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Abstract 
Objectives: West Nile virus (WNV) is the most common mosquito-borne disease in the United States. Predicting the location and timing of out
breaks would allow targeting of disease prevention and mosquito control activities. Our objective was to develop software (ArboMAP) for rou
tine WNV forecasting using public health surveillance data and meteorological observations.
Materials and Methods: ArboMAP was implemented using an R markdown script for data processing, modeling, and report generation. A Goo
gle Earth Engine application was developed to summarize and download weather data. Generalized additive models were used to make county- 
level predictions of WNV cases.
Results: ArboMAP minimized the number of manual steps required to make weekly forecasts, generated information that was useful for 
decision-makers, and has been tested and implemented in multiple public health institutions.
Discussion and Conclusion: Routine prediction of mosquito-borne disease risk is feasible and can be implemented by public health depart
ments using ArboMAP.

Lay Summary 
West Nile virus (WNV) is the most common mosquito-borne disease in the United States. To reduce the risk of WNV, public health agencies dis
tribute information about how to avoid mosquito bites and use insecticides to reduce the abundances of disease-transmitting mosquitoes. Infor
mation about when and where the risk of getting WNV is highest would help these agencies to target their activities and use limited resources 
more efficiently. To support this goal, we developed the ArboMAP software system for predicting the risk of WNV disease in humans. Arbo
MAP uses information about recent weather combined with data obtained from trapping mosquitoes and testing them for presence of WNV to 
predict how many human cases will occur in future weeks. Predictions extend throughout the current WNV season (typically May-September) 
and are made for each county within a state. The system is implemented as a set of free software tools that can be used by epidemiologists in 
state and municipal departments of health. Feedback from public health agencies in South Dakota, Louisiana, Oklahoma, and Michigan has 
been incorporated to enhance the usability of the system and design visualizations that summarize the forecasts.
Key words: mosquito; weather; surveillance; software; outbreak. 

Background and significance
Diseases caused by mosquito-transmitted arboviruses are a 
global health threat. In the United States, West Nile virus 
(WNV) is the most common mosquito-borne disease. This 
virus is transmitted primarily by mosquitoes in the genus 
Culex, and wild birds are the zoonotic reservoir hosts.1 Most 
human infections are asymptomatic or cause only mild symp
toms, but �25% cause West Nile fever and <1% result in 
severe neuroinvasive disease that can be fatal.2 The burden of 
human WNV disease is highly variable. In the conterminous 
United States between 2009 and 2018, total annual cases 
ranged from 712 to 5674 and average annual incidence of 
WNV neuroinvasive disease varied from 0.02 cases/100 000 

in Maine to 3.16 cases/100 000 in North Dakota.3 Public 
health responses to WNV include prevention messaging to 
encourage behaviors that prevent mosquito bites and vector 
control activities to reduce vector abundance.4 Prediction of 
WNV outbreaks would allow proactive targeting of disease 
prevention and mosquito control activities to reduce 
transmission.

WNV surveillance commonly involves trapping and testing 
of vector mosquitoes, and the presence of WNV-infected 
mosquitoes is a strong indicator of the local risk of human 
disease.5 The vectors and hosts of WNV are also sensitive to 
habitat availability, and WNV cases exhibit lagged responses 
to meteorological factors such as temperature and 
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humidity.6–8 Mosquito infection rates and environmental 
variables have been used to develop predictive models to fore
cast human cases throughout the transmission season. These 
models accurately predict seasonal outbreaks early enough in 
the year to allow public health responses prior to the annual 
peak in cases.9–11 However, many public health agencies lack 
the software and expertise that is needed to implement dis
ease forecasting.

Objectives
The objective of this project was to develop and implement 
the Arbovirus Mapping and Prediction (ArboMAP) software 
for WNV forecasting by epidemiologists working in state 
health departments in the United States.

Methods
System overview
ArboMAP is implemented in the R programming language 
using the RStudio interactive development environment with 
all code stored in an R Markdown script. The forecasting 
process begins with ingestion of new data and harmonization 
of multiple data sources into a unified format suitable for 
modeling (Figure 1). Models are calibrated using data from 
prior years, and recent observations are used to inform pre
dictions of WNV cases during the current transmission sea
son. A report containing summaries of the data and the 
forecasts is automatically generated. Forecasts are usually 
made for all counties within a US state and are produced by 
an epidemiologist or other public health professional work
ing in a government agency that conducts vector-borne dis
ease surveillance.

Input data
Three sources of data are required. The first is de-identified 
human case data from surveillance databases, with each case 
referenced by the date of symptom onset and the county of 
residence. These data are converted to a weekly indicator var
iable for the occurrence of one or more human cases in each 
county. The second data source is mosquito testing results, 
also from surveillance databases. These data include one 
record for each pool of mosquitoes tested referenced by test 
result (positive or negative), the date of collection, and the 
county of collection. ArboMAP calculates indices of mos
quito infection from these data, including the mosquito infec
tion growth rate, which has been shown to be an effective 
predictor of human WNV cases in South Dakota.10 The third 
data source includes environmental variables that fluctuate 
throughout the transmission season. These data can be 
county-level summaries of daily meteorological variables 
such as temperature, humidity, precipitation, and windspeed 
or remotely sensed variables such as land surface temperature 
and spectral indices.12

To facilitate access to meteorological data, we developed a 
version of the Retrieving Environmental Analytics for Cli
mate and Health (REACH) app13 to access meteorological 
data for WNV forecasting. We used the gridMET meteoro
logical dataset, which contains interpolated weather station 
data aggregated to daily summaries and downscaled to a 4 
km grid.14 All processing and summarization of the meteoro
logical grids takes place in the cloud using Google Earth 
Engine (GEE),15 and the user downloads daily county-level 

summaries. The app includes a graphical user interface that 
displays the raw meteorological data and allows the user to 
specify a date range and location to download. Code to 
implement this app in GEE is provided with the ArboMAP 
distribution, or it can be accessed directly at (https://daw
neko.users.earthengine.app/view/arbomap-gridmet).

Forecasting models
ArboMAP uses generalized additive models (GAMs) that pre
dict whether a county will have one or more human WNV 
cases in a week. These are implemented as “big additive mod
els,” computationally efficient GAMs designed to work with 
large datasets, using the bam() function16 from the R mgcv 
library.17 Predictors include mosquito infection indices and 
meteorological variables summarized as distributed lags, 
where the lagged effects are modeled as smoothed functions 
of the number of days before the current week. Maximum lag 
length is a user specified parameter and varied from 151 days 
in Michigan and South Dakota to 181 days in Louisiana and 
Oklahoma. Several options are available for model specifica
tion, including (1) different indices for summarizing the mos
quito infection data, (2) different combinations of 
environmental variables, (3) untransformed environmental 
data versus environmental anomalies, (4) a single, fixed set of 
distributed lags versus time-varying lags that change over the 
course of the WNV season, and (5) different spline functions 
for modeling the smoothed responses. Multiple models can 
be combined to generate predictions based on model ensem
bles. Model selection is carried out using an information the
oretic approach in which alternative models are compared 
using Akaike’s Information Criterion.10

To predict WNV cases during the current year, the models 
are first calibrated using data from previous years. Then, all 
available current-year environmental and mosquito data are 
used to generate predictions for every week of the transmis
sion season, including backcasts for past weeks and forecasts 
for future weeks. Generating backcasts as well as forecasts is 
essential because there are delays in the diagnosis and report
ing of WNV cases, and the reported numbers of cases from 
recent weeks are usually incomplete. Predictions are validated 
by calibrating the model with historical data and comparing 
predictions of human case occurrence to observations that 
were not used in the fitting process.11

User interactions
ArboMAP settings are controlled by parameters, with default 
values provided in the R markdown script. The parameters 
determine how the models will be implemented, specify the 
time periods of historical data used for model calibration and 
the current-year data used for forecasts, and indicate how 
results will be presented. This script can be directly edited 
and run in RStudio, or a small R script can be run to invoke a 
graphical user interface (GUI) using the built-in Shiny inter
face. The GUI can then be used to modify the parameters and 
launch ArboMAP. The software automatically calibrates the 
models, uses them to generate forecasts, and produces for
matted results in HTML or PDF format.

Results
Forecast outputs
Model outputs are presented in a formatted report that was 
co-developed with partners in state health departments 
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(Figure 2). Because of the large amount of information, it is 
essential to present the most important components at the 
beginning where they are accessible. Thus, forecast results are 
provided first followed by summaries of the input data and 
an optional appendix containing diagnostic information 
about the models. The forecast results section includes pre
dictions for the current week followed by summaries of fore
casts and backcasts over the entire transmission season and 
comparisons of the current year predictions with the histori
cal time series. When more than one model is used, only the 
ensemble mean of the predictions is presented in the forecast 
results section for simplicity. However, details on the individ
ual models are available in the appendix and other ensemble 
metrics such as the median can also be calculated. Most of 
the outputs are shown as maps or graphs for ease of 

interpretation and communication (Figure 2). Descriptive 
text is provided throughout to aid in interpreting the results.

Operational use
Before the beginning of the WNV transmission season, the 
data on human cases, mosquito infection, and meteorological 
variables must be brought up to date for all previous years. 
These historical data are used by ArboMAP for model cali
bration during the upcoming year. Decisions must also be 
made about the types of models and the predictor variables 
that will be used in the WNV forecasts. Evaluations of model 
fit and validations of model predictions in previous years can 
be conducted to inform these decisions.

The ArboMAP software was designed to minimize the 
number of manual steps required for a weekly forecast 

Figure 1. User-centered diagram showing the workflow for WNV forecasting. Step 1: Acquire updated entomological surveillance data, Step 2: Use the 
GEE app to update meteorological data, and Step 3: Use the RStudio GUI to generate a report. The system diagram on the bottom shows the high-level 
processes for modeling and forecasting.
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(Figure 1). First, new mosquito data collected since the pre
vious forecast are obtained by querying the organization’s 
surveillance database. (Step 1a). A mosquito data template is 
provided with the ArboMAP software, and a single CSV file 
containing all mosquito data for the current year is copied to 
the mosquito data folder in the ArboMAP RStudio project 
(Step 1b). Then, new environmental data are obtained from 
the ArboMAP GEE app (Step 2a). The results are down
loaded as CSV files that are copied directly into the environ
mental data folder in the ArboMAP RStudio project and 
automatically ingested and combined by the software (Step 
2b). The user can now start the ArboMAP application and 
modify default parameters using the GUI (Step 3a). In most 
cases, the same set of parameters are used to generate fore
casts throughout an entire season and the only required 

change is the date of the current forecast week. At this point, 
the run is initiated, and the modeling and report generation 
(Step3b) are automated.

An earlier version of ArboMAP was first implemented by 
the South Dakota Department of Health in 2016, and the 
tool has been used there since. Following several years of col
laboration with the developers, the Louisiana Department of 
Health began using ArboMAP independently in 2022. South
ern Nazarene University collaborated with the Oklahoma 
City County Health Department to generate forecasts begin
ning in 2022. The Michigan Department of Health and 
Human Services began generating forecasts with ArboMAP 
in 2023. In South Dakota and Michigan, ArboMAP forecasts 
have been incorporated into online WNV dashboards and 
communicated with stakeholders via statewide email 

Figure 2. Examples of charts from an ArboMAP report for 2021 week 26 in South Dakota. (A) The relative risk of a county having at least one positive 
human West Nile virus. (B) The modeled epidemiological curve for the current year, including backcasts (historical predictions prior to the current week) 
and forecasts (future predictions after the current week). (C) Modeled epidemiological curves for all years, including fitted values in historical years (2004- 
2020) and forecasts for the current year (2021). (D) The weekly proportions of counties with at least one human case from historical years. (E) Daily 
temperatures in the current year compared to historical averages.
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listservs. Because reported human cases are often delayed by 
weeks or months and observed mosquito abundance is a 
poor indicator of transmission risk, predictions from Arbo
MAP have been useful for highlighting WNV risk and target
ing mosquito control and disease prevention activities prior 
to the seasonal peak in transmission.11

Discussion
There is considerable interest in developing and testing new 
approaches for modeling and forecasting outbreaks of WNV 
and other infectious diseases.18–21 If these techniques are 
combined with improved systems for timely and accurate col
lection of relevant data, they have the potential to improve 
public health responses to outbreaks.22 The importance of 
having robust software to operationalize disease early warn
ing systems has been recognized,23 but this topic has not been 
widely addressed in the scientific literature.24 The ArboMAP 
software system has been successfully implemented for rou
tine forecasting of WNV. It can be used to forecast WNV in 
other locations where sufficient data are available and could 
also be adapted to work with other climate-sensitive vector- 
borne diseases.

The design of ArboMAP represents a compromise in which 
most of the time-consuming steps required for data process
ing and harmonization, model fitting and prediction, and pre
sentation of the forecast results have been automated. Other 
aspects of the software, such as the connections to external 
databases, have been implemented as loose couplings and 
require additional manual steps for data acquisition. Arbo
MAP was developed as a client-side application that is 
installed on a laptop or desktop workstation rather than a 
cloud-based application that can be remotely accessed. These 
decisions make it practical for multiple public health institu
tions to independently use ArboMAP. Because of the security 
and privacy issues associated with health surveillance data, it 
was not feasible for us to develop a tight coupling solution 
for connecting ArboMAP with these systems. These issues 
also limited our options for accessing surveillance data 
through the cloud. Although the design of ArboMAP has 
facilitated its use in multiple states, opportunities remain to 
further automate the process of data acquisition and decrease 
the user effort required to generate forecasts.

Co-development with public health partners has been 
essential in designing the ArboMAP system. The current fore
casting reports were informed by design and evaluation 
workshops held in 2021 and 2022. Key design principles 
included emphasizing visualizations over written text, creat
ing stand-alone figures that can be copied to other reports or 
websites to communicate the forecasts, using consistent color 
schemes and formatting throughout the report, and adjusting 
the order so that the most important results can be found on 
the first few pages of the report. User feedback has also 
informed the development of the user-specified parameters 
and the design of the GUI. All ArboMAP code along with 
comprehensive documentation and artificial datasets for 
demonstration and testing are available on GitHub (https:// 
github.com/EcoGRAPH/ArboMAP). Users can run the soft
ware with their own datasets or customize the code to meet 
specific needs. Potential changes could include integrating 
novel streams of data, incorporating different predictive 
modeling techniques, or modifying the information provided 
in the forecasting reports.
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