GaÖa0, b0Ü, a1

x ⇠ GaÖa1, b1Ü: (23) 

In the observed process, we assign conditionally conju-
gate multivariate normal priors on the mean parameters 
(lc, b) and inverse-Wishart priors on the covariance matri-
ces (Rc, Rr) as
Ölc, RcÜ ⇠ N Öl0, Rc=n0Ü ⇥W−1ÖW0, ⌫0Ü, 8c 2 C, (24) 

b ⇠ N Ölf , Rf Ü, Rr ⇠W−1ÖWr, ⌫rÜ, (25) 

where W−1ÖW, ⌫Ü denotes the inverse-Wishart distribution 
with scale matrix W and degrees of freedom ⌫. As a special 
case, the univariate distribution with mixed effects is given 
as

Öya
t jca

t à c, Xa à xÜ ⇠ NÖlc á bxá lÖaÜ, r2
c Ü, (26) 

lÖaÜ ⇠ NÖ0, r2
r Ü, (27) 

and the corresponding prior distributions of the parameters 
are assigned as follows,

Ölc, r2
c Ü ⇠ NÖl0, r2

0Ü ⇥ Inv� GaÖj0, b0Ü,8c 2 C, (28) 

b ⇠ NÖlf , r2
f Ü, r2

r ⇠ Inv � GaÖjr, brÜ: (29) 

The complete Bayesian hierarchical formulation of the 
MHOHMM is then summarized as

Öca
t jXa à x, za

j, t à hj, j à 1, :::, qx, wa
t Ü

⇠ MultÖf1, :::, Cg, kxÖ1jhxÜ, :::, kxÖCjhxÜ if wa
t à 1,

MultÖf1, :::, Cg, kÖaÜÖ1jhxÜ, :::, kÖaÜÖCjhxÜ if wa
t à 0,

(

wa
t ⇠ MultÖf0, 1g, x0

x, x1
xÜ, x1

x ⇠ BetaÖa, bÜ,   

Öza
j, tjXa à x, ca

t−jÜ ⇠ MultÖf1, :::, kjg, pj
xÖ1jca

t−jÜ, :::, pj
xÖkjjca

t−jÜÜ,   

pj
xÖ�jcÜ à fpj

xÖ1jcÜ, :::, pj
xÖkjjcÜg ⇠ DirÖcj, :::, cjÜ,   

kÖaÜÖ�jhxÜ ⇠ Dirfa0
xk

0
xÖ1Ü, :::, a0

xk
0
xÖCÜg, a0

x ⇠ GaÖa0, b0Ü,   

kxÖ�jhxÜ ⇠ Dirfa1
xk

0
xÖ1Ü, :::, a1

xk
0
xÖCÜg, a1

x ⇠ GaÖa1, b1Ü,   

k0
x à fk

0
xÖ1Ü, :::, k

0
xÖCÜg ⇠ Dirfa00k00Ö1Ü, :::, a00k00ÖCÜg,   

k00 à fk00Ö1Ü, :::, k00ÖCÜg ⇠ Dirf1=C, :::, 1=Cg,   

Öya
t jca

t à c, Xa à xÜ ⇠ N Ölc á bxá lÖaÜ, RcÜ, lÖaÜ ⇠ N Ö0, RrÜ,   

Ölc, RcÜ ⇠ N Öl0, Rc=n0Ü ⇥W−1ÖW0, ⌫0Ü, b ⇠ N Ölf , Rf Ü,   

Rr ⇠W−1ÖWr , ⌫rÜ:

In this MHOHMM, the mixed effects are included in 
both processes. The model can be easily tailored to handle 
different structures. For example, if a random effect is not 
included in the hidden process, the variables kÖaÜ, wÖaÜ, xx 
and corresponding priors are removed and all patients in 
group x have the common transition parameters kx, i.e., 
PÖaÜ à kx for all Xa à x.

4.3. Posterior computation

We exploit the conditional independence relationships 
encoded in L to develop a two-stage MCMC sampling algo-
rithm for MHOHMM inference by drawing samples from 
posteriors. In the proposed MCMC sampler, the first stage 
determines the number of latent classes (kx, x 2 X) that the 
hidden state at each lag can be allocated into in a coarser 
version of the proposed model. Given determined values of 
kx, we draw posterior samples of other parameters in the 
second stage.

In the first stage, we sample kx à fkjgqx
jà1 in an approxi-

mated version of the proposed model. The transition order 
(qx) is generally unknown, so we set a relatively large upper 
bound on qx for all group x (denoted by qmax) in the 
designed sampling algorithm to infer the transition order 
from the posterior. For example, suppose we set qmax à 5 
and the derived posterior mode of kx à Ök1, :::, kqmaxÜ is 
Ö3, 1, 2, 1, 1Ü: The inferred transition order is three because 
k1 > 1 and k3 > 1 imply that the first and third lags are 
identified as being important for hidden state transitions. 
We will investigate the impacts of qmax by conducting a sen-
sitivity analysis on this hyperparameter in the simulation 
study. The approximated model forces hard allocation of the 
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history states and ignores random effects in the hidden pro-
cess. Hard allocation means that, for the jth lag of ca

t , each 
possible state of ca

t−j is allocated into one class with probabil-
ity 1. In soft allocation of the proposed model, one state can 
be allocated into several possible classes with some probabil-
ities. The hard allocation probabilities in the approximated 
model are denoted by ~px: Furthermore, transition parame-
ters of fixed effect kx and random effect kÖaÜ have the same 
dimension that varies with kx, where kx is updated at each 
iteration. For computational simplicity and efficiency, we 
exclude kÖaÜ and only consider kx to characterize the transi-
tion behaviors for group x when updating kx: Therefore, 
this approximation has the ability to identify the important 
lags and greatly facilitates the sampling as it reduces the 
number of parameters.

Given the values of kx obtained from the first stage, we 
sample parameters (kx, k0

x, a0
x, a1

x, k00, px, xx, l, b, R, Rr), hid-
den variables (wa, za, ca), and random effects (kÖaÜ, lÖaÜ) itera-
tively in the second stage for the proposed model. The 
transition parameters (kx, kÖaÜ, k0

x, k00) are updated by modi-
fying the existing sampling mechanisms in Hierarchical 
Dirichlet Process (HDP) models (Teh et al., 2006). The sup-
plemental materials outline the proposed two-stage MCMC 
algorithm that is developed based on a known state space 
MHOHMM (i.e., C à f1, :::, Cg). By setting a relatively large 
value of C, the proposed sampling algorithm provides a 
weak limit approximation to the MHOHMM with unknown 
state space that is modeled using infinite dimensional HDP 
priors (Johnson and Willsky, 2013).

4.4. MHOHMM-based classifier

The two-stage MCMC sampling algorithm is designed to 
estimate the parameters of the MHOHMM. Based on the 
MHOHMMs trained on patients’ history physiological sig-
nals, we develop a sequence classifier to predict their future 
events. Specifically, we separately train different 
MHOHMMs on the signals for patients who have different 
future events. For a patient with unknown future outcomes, 
the prediction is done by classifying his/her observed signal 
based on the learned MHOHMMs.

To build the MHOHMM-based classifier, we first train 
an MHOHMM using the labeled sequences for each class s, 
s à 1, :::, S: The learned model parameters of class s are 
denoted by fs: Given a new patient a0 with an observation 
sequence ya0 , we use each learned model to decode the hid-
den state sequence ca0 : The decoding procedure proceeds as 
follows. Given model parameters fs for each class s, we fol-
low the same sampling strategy in Stage 2 (shown in the 
supplemental materials) to decode the hidden state sequence 
by drawing posterior samples of hidden variables ca0 , za0 , wa0

and random effects kÖa0Ü, lÖa0Ü, iteratively. The collected pos-
terior samples of ca0 and lÖa0Ü under model s are denoted by 
ca0 , s à fca0, s

i g
M
ià1 and lÖa

0Ü, s à flÖa
0Ü, s

i gM
ià1, where M is the 

number of posterior samples. Given posterior samples ca0 , s 

and lÖa
0Ü, s, the likelihood pÖya0 jfsÜ is estimated using the 

Monte Carlo integration method as follows,

pÖya0 jfsÜ à
Ö

Öca0 , lÖa0ÜÜ
pÖya0 , ca0 , lÖa0ÜjfsÜ

⇡ 1
M
XM

ià1
p ya0 jca0 , s

i , lÖa
0Ü, s

i , ls, bs, Rs
⇣ ⌘

: (30) 

Next, the sequence ya0 is assigned into class s⇤ that pro-
vides the best data description performance (i.e., the largest 
likelihood value) of this sequence,

s⇤ à arg max
s

pÖya0 jfsÜ: (31) 

The supplemental materials present the algorithm of the 
MHOHMM-based classifier.

5. Simulation study

In this simulation study, we design experiments to evaluate 
(i) the performance of the proposed sampling algorithm for 
model inference and (ii) the performance of the 
MHOHMM-based classification method. By including fixed 
(f) and/or random effects (r) in the hidden (H) and/or 
observed (O) processes, we consider eight different models: 
(Hf), (Hfr), (Hf.Of), (Hfr.Of), (Hf.Or), (Hfr.Or), (Hf.Ofr), 
and (Hfr.Ofr). For example, model (Hf.Or) represents the 
MHOHMM with fixed effect in the hidden process (Hf) and 
random effect in the observed process (Or). We will also 
investigate the impacts of mixed effects on the parameter 
estimation and sequence classification.

5.1. Parameter estimation

We generate observation sequences under model (Hfr.Ofr) 
and fit the simulated data using all the aforementioned 
models.

Suppose that there are two groups for patients’ factor, 
i.e., X à f1, 2g, the hidden state space is C à f1, 2, 3g, and 
the emission distribution is a univariate normal distribution. 
Table 1 summarizes the parameter setting of the transition 
dynamics and the emission distributions for two groups 
under model (Hfr.Ofr). Before we generate the observation 
sequence for patient a (ya) in group x, we first construct the 
true transition behaviors to generate the corresponding hid-
den state sequence ca using the following mechanisms. The 
group-level state prevalence probabilities k0

x are generated by 
using the stick-breaking construction method, k0

xÖ1Ü à u1 
with u1 ⇠ BetaÖ1, 1Ü, k0

xÖ2Ü à u2Ö1 − k0
xÖ1ÜÜ with u2 ⇠

BetaÖ1, 1Ü, and k0
xÖ3Ü à 1 − k0

xÖ1Ü − k0
xÖ2Ü, for each x 2 X :

To generate the true transition probabilities, we consider a 

Table 1. Parameter setting for generating data under model (Hfr.Ofr).

Group
Transition dynamics Emission distribution

Order Weight Mean Variance Fixed Random
effect effect

coefficient variance

qx fx0
x , x1

xg Öl1, l2, l3Ü Ör2
1, r2

2, r2
3Ü b r2

r

xà 1 2 f0:4, 0:6g (0, 2, 4) Ö0:52, 0:52, 0:52Ü 1 0:52

xà 2 4 f0:2, 0:8g
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full-order model in which the distribution of ca
t depends on 

its qx history states ca
Öt−qxÜ:Öt−1Ü: For each combination of the 

history states, we independently generate the fixed effect kx 
and random effect kÖaÜ as follows,

kxÖ�jca
Öt−qxÜ:Öt−1ÜÜ ⇠ DirÖa1

xk
0
xÖ1Ü, :::, a1

xk
0
xÖ3ÜÜ, (32) 

kÖaÜÖ�jca
Öt−qxÜ:Öt−1ÜÜ ⇠ DirÖa0

xk
0
xÖ1Ü, :::, a0

xk
0
xÖ3ÜÜ: (33) 

Next, the patient-specific transition probability is given 
as,

pÖca
t jca
Öt−qxÜ:Öt−1ÜÜ à x1

xkxÖca
t jca
Öt−qxÜ:Öt−1ÜÜ

á x0
xk
ÖaÜÖca

t jca
Öt−qxÜ:Öt−1ÜÜ: (34) 

Given the hidden state sequence ca, the corresponding 
observations are drawn from the emission distributions in 
Equations (26) and (27).

We independently generate 80 observation sequences (40 
sequences in each group) with equal length Tà 200. The 
simulated sequences are then used to train the aforemen-
tioned eight MHOHMMs. To provide good initial values for 
some critical variables, we use the K-means clustering algo-
rithm to cluster the observations among all sequences across 
all groups. The derived clustering label is used as the initial 
hidden state for each observation (ca

t ). The state-specific 
parameters (lc, rc) in emission distributions are then initial-
ized by fitting a Gaussian distribution for each state c. 
The (hyper) parameters in the priors are set as a00 à a0

x à
a1

x à 1, a à b à a0 à b0 à a1 à b1 à 1, j0 à b0 à jr à br à
1, cj à 1=C for all j and x, and l0 à lf à �y, r2

0 à r2
f à

3varÖyÜ, where y represents all generated observations from 
all patients and �y and varÖyÜ represent its sample mean and 
variance, respectively. We run 2000 MCMC iterations and 
discard the first 1000 iterations as burn-in. The remaining 
samples are thinned by retaining every fifth sample after 
burn-in to reduce autocorrelation.

It is challenging to derive the complexity bound of 
MCMC sampling algorithms because it depends on the 
number of parameters, the selected proposal distributions, 
and the number of iterations (Matamoros, 2020). Existing 
works have established the bounds for the Metropolis– 
Hastings algorithm in terms of convergence (Belloni and 
Chernozhukov, 2009; Roberts and Rosenthal, 2014). The 
proposed MHOHMM sampler is too complicated to theoret-
ically prove its convergence, and thus it is difficult to obtain 
its computational complexity. We compute the Potential 
Scale Reduction Factor (PSRF) (Gelman and Rubin, 1992) to 
diagnose the convergence of the posterior samples generated 
by the proposed algorithm. The PSRF plot of several impor-
tant model parameters is presented in the supplemental 
materials and has shown good convergence behaviors. We 
further examine the algorithm complexity by summarizing 
the computational costs of the MHOHMM-based classifier 
in the simulation study.

Based on the posterior samples, we compute the sample 
modes of the transition orders and sample means of other 
model parameters, and use them as parameter estimates. 
The estimated parameters and log-likelihood values under 

the eight models are summarized in Table 2. First, we exam-
ine the estimation of the hidden process. Under models (Hf) 
and (Hfr) where neither fixed nor random effects are 
included in the observed process, the transition order in 
group 2 (q2) is not correctly detected and estimates of k0

x 
greatly deviate from the true values. The estimation of these 
parameters is significantly improved in the other six models 
because the hidden states are decoded from observations 
and more accurate modeling of the observations helps to 
infer the true transition dynamics. Moreover, correct identi-
fication of the transition order significantly improves the 
estimation accuracy of state prevalence probabilities k0

x: For 
example, in group 2, the models that have detected the true 
transition order q2 (Hf.Of, Hfr.Of, Hf.Or, Hfr.Or, Hf.Ofr, 
Hfr.Ofr) achieve much better estimation of k0

x than the other 
two that have not identified the true order (Hf and Hfr). 
Incorporating random effects, however, is not observed to 
have significant impacts on the estimation of k0

x based on 
the posterior sample mean. To further investigate the 
impacts of adding random effects, we compare the histo-
grams of posterior samples of k0

x between models (Hf.Ofr) 
and (Hfr.Ofr) in the supplemental materials. Our results 
show that both models include the true values in their pos-
terior sample distributions, but incorporating random effects 
in the hidden process (Hfr.Ofr) reduces the estimation error, 
as it leads to smaller standard deviations.

Next, we check the parameter estimation in the observed 
process. The results show that the estimates of lc are 
improved by adding fixed effects in emission distributions 
(Hf.Of, Hfr.Of, Hf.Ofr, Hfr.Ofr). Incorporation of random 
effects leads to accurate estimates of rc (Hf.Or, Hfr.Or, 
Hf.Ofr, Hfr.Ofr), but it affects the accuracy of the estimation 

Table 2. Posterior sample mean/mode of parameters under different 
MHOHMMs.

MHOHMM

True value Hf Hfr Hf.Of Hfr.Of Hf.Or Hfr.Or Hf.Ofr Hfr.Ofr

Transition dynamics in group 1 (x à 1)
qx à 2 2 2 2 2 2 2 2 2
x0

x à 0:4 NAa 0.78 NA 0.75 NA 0.34 NA 0.34
x1

x à 0:6 NA 0.22 NA 0.25 NA 0.66 NA 0.66
k0

xÖ1Ü à 0:57 0.44 0.50 0.53 0.61 0.56 0.53 0.57 0.53
k0

xÖ2Ü à 0:22 0.39 0.34 0.28 0.23 0.29 0.23 0.25 0.23
k0

xÖ3Ü à 0:21 0.17 0.16 0.19 0.16 0.15 0.24 0.18 0.24
Transition dynamics in group 2 (x à 2)

qx à 4 5 5 4 4 4 4 4 4
x0

x à 0:2 NA 0.52 NA 0.20 NA 0.17 NA 0.16
x1

x à 0:8 NA 0.48 NA 0.80 NA 0.83 NA 0.84
k0

xÖ1Ü à 0:48 0.13 0.04 0.44 0.48 0.49 0.50 0.49 0.50
k0

xÖ2Ü à 0:21 0.51 0.55 0.25 0.23 0.23 0.20 0.23 0.22
k0

xÖ3Ü à 0:31 0.36 0.41 0.31 0.29 0.28 0.30 0.28 0.28
Emission distribution

l1 à 0 0.81 0.78 0.14 0.09 1.48 1.48 0.49 0.50
l2 à 2 2.15 2.17 2.03 1.97 3.47 3.47 2.48 2.49
l3 à 4 4.97 5.03 4.16 4.12 5.46 5.47 4.49 4.48
bà 1 NA NA 0.85 0.88 NA NA 0.66 0.60
r1 à 0:5 0.58 0.57 0.66 0.65 0.50 0.50 0.50 0.50
r2 à 0:5 0.75 0.76 0.69 0.68 0.51 0.50 0.52 0.50
r3 à 0:5 1.10 1.06 0.69 0.69 0.50 0.51 0.50 0.50
rr à 0:5 NA NA NA NA 0.68 0.68 0.52 0.53
log L (⇥104) −1.88 −1.86 −1.63 −1.61 −1.17 −1.17 −1.17 −1.16

aNA means “Not Applicable”.
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of b (Hf.Ofr, Hfr.Ofr). In models (Hf.Ofr) and (Hfr.Ofr), 
the estimated emission distributions have smaller estimates 
of b along with larger estimates of lc, comparing with the 
true values. Due to the linear form of the mean parameter 
in Equation (26), these estimates also provide a good 
description of the observations. To better visualize the esti-
mates of emission distributions, we present the estimated 
Probability Density Functions (PDFs) under model 
(Hfr.Ofr) in the supplemental materials. Our results show 
that the estimated PDFs are close to the true ones. In sum-
mary, the true model (Hfr.Ofr), from which the data are 
generated, provides satisfactory parameter estimation in 
both processes and achieves the best data description per-
formance (i.e., the largest log L).

From this experiment, we can see that the proposed sam-
pling algorithm is effective for MHOHMM inference and 
that the incorporation of mixed effects in both processes has 
significant impacts on parameter estimation.

5.2. Sequence classification

A binary classification experiment (i.e., Sà 2) is designed to 
evaluate the performance of the MHOHMM-based classifi-
cation framework. To investigate the impacts of the number 
of groups (d), we conduct a sensitivity analysis and consider 
relatively small values of d. Specifically, we consider four 
scenarios, i.e., d 2 f2, 3, 4, 5g, and repeat the binary classifi-
cation experiment for each d. In each scenario, we construct 
two different MHOHMMs to generate data for two classes 
and assume the differences between these two classes exist 
only in the transition dynamics. Table 3 shows the param-
eter setting of the transition dynamics in the scenario of 
dà 5. For other scenarios, only the first d values of ÖqxÜx2X
and Öx0

xÜx2X are used. The parameters in emission distribu-
tions remain the same (as shown in Table 1) for all scen-
arios. The true transition probabilities and the observation 
sequences are generated following the same mechanisms 
presented in Section 5.1. For each class, we independently 
generate 80 observation sequences for training and 20 
sequences for testing with equal length Tà 200. To ensure 
valid computational comparison, we fix the number of gen-
erated observation sequences (100) and the sequence length 
(Tà 200) for all scenarios.

To identify the optimal MHOHMM that best discrimi-
nates the sequences between two classes, we use the k-fold 
cross-validation method, which is widely adopted for model 
selection (Burman, 1989; Jung, 2018; Wong and Yeh, 2019). 
By setting kà 5 for computational efficiency, the model 
selection procedure is performed as follows. The training set 
is first randomly divided into five disjoint folds that have 
the same number of sequences (i.e., 16 sequences in each 
fold). Each fold in turn plays the role of validating the clas-
sifier that is trained on the other four folds, using accuracy 

as the evaluation metric. The model that achieves the high-
est average accuracy is identified as the optimal one. Next, 
we train the selected model using the entire training set and 
evaluate its performance on the testing set.

To examine the impacts of mixed effects and higher- 
order transition behaviors, we compare the sequence classifi-
cation performance of the optimal MHOHMM with two 
baseline models, HOHMM and MHMM. Note that the 
benchmark MHMM is a special case of the optimal 
MHOHMM in which the transition order is one. The infer-
ence of the HOHMM and MHMM is done by using the 
proposed sampling algorithm for MHOHMMs with different 
Bayesian formulations. Specifically, mixed effects are not 
considered for the HOHMM whereas the transition order of 
the MHMM is fixed as one. Three commonly used metrics, 
including Area Under the Receiver Operating Characteristic 
(AUROC) curve, accuracy, and F1-score, are used to evalu-
ate the classification performance on the testing set.

Using the 5-fold cross-validation, the accuracy of 
MHOHMM-based classifiers under different models is pre-
sented in Table 4 in the scenario of dà 2. The true model 
(Hfr.Ofr), from which the data are generated, is correctly 
identified as the optimal one. The same result is achieved in 
other scenarios. Next, we train the optimal MHOHMM 
(Hfr.Ofr) on the entire training set and evaluate its classifi-
cation performance on the testing set. To have more robust 
comparison with models HOHMM and MHMM, we inde-
pendently replicate the classification procedure 15 times on 
the same data sets in each scenario. Table 5 summarizes the 
mean performance metrics and computation time (in 
hours), and the corresponding standard errors (shown in 
parentheses) for different values of d. We can see that in all 
scenarios, the proposed MHOHMM-based classification 
method outperforms the HOHMM and MHMM. This indi-
cates that simultaneously considering mixed effects and 
higher-order transition dynamics significantly improves the 
sequence classification performance when they exist in the 
data. We also observe that the classification performance of 
the MHOHMM gradually deteriorates as the number of 
groups (d) increases. This is because increasing the number 
of groups greatly increases the number of model parameters, 
which likely leads to overfitting of the MHOHMMs given 
the same amount of data. Moreover, we observe that the 
computation time of the MHOHMM-based classifier is not 
very sensitive to the number of groups. For a large number 
of groups (d> 5), which is often the case when multiple fac-
tors of patients are included, the group effects can be 

Table 3. Parameter setting of the transition dynamics in the scenario of dà 5.

Class Transition order ÖqxÜx2X Weight Öx0
xÜx2X

1 Ö2, 3, 2, 3, 2Ü Ö0:4, 0:2, 0:4, 0:2, 0:4Ü
2 Ö2, 4, 2, 4, 2Ü Ö0:4, 0:2, 0:4, 0:2, 0:4Ü

Table 4. The accuracy of MHOHMM-based classifiers under different mod-
els (dà 2).

Fold

Model 1 2 3 4 5 Mean

Hf 0.66 0.56 0.63 0.59 0.59 0.61
Hfr 0.78 0.38 0.72 0.56 0.59 0.61
Hf.Of 0.63 0.56 0.53 0.53 0.59 0.57
Hfr.Of 0.75 0.56 0.81 0.75 0.56 0.69
Hf.Or 0.59 0.69 0.75 0.66 0.75 0.69
Hfr.Or 0.81 0.78 0.72 0.72 0.78 0.76
Hf.Ofr 0.75 0.66 0.72 0.72 0.63 0.69
Hfr.Ofr 0.88 0.75 0.81 0.84 0.88 0.83
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clustered due to some correlation among these factors. That 
is, patients in the same cluster may share similar health con-
dition evolution. A promising method to address the chal-
lenge brought by a large number of groups is to introduce 
additional latent clustering variables of patients’ factors to 
the proposed MHOHMM. In summary, simultaneously con-
sidering the impacts of mixed effects and higher-order tran-
sition behaviors in sequential data modeling increases the 
computational cost, but it can significantly improve the clas-
sification performance when such impacts exist in the data.

Furthermore, we investigate the impacts of qmax by con-
ducting a sensitivity analysis on this hyperparameter in the 
scenario of two groups (dà 2). Table 6 shows the classifica-
tion performance and computation time of the MHOHMM- 
based classifier for qmax à 5, 7, 9: We can see that the 
performance of the proposed MHOHMM-based classifier is 
not sensitive to the hyperparameter qmax: This indicates that 
by setting a relatively large upper bound on qx, the designed 
MHOHMM sampler allows the transition order required to 
model the data to be inferred from the posterior samples.

6. Case study: AHE prediction

To demonstrate the practical utility of the proposed 
MHOHMM-based predictive framework, we conduct a case 
study on AHE prediction using the MIMIC-III database 
(Johnson et al., 2016). Acute hypotension (abnormal drop in 
blood pressure) is a common critical event that occurs in 
ICUs, which may result in irreversible organ damage and 
death. Prediction of an AHE is of great importance to the 
critical care research community, since timely and effective 
clinical intervention is important to reduce these risks. The 
commonly used definition of AHE, proposed by the annual 
Computing in Cardiology/PhysioNet Challenge in 2009 
(Moody and Lehman, 2009), is considered in this case study. 
An AHE is specified as a period of 30 minutes or more in 
which 90% of the Mean Arterial blood Pressure (MAP) 
measurements are below 60 mmHg. Figure 2 presents an 

annotated AHE in a patient’s MAP signal (yellow dashed 
rectangle).

In this case study, we use the freely accessible MIMIC-III 
database (Johnson et al., 2016), which comprises clinical 
data of ICU patients admitted to the Beth Israel Deaconess 
Medical Center between 2001 and 2012. Specifically, we use 
the numerical recordings from the MIMIC-III Waveform 
Database Matched Subset (PhysioNet, 2020), in which the 
clinical information of the corresponding patient is matched 
and available in the MIMIC-III Clinical Database 
(PhysioNet, 2016). The MIMIC-III Waveform Database 
Matched Subset contains 22,247 numerical recordings for 
10,282 ICU patients. These recordings include a variety of 
vital sign measurements, such as MAP and heart rate, which 
are collected with per-minute frequency. Recordings are 
organized according to patients’ ID and are divided into 10 
directories, namely, p00–p09. In our experiments, we only 
use the recordings that contain at least 10-hour MAP meas-
urements in the first three directories (i.e., p00–p02).

Before extracting samples for analysis, we first preprocess 
the raw data. For each recording, erroneous measurements 
are identified if the values are outside the range 40– 
160 mmHg (Chan et al., 2020), or are detected as outliers 
using the median-pass filtering method (Cao et al., 2005). 
The identified erroneous data points are considered as miss-
ing values. To address missing data points, we use the for-
ward-imputation method (Che et al., 2018) to replace these 
data points with the last valid measurement. As a means of 
prediction quality assurance, recordings with consecutive 
missing values over a long period or more than 10% missing 
values are excluded in this analysis.

To train the binary prediction classifier of whether an 
AHE will occur, both positive and negative samples need to 
be defined and extracted. The data used to make such a pre-
diction are called an observation window. A positive sample 
(AHE) is defined as an observation window in which an 
AHE occurs at the end of the window. We set the observa-
tion window size (T) to be 120 minutes and illustrate an 
example of the positive sample in Figure 2. A negative sam-
ple (Non-AHE) is defined as a 120-minute observation win-
dow with no future AHE development, which is randomly 
selected from patients who do not have any AHEs in their 
recordings. Note that extracted samples in each class are 
from different patients. Furthermore, we normalize each 
extracted sample (120 measurements) and smooth the data 
by computing the average value every three measurements, 
and use these values for MHOHMM training.

In this case study, we are interested in investigating the 
impacts of two common and important factors, i.e., age and 
gender, on AHE prediction. We consider only adult patients 
and categorize the patients into four groups, i.e., young 
male, young female, elderly male, and elderly female. The 
threshold for defining the age group is 65, which is deter-
mined based on the median age of all adult patients and dis-
cussions with medical experts. Finally, 904 samples extracted 
from recordings in directories p00–p02 are included in this 
study. There are 272 AHE samples (52 young males, 47 
young females, 94 elderly males, and 79 elderly females) and 

Table 5. Classification performance and computation time of the MHOHMM-, 
HOHMM-, and MHMM-based classifiers for different numbers of groups (d).

Model d AUROC Accuracy F1-score Time (hours)

MHOHMM (Hfr.Ofr) 2 0.93 (0.03) 0.89 (0.03) 0.89 (0.02) 2.77 (0.05)
3 0.91 (0.05) 0.88 (0.04) 0.89 (0.03) 2.78 (0.05)
4 0.91 (0.03) 0.85 (0.04) 0.85 (0.04) 2.82 (0.03)
5 0.89 (0.04) 0.81 (0.04) 0.79 (0.04) 2.74 (0.04)

HOHMM 2 0.79 (0.06) 0.72 (0.07) 0.66 (0.12) 2.40 (0.05)
3 0.79 (0.03) 0.67 (0.05) 0.72 (0.04) 2.47 (0.03)
4 0.76 (0.06) 0.65 (0.06) 0.62 (0.11) 2.60 (0.02)
5 0.73 (0.06) 0.58 (0.05) 0.67 (0.05) 2.55 (0.05)

MHMM (Hfr.Ofr) 2 0.85 (0.05) 0.70 (0.04) 0.76 (0.03) 2.25 (0.07)
3 0.60 (0.05) 0.53 (0.03) 0.68 (0.02) 2.26 (0.03)
4 0.70 (0.04) 0.68 (0.04) 0.68 (0.05) 2.28 (0.02)
5 0.59 (0.15) 0.59 (0.10) 0.66 (0.06) 2.27 (0.01)

Table 6. Sensitivty analysis on qmax in the scenario of two groups (dà 2).

qmax AUROC Accuracy F1-score Time (hours)

5 0.93 (0.03) 0.89 (0.03) 0.89 (0.02) 2.77 (0.05)
7 0.92 (0.03) 0.89 (0.03) 0.88 (0.03) 2.86 (0.03)
9 0.95 (0.03) 0.88 (0.04) 0.88 (0.04) 2.93 (0.02)
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632 Non-AHE samples (199 young males, 128 young 
females, 185 elderly males, and 120 elderly females). To 
build MHOHMM-based classifiers, we separately train two 
MHOHMMs for the AHE (sà 1) and Non-AHE (sà 2) 
classes. For each class, we randomly select 80 samples for 
training (20 samples in each group) and randomly select 
another 20 AHE samples for testing (five samples in each 
group).

The 5-fold cross-validation identifies model (Hfr) as the 
best performing one. This implies that age and gender affect 
the AHE progression dynamics and there exists patient-to- 
patient variability in their health state evolution. We further 
compare the classification performance of the optimal 
MHOHMM with that of the baseline models HOHMM and 
MHMM. Table 7 summarizes the performance of these three 
classifiers on the testing set. The mean values and the corre-
sponding 95% CIs are reported based on 30 independent 
classification experiments. We can see that the MHOHMM 
(Hfr) outperforms the HOHMM and MHMM, indicating 
that considering the effects of patients’ age, gender, and het-
erogeneity and the effect of higher-order transition dynamics 
significantly improves the AHE prediction performance. We 
also observe that the MHMM has better prediction results 
than the HOHMM. Our conjecture is that identification of 
the data structure plays a more important role than consid-
ering higher-order transition behaviors in AHE prediction. 
To further explore the clinical insights from the learned 
MHOHMMs, we attempt to summarize the inference results 
of several critical parameters. Supplemental Materials pre-
sent the parameter inference results for one replicate of the 
experiment, which also indicate the the necessity of incorpo-
rating the effects of patient’s age and gender for blood 

pressure modeling and AHE prediction. Note that the model 
performance in this case study is not as good as that in the 
simulation experiments. This is because the real-world clin-
ical data typically contain a variety of noises, which cannot 
be fully addressed in the data preprocessing step, and there-
fore, the model performance is often impacted by the quality 
of the data.

7. Conclusions

In this article, we develop a novel framework based on the 
Bayesian MHOHMM to predict patients’ future events using 
the EHR data. The MHOHMM incorporates the mixed 
effects of some critical factors and patient-level heterogeneity 
in both the hidden and observed processes, and considers 
higher-order transition dynamics. Constructing the 
MHOHMM in a Bayesian hierarchical formulation, we 
design a two-stage MCMC sampling algorithm for model 
inference and a decoding algorithm for clinical events pre-
diction. A simulation study is conducted to evaluate the per-
formance of the proposed sampling algorithm and the 
MHOHMM-based classification method. Several models are 
designed to examine the impacts of mixed effects on param-
eter estimation and sequence classification. The optimal 
MHOHMM that provides the highest classification accuracy 
is identified by using the k-fold cross-validation method and 
is then used to train the final classifier. We benchmark the 
optimal MHOHMM with two baseline models HOHMM 
and MHMM. The results show that considering the impacts 
of mixed effects and higher-order transition dynamics sig-
nificantly improves prediction performance when such 
impacts are present in the data. Furthermore, we conduct a 
case study on AHE prediction using the MIMIC-III database 
to demonstrate the practical utility and the advantage of the 
proposed prediction framework. One challenge of applying 
the probabilistic generative models in clinical events predic-
tion problems is to ensure the inferred parameters reflect 
the disease progression, which may require to incorporate 
several factors, leading to significant computational 

Figure 2. An example of the AHE sample (120-min observation window).

Table 7. Classification performance comparison on the testing set in the case 
study.

Model AUROC Accuracy F1-score

MHOHMM (Hfr) 0.83 (0.82–0.85) 0.76 (0.75–0.78) 0.74 (0.73–0.76)
HOHMM 0.76 (0.73–0.79) 0.67 (0.65–0.70) 0.66 (0.63–0.70)
MHMM (Hfr) 0.81 (0.79–0.83) 0.70 (0.67–0.72) 0.66 (0.61–0.71)

Notes: The model in bold provides the best performance.
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difficulties. In the future, we are interested in exploring dif-
ferent inference techniques to make the proposed 
MHOHMM more computationally efficient and suitable for 
large-scale problems, for example, variational inference 
(Zhang et al., 2018), which approximates high-dimensional 
Bayesian posterior distributions with a simple variational 
distribution by solving an optimization problem, and 
sequential Monte Carlo, which is also effective to address 
high-dimensional issues and can be extended to allow high- 
order transitions.
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