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Abstract—The crossbar-based processing-in-memory (PIM) ar-
chitecture has garnered considerable attention for its potential
in achieving high energy efficiency for deep neural networks
(DNNs). The PIM hardware’s accuracy depends heavily on the
design and resolution of the analog-to-digital converters (ADCs).
Regrettably, high-resolution ADCs tend to be costly and often
dominate the overall energy and area of the PIM designs. We
propose adaptive-range PIM (AR-PIM) architecture that enables
the use of lower-resolution ADCs without sacrificing accuracy.
This is achieved by leveraging sparsity in the weights and
input activations and dynamically adjusting the number of input
activations and distributing MAC operations across multiple
cycles during runtime. We perform our evaluations using a
commercial 7nm FinFET PDK and show that AR-PIM offers an
appealing trade-off, delivering 1.7× higher energy efficiency and
4.3× better area benefits without losing accuracy. The latency
overhead is modest, only 10% over a baseline PIM architecture.

Index Terms—Processing in memory, deep neural network.

I. INTRODUCTION

Deep neural network (DNN) has enjoyed exceptional suc-
cesses in many applications and it has become one primary
workload for modern computing hardware. Many works have
demonstrated substantial acceleration for DNN workloads
using a large amount of compute resources and power by
GPUs, CPUs, FPGAs, and digital ASICs [1]–[4]. In mobile
and IoT devices, the energy budget is severely limited, which
requires hardware solutions of higher energy efficiency [5]–[7]
to enable DNN processing on these devices.

Crossbar-based processing in memory (PIM) architecture,
also known as compute in memory, is a promising candi-
date for DNN inference computation to improve performance
and energy efficiency. In essence, PIM removes the memory
wall by eliminating data movement between memory units
and processing units and by performing multiply-accumulate
(MAC) operations at the cross-point locations. However, PIM
architecture requires complex analog circuits that must be
carefully designed or else they can dominate the area and
energy of the entire design [8]. These include digital-to-analog
converters (DACs) for the digital inputs and analog-to-digital
converters (ADCs) for digitizing the outputs between layers.
The complexity of ADC and DAC grow exponentially with
their resolution. Lowering the resolution of ADC and DAC is
desirable for area- and energy-efficient solutions. However, an
insufficient resolution generally results in accuracy degrada-

tion. Without further network engineering, the accuracy can
drop dramatically for sub-8b ADC resolution.

SRAM and NVM have been used as PIM memory devices.
Nonvolatile memory (NVM) devices such as resistive RAM
(RRAM), magnetoresistive RAM (MRAM), phase-change
RAM (PCRAM), ferroelectric RAM (FeRAM), are suitable
for PIM thanks to their nonvolatility, low standby power,
and high density. However, the commercially available NVM
devices are still at 22nm [9]–[12], lagging the scaling of logic
devices. The process, voltage, temperature (PVT) variations
of the NVM devices also require a diligent control. Although
both SRAM and NVM suffer from variability, SRAM has no
drift issues, infinite endurance, and always leads technology
scaling. Comparing a 7nm SRAM to a 22nm RRAM or
MRAM, a 7nm SRAM is a better candidate for PIM because
of its energy efficiency if nonvolatility is not of concern.

In this work, we investigate PIM based on a 7nm SRAM and
explore practical analog PIM design choices. The investigation
points to a promising direction of utilizing data sparsity in an
adaptive design to relax the high-resolution ADC requirements
without accuracy loss. The contributions of this work are
summarized below:

1) We provide an analysis of the practical design choices
for 7nm SRAM PIM, accounting for the noise and non-
idealities derived from the intrinsic nature of the SRAM
cell and analog accumulation in the bitline.

2) We present runtime range detection and adaptive-range
PIM (AR-PIM) to achieve high accuracy with minimal
latency overhead even using a low-resolution ADC.

3) We benchmark AR-PIM against a baseline on multiple
DNN workloads using MNIST dataset and ImageNet
dataset, showing the energy efficiency and area improve-
ment at minimal latency increment.

II. PRELIMINARY AND RELATED WORK

PIM architectures can reduce data movement by adopting
a weight-stationary approach. The weights are stored in a
memory array and the input activations are passed to the
array to perform computation. The weights are stored in a bit-
parallel way across columns as in [13]–[15]. In computation,
a vector of inputs is driven, one per wordline (WL). The cells
along a column are turned on, and the currents are summed on
the bitline (BL), accomplishing the dot product between the
input vector and the weight vector stored on the column of the979-8-3503-1175-4/23/$31.00 ©2023 IEEE
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Fig. 1: The PIM mapping of the convolution operation where R×S
is the kernel size, C is the input channel and K is the output channel.
The 2b weight in the example is stored in two columns. The zoom-in
view shows the 6T SRAM and current IDS discharged by each bitcell.
Both baseline PIM and AR-PIM adopt this mapping for convolution
operation.

Fig. 2: The multi-bit (2b in the example) input representation of (a)
WL pulse amplitude and (b) WL pulse train.

memory array. Across the columns, dot products are conducted
in parallel, realizing vector-matrix multiplication (VMM).

An SRAM bitcell stores a value and its complement. When
its WL turns on, the stored value drives BL and the comple-
ment drives BLB. In SRAM-based PIM, either BL or BLB can
be taken as the output (Fig. 1). In this work, BL is taken as
the output. The key design parameters are considered below.

Array Size. Using a larger array, more cells are activated in
parallel, achieving higher performance; and the row and col-
umn peripheral circuits are amortized more effectively, leading
to a higher compute density. A drawback of a larger array is the
lower utilization in mapping smaller VMMs, leaving unused
cells. A larger array also presents higher capacitive loading
on WL and BL, resulting in a longer delay. Finally, a larger
array implies the potential activation of more cells contributing
current to the same BL, and thus the accumulation of more
noise that may degrade the signal-to-noise ratio (SNR).

Input Encoding. The input activations can be encoded in
two forms as shown in Fig. 2: (a) pulse amplitude or (b)
pulse train, i.e., each bit of the multi-bit input is represented
by a 1b pulse. The pulse train is more linear compared to
pulse amplitude or width, and it can be better controlled [16],
but the latency increases with the bitwidth. Past designs have
combined pulse amplitude and pulse train [8], [17], [18].

BL Resolution. The BL resolution depends on the WL res-
olution (bWL), the memory cell resolution, and the maximum
allowable activated memory cells (Ncells) in a column. Since
SRAM is a digital (1b) memory, the BL resolution is bBL =
bWL + log2 Ncells. A higher BL resolution requires a higher-
resolution ADC, which in turn significantly impacts power
and area [8], [19]. A higher BL resolution also exacerbates
PIM’s variation and reduces the capability of error tolerance

Fig. 3: ADC energy consumption with effective number of bits
(ENOB) from [19].

Fig. 4: Energy efficiency of 1b/2b/4b/8b input activations. The input
encoding for each configuration is implemented by DAC bits and
DAC cycles with the corresponding ADC resolution.

[20]. Recently, an all-digital PIM design [21] is proposed, the
power and area of peripheral circuits increase with the BL
resolution.

ADC Sharing. The ADC area can be significantly larger
compared to the SRAM bitcell pitch. Placing one ADC per
BL is difficult due to the physical layout constraint. Since
the conversion time of ADC can be much shorter than the
time it takes for the SRAM BL current to develop, sharing
an ADC between BLs becomes a necessity, e.g., 1 ADC is
shared by 4 BLs in [16]. ADC sharing requires extra circuits
such as sample-and-hold circuit [8] or weighted capacitors [16]
to store the BL value before the conversion starts.

III. PIM DESIGN CONSIDERATIONS AND CHALLENGES

The following evaluations are based on the SPICE simula-
tion of a 128×128 SRAM array in 7nm FinFET technology.
The ADC energy is extracted from [19] and shown in Fig. 3.
DACs are adopted from [22] and most circuit component
models are adopted from [8]. The array size of 128 is chosen
to obtain high utilization for DNN workloads as in [23].

A. Input Encoding

The energy with various input encoding choices is investi-
gated. If the input activations are 1b, they can be encoded in
1b WL pulses. Since a BL is connected to 128 bitcells, the
BL resolution is bBL = 8. An 8b ADC consumes 96% of the
total energy (Fig. 4), significantly higher than the energy of the
memory access or the 1b DAC. For a 2b input activation, two
input encoding options are available: 1b pulses over 2 cycles
(with partial sums scaled and added digitally post-ADC) or a
single-cycle 2b pulse, resulting in 8b and 9b BL resolution,
respectively. A 9b ADC consumes 35% more energy than
an 8b ADC (Fig. 3). Hence, two 8b analog-to-digital (A/D)
conversions with DAC bits = 1 and DAC cycles = 2 result
in 49% higher energy than one 9b A/D conversion with DAC
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(a) (b)
Fig. 5: SRAM BL current levels from the SPICE simulation for WL
voltage of (a) 0.8V and (b) 0.6V. Each Gaussian distribution repre-
sents one output level. The less overlap between two distributions
means the better sensing margin for distinguishing two output levels.

bits = 2 and DAC cycles = 1, so the single-cycle 2b pulse
encoding is preferable in terms of energy (Fig. 4).

Moving to 4b and 8b input activations, more input encoding
options are available. The 2b-pulse encoding was found to be
the sweet spot in energy consumption. However, regardless
of the input encoding choice, the ADC dominates the energy
consumption. A WL resolution of higher than 2b is not
practical due to the significant escalation of ADC energy.

B. BL Current Levels under PVT Variations

If a bitcell storing a 1 is activated, the bitcell discharges
one unit of current from BL. However, process variations
complicate the picture. As more discharging bitcells on the
same BL are activated, the distribution of current gets wider
as in Fig. 5(a). The wide distribution makes it challenging to
decode as few as 16 current levels. This insight suggests that
the degradation of SNR due to process variations may make
using a very high-resolution ADC inconsequential.

As the WL voltage level is reduced, e.g., in supporting WL
pulse-amplitude input encoding, the current level boundaries
are further obscured as seen in Fig. 5(b).

C. ADC Resolution and ADC Sharing

For this investigation, a reference SRAM-based PIM design
is adopted: a 128×128 SRAM array; the input is provided bit
serially; WL is encoded in 1b pulses. For example, an 8b
input activation is passed to WL by a 1b DAC in 8 cycles.
Therefore, the full resolution required at each BL is 8b. An
8b weight is stored in 8 SRAM bitcells in a row. A weight-
stationary digital design was synthesized using an array of
multiply-accumulates (MACs) with weight storage to mimic
PIM. The partial sums are accumulated along a column of
MACs. The digital design also follows the same bitwidth as
the PIM design for comparison at the MAC level.

The energy efficiency of the PIM design is compared to the
digital SIMD architecture based on [24] (with matched BL
bitwidth to the PIM design for a fair comparison) in Fig. 6,
assuming one ADC per BL. PIM achieves the best energy
when the input activation and weight bitwidth are low. Also,
note that PIM with an ADC that supports the full BL resolution
(RFull = bBL) fares worse than the digital design. For the
energy of PIM to be competitive, the ADC resolution needs
to be reduced to 3b or 4b below the full BL resolution.

Fig. 6: The energy efficiency comparison of synthesized digital design
and PIM designs with various ADC resolution settings and 3 Input
Activation (IA) and Weight (W) bitwidth combinations.

(a) (b)
Fig. 7: The area comparison for synthesized digital design with the
SIMD architecture and PIM designs with various ADC resolution
settings for (a) 1 ADC per BL and (b) 1 ADC shared by 2 BLs.

The area of PIM is compared to the synthesized digital
design in Fig. 7 for one ADC per BL. The ADC area is based
on existing IPs and extrapolations. Due to the relatively large
area of ADC, especially a high-resolution ADC, the area of
PIM easily exceeds the digital design by up to 4.3×. Even with
the short bitwidth of 2b input activation and 2b weight, the full
BL resolution still requires the use of relatively high-resolution
ADCs that consume a large area. When the ADC resolution
is reduced to 3b below the full BL resolution (RFull – 3), the
area becomes comparable. Fig. 7(b) shows the configurations
of one ADC shared by 2 BLs to reduce the PIM area. The
results highlight the importance of reducing ADC resolution
and increasing ADC sharing to keep the PIM area competitive.

D. Necessity to Control Resolution

The above sections highlight the challenges behind a high
BL resolution and its feasibility due to the sensing margin.
Reducing the ADC resolution is a must to make PIM more
competitive in energy efficiency and area.

To control the BL resolution, WL resolution can be reduced
by employing 1b-pulse encoding over multiple cycles and
activating only a subset of rows at a time such as in [25].
However, these approaches requires more cycles to complete
the computation. To address this operation limitation we
proposed AR-PIM, described in Section IV.

IV. ADAPTIVE RANGE-PIM (AR-PIM) ARCHITECTURE

AR-PIM leverages data sparsity by controlling the BL range
at runtime. This approach can prevent sacrificing the inference
accuracy incurred by direct truncation on BL values with the
reduced ADC resolution. For a bitcell to contribute to the BL
current and increase the BL range, the bitcell needs to store
a 1 and it needs to be activated. This implies that both the
weight value and the input activation value are 1 (at the bit
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Fig. 8: AR-PIM architecture with BL saturation detection circuitry
(SAT). The light-weight SAs and control with programmable acti-
vated number of WLs enable runtime range detection.

level). If either the weight value or the input activation value
is 0, the bitcell does not contribute to the BL current or the BL
range. Therefore, the ADC resolution quoted in the previous
sections is the maximum resolution, while the effective BL
range can be lower with the bit-level sparsity.

The presence of zeros in weights and input activations
is referred to as sparsity. Sparsity exists even in unpruned
models, especially with the rectified linear unit (ReLU) acti-
vation function that generates zero activations. Sparsity can be
further increased using pruning algorithms to remove weights.
In addition to word-level sparsity, plenty of bit-level sparsity
exists in weights and input activations as identified by [26].

In DNN inference, a model is given and the weight sparsity
is static. However, the activation sparsity is dynamic, namely
input-dependent, and determined in runtime. As a result, when
the computation of DNN inference is mapped to PIM, the BL
range can vary due to the dynamic activation sparsity. We
propose a technique to detect the runtime sparsity (or density)
for the computation of DNN inference. If the density is low,
an energy-inexpensive low-resolution ADC can be used; and if
the density is high, the BL range can be adjusted by activating
only a portion of the bitcells.

A. Runtime Range Detection

The runtime range detection can be implemented by reusing
the SRAM sense amplifier (SA) in the readout circuitry and
a reference column as shown in Fig. 8. The reference column
stores a preset number of 1s to correspond to a given density
level, e.g., 25% of the reference column storing 1 to represent
a density of 25%. Prior to the detection, a readout from the
reference column is performed by applying unit pulses on all
WLs. The reference column’s BL current is integrated on a
sampling capacitor as the threshold voltage.

The range detection is done by an SRAM readout. The BL
current is integrated on a sampling capacitor to be the BL
voltage. The SA compares the BL voltage to the threshold
voltage generated by the reference column. If the BL voltage
is below the threshold voltage, the value of the column is
higher than the reference value, and the SA sets EN = 1 to
the controller.

The controller checks all BLs’ SA outputs. If an SA signals
EN = 1, the controller activates only 50% of the WLs
and another round of SRAM readout follows for only a
small number of saturated columns. In the next round, if one

TABLE I: Array utilization, mean of BL value, and standard deviation
of BL value. Note that the maximum of BL values is 128 for a
128×128 array.

Model LeNet AlexNet
Dataset MNIST ImageNet
Layer CONV1 CONV2 CONV1 CONV2 CONV3 CONV4 CONV5

Array Utilization 2.64% 42.2% 94.5% 96.2% 96.4% 100% 100%
BL Value Mean 0.383 4.630 27.957 14.478 6.932 2.945 2.764
BL Value Std 1.038 4.277 17.429 12.804 6.123 2.977 2.999

Model VGG11
Dataset ImageNet
Layer CONV1 CONV2 CONV3 CONV4 CONV5 CONV6 CONV7 CONV8

Array Utilization 21.1% 90% 100% 100% 100% 100% 100% 100%
BL Value Mean 6.420 9.030 9.906 5.907 6.798 3.905 3.463 2.925
BL Value Std 4.250 9.604 8.650 5.468 5.710 3.750 3.420 3.110

EN = 1, the controller activates just 25% of the WLs with the
columns at which the BL value is above the reference value in
subsequent SRAM readouts. The process continues until the
BL value is reduced to the reference level or below, thereby
controlling the BL range.

Fig. 9 illustrates BL range control. Assume that prior to
the detection, the threshold voltage is set to represent a 25%
density. In the example, in cycle 0, the first and the second
BL density exceed the 25% threshold, and the controller only
activates 50% of the rows in the subsequent cycle 1 and
cycle 2. In cycle 1, the first BL density still exceeds the
threshold, and the controller activates only 25% of the rows
in the subsequent cycle 3 and cycle 4. By actively limiting
the density below 25%, the effective BL resolution is reduced
by 2b. The proposed range control adapts to the effective BL
resolution by activating more or fewer bitcells, thus we call it
adaptive-range PIM or AR-PIM.

B. Energy Minimization

To reduce the ADC resolution and improve the sensing
margin, low-resolution ADCs are necessary. When adopting
low-resolution ADCs, only a portion of all the rows in the
array at a time can be activated and the BL values are read
out sequentially. Therefore, it may result in more processing
cycles, which in turn costs more energy and a longer latency.
To amortize this overhead, AR-PIM exploits the lower effec-
tual BL range in runtime originating from data density levels
of input activations and weights.

The lowest energy is investigated by sweeping the input
activation and weight density each from 5% to 75%. If the
ADC resolution is set based on the effective BL range (using
the IA/W density levels as the proxy indicator), the number of
processing cycles and energy consumption can be minimized.
Fig. 10 shows the result of choosing the appropriate ADC res-
olution represented as ENOB for optimal energy consumption.

V. EVALUATION OF ENERGY AND PERFORMANCE

The energy consumption of the AR-PIM architecture is
evaluated using DNN workloads based on the bit-level sparsity
of activations and weights. The DNN workloads include LeNet
with MNIST dataset as well as AlexNet and VGG11 with Im-
ageNet dataset. The energy of AR-PIM is highly dependent on
two factors, the runtime data sparsity and the ADC resolution.

For LeNet with MNIST dataset, both activations and
weights are quantized to 8b for evaluations. Table I shows
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Fig. 9: Runtime range detection and adaptation of a simple 8×4 array example and the general flowchart for a 128×128 array.

Fig. 10: Energy of AR-PIM for IA/W density each from 5% to 75%
with conditions of ADC resolution R0 - 1, R0, R0 + 1, where R0

is the nominal value of ADC resolution settings depending on the
product of array size, IA density, and W density.

the average BL values when running inference in the first
and the second convolutional layers. Each layer is mapped
to a 128×128 PIM module [8] as a baseline. In both layers,
the average BL densities stay below 10%, making AR-PIM
suitable as the effective BL range is low and consistent
between columns.

Fig. 11(a) shows the normalized energy with different ADC
resolution settings for the first and the second convolutional
layers of LeNet. In the first convolutional layer, a lower
ADC resolution reduces the energy consumption. The low
utilization of cells along each column leads to a consistently
low effective BL range. The low average BL value and the
narrow distribution (Table I) allow the setting of a low ADC
resolution to aggressively reduce the BL resolution to save the
most energy.

In the second convolutional layer, a different trend is
observed: when the ADC resolution is too low, the energy
consumption increases. Different from the first layer, the
utilization in the second layer of mapping is higher. The higher
utilization results in a broader BL value distribution (Table I).
The lowest ADC resolution could result in a large number
of extra cycles and more energy. The energy-optimal ADC
resolution can be set to capture most of the BLs, leaving only
a small number of extra cycles to capture the remaining BLs.

Fig. 11(b) shows the latency implications of different ADC
resolution settings. Generally speaking, the lower the ADC
resolution, the higher the latency. The energy-optimal points
tend to be low-resolution points where the latency does not

increase excessively.
Fig. 11(c) and Fig. 11(d) show the normalized energy and

latency of AR-PIM with different ADC resolution settings for
the first, middle, and last convolutional layers in AlexNet with
ImageNet dataset. The activations and weights are quantized
to 16b and 12b in evaluations while maintaining the inference
accuracy. The mean of BL values decreases and the distribu-
tion gets narrower in deep layers as in Table I.

Similar behavior can be observed in VGG11 as in Fig. 11(e)
and Fig. 11(f). Fig. 12 shows the accuracy and energy trade-
off between with and without AR-PIM. The accuracy can
be recovered in lower-resolution ADCs with minimal energy
increase. Across different DNN workloads, AR-PIM can min-
imize the energy consumption while maintaining the inference
accuracy over the baseline PIM with 7b ADC resolution. As a
result, AR-PIM improves the energy efficiency over the base-
line PIM. By using AR-PIM, latency-constrained applications
can achieve up to 1.7× higher energy efficiency.

VI. CONCLUSION

This work explores the design boundary for analog PIM
using SRAM in a 7nm process. The input encoding, BL range,
ADC resolution, and ADC sharing are studied to analyze
their impacts on the energy efficiency and the area cost of
analog PIM. From the analyses, we conclude that low-bitwidth
quantized NNs are more suitable to be deployed on analog
PIM to save energy on power-constrained mobile devices.
Addressing the challenges behind the deployment of multi-
bit matrices in analog accelerators, AR-PIM is presented with
a runtime BL range detection mechanism to adapt to a lower
effective BL range.

AR-PIM eliminates the need for high-resolution ADCs and
reduces the energy consumption of the ADCs. By adapting
to the lower effectual BL range, AR-PIM also enhances the
variation tolerance and the sensing margin. Considering the en-
ergy gain and latency overhead together, our evaluations show
that AR-PIM provides 1.7× higher energy efficiency over the
baseline PIM with 4.3× area reduction while maintaining the
inference accuracy.
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(a) (b) (c) (d) (e) (f)
Fig. 11: Energy consumption and latency of AR-PIM compared and normalized to the baseline PIM with 7b ADC resolution (the rightmost
bar in each figure) for each layer running (a)(b) LeNet using MNIST dataset, (c)(d) AlexNet using ImageNet dataset, and (e)(f) VGG11
using ImageNet dataset.

Fig. 12: Accuracy and energy trade-off with ADC resolution settings.
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