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Abstract

Objectives: \West Nile virus (WNV) is the most common mosquito-borne disease in the United States. Predicting the location and timing of out-
breaks would allow targeting of disease prevention and mosquito control activities. Our objective was to develop software (ArboMAP) for rou-
tine WNYV forecasting using public health surveillance data and meteorological observations.

Materials and Methods: ArboMAP was implemented using an R markdown script for data processing, modeling, and report generation. A Goo-
gle Earth Engine application was developed to summarize and download weather data. Generalized additive models were used to make county-
level predictions of WNV cases.

Results: ArboMAP minimized the number of manual steps required to make weekly forecasts, generated information that was useful for
decision-makers, and has been tested and implemented in multiple public health institutions.

Discussion and Conclusion: Routine prediction of mosquito-borne disease risk is feasible and can be implemented by public health depart-
ments using ArboMAP.

Lay Summary

West Nile virus (WNV) is the most common mosquito-borne disease in the United States. To reduce the risk of WNV, public health agencies dis-
tribute information about how to avoid mosquito bites and use insecticides to reduce the abundances of disease-transmitting mosquitoes. Infor-
mation about when and where the risk of getting WNV is highest would help these agencies to target their activities and use limited resources
more efficiently. To support this goal, we developed the ArboMAP software system for predicting the risk of WNV disease in humans. Arbo-
MAP uses information about recent weather combined with data obtained from trapping mosquitoes and testing them for presence of WNV to
predict how many human cases will occur in future weeks. Predictions extend throughout the current WNV season (typically May-September)
and are made for each county within a state. The system is implemented as a set of free software tools that can be used by epidemiologists in
state and municipal departments of health. Feedback from public health agencies in South Dakota, Louisiana, Oklahoma, and Michigan has
been incorporated to enhance the usability of the system and design visualizations that summarize the forecasts.
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Background and significance

Diseases caused by mosquito-transmitted arboviruses are a
global health threat. In the United States, West Nile virus
(WNV) is the most common mosquito-borne disease. This
virus is transmitted primarily by mosquitoes in the genus
Culex, and wild birds are the zoonotic reservoir hosts.! Most
human infections are asymptomatic or cause only mild symp-
toms, but ~25% cause West Nile fever and <1% result in
severe neuroinvasive disease that can be fatal.” The burden of
human WNV disease is highly variable. In the conterminous
United States between 2009 and 2018, total annual cases
ranged from 712 to 5674 and average annual incidence of
WNV neuroinvasive disease varied from 0.02 cases/100 000

in Maine to 3.16 cases/100000 in North Dakota.> Public
health responses to WNV include prevention messaging to
encourage behaviors that prevent mosquito bites and vector
control activities to reduce vector abundance.* Prediction of
WNV outbreaks would allow proactive targeting of disease
prevention and mosquito control activities to reduce
transmission.

WNV surveillance commonly involves trapping and testing
of vector mosquitoes, and the presence of WNV-infected
mosquitoes is a strong indicator of the local risk of human
disease.” The vectors and hosts of WNV are also sensitive to
habitat availability, and WNV cases exhibit lagged responses
to meteorological factors such as temperature and
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humidity.®® Mosquito infection rates and environmental
variables have been used to develop predictive models to fore-
cast human cases throughout the transmission season. These
models accurately predict seasonal outbreaks early enough in
the year to allow public health responses prior to the annual
peak in cases.””'! However, many public health agencies lack
the software and expertise that is needed to implement dis-
ease forecasting.

Objectives

The objective of this project was to develop and implement
the Arbovirus Mapping and Prediction (ArboMAP) software
for WNV forecasting by epidemiologists working in state
health departments in the United States.

Methods
System overview

ArboMAP is implemented in the R programming language
using the RStudio interactive development environment with
all code stored in an R Markdown script. The forecasting
process begins with ingestion of new data and harmonization
of multiple data sources into a unified format suitable for
modeling (Figure 1). Models are calibrated using data from
prior years, and recent observations are used to inform pre-
dictions of WNV cases during the current transmission sea-
son. A report containing summaries of the data and the
forecasts is automatically generated. Forecasts are usually
made for all counties within a US state and are produced by
an epidemiologist or other public health professional work-
ing in a government agency that conducts vector-borne dis-
ease surveillance.

Input data

Three sources of data are required. The first is de-identified
human case data from surveillance databases, with each case
referenced by the date of symptom onset and the county of
residence. These data are converted to a weekly indicator var-
iable for the occurrence of one or more human cases in each
county. The second data source is mosquito testing results,
also from surveillance databases. These data include one
record for each pool of mosquitoes tested referenced by test
result (positive or negative), the date of collection, and the
county of collection. ArboMAP calculates indices of mos-
quito infection from these data, including the mosquito infec-
tion growth rate, which has been shown to be an effective
predictor of human WNV cases in South Dakota.'® The third
data source includes environmental variables that fluctuate
throughout the transmission season. These data can be
county-level summaries of daily meteorological variables
such as temperature, humidity, precipitation, and windspeed
or remotely sensed variables such as land surface temperature
and spectral indices.'?

To facilitate access to meteorological data, we developed a
version of the Retrieving Environmental Analytics for Cli-
mate and Health (REACH) app'® to access meteorological
data for WNV forecasting. We used the gridMET meteoro-
logical dataset, which contains interpolated weather station
data aggregated to daily summaries and downscaled to a 4
km grid.'* All processing and summarization of the meteoro-
logical grids takes place in the cloud using Google Earth
Engine (GEE),"® and the user downloads daily county-level
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summaries. The app includes a graphical user interface that
displays the raw meteorological data and allows the user to
specify a date range and location to download. Code to
implement this app in GEE is provided with the ArboMAP
distribution, or it can be accessed directly at (https://daw-
neko.users.earthengine.app/view/arbomap-gridmet).

Forecasting models

ArboMAP uses generalized additive models (GAMs) that pre-
dict whether a county will have one or more human WNV
cases in a week. These are implemented as “big additive mod-
els,” computationally efficient GAMs designed to work with
large datasets, using the bam() function'® from the R mgcv
library.!” Predictors include mosquito infection indices and
meteorological variables summarized as distributed lags,
where the lagged effects are modeled as smoothed functions
of the number of days before the current week. Maximum lag
length is a user specified parameter and varied from 151 days
in Michigan and South Dakota to 181 days in Louisiana and
Oklahoma. Several options are available for model specifica-
tion, including (1) different indices for summarizing the mos-
quito infection data, (2) different combinations of
environmental variables, (3) untransformed environmental
data versus environmental anomalies, (4) a single, fixed set of
distributed lags versus time-varying lags that change over the
course of the WNV season, and (5) different spline functions
for modeling the smoothed responses. Multiple models can
be combined to generate predictions based on model ensem-
bles. Model selection is carried out using an information the-
oretic approach in which alternative models are compared
using Akaike’s Information Criterion.'?

To predict WNV cases during the current year, the models
are first calibrated using data from previous years. Then, all
available current-year environmental and mosquito data are
used to generate predictions for every week of the transmis-
sion season, including backcasts for past weeks and forecasts
for future weeks. Generating backcasts as well as forecasts is
essential because there are delays in the diagnosis and report-
ing of WNV cases, and the reported numbers of cases from
recent weeks are usually incomplete. Predictions are validated
by calibrating the model with historical data and comparing
predictions of human case occurrence to observations that
were not used in the fitting process.'’

User interactions

ArboMAP settings are controlled by parameters, with default
values provided in the R markdown script. The parameters
determine how the models will be implemented, specify the
time periods of historical data used for model calibration and
the current-year data used for forecasts, and indicate how
results will be presented. This script can be directly edited
and run in RStudio, or a small R script can be run to invoke a
graphical user interface (GUI) using the built-in Shiny inter-
face. The GUI can then be used to modify the parameters and
launch ArboMAP. The software automatically calibrates the
models, uses them to generate forecasts, and produces for-
matted results in HTML or PDF format.

Results
Forecast outputs

Model outputs are presented in a formatted report that was
co-developed with partners in state health departments
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Figure 1. User-centered diagram showing the workflow for WNV forecasting. Step 1: Acquire updated entomological surveillance data, Step 2: Use the
GEE app to update meteorological data, and Step 3: Use the RStudio GUI to generate a report. The system diagram on the bottom shows the high-level

processes for modeling and forecasting.

(Figure 2). Because of the large amount of information, it is
essential to present the most important components at the
beginning where they are accessible. Thus, forecast results are
provided first followed by summaries of the input data and
an optional appendix containing diagnostic information
about the models. The forecast results section includes pre-
dictions for the current week followed by summaries of fore-
casts and backcasts over the entire transmission season and
comparisons of the current year predictions with the histori-
cal time series. When more than one model is used, only the
ensemble mean of the predictions is presented in the forecast
results section for simplicity. However, details on the individ-
ual models are available in the appendix and other ensemble
metrics such as the median can also be calculated. Most of
the outputs are shown as maps or graphs for ease of

interpretation and communication (Figure 2). Descriptive
text is provided throughout to aid in interpreting the results.

Operational use
Before the beginning of the WNV transmission season, the
data on human cases, mosquito infection, and meteorological
variables must be brought up to date for all previous years.
These historical data are used by ArboMAP for model cali-
bration during the upcoming year. Decisions must also be
made about the types of models and the predictor variables
that will be used in the WINV forecasts. Evaluations of model
fit and validations of model predictions in previous years can
be conducted to inform these decisions.

The ArboMAP software was designed to minimize the
number of manual steps required for a weekly forecast
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Figure 2. Examples of charts from an ArboMAP report for 2021 week 26 in South Dakota. (A) The relative risk of a county having at least one positive
human West Nile virus. (B) The modeled epidemiological curve for the current year, including backcasts (historical predictions prior to the current week)
and forecasts (future predictions after the current week). (C) Modeled epidemiological curves for all years, including fitted values in historical years (2004-
2020) and forecasts for the current year (2021). (D) The weekly proportions of counties with at least one human case from historical years. (E) Daily

temperatures in the current year compared to historical averages.

(Figure 1). First, new mosquito data collected since the pre-
vious forecast are obtained by querying the organization’s
surveillance database. (Step 1a). A mosquito data template is
provided with the ArboMAP software, and a single CSV file
containing all mosquito data for the current year is copied to
the mosquito data folder in the ArboMAP RStudio project
(Step 1b). Then, new environmental data are obtained from
the ArboMAP GEE app (Step 2a). The results are down-
loaded as CSV files that are copied directly into the environ-
mental data folder in the ArboMAP RStudio project and
automatically ingested and combined by the software (Step
2b). The user can now start the ArboMAP application and
modify default parameters using the GUI (Step 3a). In most
cases, the same set of parameters are used to generate fore-
casts throughout an entire season and the only required

change is the date of the current forecast week. At this point,
the run is initiated, and the modeling and report generation
(Step3b) are automated.

An earlier version of ArboMAP was first implemented by
the South Dakota Department of Health in 2016, and the
tool has been used there since. Following several years of col-
laboration with the developers, the Louisiana Department of
Health began using ArboMAP independently in 2022. South-
ern Nazarene University collaborated with the Oklahoma
City County Health Department to generate forecasts begin-
ning in 2022. The Michigan Department of Health and
Human Services began generating forecasts with ArboMAP
in 2023. In South Dakota and Michigan, ArboMAP forecasts
have been incorporated into online WNV dashboards and
communicated with stakeholders via statewide email
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listservs. Because reported human cases are often delayed by
weeks or months and observed mosquito abundance is a
poor indicator of transmission risk, predictions from Arbo-
MAP have been useful for highlighting WNYV risk and target-
ing mosquito control and disease prevention activities prior
to the seasonal peak in transmission. '’

Discussion

There is considerable interest in developing and testing new
approaches for modeling and forecasting outbreaks of WNV
and other infectious diseases.'®! If these techniques are
combined with improved systems for timely and accurate col-
lection of relevant data, they have the potential to improve
public health responses to outbreaks.”” The importance of
having robust software to operationalize disease early warn-
ing systems has been recognized,”* but this topic has not been
widely addressed in the scientific literature.>* The ArboMAP
software system has been successfully implemented for rou-
tine forecasting of WNV. It can be used to forecast WNV in
other locations where sufficient data are available and could
also be adapted to work with other climate-sensitive vector-
borne diseases.

The design of ArboMAP represents a compromise in which
most of the time-consuming steps required for data process-
ing and harmonization, model fitting and prediction, and pre-
sentation of the forecast results have been automated. Other
aspects of the software, such as the connections to external
databases, have been implemented as loose couplings and
require additional manual steps for data acquisition. Arbo-
MAP was developed as a client-side application that is
installed on a laptop or desktop workstation rather than a
cloud-based application that can be remotely accessed. These
decisions make it practical for multiple public health institu-
tions to independently use ArboMAP. Because of the security
and privacy issues associated with health surveillance data, it
was not feasible for us to develop a tight coupling solution
for connecting ArboMAP with these systems. These issues
also limited our options for accessing surveillance data
through the cloud. Although the design of ArboMAP has
facilitated its use in multiple states, opportunities remain to
further automate the process of data acquisition and decrease
the user effort required to generate forecasts.

Co-development with public health partners has been
essential in designing the ArboMAP system. The current fore-
casting reports were informed by design and evaluation
workshops held in 2021 and 2022. Key design principles
included emphasizing visualizations over written text, creat-
ing stand-alone figures that can be copied to other reports or
websites to communicate the forecasts, using consistent color
schemes and formatting throughout the report, and adjusting
the order so that the most important results can be found on
the first few pages of the report. User feedback has also
informed the development of the user-specified parameters
and the design of the GUIL. All ArboMAP code along with
comprehensive documentation and artificial datasets for
demonstration and testing are available on GitHub (https://
github.com/EcoGRAPH/ArboMAP). Users can run the soft-
ware with their own datasets or customize the code to meet
specific needs. Potential changes could include integrating
novel streams of data, incorporating different predictive
modeling techniques, or modifying the information provided
in the forecasting reports.
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