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ABSTRACT. Purpose: Medical technology for minimally invasive surgery has undergone a para-

digm shift with the introduction of robot-assisted surgery. However, it is very difficult

to track the position of the surgical tools in a surgical scene, so it is crucial to accu-

rately detect and identify surgical tools. This task can be aided by deep learning-

based semantic segmentation of surgical video frames. Furthermore, due to the

limited working and viewing areas of these surgical instruments, there is a higher

chance of complications from tissue injuries (e.g., tissue scars and tears).

Approach: With the aid of digital inpainting algorithms, we present an application

that uses image segmentation to remove surgical instruments from laparoscopic/

endoscopic video. We employ a modified U-Net architecture (U-NetPlus) to segment

the surgical instruments. It consists of a redesigned decoder and a pre-trained

VGG11 or VGG16 encoder. The decoder was modified by substituting an up-

sampling operation based on nearest-neighbor interpolation for the transposed

convolution operation. Furthermore, these interpolation weights do not need to

be learned to perform upsampling, which eliminates the artifacts generated by the

transposed convolution. In addition, we use a very fast and adaptable data augmen-

tation technique to further enhance performance. The instrument segmentation

mask is filled in (i.e., inpainted) by the tool removal algorithms using the previously

acquired tool segmentation masks and either previous instrument-containing frames

or instrument-free reference frames.

Results: We have shown the effectiveness of the proposed surgical tool segmen-

tation/removal algorithms on a robotic instrument dataset from the MICCAI 2015 and

2017 EndoVis Challenge. We report a 90.20% DICE for binary segmentation, a

76.26% DICE for instrument part segmentation, and a 46.07% DICE for instrument

type (i.e., all instruments) segmentation on the MICCAI 2017 challenge dataset

using our U-NetPlus architecture, outperforming the results of earlier techniques

used and tested on these data. In addition, we demonstrated the successful exe-

cution of the tool removal algorithm from surgical tool-free videos that contained

moving surgical tools that were generated artificially.

Conclusions: Our application successfully separates and eliminates the surgical

tool to reveal a view of the background tissue that was otherwise hidden by the tool,

producing results that are visually similar to the actual data.
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1 Introduction

By drastically lowering the risk of infections and cutting down on hospital stays while still

producing results comparable to open surgery, minimally invasive surgery has addressed many

of the problems with conventional surgical approaches. Robot assistance in the context

of laparoscopic visualization has caused a paradigm shift in this area.1 The ability to identify

surgical instruments is essential for making it easier to manipulate laparoscopic surgical tools

while viewing the endoscopic scene. This task of Da Vinci surgical instrument endoscopic

segmentation becomes challenging due to the presence of non-class objects, such as suturing

threads, as well as other environmental factors such as changing lighting conditions and visual

occlusions. These additional elements introduce complexities and make the segmentation

task more difficult. The presence of non-class objects requires distinguishing them from

the surgical instruments of interest while factors such as lighting variations and occlusions

further hinder accurate segmentation. Addressing these challenges requires robust algorithms

and techniques that can handle the variability in the visual environment and effectively

differentiate between the target surgical instruments and other objects or distractions in the

scene.

Endoscopic video is a key visualization approach when performing minimally invasive

surgery2 on a variety of organs.3 Nevertheless, the endoscopic field-of-view is usually limited,

due to the small size of the endoscopic camera, as well as the constrained workspace. This visu-

alization challenge is further augmented by the insertion of surgical instruments into the already

limited field-of-view, where surgical tools often occupy a large part of the endoscopic image,

even when located near at the edge of the visual field.4 As a result, surgeons often need to repeti-

tively retract the instruments to observe the tissue, causing significant inconvenience and increas-

ing procedure duration.5

Due to the restricted working area and visual field of view, surgical instruments used in

endoscopic surgical suturing procedures make it difficult for surgeons to control their dexterity.

The likelihood of tissue tears and scars is increased by these obstructions in the visual field. To

ensure accurate tracking of the surgical tools and to enable therapy through precise manipulation

of the laparoscopic instruments, it is crucial to develop segmentation techniques that are suffi-

ciently accurate and robust. In addition, the issue of tissue occlusion would be mitigated by

the transparent rendering or digital removal of the surgical instruments with the appropriate

inpainting of the corresponding background information.

While extensive research has focused on the design of smaller, more flexible and higher

image quality endoscopic systems,2,6 very few studies tackled the removal of occlusions caused

by the presence of surgical instruments from endoscopic images.5Given the extensive reliance on

endoscopy to guide access to and provide visualization deep inside the human body, in increas-

ingly narrower spaces, the visual occlusion caused by the surgical instruments poses a severe

challenge in need of an effective solution.

In this study, we describe two inpainting approaches for removing the occlusion caused by

the presence of surgical instruments in endoscopic images, as well as an automated method for

surgical instrument detection, classification, and segmentation, to be used in conjunction with the

inpainting algorithms.

Despite the fact that deep convolutional neural networks (CNNs) have enabled semantic

segmentation methods applied to cityscapes, street scenes, and even Landsat image datasets7,8

in recent years to achieve ground-breaking performance, image segmentation in clinical settings

still requires additional accuracy and precision, with even minor segmentation errors posing high

risks for effective diagnosis and therapy.

Long et al.9 proposed the first fully convolutional network for semantic segmentation. The

training dataset’s small size has made it difficult to use in the medical field, though. To address

the aforementioned issue, a number of techniques have been developed, including patch-based

training,10 data augmentation, and transfer learning.11 However, because there are so many

objects in the surgical scene that belong to the same class, semantic segmentation is not accurate

enough to handle multi-class objects. As a result, the proposed work is driven by the need to

enhance multi-class object segmentation using the strength of the current U-NetPlus and adding

new features to it.
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U-Net architectures have been widely adopted in the field of medical imaging since 2015,

and they have consistently delivered state-of-the-art results for various medical imaging tasks.12

Recently, Chen et al.13 modified the U-NetPlus by adding sub-pixel layers to enhance low-light

imaging, and they saw promising results with high signal-to-noise ratios (SNRs) and flawless

color transformation on their own see-in-the-dark dataset containing 5094 raw short-exposure

images, each with a reference long-exposure image.

Jiang and Wang14 and Jia et al.15 used nearest-neighbor (NN) interpolation for image recon-

struction and super-resolution. The issue of transposed convolution was examined by Odena

et al. in their work,16 which offered a solution using NN interpolation. The value of incorporating

it into the deep CNN as a component of the image upsampling operation has not yet been fully

examined. A few papers have addressed the challenge of segmenting and identifying surgical

instruments from endoscopic video images, and even fewer than half a dozen papers have

used deep learning to address this problem. One significant contribution to research has been

the use of a modified version of fully convolutional network (FCN)-8, though there have been no

attempts at multi-class segmentation.17 The learned convolution kernel may not be low-pass if the

up-sampler is the transposed convolution. In many images, the checkerboard artifact can still be

seen. The final image could be overly blurry and thus easily distinguishable from the real images

if the lowpass filter removes too much high-frequency content.

Shvets et al.18 and Pakhomov et al.19 made the initial proposals for multi-class (instrument

part and type) tool segmentation, and both groups reported encouraging outcomes. In a manner

similar to the convolutional layers, but in the opposite direction, they modified the traditional

U-Net model,12 which is based on the transposed convolution or deconvolution. As an illustra-

tion, they map from 1 input pixel to 4 × 4 output pixels as opposed to mapping from 4 × 4 input

pixels to 1 output pixel. The filters’ additional weights and parameter requirements necessitate

end-to-end training, which significantly slows down computational performance. Transposed

convolution can also easily result in “uneven overlap,” which is characterized by checker-

board-like patterns and produces artifacts of various scales and colors.16 The problem with the

artifacts and checkerboard patterns produced by the transposed convolution, as shown in Fig. 1,

was first described by Redford et al.20 and Salimans et al.21 While utilizing a stride of 1 can

Fig. 1 Schematic diagram illustrating an artifact caused by the transposed convolution operation:

(a) and (b) checkerboard problem caused by applying a transposed convolution on images of

improper resolution resulting in uneven overlap, and (c) and (d) artifacts that can be minimized

and essentially eliminated by applying a NN interpolation up-sampling operation.
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partially mitigate the issue of uneven overlap in transposed convolutions, it cannot completely

eliminate the problem, particularly when using kernel sizes that are divisible by the stride. The

reason for the presence of artifacts in the results of the transposed convolutions is their tendency

to repeatedly visit pixels in the center of the kernels while only visiting pixels in the corners of

their filters once, regardless of how they are configured. This uneven overlap persists even when

adjusting filter sizes and stride length. As a result, artifacts are almost inevitable and are likely to

be present in the output after several training iterations.

Our aim is to initially reduce the occurrence of these limitations and the resulting artifacts,

even though it is challenging to completely eliminate them.

To address these issues with the traditional U-Net architecture, in this work, we introduce

the U-NetPlus model in this work by combining the VGG-11 and VGG-16 as encoders, batch-

normalizing pre-trained weights, and NN interpolation in place of transposed convolution in

the decoder layer (Fig. 2). By avoiding the optimization issues related to the target data, this

pre-trained encoder22 accelerates convergence and produces better results.23 The artifacts pro-

duced by the transposed convolution are also eliminated by the NN interpolation employed in

the decoder section.

To evaluate the proposed U-NetPlus network, we implemented several of the latest and most

advanced surgical tool segmentation architectures. We then compared the performance of these

architectures with that of U-NetPlus. By conducting this comparison, we aimed to assess

the effectiveness and superiority of the U-NetPlus architecture in the context of surgical tool

segmentation. Only one of the aforementioned papers appears to have obtained results that are

comparable to ours,22 but even this paper still has a number of artifacts, some of which we were

able to further reduce using the method we suggested. As a result, even though this paper makes

use of some of the fully convolutional network’s existing infrastructures, its main goal is to show

how existing infrastructures can be modified to improve the performance of the network for

a particular task, in this case, the segmentation and identification of surgical instruments from

endoscopic images. We show that the decoder can potentially eliminate artifacts and have fewer

parameters using NN interpolation.

Furthermore, we demonstrate a novel use of our neural network-based surgical tool segmen-

tor (U-NetPlus) to digitally remove tools from video frames, allowing the visualization of

anatomical details that would otherwise be hidden by the tool. According to the authors, there

is only one other work that has specifically addressed the segmentation and modification of

surgical instruments in endoscopic/laparoscopic videos. This work, presented by Koreeda et al.,24

proposed a hardware/software-based method to visualize areas that are hidden by surgical instru-

ments. However, their approach has some drawbacks because multiple endoscopes must be

present, which might result in more invasive patient care.

In this study, we have implemented and tested two image-driven methods for surgical tool

removal. These methods both rely on the use of data from the laparoscope/endoscope images to

“paint over” the surgical tool mask that has been detected by our automated surgical tool seg-

mentor. In Fig. 3, we demonstrate two renderings of the background that would normally be

hidden behind the surgical tool after the surgical tool has been removed using our suggested

application.

Input
Ground truth

Prediction

Pre-trained encoder Interpolated decoder

Fig. 2 Pipeline of surgical instruments segmentation.
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2 Methodology

2.1 Overview of Proposed Segmentation Method

U-NetPlus has a downsampling path and an upsampling path, followed by a multi-class softmax

layer for pixel-wise segmentation, as shown in Fig. 4.

Our prior proposed U-NetPlus25 functions as an auto-encoder with both a downsampling and

an upsampling path, similar to U-Net. Downsampling and upsampling paths are connected

through skip connections to keep the number of channels exactly the same as in the encoder

portion. This makes it possible for the mask to be very precisely aligned with the original image,

which is crucial for medical imaging. The vanishing gradient issue is also mitigated by skip

connections by starting multiple paths for backpropagation. To train a network, weights are typ-

ically initialized at random. Limited training data, however, can result in overfitting issues, which

escalate in cost when the segmentation mask must be manually adjusted. As a result, the network

weights can be initialized using transfer learning. Since a surgical instrument is not an ImageNet

class, one method of applying transfer learning to a new task is to partially reuse the ImageNet

feature extractor (using VGG-11 or VGG-16 as an encoder) and then add a decoder. We started

a pre-trained VGG-11 and VGG-16 architecture with batch-normalization layers that have 11 and

16 sequential layers, respectively, as an improvement for the encoder component. After this

modification, it has been demonstrated that the pre-trained model can train the network more

quickly and accurately.26

A rectified linear unit (ReLU) activation function is applied after each of the seven 3 × 3

kernel-sized convolutional layers that make up the VGG-11 feature map. Utilizing max pooling

with stride 1 allowed the feature map to be shrunk in size. After that, the pooling operation
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Fig. 4 Modified U-Net with batch-normalized VGG11 as an encoder and upsampling as the

decoder. Feature maps are denoted by rectangular-shaped boxes. It consists of both an upsam-

pling and a downsampling path and the feature map resolution is denoted by the box height while

the width represents the number of channels. Cyan arrows represent the max-pooling operation,

whereas light-green arrows represent skip connections that transfer information from the encoder

to the decoder. Red upward arrows represent the decoder, which consists of NN upsampling with a

scale factor of 2 followed by 2 convolution layers and a ReLU activation function; working principle

of NN interpolation where the low-resolution image is resized back to the original image as shown

in Figs. 5(a)–5(c).

Fig. 3 Example of background renderings generated using our application: (a) tool containing

frame; (b) inpainted tool; and (c) inpainted tool with a yellow outline (Video 1, MP4, 192 KB

[URL: https://doi.org/10.1117/1.JMI.10.4.045002.s1]).
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increases the number of channels by 2, bringing the total to 512. The pre-trained VGG-11 on

ImageNet is used as the source for the weights.

In a recent paper, Santurkar et al.27 did an investigation into the main impact of batch

normalization. This study claims that batch normalization increases training accuracy at a faster

convergence rate by re-parameterizing the underlying gradient optimization problem in addition

to reducing the internal covariate shift. We applied the BatchNorm layer after each convolutional

layer after evaluating the effects of doing so. In contrast to the upsampling path, which results in a

pixel-wise mask, the downsampling path reduces the feature size while increasing the number of

feature maps, whereas the upsampling path increases the feature size while decreasing the num-

ber of feature maps. We altered the current architecture to reconstruct the high-resolution feature

maps for the upsampling operation. Instead of transposed convolution, we employed a NN

upsampling layer with a carefully chosen stride and kernel size at the start of each block,

followed by two convolution layers and a ReLU function that would double the spatial dimension

in each block.

The input feature map is upsampled using NN interpolation, which adds a regular grid on top

of it. The output grid is created by applying a linear transformation called τθ (Ii) to the input grid

Ii, which will be the grid to be sampled. As a result, the definition of τθ for an upsampling

operation is as follows:

EQ-TARGET;temp:intralink-;e001;114;377

�

po
i

qoi

�

¼ τθðIiÞ ¼

�

θ 0

0 θ

��

pt
i

qti

�

; θ ≥ 1; (1)

where ðpo
i ; q

o
i Þ ∈ Ii are the initial sampling input coordinates, ðpt

i; q
t
iÞ are the target coordinates,

and θ is the upsampling factor. Figure 5 illustrates the underlying idea behind NN interpolation,

which increases the size of the image. The location of the closest cell center on the input raster is

found, and the value of that cell on the output raster is then assigned. This process begins with

finding the center pixel of the cell of the output raster dataset on the input raster.

We show the upsampling of a 4 × 4 image using this method as an illustration. The output

raster’s cell centers are evenly spaced apart. For each output cell, a value must be extracted from

the input raster. The input raster’s cells whose centers are closest to the output raster’s are chosen

for interpolation using the NN method. Copies of the center pixel can be used to fill in the black

spaces in the middle image. Therefore, compared to strided or transposed convolution, these

fixed interpolation weights require no learning for upsampling operation, resulting in a more

memory-efficient upsampling operation. The algorithm is comparable to that suggested and

applied by Dong et al.28 in their work.

2.2 Surgical Tool Removal Method A: Optical Flow-Based Video Object

Removal Algorithms

The first method uses video object removal algorithms29,30 to replace the segmented tool pixels in

the current frame with data from previous frames, which we have mentioned in our prior work.31

The procedure establishes dense correspondences (optical flow) between the pixels (i.e., regions)

observed in the background region of a previous frame Itðx; yÞ and the pixels (i.e., regions)

occluded by the surgical tool in the present frame It−1ðx; yÞ. The foreground surgical tool region
ΩF obscures pixels in the background region ΩB. The optical flow is used to modify the cumu-

lative mapping function Vtðx; yÞ, which establishes the correspondences between the foreground

Fig. 5 (a)–(c) Working principle of NN interpolation where the low-resolution image is resized back

to the original image.
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pixels in the current frame t and the background pixels in the previous frames fI1; I2; : : : ; It−1g.
After that, the tool region can be painted using this function with data from earlier frames.

A parametric warp model,32 such as an affine warp, which is defined as the solution to the

following minimization problem, can be used to determine the correspondences between the

frames

EQ-TARGET;temp:intralink-;e002;117;676min
p

X

x;y∈Ωt
B
;

ðx;yÞ≠Ωt
F
;

ðxþu;yþvÞ≠Ωt−1
F

½Itðx; yÞ − It−1ðxþ uðx; y; pÞ; yþ vðx; y; pÞÞ�2; (2)

where

EQ-TARGET;temp:intralink-;e003;117;611

�

uðx; y; pÞ
vðx; y; pÞ

�

¼

�

p1 p3 p5

p2 p4 p6

�� x

y

1

�

; (3)

represents the displacement vector at pixel ðx; yÞ from It to It−1 and ΩB represents the back-

ground region used to determine the affine parameters p. The displacement field in the missing

tool region Ωt is determined by evaluating Eq. (3) within the region Ωt using the determined

affine parameters p.

Alternatively, the correspondences can be determined by a non-parametric optical flow-

based model33 as the variational minimization of the following problem

EQ-TARGET;temp:intralink-;e004;117;492min
u;v

X

x;y∈Ωt
B
;

ðx;yÞ≠Ωt
F
;

ðxþu;yþvÞ≠Ωt−1
F

½Itðx; yÞ − It−1ðxþ uðx; yÞ; yþ vðx; yÞÞ�2 þ αðj∇uðx; yÞj2 þ j∇vðx; yÞj2Þ; (4)

where α is the weight between the data (first) and smoothness (second) term. The data term

represents the similarity between the pixel values of adjacent frames while the smoothness term

enforces the smoothness of the flow fields. The data term is undefined inside the tool regions ΩF
t

and Ω
F
t−1, so the smoothness term becomes the only constraint resulting in the optical flow field

being smoothly interpolated into the missing tool region. We solve both Eqs. (2) and (4) using

a multi-resolution (coarse-to-fine) Gaussian pyramid framework.

The most straightforward way to inpaint the tool region of frame Ω
F
t is to use the corre-

spondences ðu; vÞ to trace the backward displacement at each pixel of the tool region Ω
F
t to

find its corresponding location in a previous inpainted frame. The occluded pixel in Ω
F
t is then

replaced by the corresponding pixel in Ω
F
t−1 using bilinear interpolation. The current inpainted

frame t is then used as a source frame to inpaint the tool region in the next frameΩF
tþ1. A potential

problem with this simple inpainting approach can occur when the same anatomical features are

covered by the tool for multiple frames. This can result in the inpainted regions becoming blurry

due to the repeated copying (via bilinear interpolation) of pixels from the inpainted tool region

into the tool region of consecutive frames. This occurs when the tool dwells over or moves slowly

across a region covered by the tool.

To avoid this problem, we define a cumulative mapping function VtðxÞ,
29,30 which, for each

pixel, stores the index of the source frame I1; I2; : : : ; It−1 and the spatial shift relative to the

source background region where the pixel was last visible. This mitigates the blurriness problem

because source pixels used to inpaint the tool region are now being copied once via interpolation

as opposed to multiple times. Letting x ¼ ðx; yÞ and w ¼ ðu; vÞ, the vector field Vt can be

computed for each pixel x ∈ Ωt using the optical flow w for frame t → t − 1 by propagating

the previous frame vector-field value Vt−1 (xþ wðxÞ) using the following rule

EQ-TARGET;temp:intralink-;e005;117;163VtðxÞ ¼

8

<

:

½wðxÞ; t − 1� if xt−1 ∈= Ω
F
t−1

½wðxÞ þ V1
t−1ðxt−1Þ;V

2
t−1ðxt−1Þ� if Vt−1ðxt−1Þ ≠ undefined

undefined otherwise

; (5)

where xt−1 ¼ xþ wðxÞ is the corresponding pixel in the previous frame and V1 denotes the

spatial-shift value (first element) and V2 denotes the index of the source frame (second element).

These rules are applied to pixels covered by the tool in frame t. The first condition occurs if the

foreground (occluded) pixel maps back to the background region in frame t − 1. The second
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condition occurs if the foreground (occluded) pixel maps back to the foreground region in frame

t − 1 and Vt−1ðxt−1Þ is defined. The last condition indicates that the foreground pixel has not

been observed in the background of any previous frames and thus the mapping function is

undefined.

2.3 Surgical Tool Removal Method B: Reference Image Frame Inpainting

Flow-Based Video Object Removal Algorithms

This method depends on gathering a number of reference image frames prior to the introduction

of the surgical instruments into the operating room and into the laparoscope/field endoscope’s of

view. The inpainting algorithm then uses these reference images Riðx; yÞ in place of the seg-

mented surgical tools.

The technique establishes correspondences between regions observed in a reference frame

and regions not occluded by the surgical tool Ωt in the current frame Itðx; yÞ. We select the

closest matching reference frame from the collection of frames recorded prior to the introduction

of the tools, further spatially transform it to match the current image, and then fill the tool mask

region with the pixels from the warped reference image. To determine the reference image for

the current frame, we first use Eq. (3) to identify the reference image with the lowest sum of

the square differences between the reference and the current image within a region of interest

surrounding the tool mask Ω in the current image using Eq. (6)

EQ-TARGET;temp:intralink-;e006;114;508min
i

X

x∈ΩB

½Riðx; yÞ − Itðx; yÞ�
2; (6)

where the reference frame’s index i is used. The tool mask’s surrounding area and the selected

reference must maintain spatial continuity, which is enforced by this term. The chosen reference

frame is then transformed spatially to enhance its registration with the current frame and to ascer-

tain the displacement field in the missing tool region. The spatial transformations can be specified

by either a non-parametric optical flow-based model Eq. (4) or an affine parametric motion

model Eq. (2), which is similar to the previous method A.

2.4 Illumination/Appearance Adjustment

The appearance of the same tissue varies across frames as a result of the operating room’s uneven

lighting. Because of this, there may be obvious seams between the inpainted and existing regions

when pixels from the reference images or previous frames are copied into the tool mask region.

We employ a Poisson blending algorithm34 to combine the inpainted tool region with the current

frame background IB to reduce the appearance of seaming artifacts. The gradient fields of the

two regions are combined rather than the pixels from the two regions. The formulation follows

a variational issue

EQ-TARGET;temp:intralink-;e007;114;292min
I

X

x;y∈ΩF
t

j∇Iðx; yÞ − vðx; yÞj2 with IBj∂Ω ¼ Ij∂Ω; (7)

where I is the Poisson blended inpainted tool image, v is the gradient of the inpainted tool image

determined by the tool removal algorithms, ∂Ω is the boundary between the inpainted region, and

the background, and Ω
F
t is the tool mask region. The current image provides Dirichlet boundary

conditions IBj∂Ω ¼ Ij∂Ω for the equation around the inpainted region. The solution of Eq. (5) is

given by

EQ-TARGET;temp:intralink-;e008;114;194ΔIðx; yÞ ¼ div vðx; yÞ with IBj∂Ω ¼ Ij∂Ω; (8)

for all x; y ∈ Ω
F
t and outside of ΩF

t I takes on the same values of IB. This allows the Poisson

inpainted region to have intensities similar to the background’s boundary with variations cor-

responding to the gradient v of the inpainted tool image.

Several frames will pass after the laparoscopic/endoscopic procedure (Video 2) begins

before enough anatomical details are revealed to paint the entire tool region. Depending on how

quickly the surgical tool is moving, the number of frames will change. If the inpainted region

does not fill the entire tool region, Neumann boundary conditions, ∂I
∂n
¼ 0 apply to the pixels

bordering the remaining unfilled tool region, with n being the unit normal to the boundary
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between the inpainted and unfilled tool regions. This will stop the inpainted region from picking

up any of the tool’s intensities.

It is possible to produce artifacts due to illumination variation of the data used to inpaint the

tool region because the data used to inpaint a given tool region comes from multiple previous

frames. Gradients within the tool region may result from variations in illumination rather than

anatomical structures. The Poisson blending algorithm will not change these internal gradients.

Using the following heuristic rule, we set the div vðx; yÞ ¼ 0 at locations where nearby

inpainted pixels originated from source frames that are more than 10 frames apart to eliminate

gradients brought on by illumination differences within the inpainted region. The modified

Poisson blending algorithm is the name we give to this technique for eliminating these internal

gradients.

2.5 Image Dataset

We utilized the Robotic Instruments dataset from the sub-challenge of the MICCAI 2017

Endoscopic Vision Challenge35 for both training and validation. The high-resolution stereo cam-

era images were taken from a da Vinci Xi surgical system during laparoscopic cholecystectomy

procedures and were collected as 8 × 225 frame sequences with a 2 Hz frame rate for the training

dataset. To prevent any redundancy problems, the frames were re-sampled from 30 Hz video to

2 Hz. The video sequences, which have a resolution of 1920 × 1080 in RGB format, were

recorded using a stereo camera and include the left and right eye views. A rigid shaft, wrist,

and claspers were manually labeled on each frame to identify the surgical instrument. The test

set consists of 2 × 300 frames and 8 × 75 frame sequences. The segmentation of the seven

classes—which include grasping retractors, needle drivers, prograsp forceps, vessel sealers,

etc.—represents the main difficulty. We created videos with surgical tools from surgical tool-

free videos by inserting a moving surgical tool into the surgical tool-free video. The surgical

tool-free videos were taken from the Hamlyn Centre Laparoscopic/Endoscopic Video Dataset.

The Hamlyn Dataset36 comprises rectified stereo images with a resolution of 384 × 192 pixels.

These images were collected during partial nephrectomy procedures and do not include camera

calibration information. From this dataset, we collected 2 video clips, each containing 600 pairs

of stereo images. The duration of each video clip is ∼10 s. To enhance the visualization and

inpainting of the videos, we utilized multiple tools to superimpose additional elements on the

video frames.

2.6 Data Augmentation

We added data to the MICCAI 2017 EndoVis Challenge using the argumentation library, which

was described as a quick and adaptable implementation for data addition in Ref. 37. These libra-

ries contain affine and elastic transformations as well as their effects on the added image data.

In short, the affine transformation includes scaling, translation, horizontal flip, vertical flip,

random brightness, noise addition, etc. For the elastic transformation (non-affine), first, a random

displacement field, FðRÞ is generated for the horizontal and vertical directions, δx, and δy,

respectively, where ½δx; δy� ¼ ½−1 ≤ δx; δy ≤ þ1�.
These random fields are then convolved with an intermediate value of σ (in pixels), and

the fields are multiplied by a scaling factor α that controls the intensity. Thus, we obtain the

elastically transformed image in which the global shape of the interest is undisturbed, unlike in

the affine-transformed image. In an elastic transformation, the deformation applied to the

image is typically local, allowing for localized adjustments while maintaining the global

shape intact. This means that the essential arrangement and relationships between objects

or structures, such as their relative positions, orientations, or proportions, remain relatively

unchanged. We use the data augmentation strategies to generate ∼1000 images for training

our methods.

2.7 Implementation Details

We utilized PyTorch (https://github.com/pytorch/pytorch) to put our methodology into practice.

We removed the unwanted black border from each video frame during the pre-processing stage.

By dividing by the standard deviation and subtracting the mean from the images, they were

normalized (i.e., according to their z-scores). Prior to each weighted layer, batch normalization
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was applied because it re-parameterizes the underlying gradient optimization problem and speeds

up training convergence.27 With a learning rate of 0.00001, we used the Adam optimizer for

training. Dropout was not used because in our situation, it reduced the performance of validation.

All models underwent 100 training iterations. Before each epoch, the training set was randomly

shuffled with a batch size of 4. All tests were performed on a computer with an NVIDIA GTX

1080 Ti GPU (11 GB).

2.8 Evaluation Metrics

2.8.1 Tool segmentation evaluation metrics

In this work, we used the common Jaccard index—also referred to as the intersection-over-union

(IoU)—to evaluate segmentation results. It is an overlap index that quantifies the agreement

between two segmented image regions: a ground truth segmentation and the predicted segmen-

tation method. Given a vector of ground truth labels T1 and a vector of predicted labels P1,

IoU can be defined as [Eq. (9)]

EQ-TARGET;temp:intralink-;e009;114;556JðT1; P1Þ ¼
jT1 + P1j

jT1 , P1j
¼

jT1 + P1j

jT1j þ jP1j − jT1 + P1j
; (9)

where given a pixel j, the label of the pixel zj, and the probability of the same pixel for the

predicted class ẑj, Eq. (9) for k number of dataset

EQ-TARGET;temp:intralink-;e010;114;494J ¼
1

k

X

k

j¼1

�

zjẑj

zj þ ẑj − zjẑj

�

: (10)

We can represent the loss function in a common ground of log scale as this task is a pixel

classification problem. So, for a given pixel j, the common loss can be defined as the function H

for k number of dataset

EQ-TARGET;temp:intralink-;e011;114;413H ¼ −
1

k

X

k

j¼1

ðzj log ẑj þ ð1 − zjÞ logð1 − ẑjÞÞ: (11)

From both Eqs. (10) and (11), we can combine and can get a generalized loss

EQ-TARGET;temp:intralink-;e012;114;357L ¼ H − log J: (12)

Our aim is to minimize the loss function, and, to do so, we can maximize the intersection,

J between the predicted mask and the ground truth.

Another commonly used performance metric is the DICE coefficient. Given the set of all

pixels in the image, the set of foreground pixels by automated segmentation Sa1 , and the set of

pixels for ground truth S
g
1, the DICE score can be compared with ½Sa1 ; S

g
1� ⊆ Ω, when a vector of

ground truth labels T1 and a vector of predicted labels P1

EQ-TARGET;temp:intralink-;e013;114;259DðT1; P1Þ ¼
2jT1 + P1j

jT1j þ jP1j
: (13)

DICE score will measure the similarity between two sets, T1 and P1, and jT1j denotes the
cardinality of the set T1 with the range of DðT1; P1Þ ∈ 0; 1.

2.8.2 Tool inpainting evaluation metrics

In this work, we report the quantitative evaluation of the inpainted videos using common metrics,

including mean squared error (MSE), peak SNR (PSNR), and structural similarity index (SSIM)

as image quality metrics. It can be noted that MSE and PSNR are not always well-correlated with

perceived/subjective visual quality, whereas SSIM can show better correlations.
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3 Results

3.1 Quantitative Segmentation Results

We performed a paired comparison between the segmentation results obtained using the tradi-

tional U-Net architecture, U-Net + NN, TernausNet, and U-NetPlus to demonstrate the potential

improvement in segmentation performance using NN interpolation (i.e., fixed upsampling) in the

decoder (our proposed method).

Figure 6 displays training accuracy for binary segmentation over 100 epochs. We contrast

our suggested architecture with U-Net, U-Net + NN, and TernausNet, three additional models.

The training accuracy of the traditional U-Net framework (shown in blue) with the transposed

convolution in the decoder improves as the NN is added to the U-Net decoder. In addition, com-

pared to TernausNet, the training of our suggested method (U-NetPlus) converges more quickly

and produces better training accuracy (shown in cyan). Therefore, just this graph shows how the

NN interpolation improves segmentation performance.

The MICCAI 2017 EndoVis dataset served as the model’s testing ground. The performance

of our suggested U-NetPlus framework in comparison to a number of multi-task segmentation

techniques is summarized in Table 1. The table shows unequivocally how segmentation across

all frameworks—U-Net and TernausNet—improved after NN interpolation was added in the

decoder step. In addition, our model was compared to ToolNetH, ToolNetMS, FCN-8s, and con-

current segmentation and localization (CSL), four additional structures aside from U-Net and

TernausNet. The last one (CSL) was the pioneering method for segmenting multiple classes

of surgical instruments. However, they only used the wrist class that we introduced in our

approach and only used the two instrument classes (shaft and claspers). As a result, our overall

accuracy was significantly higher than that of the CSL approach.

We used a paired statistical test to assess how well each of these methods (U-Net, U-Net +

NN, TernausNet, and U-NetPlus) segmented data using the IoU and DICE metrics. For the

purpose of illustration, we conducted a comparison of binary segmentation using different

architectures. Our proposed U-NetPlus architecture yielded a statistically significant (for

statistical significance testing, Wilcoxon signed-rank test is performed) 11.01% improvement

(p < 0.05) in IoU and 6.91% DICE (p < 0.05) over the classical U-Net framework; a statistically

significant 8.0% improvement (p < 0.05) in IoU and 5.79% DICE (p < 0.05) over the U-Net +

NN framework; a statistically significant 0.18% improvement in IoU and 0.21% DICE (p < 0.1)

over the state-of-the-art TernausNet framework18 for the binary segmentation.

Fig. 6 Quantitative comparison of (a) training accuracy, (b) multi-class (class = 3) instrument parts,

(c) multi-task segmentation accuracy, and (d) different parts (claspers, wrist, and shaft) of the

instruments to clarify the comparison.
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By assigning the corresponding index from the training set to each instrument pixel, multi-

class instrument segmentation was carried out. Shaft, wrist, and claspers were the three classes

that made up this application. The multi-class segmentation using our suggested U-NetPlus

framework produced a mean IoU and DICE of 65.75% and 76.26%, respectively. Figure 6 shows

how the U-NetPlus architecture compares to the other three frameworks in terms of accuracy and

precision. As demonstrated, the U-NetPlus framework outperforms TernausNet, the framework

that is currently regarded as best in class. The IoU metric follows the same trends as the DICE

score, as shown in Table 1.

According to the training set, the instrument type was segmented by assigning the appro-

priate instrument type to each instrument pixel while assigning the value 0 to all background

pixels. U-NetPlus-VGG-11 encoder performed better than U-NetPlus-VGG-16 in the segmen-

tation of instrument type (for class = 7) cases. We can improve upon our instrument-type seg-

mentation results. In instrument type segmentation, VGG-16, being a deeper and more complex

architecture with a larger number of parameters, may face challenges when operating on smaller

datasets. The limited data could lead to overfitting, affecting its performance. On the other hand,

VGG-11, with a shallower and simpler architecture, gains an advantage in such scenarios as it is

less prone to overfitting. In addition, instrument type segmentation may not require highly intri-

cate features, leading to VGG-11 generating more straight forward representations better suited

for the task.

Table 1 Quantitative comparison for instrument segmentation across several techniques from

test set.

Metric

Binary segmentation Instrument part Instrument type

Models IoU DICE IoU DICE IoU DICE

ToolNetH17 74.4 82.2 — — — —

ToolNetMS17 72.5 80.4 — — — —

FCN-8s17 70.9 78.8 — — —

CSL38 — 88.9 — 87.70 (shaft) — —

U-Net12 75.44 84.37 48.41 60.75 15.80 23.59

Std. dev. ±18.18 ±14.58 ±17.59 ±18.21 ±15.06 ±19.87

U-Net + NN 77.05** 85.26* 49.39* 61.98* 16.72* 23.97

Std. dev. ±15.71 ±13.08 ±15.18 ±15.47 ±13.45 ±18.08

TernausNet18 83.60 90.01 65.50 75.97 33.78 44.95

Std. dev. ±15.83 ±12.50 ±17.22 ±16.21 ±19.16 ±22.89

U-NetPlus-VGG-11 81.32 88.27 62.51 74.57 34.84* 46.07**

Std. Dev. ±16.76 ±13.52 ±18.87 ±16.51 ±14.26 ±16.16

U-NetPlus-VGG-16 83.75 90.20* 65.75 76.26* 34.19 45.32

Std. dev. ±13.36 ±11.77 ±14.74 ±13.54 ±15.06 ±17.86

94.75 (shaft)

Mean and (standard deviation) values are reported for IoU (%) and DICE coefficient (%) from all networks
against our proposed U-NetPlus. The statistical significance of the results for U-Net + NN and U-NetPlus model
compared against the baseline model (U-Net and TernasuNet) are represented by * and ** for p-values 0.1
and 0.05, respectively. U-Net has been compared with U-Net + NN, TernausNet has been compared with
U-NetPlus. The best performance metric (IoU and DICE) in each category (binary, instrument part, and instru-
ment type segmentation) is indicated in bold text.
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3.2 Qualitative Segmentation Results

Figure 7 shows the qualitative comparison of our suggested model for both binary and multi-

class instrument segmentation. The second row of the figure demonstrates that the classical

U-Net for binary segmentation displays an aspect of the instrument that was absent from the

binary mask of our ground truth data (second row and second column). When it comes to binary

segmentation, U-netPlus performs the best (i.e., it can clearly separate the instruments from the

background) while TernausNet still leaves some unwanted regions in the segmentation output.

U-NetPlus can segment the three classes (blue: shaft, green: wrist, and yellow: claspers)

nearly perfectly compared to TernausNet when it comes to segmenting instrument parts. U-Net

still segments the unwanted instrument (blue) in this case. When it comes to segmenting instru-

ments by type, it is obvious that U-Net cannot distinguish between the blue and green classes,

whereas TernausNet and U-NetPlus can do so more successfully. According to Fig. 7, the figure

clearly shows that U-NetPlus outperforms U-Net, U-Net + NN, and TernausNet in terms of quality.

3.3 Segmentation Ablation Study

To examine the segmentation performance further, we carried out an additional ablation analysis.

This attention study employed a state-of-the-art image saliency technique39 to determine the

regions of interest in an image. The technique utilizes a method of suppressing the softmax prob-

ability of the target class to learn a mask for the image. By applying this approach, the study was

able to reveal where our proposed algorithm focuses its attention within an image, providing

insights into the areas that are deemed significant for the algorithm’s decision-making process.

The segmented surgical instruments’ heat-map image is superimposed onto the original video

image in Fig. 8.

Fig. 7 Qualitative comparison of binary segmentation, instrument part and instrument type segmen-

tation result and their overlay onto the native endoscopic images of the MICCAI 2017 EndoVis video

dataset yielded by four different frameworks: U-Net, U-Net + NN, TernausNet, and U-NetPlus.

Fig. 8 Attention results: U-NetPlus “looks” at a focused target region, whereas U-Net, U-Net + NN

and TernausNet appear less “focused,” leading to less accurate segmentation.
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The U-Net + NN architecture with NN sampling in the decoder path and the conventional

U-Net encoder outperformed the conventional U-Net architecture, as shown in Fig. 8 (featuring

the transposed convolution in the decoder). However, the U-Net + NN framework slightly

underperformed the TernausNet architecture with the pre-trained VGG network in the encoder

because of the small training dataset. In contrast to the conventional U-Net, U-Net + NN, and

TernausNet frameworks, our suggested approach (U-NetPlus) localizes the wrist and claspers of

the bipolar forceps almost perfectly using this class activation mapping (Fig. 8). As a result,

better overall performance is obtained by skillfully integrating and combining NN interpolation

as a fixed upsampling technique with a pre-trained encoder.

3.4 Tool Removal Results

3.4.1 Tool removal results: method A

The first surgical video serves as an example of how our tool segmentor can effectively segment

and produce a mask that can be used to eliminate the tool from the video images. While viewing

the anatomy in vivo and with little surface distortion in this video, the camera is stationary.

The outcomes of the tool segmentor [Figs. 9(a)–9(c), yellow outline] and tool removal method

A, which inpaints the segmentation mask region using an affine parametric motion model, are

shown in Fig. 9. Most frames display tool segmentation outcomes that are similar to those shown

in Figs. 9(a), 9(c), 9(d), and 9(f). On occasion, as in Figs. 9(b) and 9(e), the tool segmentor misses

a portion of the tool claspers.

The segmentation mask was dilated by 20 pixels to account for under-segmentation and to

ensure complete inpainting of the tool. The frame that occurred early in the process (Video 1)

when insufficient anatomical information had been uncovered to completely inpaint the tool

region is what led to the incomplete inpainting results in Figs. 9(a) and 9(d).

We created videos with surgical tools from surgical tool-free videos by inserting a moving

surgical tool into the surgical tool-free video to test our tool removal algorithms on more

challenging cases where the camera and/or anatomy are in motion. The ground truth mask was

used during surgery, and the surgical tool was taken from the MICCAI 2015 dataset. The surgical

tool-free videos were taken from the Hamlyn Centre Laparoscopic/Endoscopic Video Datasets.

In these situations, the ground truth mask was used to create the tool segmentation mask, which

was then dilated by 1 pixel.

In Fig. 10, we demonstrate representative examples of tool removal method A using an

affine parametric motion model to remove the tool from a moving video of a porcine abdomen

with the least amount of abdominal deformation. The tool containing the frame is shown in

Fig. 10(a), the modified Poisson blended inpainting results are shown in Fig. 10(b), and the

Fig. 9 (a)–(c) Tool containing frames with U-NetPlus segmentation results (yellow outline).

(d)–(f) Inpainted results using method A; yellow arrow in mid-column shows residual tool caliper.
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ground truth is shown in Fig. 10(c). It can be seen that using method A along with the modified

Poisson blending algorithm yields outcomes that are visually similar to the actual data.

We demonstrate in Fig. 11 the effectiveness of the modified Poisson blending algorithm in

reducing internal illumination seams. Because the data used to inpaint a given tool region are

compiled from several prior frames, there is a chance that illumination variations will cause arti-

facts to appear. As a result, gradients within the tool region may appear that are not caused by

anatomical structures but rather by variations in illumination in the data used to inpaint the tool

region.

Figure 11(a) shows frame containing a tool where the grayscale values inside the tool cor-

respond to the source frames used to inpaint the tool, and Fig. 11(b) shows a plot of the source

frame versus distance along the red line in Fig. 11(a). The yellow arrow points to a region where

there is a temporal discontinuity between the source frames used to inpaint the tool region. As

shown in Fig. 11(c), these internal gradients will persist after applying the Poisson blending

algorithm. In Fig. 11(d), we applied the modified Poisson blending algorithm where the internal

gradients are suppressed by setting div vðx; yÞ ¼ 0 in Eq. (8) at locations where neighboring

inpainted pixels originated from frames that are >10 frames apart.

In Fig. 12, we contrast applying the cumulative to simple mapping functions to inpaint the

tool region where the tool moves slowly across a region where the same anatomy is covered for

several frames. The results of the inpainted tool using the straightforward noncumulative and

cumulative mapping functions are shown in Figs. 12(a)–12(c) and Figs. 12(d)–12(f), respec-

tively, for frames 275, 300, and 315. Focusing on the blood vessel and specular highlight (blue

arrows), we can see that as the anatomy is covered by the tool over a longer period of time in

Fig. 10 Two examples showing tool removal method A with an affine parametric motion model:

(a) tool containing frames; (b) modified Poisson blended inpainted results; and (c) ground truth

frames.

Fig. 11 Example showing the results of the modified Poisson blending algorithm: (a) gray scale

corresponds to the source frame used to inpaint tool region; (b) plot of source frame used to inpaint

tool region as a function of position along red line in panel (a); (c) inpainted results using Poisson

blending algorithm; and (d) inpainted results using modified Poisson blending algorithm.
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successive frames, the resulting inpainted images become blurrier while the cumulative mapping

results remain sharp.

For the straightforward mapping, the information used to inpaint the tool comes from the

previous inpainted frame, and depending on how the tool is moving, either the inpainted tool

region or background. For cumulative mapping, the pixel data used to inpaint the tool come from

the source frame where the covered anatomy was last discernible in the background area (i.e.,

uncovered by the tool). Because the source pixels used to inpaint the tool region are now only

copied once via interpolation from the source frame as opposed to the simple mapping where

the source data may have been copied multiple times, the cumulative mapping eliminates the

blurriness issue that occurs with the simple mapping.

3.4.2 Tool removal results: method B

In Fig. 13, we display the outcomes of tool removal method B using a non-parametric optical

flow-based model to eliminate the tool from a video of a cardiac surface deforming as a result of

both cardiac motion and respiration. The reference frames, which are 150 consecutive frames

long and include multiple cycles of the deforming cardiac surface, are taken prior to the intro-

duction of the surgical tools. The frame containing the tool is shown in Fig. 13(a), the inpainted

results using the nearest reference frame that has been spatially transformed by an optical flow-

based model are shown in Fig. 13(b), and the ground truth is shown in Fig. 13(c). It is clear that

the reference image frame inpainting technique yields outcomes that are visually similar to the

actual data. The specular highlights in the inpainted region serve as the primary visual distinction

between the inpainted results and the ground truth. Given that the reference frame and the ground

truth frame were taken at various times, the specular highlights in the images are not always

consistent.

In Fig. 14, we show a comparison between copying and pasting the pixels of the closest

reference frame before [Fig. 14(a)] and after applying the optical flow transformation [Fig. 14(b)]

for inpainting using method B. Note in the figure that we refer to copy and paste to inpainting

before and optical flow to inpainting after the applying the spatial transformation to the closest

reference frame. Focusing on the region within the black circle [Fig. 14(a)], it can be seen that

applying the optical flow transformation improves and generates inpainting results that are very

similar to the ground truth. In many of the inpainted frames, the copy and paste method results

when observing a single stimulus, which is observing one frame at a time, produce inpainted

Fig. 12 Comparison of using a simple (noncumulative) versus cumulative mapping function to

inpaint the tool region using a parametric optical flow model for frames 275, 300, and 315

where the anatomy under the tool is changing slowly: (a)–(c) noncumulative mapping function;

(d)–(f) cumulative mapping function. Focusing on the specular highlight and blood vessel it can

be seen that inpainting with the cumulative mapping function leads to sharper results.
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results that visually look very acceptable, but when observed in a video playback becomes very

obvious that the results are not accurate and are improved by the optical spatial transformation.

In Table 2, we report the quantitative evaluation of the inpainted videos using MSE, PSNR,

and SSIM40 image quality metrics. It can be noted that MSE and PSNR are not always well-

correlated with perceived/subjective visual quality, whereas SSIM shows better correlations.

For the method A example, we provide a comparison between the inpainted and Poisson

blended inpainted results as an illustration. In this case, the algorithm does a good job of selecting

the proper pixels from earlier frames to fill in the occluded area. However, these image pixels

come from previous frames whose illumination of the occluded anatomy was different from that

of the present frame [see Fig. 5(b)]. As a result, the majority of the errors in this example are

nonstructural errors, and they can be reduced by minimizing illumination mismatches using the

Poisson blending algorithm.

We compare copying and pasting the closest reference frame’s pixels before and after the

optical flow transformation for the method B example. Since the camera is still in this instance,

the illumination is essentially constant, despite variations in the specular highlights brought on by

changes in the surface of the beating heart. Because the reference and current frames may not

have been properly matched, the errors in this example are mostly structural. The insufficient

frame rate of the video capture is most likely to blame for the absence of a matching frame.

Although it is also well known that the underlying stochastic nature of the beating heart is partly

a result of the stochastic characteristics of the ion channels,41 it can never completely eliminate

the structural errors, the spatial transformation can help to reduce these errors.

Fig. 13 Tool removal using method B with non-parametric optical flow-based model: (a) tool con-

taining frames; (b) inpainted results using closest reference frame; and (c) ground truth frames

(Video 2, MP4, 960 KB [URL: https://doi.org/10.1117/1.JMI.10.4.045002.s2]).

Fig. 14 Comparison between copying and pasting the pixels of the closest reference frame before

and after applying the optical flow transformation for inpainting using method B.
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4 Discussion and Conclusion

To enable visualization of the anatomy that the tool was covering up, this research demonstrates

a novel application of segmenting and digitally removing the surgical instruments from laparo-

scopic/endoscopic video.

We suggested a modified U-NetPlus for the segmentation of surgical instruments. We used a

pre-trained model as the encoder with batch normalization, which converges much faster than the

network trained from scratch, to increase robustness beyond that of the U-Net framework. We

replaced the deconvolution layer in the decoder section with two convolution layers, followed by

an upsampling layer that employs NN interpolation. To avoid the overfitting issue, we also used a

quick and efficient data augmentation technique. Our evaluation was based on the MICCAI 2017

EndoVis results. Using the MICCAI 2017 EndoVis Challenge dataset, we assessed its perfor-

mance. The results of our suggested model were also seen as standalone surgical instrument

segmentation and as overlays on the original endoscopic images. In addition, we carried out

an “attention study” to find out where our suggested algorithm “looks” in an image.

According to the Jaccard and DICE metrics, our proposed model with batch-normalized

U-NetPlus-VGG-16 outperforms existing approaches. It achieved 90.20% DICE for binary class

segmentation and 76.26% for parts segmentation, both of which demonstrated at least a 0.21%

percent improvement over the existing approaches and a more than 6% improvement over the

traditional U-Net architecture. However, U-NetPlus-VGG-16 performed worse than U-NetPlus-

VGG-11 in terms of determining the instrument type while the other widely disseminated

techniques performed marginally better. Our paired statistical test demonstrated a significant

improvement over the performance of the TernausNet method, despite the fact that the improve-

ment is still modest.

We performed the aforementioned paired statistical tests comparing the output of our pro-

posed method and that of the other networks to assess the performance improvement in segmen-

tation that was produced by our proposed method. The test resulted in a significant performance

difference between the U-NetPlus framework and the TernausNet and U-Net architectures

(p < 0.05). Despite the fact that many existing techniques and approaches use interpolation

on an encoder-decoder network’s upsampling path for various segmentation goals, a key com-

ponent of our research is the skillful blending and adaptation of existing techniques to increase

the segmentation accuracy of surgical instruments. In addition, we emphasize that our primary

contribution is to enhance U-NetPlus by altering the TernausNet to lessen some of the artifacts

that are still present. Therefore, even though this work does not offer a wholly original frame-

work, it does show how carefully combining and integrating previous contributions can result in

improved performance. Overall, the surgical tool binary segmentation achieved by our tool

segmentation architecture is accurate enough to be trusted.

It should be noted that the da Vinci-labeled ground truth data does not always represent an

exact segmentation of the surgical tool [see Figs. 15(b) and 15(d)]. Due to misalignments

Table 2 Quantitative evaluation of the tool removal methods for synthetic tools in terms of MSE,

PSNR, and SSIM.

Metric

Method
MSE (avg/min/max)

(smaller better)
PSNR (avg/min/max)

(larger better)
SSIM (avg/min/max)

(larger better)

Method A: affine transformation
(640 × 480 × 135)

690.9/58.0/2111.6 22.5/14.9/30.5 0.932/0.797/0.993

Method A: affine transformation
with Poisson blending

41.5/6.5/163.9 33.3/26.0/40.0 0.993/0.958/0.999

Method B: copy and paste
(720 × 576 × 500)

223.7/40.8/1183.5 25.4/17.4/32.0 0.971/0.937/0.994

Method B: optical flow warping 125.0/16.7/641.7 28.1/20.1/35.9 0.980/0.948/0.994
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between the tool outline reconstructed from the forward kinematics of the da Vinci Research Kit

and the actual tool appearance in the image frame, there are significant limitations that essentially

cast doubt on the accuracy of the ground truth data. The tool outlines produced by our segmen-

tation technique, however, are more precise than those produced from the ground truth forward

kinematics [see Figs. 15(a) and 15(c)].

The instrument segmentation mask is filled in (or inpainted) by the tool removal algorithms

using a tool segmentation mask and either previous instrument-containing frames or instrument-

free reference frames. On a dataset of robotic instruments from the MICCAI 2015 EndoVis

Challenge, we have shown how well the proposed surgical tool segmentation and removal algo-

rithms perform. In addition, we demonstrated the tool removal algorithm’s successful operation

from surgical tool-free videos that contained videos of moving surgical tools that were generated

artificially.

Our study shows that the proposed inpainting methods, together with the automated surgical

instrument detection, classification, and segmentation tool, can effectively identify and mask the

surgical instruments from endoscopic videos and render them translucent by inpainting them

with background tissue information. As such, these proposed methods have the potential to

enable surgeons to perform endoscopic-guided minimally invasive interventions with greater

ease, without the need to constantly and repetitively retract the surgical instruments from the

field-of-view to visualize the tissue otherwise occluded.

In conclusion, this work is the first to show how a modified U-Net decoder can be used to

eliminate artifacts brought on by the transposed convolution using NN interpolation. Our

suggested architecture is used to (1) segment the surgical tools from laparoscopic images, which

performed better than the state-of-the-art TernausNet framework, and to (2) successfully remove

the surgical tool, producing results that are visually comparable to the actual findings.
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