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Simple Summary: Early cancer detection is crucial for favorable patient outcomes, with mammogra-

phy playing a central role in breast cancer detection. However, challenges persist, such as limited

sensitivity in dense breast tissue and low specificity leading to excessive invasive testing. Leveraging

the distinct biological characteristics of malignant tumors, we employed high-sensitivity thermal

imaging to identify temperature changes associated with cancer. This innovative approach integrates

a novel imaging technique and a physics-based prediction model to accurately ascertain the presence

of breast cancer, regardless of size, location, and breast density. Our goal is to develop this tech-

nique as a complementary tool to mammography for widespread screening and as a cost-effective,

stand-alone method for specific populations underserved by mammography.

Abstract: Cancer is characterized by increased metabolic activity and vascularity, leading to tem-

perature changes in cancerous tissues compared to normal cells. This study focused on patients

with abnormal mammogram findings or a clinical suspicion of breast cancer, exclusively those con-

firmed by biopsy. Utilizing an ultra-high sensitivity thermal camera and prone patient positioning,

we measured surface temperatures integrated with an inverse modeling technique based on heat

transfer principles to predict malignant breast lesions. Involving 25 breast tumors, our technique

accurately predicted all tumors, with maximum errors below 5 mm in size and less than 1 cm in

tumor location. Predictive efficacy was unaffected by tumor size, location, or breast density, with no

aberrant predictions in the contralateral normal breast. Infrared temperature profiles and inverse

modeling using both techniques successfully predicted breast cancer, highlighting its potential in

breast cancer screening.

Keywords: inverse modeling; breast cancer screening; heat generation map; physics-informed

neural network

1. Introduction

Breast cancer is the most prevalent cancer affecting women in the United States and
stands as the second-leading cause of death among them [1]. While it predominantly
impacts women aged 50 years or older, presenting at a median age of 62 years [2], breast
cancer also poses challenges for younger women, often manifesting at advanced stages.
Mammogram screening exhibits limited sensitivity in younger women, stemming from
challenges posed by dense breast tissue that conceals underlying lesions and in cases of
lobular carcinomas where discrete tumors are often not readily apparent [3,4]. It is estimated
that more than 40% of women have dense breast tissue, which are four to six times more
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at risk of developing cancer [4–7]. Despite the advancements offered by 3D digital breast
mammograms to address this issue, they come with increased radiation exposure [8,9].
Various adjunctive methods, including ultrasound, magnetic resonance imaging (MRI),
and contrast-enhanced mammography, have shown promise in enhancing breast cancer
detection. Computer aided detection (CAD) programs have been developed to aid and
improve mammography, utilizing tools such as artificial intelligence and other computation
techniques [10–15]. However, these methods also present challenges, leading to high false
positives and unnecessary invasive testing, with less than 1% of these women eventually
diagnosed with breast cancer [16–19]. Consequently, there is a persistent demand for
cost-effective screening methods, both as complements to mammography and as potential
stand-alone techniques, especially for specific patient populations not optimally served with
mammography, with a simultaneous focus on minimizing cumulative radiation exposure.

Thermal Imaging Background

Thermal imaging is a method that captures the infrared radiation emitted from
the body captured by an infrared camera as surface temperature measurements [20].
Strąkowska et al. [21] has shown the ability of utilizing thermal imaging in the detec-
tion of skin diseases. In 1956, Lawson [22–25] showed that malignant tumors generated an
increase in temperature measurements that can be captured through thermal imaging. Our
research endeavors in thermal imaging for breast cancer detection have been ongoing since
2015 [26–32], with a focus on overcoming the limitations of traditional approaches. Malig-
nant tumors are characterized by increased angiogenesis and metabolic rates to sustain
rapid cell proliferation [33–35]. Traditional thermal imaging techniques have historically
faced challenges in detecting malignant tumors, with contributing factors including low-
sensitivity cameras unable to detect subtle temperature changes, the influence of body
temperature transmitted through the chest wall, and a lack of a clear methodology for
translating identified hot spots on breast surfaces [30–32]. To address these issues, we
developed a novel steady-state prone position imaging method, eliminating the impact of
chest wall motion and variability in breast temperatures associated with imaging in the
supine position. The relation between the emissive power of a body and its temperature is
based on the Stefan–Boltzmann Law and, in the human body, is noted to be independent
of skin color [36–38]. This characteristic can be used to obtain the surface temperature
of breasts as previously described by Lahiri et al. [39] and to detect abnormalities that
would alter this temperature distribution. Gautherie [40–42] correlated thermal conduc-
tivity and surface temperature measurements to increased vasculatures and metabolic
activity in tumor tissues. He developed a model that encapsulated the thermal effect from
the metabolic activity as a heat source dependent on the tumor volume and doubling
time [43–45]. This allowed researchers to model the tumor as a heat source dependent on
the tumor size. We developed an algorithm leveraging the well-established Pennes’ bioheat
transfer model [46–50], which helps accurately predict hot spots located deep within breast
tissue using surface temperature measurements, along with 3D modeling of the breasts
using MRI images.

By enhancing the precision of thermal imaging in breast cancer diagnosis, we aspire to
contribute significantly to early detection efforts and ultimately improve patient outcomes.

2. Materials and Methods

We conducted a prospective, non-invasive study at Rochester General Hospital (RGH)
between March 2018 and September 2019, after approval by the Institutional Review Board
(IRB) at RGH. This study was conducted in collaboration with researchers at the Rochester
Institute of Technology (RIT).

Inclusion criteria incorporated all of the following:

• Women 21 years or older;
• Able to provide informed consent;
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• Breast lesions identified as BIRADS 4 or BIRADS 5, or detected clinically on physi-
cal exam;

• Malignancy confirmed by biopsy of the lesion.

A total of 30 women were recruited to undergo the study protocol. Informed consent
was obtained from the subjects regarding the procedure and effects of infrared imaging.

MRI images of bilateral breasts of the patients were captured in the prone position
with a GE 3T MRI scanner (GE Healthcare, Chicago, IL, USA) under an IRB-approved
protocol prior to biopsy [51]. Axial, coronal, and sagittal imaging were captured pre- and
post-contrast with GE 3T MRI. Multi-view infrared images, which included 8 viewed at
45◦ intervals around the bilateral breasts, were captured in the same prone position as the
MRI, using an FLIR (Wilsonville, OR, USA) SC6700 IR camera with a thermal sensitivity of
0.02 ◦C. Capturing infrared images of the breast in the prone position allowed for a full
360◦ view, with each breast being imaged and analyzed separately for each patient. Figure 1
shows an illustration of the infrared imaging procedure and the multi-view infrared data
of a patient [52]. The patients were imaged after about 10 min of acclimation to the room to
ensure the body reached a steady-state temperature.
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t

 

 

 

 

Figure 1. Illustration of infrared imaging procedure of (a) a breast under an imaging table in the

prone position and (b) eight positions to extract multi-view infrared images. (c) Example of a patient’s

infrared images obtained using infrared imaging in the prone position [52].

The following steps were conducted for each patient by the RIT researchers with the
obtained images, with no transmission of patient identifiers:

• Patient-specific digital breast models of both breasts generated using MRI images
through image processing and 3D reconstruction techniques with ImageJ 1.51n soft-
ware as described in Gonzalez-Hernandez et al. [53];

• Simulated breast surface temperatures of each breast generated using the patient-
specific breast model with Ansys Fluent 2019 R2 thermal modeling software for
thermal modeling of breast cancer;

• Tumor size and location predicted through inverse modeling using the Levenberg–
Marquard algorithm (LMA) for inverse modeling [54].

• Infrared imaging data integrated with the above software and algorithm to accurately
predict the presence or absence of breast cancer.

Figure 2 shows a process flowchart for detecting the presence or absence of breast
cancer using infrared imaging, thermal modeling, and inverse modeling. This process
relies on three primary inputs: (i) initial tumor parameters, including size and location,
(ii) a patient-specific breast model, and (iii) infrared temperatures from multi-view images.
Initial tumor parameters, set to a diameter of 1.8 cm and placed centrally within the breast
geometry, along with the patient-specific breast model, are fed into the thermal modeling
software to generate simulated surface temperatures. These simulated temperatures,
alongside actual IR temperatures, are inputted simultaneously into the LMA detection
algorithm for alignment and comparison. If disparities arise between simulated and actual
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temperatures, the algorithm iterates, updating tumor parameters until a best match is
achieved, signaling either tumor detection or its absence. In the case of detection, the
algorithm predicts tumor size and location within the breast. Conversely, if no tumor is
detected, the algorithm positions it in areas minimally impacting surface temperature, such
as outside the breast or at the chest wall, as illustrated in Figure 2. This iterative process is
applied to each patient and each breast individually.

t

Figure 2. Flowchart of the developed breast cancer detection algorithm that utilizes thermal mod-

eling and inverse modeling with patient-specific breast models and infrared surface temperatures.

The inverse model provides a final assessment that indicates the presence or absence of a tumor

heat source.

Gonzalez-Hernandez et al. [54] provide a detailed account of the inverse modeling
process employed for breast cancer detection using surface temperatures. This methodol-
ogy underwent initial validation on seven biopsy-proven breast cancer patients, detailed in
both Gonzalez-Hernandez et al. [54] and Recinella et al. [51]. Gutierrez et al. [52] subse-
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quently automated the algorithm to accommodate a larger volume of cases, implementing
enhancements to optimize its runtime. In this investigation, ANSYS Fluent and the LMA
algorithm were utilized for patients with accessible MRI data.

Clinical data, encompassing patient age, breast tissue density, tumor location, breast
tissue composition evaluated via mammography, and tumor histology, were extracted
from the electronic medical record (EMR) and deidentified prior to analysis. All patients
included in this study underwent surgical resection of tumors with curative intent. Surgical
pathology findings were categorized based on histological types, tumor grade, and estrogen
receptor (ER) and progesterone receptor (PR) expression, as well as Her2/neu status. The
actual tumor diameter was approximated by the volume calculated from MRI image
dimensions. Statistical analysis using ANOVA was conducted to compare estimated and
actual tumor sizes. Additionally, all enrolled patients received clinical follow-up for a
minimum of two years to monitor for any instances of recurrent breast cancer in close
proximity to the initial tumors. In this work, the positive control was breasts with verified
malignancy, while the negative control was the contralateral healthy breasts.

3. Results

The final analysis included 24 patients diagnosed with breast tumors who underwent
both MRI and infrared imaging, yielding a total of 25 breast tumors and 23 contralateral
breasts devoid of tumors. Demographic and tumor specifics are outlined for each individual
patient in Table 1.

All patients were biologically female, aged between 42 and 72 years, with a median age
of 67 years. Among them, 12 patients presented with left-sided tumors, 11 presented with
right-sided tumors, and 1 patient exhibited bilateral breast tumors. Breast tissue density
was classified into categories: predominantly fatty (PF), scattered fibro-glandular (SF),
heterogeneously dense (HD), and extremely dense tissue (ED). The majority of patients
had fibro-glandular breast tissue, with 5 patients having heterogeneously dense breasts
and 1 with extremely dense breast tissue. Quadrant division delineated breast tissue
involvement, specifically in the upper outer (UOQ), upper inner (UIQ), lower outer (LOQ),
and lower inner (LIQ) quadrants, with most tumors located in the UOQ and fewest in the
LIQ, consistent with epidemiological expectations. Histological analysis revealed various
tumor types including atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS),
invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and lobular carcinoma
in situ, with tumor grades ranging from 1 to 3. Tumors were further examined for the
presence of estrogen (ER), progesterone (PR), and HER2 receptors.

The algorithm demonstrated the successful detection of all biopsy-confirmed breast
cancers, as depicted in Figure 3. Furthermore, none of the 23 contralateral breasts exhibited
predicted tumors. Accurate estimation of tumor sizes was achieved, with a maximum error
of 7 mm observed between actual and estimated tumor sizes, accompanied by variability
in size differences. The sensitivity of tumor detection extended to tumors as small as
5 mm. A trend towards larger estimated thermal signatures compared to actual tumor sizes
was noted in high-grade tumors (p = 0.181), as well as in cases with concomitant in situ
carcinoma and invasive carcinoma (p = 0.466) and triple-negative breast cancer (p = 0.784).
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Table 1. Demographic and clinical data for the 25 malignant breast tumors: laterality designed as

right (R) and left (L) location within the breast—upper outer quadrant (UOQ), upper inner quadrant

(UIQ), lower outer quadrant (LOQ), and lower inner quadrant (LIQ); tumor grade indeterminate

(X)—low (1), intermediate (2), and high-grade (3); presence of additional DCIS/ LCIS with invasive

carcinoma; and TNM staging and the presence of prognostic markers including estrogen receptor

(ER), progesterone receptor (PR), and HER2 receptor. Tumor depth was calculated using both the

infrared images and MRI images.

Age Laterality Location
Breast
Tissue

Density
Histology Grade

Actual
Size
(cm)

Estimated
Size
(cm)

DCIS/
LCIS

Staging ER PR HER2
Depth of

Tumor Based
on MRI (cm)

68 L UOQ SF ADH X 0.5 1 None — — — — 2.91

60 R UOQ HD DCIS 2 1.4 1.3 DCIS T1c N0
Mx

+ + — 1.18

71 R UOQ PF IDC 1 0.9 1 None T1c N0
Mx

+ - 1+ 2.26

67 L UIQ ED IDC 1 1.7 1.9 None T1c N0
Mx

+ + 1+ 2.4

67 L UOQ SF IDC 1 1.1 1.2 None T1c N0
Mx

+ + 2+ 2.28

48 R UOQ SF IDC 1 1.1 1 DCIS T1c N0
Mx

+ + 1+ 2.23

64 R UOQ SF IDC 1 1.2 1 None T1c N0
Mx

+ + 1+ 4.95

65 L UOQ HD IDC 1 1.6 1.4 None T1c N0
Mx

+ + 1+ —

70 R UOQ SF IDC 2 0.8 1 DCIS T1c N0
Mx

+ + 1+ 2.14

51 L UOQ SF IDC 2 1.9 1.9 LCIS T2 N1a
M0

+ + 1+ 0.95

46 R LIQ HD IDC 2 1.1 1.5 DCIS T1c N0
Mx

+ + 1+ 2.96

72 R UOQ SF IDC 2 1.1 1 DCIS T1c N0
Mx

+ + 2+ 2.74

64 L UOQ PF IDC 2 1.5 1 DCIS T1c N1a
M0

+ + 2+ 2.93

63 L UIQ SF IDC 2 0.5 1 DCIS T1b N0
Mx

+ + 0+ 3.9

57 L UIQ SF IDC 2 1.2 1 None T1c N0
Mx

+ + 2+ 2

52 R UOQ SF IDC 3 1.2 1 DCIS T1a N0
Mx

— — 0+ 5.45

68 R UOQ SF IDC 3 2.7 2.7 DCIS T2 N1a
Mx

+ + 1+ 2.72

68 L UOQ HD IDC 3 1.3 1 None T2 N0
Mx

— — 0+ 2.43

70 R LIQ SF IDC 3 0.5 1 DCIS T1b N0
Mx

— — 0+ 3.76

42 R UOQ HD IDC 3 0.5 1 DCIS T1b N0
Mx

— — 0+ 2.42

49 R LOQ SF IDC 3 2.6 2.7 DCIS T2 N0
Mx

— — 0+ 4.3

72 L UIQ SF IDC 3 0.9 1 DCIS T1b N0
Mx

— — 0+ 1.14

68 L UOQ SF ILC 1 0.8 1 DCIS T1c N1a
M0

+ + 1+ 2.93

70 L UOQ SF ILC 2 2.1 2.3 LCIS T2 N0
Mx

+ + 2+ 2.27

67 L UIQ SF LCIS X 0.5 1 LCIS — — — — 1.29
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Figure 3. All 25 breast tumors with a comparison of the actual and estimated tumor size by his-

tological subtype. Histology subtypes included invasive ductal carcinoma (IDC), invasive lobular

carcinoma (ILC), ductal carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS) and atypical ductal

hyperplasia (ADH).

4. Discussion

Breast cancer screening has played a pivotal role in reducing mortality rates associated
with the disease by facilitating early tumor detection and improving cure rates. Despite the
central role of mammograms in routine screening, challenges such as discomfort during
procedures, radiation exposure, and limited efficacy in dense breast tissue persist. To
address these challenges, various adjunct techniques have been explored. In our study,
we leveraged infrared technology, extensively researched for decades, in combination
with advanced computational fluid dynamics software. This innovative approach yielded
significant success in accurately predicting the presence of cancerous tumors.

Our algorithm leverages the principle that metabolically active, well-perfused malig-
nant tumors serve as heat sources, influencing breast surface temperature. It reliably and
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accurately predicted breast cancer regardless of tumor location, tissue density, histological
subtype, prognostic receptor status, or tumor depth by analyzing breast surface temper-
ature data. This comprehensive predictive capability extends to precancerous lesions,
including atypical ductal hyperplasia. The patient cohort encompassed commonly encoun-
tered histological subtypes such as IDC, ILC, DCIS, and LCIS, confirming the technique’s
broad applicability. The precision in predicting tumor sizes, with errors consistently below
1 cm, further highlights the robustness of our approach. Further studies on the minimal
tumor size and other factors that affect the detectability of breast cancer using our algorithm
are in development. Gutierrez and Kandlikar [55] have identified the detectability of the
algorithm through numerical studies.

The observed correlation between thermal signatures and tumor characteristics aligns
with known attributes of malignant tumors, characterized by heightened metabolic rates
and increased vascularity. Notably, our method identified larger thermal signatures in
high-grade and triple-negative tumors, both known for their rapid growth and expected
elevation in angiogenesis and metabolism. Although the small sample size may limit
the statistical significance of these findings, the observed trends hint at the potential to
gain valuable insights into tumor behavior even before biopsy, thereby influencing patient
care decisions.

The absence of false positives in contralateral breasts enhances the credibility of our
method for detecting malignant lesions. Encouraged by these promising outcomes, our
next step involves expanding our investigations through larger clinical studies. This
will enable a more comprehensive evaluation of the sensitivity and specificity of infrared
imaging using physics-based inverse modeling with breast surface temperatures as a robust
technique for breast cancer detection. The implications of our findings suggest a potential
paradigm shift in early cancer detection, paving the way for enhanced patient care and
management strategies.

5. Conclusions

In a promising pilot study involving 24 patients, our approach exhibited a remarkable
100% sensitivity and specificity rate in detecting all malignant breast tumors, without
any false positive results observed in the contralateral breasts, irrespective of tumor size,
location, and breast tissue density. Larger studies are in process to further illuminate the
pathway for this new technology in breast cancer detection.
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