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A Transformative Approach

for Breast Cancer Detection Using
Physics-Informed Neural Network
and Surface Temperature Data

Early detection is the most effective defense against breast cancer. Mammography is a well-
established X-ray-based technique that is used for annual or biennial screening of women
above age of 40. Since the dense breast tissue sometimes obscures the cancer in an X-ray
image, about 10% of screened women are recalled and undergo additional adjunctive
modalities, such as ultrasound, digital breast tomosynthesis, or magnetic resonance
imaging. These modalities have drawbacks such as additional radiation dosage,
overdiagnosis, and high cost. A new concurrent multispectral imaging approach was
recently presented to eliminate the high recall rates by utilizing the breast surface
temperature data with an inverse physics-informed neural network algorithm. This method
utilizes the bioheat transfer modeling as the governing physics equations and conducted
inverse heat transfer modeling using infrared temperatures to predict the presence of a
tumor heat source. Validation of the predicted tumor size and location was conducted on a
biopsy-proven breast cancer patient using infrared temperature data captured of the breast
surface and pathology reports. A regression analysis between the predicted temperatures
and infrared temperatures showed a coefficient of determination of 0.98. The absolute error
inthe predicted tumor size was 0.4 cm and the maximum absolute error in tumor location was
0.3cm. The proposed approach shows promising results and performance. However,
additional testing with more patients is required to quantify the standard deviation in the
prediction and establish the sensitivity and specificity of the machine learning technique.

[DOL: 10.1115/1.4065673]

1 Introduction

It is well documented that breast cancer is a leading cause of
mortality in women [1-3]. The large-scale network developed to
routinely screen women over age of 40, annually or biannually, is
credited with a dramatic reduction of mortality rate from breast
cancer over last two decades [4]. Mammography involves
compressing a breast between two plates and taking X-ray images
of the flattened breast. The compression causes discomfort, and as a
result, some women tend to avoid mammograms. This reduces the
effectiveness of the overall screening paradigm.

Further, mammography is unable to detect a tumor if it appears
behind dense breast tissue, which has a masking effect in an X-ray
image. To improve cancer detection rate, patients with mammo-
grams that appear suspicious are recalled for additional adjunctive
screening. A higher recall rate not only captures a higher number of
cancer cases, but it also results in a large number of false positive
cases, which undergo additional adjunctive screening. It also results
in a large number of patients undergoing biopsy to arrive at a
conclusive diagnosis. In addition to the high cost of biopsy, the
procedure is very painful and causes severe disruptions in lactating
mothers. Although it varies among different hospitals, a recall rate of
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10% is recommended after mammograms [5]; however, only 0.4%
of women screened have cancer from the historical screening data
[6]. Considering 48 x 10° women are screened every year in the US,
estimated 9.6% or 4.61 x 10° women who do not have cancer
undergo additional screening and biopsy following recalls.

The false positive outcomes increase the healthcare costs. In
addition, the recall, followed by additional screening, takes a high
psychological toll [7]. The immediate anxiety, as well as the long-
term fear of mammography, causes some women to avoid
mammography afterwards. The search for new adjunctive tech-
nologies that are harmless, avoid breast compression, and have alow
false-positive rate is an area of active research.

Cancer is associated with tumors that have a higher metabolic rate
and a higher perfusion rate in the region surrounding the tumor and
act as a heat source. The normal heat transfer mode from the chest
wall to the breast surface is altered due to the presence of the heat
source within the breast and the temperatures on the breast surface
are altered. Using an inverse heat transfer modeling approach and
treating a tumor as a heat source, numerical techniques have been
developed to solve the underlying governing equations to predict the
presence of cancer, or malignancy, from the breast surface
temperature data [8—10]. These models require numerical solution
of heat transfer equations at a large number of discrete points on the
surface as well as inside of the breast in an inverse algorithm that
utilizes an iterative process. Gonzalez-Hernandez et al. [8] and
Gutierrez et al. [10] utilized regions of interest in their inverse
detection algorithms to improve efficiency, but still required large
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data points to numerically solve the heat transfer equations. There is
aneed for an efficient physics-based inverse heat transfer approach for
detecting the presence of malignant breast cancer. This is accom-
plished efficiently in a physics-informed neural networks (PINN)
algorithm, which is discussed in greater detail in the present paper.

The surface temperature data needed in the PINN model can be
obtained with a highly sensitive infrared camera. The use of infrared
cameras is well accepted in the medical community as it is widely used
for body temperature measurements in doctors’ offices, hospitals, as
well as in airports and malls for detection of COVID-19, for example.
These cameras are equipped with advanced computer algorithms to
predict deep body temperature from the measurement of forehead
temperatures. Similarly, the breast surface temperatures can be
measured accurately with a highly sensitive (20 mK, or better) infrared
camera and the temperatures are registered at discrete points on the
breast surface obtained from a digital breast model using three-
dimensional (3D) image reconstruction techniques. The detection of
breast cancer using surface temperature data from infrared images, 3D
image reconstructed models, and physics-based inverse heat transfer
approaches has shown great promise [8—10]. Inverse heat transfer
modeling using PINN has shown great promise in the field of heat
transfer [11-14]. However, there have been very few studies that have
utilized PINN with inverse problems in bioheat transfer applications.
Perez-Raya and Kandlikar [15] introduced an inverse PINN method to
predict thermal properties of breast cancer.

The current work presents a brief literature review on PINN
modeling utilized in forward and inverse heat transfer modeling, as
well as a developed inverse PINN algorithm for breast cancer
detection. The novelty of the developed algorithm is its ability to
detect breast cancer from IR surface temperature data using inverse
heat transfer PINN modeling and bioheat transfer modeling. In
addition, this work shows the validation of the algorithm with
clinical data of a biopsy-proven breast cancer patient.

2 Recent Developments in Physics-Informed Neural
Networks Modeling

Physics-informed neural networks have played a major role in
advancing computational modeling of physics-based problems
using governing physics laws with machine learning techniques
[16,17]. PINNs were first coined by Raissi et al. [18-23] for solving
ordinary differential equations (ODEs) and partial differential
equations (PDEs) using machine learning techniques. This was
useful as the governing equations that make up various physics-
based problems are typically in the form of ODEs and PDEs. The
concept of solving ODEs and PDEs using machine learning can be
traced back to the work by Dissanayake and Phan-Thien [24], and
Lagaris et al. [25,26], where the authors utilized artificial neural
networks. This section will describe the concepts and fundamental
structure of PINNs as well as give a brief literature survey of PINNs
utilized in heat transfer and biomedical applications.

2.1 Physics-Informed Neural Networks Forward and
Inverse Modeling. According to Kollmansberger et al. [17], neural
networks (NNs) are parameterized functions that define mappings
between an input x and prediction output y through various layers of
mappings such that:

79 =x

20 = p, (W0 4 p)
20 = p (W k=) o p0) (1)

20 = py (W L=1 4 pl1)
Fy = f(WELHDL)
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where k is the NN layer index going from k = 1,2,...,L, W* are
weight parameters at layer k learned by the NN to obtain yy,, b* are
bias factors at layer k add to the NN in the absence of an input and
may be obtained from expected values associated with training to
obtain yy, hy(+) are activation functions in one of the layers of an
NN, z* are the outputs of each layer k obtained from the activation
function, and f(-) is the model used to approximate or predict the
output yy,. This NN model has an input layer (0™ layer), L hidden
layers, and an output layer (L + 1 layer). Figure 1 shows a depiction
of the NN model as well as the machine learning flowchart process
for obtaining a final prediction from the input or testing data. The
output is predicted through iteratively optimizing the weights W
using a loss function L(W) and labeled or training data through the
following:

LW) = [|[Y — 5y ll3 @)
Wi =W, —n- VyL(W) 3)

where Y is the labeled data, i is the iteration index, 7 is a learning rate
parameter utilized in machine learning techniques, and Vy is the
gradient with respect to the weights. The optimizer shown in Fig. 1
checks if L(W) is minimized with the current weight and if not
utilizes Eq. (3) to update the weight. In machine learning, it is
common to use these gradient-based techniques, such as the one
from Eq. (3), as optimizers [27-29]. Utilizing prior knowledge or
labeled data associated with the output to learn the weights is called
supervised learning. In unsupervised learning, this label data is not
available and the data have to learn through patterns based on a
larger input dataset [16,17,27-29].

In physics-based problems, PINNs utilize the NN model and the
machine learning structure to conduct forward and inverse problems
[16,17]. Figure 2 shows an example of a forward and an inverse
problem PINN structure for the following transient heat conduction
problem:

or

pep g, =kVT, x€Q.1>0 )
T(x,t)=T., x€dQt>0 (5)
T
k%(x, =q, x€0Qt>0 (6)
T(x,0)=T,, xeQ (7

where p is the density, ¢, is the specific heat, T is the temperature, k is
the thermal conductivity, ¢ is time, x is the spatial coordinates
(%, ¥, 2), Q is the domain, 9Q is the boundary of the domain, and n is
the normal vector of the boundary points. The input for PINNs is the
computational domain Q of the physical system under study in terms
of spatiotemporal data (x,y,z,t) or (x,f). Machine learning NN
models utilize the concept of automatic differentiation to conduct
back propagation techniques in NNs. PINNs utilize automatic
differentiation on the output of the NN model to conduct forward
modeling based on the governing equation (Eq. (4)), boundary
conditions (Egs. (5) and (6)), and initial condition (Eq. (7)). These
equations and conditions are utilized as loss functions

or -
Lgq = pcy " kT (8)
Lpc1 = T-T. )
oT
Lpc :ka__qc (10)
n
Lgc = Lgc,1 + Lac2 (11)
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Fig.1 Top: lllustration of neural network (NN) model with an input layer, hidden layers,
and an output layer. Bottom: Flowchart of a machine learning process that utilizes an NN
model to obtain afinal prediction from the testing/input data using training/labeled data

and optimization of a loss function.

Lic=T-T1, (12)
Lrwa = Lgq + Lac + Lic (13)

where T is the predicted temperature from the PINN, Lgq is the loss
from the governing equation (Eq. (4)), Lgc is the loss from the
boundary conditions (Egs. (5) and (6)), L;c is the loss from the initial
condition (Eq. (7)), and Lgyq is the total loss from the forward
problem. For forward problems, the standard PINN models utilize
unsupervised learning wherein there is no prior knowledge or
available known data of the system under study. In this case, the loss
function L(W) = Lg,q. When data are available, a supervised
learning model is utilized by adding a loss based on the known data
Lpaga such that

L(W) = Lrwd + Lpaa (14)

Lpaa = T — Tpaa (15)

where Tpy, is the known data. The loss function then goes to the
optimizer to obtain the weights that will give a final predicted
temperature distribution Tpeq. In the forward PINN model, the
system parameters, governing equations, boundary conditions, and
initial conditions are known to aid in predicting the final physics
distribution model. This is not the case for inverse PINN modeling as
some information may not be known such as the thermal
conductivity for the forward model example shown in Fig. 2.
Supervised learning is utilized by using known temperature data
Tpar at specific locations to predict the thermal conductivity Kpred.
Figure 2 serves as a representation of a PINN utilized in forward and
inverse modeling of the transient heat conduction problem
(Egs. (4)—~(7)). This is utilized as a guide for developing a PINN
model that is dependent on the application by changing the
governing equations, system parameters, and known data. Similar
models have been shown in Refs. [16,17,30,31].

Journal of Heat and Mass Transfer

2.2 Heat Transfer Applications. The application of machine
learning techniques to heat transfer problems was first explored by
Jambunathan et al. [32]. The authors utilized artificial neural
networks to predict the heat transfer coefficient in a one-dimensional
transient heat conduction problem using data samples from known
solutions. This inspired many researchers to implement machine
learning techniques such as PINNs on heat transfer problems. A
summary of current works that have utilized PINN for forward
modeling on heat transfer problems is shown in Table 1. Table 1
shows the heat transfer problem type that was solved, the variables
predicted by the PINN model, the known data provided to the PINN
model, and the prediction errors when comparing to traditional
computational fluid dynamics (CFD) methods. The table covers
natural and forced convection problems [11,33,34], heat conduction
problems [14,34,35], and bioheat transfer in breast cancer problems
[15,36]. The first two convection problems [11,33] and the last two
heat conduction problems [14,35] utilize supervised learning
techniques to conduct forward problems using PINNs. This
technique utilizes the known data at specified locations to train the
weights of the PINN. The other convection and conduction problems
[14,34] utilized the standard unsupervised learning PINN model that
used the governing equations, boundary conditions, and initial
conditions in the learning. The two bioheat transfer problems
[15,36] in Table 1 are the only ones that have tackled bioheat
modeling of breast cancer using unsupervised forward PINN
modeling. In comparison to standard CFD models, both the
supervised and unsupervised PINN models show promising results
when looking at the relative errors Eg. and absolute errors Eaps
reported by the authors. This shows the capability of utilizing PINNs
for accurate forward modeling of heat transfer applications and
indicates further extension into bioheat applications.

In addition to solving forward problems in heat transfer
applications, current studies have researched the use of PINNs to
solve inverse heat transfer problems. Table 2 shows a summary of
current studies that have utilized PINNSs for inverse problems in heat
transfer applications similar to Table 1. Also, Table 2 covers
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4
(x0)

— 1
System Automatic
Parameters Differentiation

e
p.Cy arest
dax’ dx?’

7 Known Data ) i
Known Data Loss Function
Toata X ti) Lrwa = Lgq + Lpc + Lic
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Fig. 2 Top: Example flowchart of PINN model utilized to solve a forward transient heat
conduction problem (Egs. (4)—(7)) to predict the temperature distribution using the computa-
tional domain, system parameters, automatic differentiation, and optimization of the loss
function through unsupervised learning or supervised learning using known data. Bottom:
Example flowchart of PINN model utilized to solve an inverse transient heat conduction
problem that utilizes supervised learning through known temperature data to predict the

thermal conductivity from known temperature data.

concepts in two-phase heat transfer [11], heat conduction [12,14],
natural and forced convection [12], heat radiation [12,13], and
bioheat transfer [15]. The goal of the authors in these works is to
obtain thermal properties [11-13,15], boundary conditions [14], and
heat sources [12] through the governing equations, conditions, and
known data. The error in prediction compares the predicted value
with ground truth data, which show the ability of PINNs to
accurately predict properties regardless of the difficulty of the
problem. The three prediction error metrics shown in Table 2 are
the relative error Ege|, absolute error Eaps, and percent error Epe;. In
the two-phase heat Stefan problem [11], the authors were able to
obtain the thermal diffusivity constant for each phase using known
temperature data at specific points. This was in addition to
forward modeling the two-phase Stefan problem and obtaining
the temperature distribution and latent moving interface, which
would be difficult in traditional CFD methods. This shows the
capability of PINNs being utilized in various inverse heat
transfer problems accurately by using measured data at specified
locations. In the application of bioheat transfer in breast cancer,
Perez-Raya and Kandlikar [15] showed that the thermal conductiv-
ity of breast tissue can be obtained using the breast surface
temperatures.

101201-4 / Vol. 146, OCTOBER 2024

2.3 Biomedical Applications Using Patient Data. Machine
learning and artificial intelligence have been extensively utilized in
solving biomedical and healthcare-related problems [29,37,38]. In
traditional physics-based numerical modeling, patient data are
utilized to generate computational domains, provide physical
properties, or provide physics constraints for conducting numerical
simulations. In current studies, PINNs have been utilized exten-
sively in biomedical applications to solve hemodynamics forward
and inverse problems using patient data [39—45]. Some studies
utilized timeseries and flow data from patient data to study blood
flow using PINNs [39,44,45]. Others have utilized patient-specific
geometries with timeseries and flow data generated from patient
data, such as magnetic resonance imaging (MRI) or other imaging
modalities, to study the blood flow using PINNs [39-41,43,46]. This
shows the capability of PINNs to work with patient data to solve
complex problems in biomedical applications.

3 Developing an Inverse Physics-Informed Neural
Networks Algorithm for Breast Cancer Detection

Increased metabolic activity of a tumor in the breast alters the
temperature field providing the breast surface temperature as a sense
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Table 1 Applications of PINNs to forward problems in heat transfer applications

Problem type

Predicted variables

Known data

Prediction error

Flow past a cylinder [11]

2D convection in a rotating porous medium [33]

Conjugate natural convection [34]

2D heat conduction with nonlinear heat source and
nonuniform thermal conductivity [34]

2D heat conduction over a two-layered eccentric
cylinder [14]

3D heat conduction over a two-layered cube [14]

1D bar with a given boundary heat flux (transient heat
conduction) [35]

2D plate with unknown body heat flux (transient heat
conduction) [35]

Bioheat modeling of breast cancer in patient-specific
breast models [15]

Bioheat modeling of breast cancer in a hemispherical
breast model [36]

0 - Temperature

V - Velocity

P - Pressure

¥ — Stream function

V — Velocity

T — Temperature

0y, - Temperature at solid domain 1
07 - Temperature at fluid domain
0, - Temperature at solid domain 2
V - Fluid velocity

p - Fluid pressure

0, - Temperature at domain 1

0, - Temperature at domain 2

03 - Temperature at domain 3

T - Temperature

T - Temperature

T - Temperature
q - Input heat flux

T - Temperature
q - Input heat flux

T - Temperature

T - Temperature

Opaa at various points

Low fidelity Tpa

None

None

None

None
TDala
TDala
{Data

None

None

ERcLO: 0.73%

EAbs,T: 1.3 x 1074

Eaps: 2 X 1072

Enps: 11072

Erar: 4.02x107°

ERcl,T: 5% 1075
Ererr: 1.208 x 1073
ERelr:

2398 x 1072
EAbs,T: 0.3

Not reported

Table 2 Applications of PINNs to inverse problems in heat transfer applications

Problem type

Predicted variables

Known data Prediction error

Two-phase Stefan problems [11]

u - temperature distribution Tpata
s - latent moving interface

ky - thermal diffusivity of phase 1
ky - thermal diffusivity of phase 2

Inverse problem of 2D heat conduction over a
two-layered cylinder [14]

T - Temperature

Transient heat conduction [12] 0 - Temperature

ky - thermal conductivity 1

EAbs,k. 13 % 1073

Epbsi,: 0.0
Sparse boundary Tpata EReir: 5 % 1073
Tbata Epsjq:8x 1074

Enapssy: 2.7 x 1077

k3 - thermal conductivity 3

Rectangular fin [12] 0 - Temperature

m - surface heat transfer coefficient

Annular fins [12] T - Temperature

h/k - convection to conduction ratio

Rectangular fin with heat generation [12] T - Temperature

G - Heat generation number

Porous fin subjected to radiative heat [12] T - Temperature

Qo - Heat generation number

Vascular-based active-cooling of sine wave
channel through a square domain [13]

0 - Temperature

Bioheat modeling of breast cancer in patient-
specific breast models [15]

T - Temperature

k - thermal conductivity

k - thermal conductivity

Toua Enpsm: 0.02
Tpata Eppsyyc 1 x107°
Tpata Enpsc: 4x 1074
Tpaa Eabsgy: 5 x 1074
Toua Epers: 3.0%

Breast surface temperatures Epery: 6.5%

variable for detecting tumors. Bioheat transfer modeling through
Pennes bioheat equation [47] has been utilized to conduct numerical
modeling of breast cancer [48—52]. Studies have been conducted
that have utilized bioheat transfer and inverse heat transfer modeling
to detect a tumor heat source using IR temperatures and ANSYS FLUENT
[8-10]. In this study, we demonstrate the use of a physics-informed
neural network to detect heat sources with surface data (PINN-
SDSD). The sources correspond to metabolic activity of a breast and
can be identified from the breast surface temperatures measured by a
highly sensitive infrared camera that works similar to an infrared
thermometer used in clinical practice. Different from conventional
machine learning models, the PINN model is patient-specific

Journal of Heat and Mass Transfer

(meaning that the PINN model gets trained individually on each
patient).

The PINN-SDSD model, consisting of a physics-informed fully
connected neural network with optimized number of hidden layers
and neurons, is trained to find the temperatures and the region of high
heat generation (indicative of tumor presence) that satisfy the
Pennes bioheat equation and the patient-specific IR temperatures.
The neural network model has three hidden layers and twenty
neurons on each layer, which is an optimal configuration to achieve
an accurate solution of the Pennes bioheat equation in breast cancer
thermal transport [15].

The optimizer minimizes the total loss lossy given by:
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Table3 Thermal properties utilized for the simulation and tumor
detection with the PINN-SDSD

Parameter Value Unit
Thermal conductivity (k) [53] 0.3 W/m-K
Perfusion rate of healthy tissue (w;) [53] 1.8x107* 1/s
Perfusion rate of tumor (w;) [53] 9%x1073 1/s
Metabolic activity of healthy tissue () [S3] 450 W/m®
Metabolic activity of tumor (g,) [53] 5000-70,000 W/m?
Temperature of arteries (7,,) [54] 37 °C
Specific heat of blood (cp) [54] 3840 J/kg-K
Density of blood (p;,) [54] 1060 Kg/m®
Chest temperature (7,) [53] 37 °C
Heat transfer coefficient (k) [52] 5 W/m?-K
Ambient temperature (T,,) 21 °C

1 Ninter Npc

1
lossy = 108Sinter.i)” 4+ —— lossgc)? (16)
T Nimer ;( mter,l) NBC ]:Zl( BCJ)

where Niner and Npc correspond to the number of interior and
boundary points in the point-clouds, respectively. The term
loSSinereqs 18 calculated from the dimensionless Pennes bioheat
model.

T T PT*  pe

e T T I D2 T —T*

Ox*? * oy*? * 0z*? e (T )
2D?

k(Tmax - Tmin)

lossimer,i -

+ Gm a7

where w, and ¢, are expressed in terms of the tumor radius and
location:

®p = Howmor + (1 - H)wheahhy (18)
Gm = Hmumor + (1 - H)theallhy (19)

H is an indicator function representing the distribution of the source.
In the present work, H equal to 1 in the tumor region and O in the
healthy region. Under the assumption of representing the tumor as a
sphere of equivalent diameter, the indicator function is defined as:

H = 1if (x = x0)> + (y — yo)* + (z — 20)” < dg /4

(20
H = 0if (x —x0)* + (y = y0)* + (2 —20)” > di /4
where X, yo, 2o, and dy are the coordinates of the tumor location and
the tumor diameter.
Equation (21), derived by Gautherie [53], related the metabolic
activity and tumor radius during the training of the PINN-SDSD.

(a) (b)

B 3.27 x 10°
"~ 468.51n(100dy) + 50

Gm (1)
In Egs. (17)—-(21), Ty, Gm, @, p, ¢p, k, and h, stand for artery blood
temperature, metabolic heat generation, blood perfusion rate, tissue
density, tissue-specific heat, tissue thermal conductivity, and
ambient convective heat transfer coefficient respectively [47—49].

The term lossgc accounting for the boundary is calculated from
the boundary conditions of convection at the breast surface, constant
body temperature at the body chest (T' = Tcy),

k oT" .
1OSSBCI,,‘ = 5% |pred — h(T;o — Tpred) (22)
lossgeo; = Ty, — T (23)
IOSSBC3J = Ts*urf - TI*R,denoised (24)

By feeding Eqgs. (16)—(24) to the optimizer, the inverse PINN adjusts
the values of the tumor characteristics (xo, yo, zo, do) to ensure a
minimal loss.

Table 3 shows the thermal properties adopted. The patients were
screened with the IR imaging system in an enclosed environment
under ambient conditions.

The inputs consist of 1000 random surface data points
TIR(xS,ys,zs), 500 random chest points (Xch, Ychs Zech)s and 20,000
random interior points (Xint, Yint, Zint) for training. Figure 3 shows the
spatial point-clouds for the identified key regions of (a) breast
surface, (b) chest, and (c) interior. The digital breast model contains
information on points coordinates over the surface and chest. The
interior points were generated by creating a computational mesh
from the digital breast model and extracting the points at the cell
centers of the mesh. The points were randomly extracted from the
surface or the computational mesh. The points distribute homoge-
neously with the same amount of points near the tumor region or
breast surface. The PINN-SDSD receives these points as inputs
without special sorting or arrangement.

4 Results

The results in the present section involved analyzing surface
temperature data from a patient (patient-8) with a diagnosed breast
tumor. The tumor is located at a depth of 3.4 cm from the surface
(distance from the hotspot to the tumor location). The digital model
consisted of point clouds of random spatial points from various
regions of the breast, including the interior, surface, chest wall and
from the surface temperatures registered data. The PINN model
predicts the heat generation map in the tissue (indicative of
metabolic activity) that applied the Pennes bioheat principle at the
interior and adjusted for other predetermined confounding factors to
detect the tumor characteristics if present.

Fig. 3 Point clouds generated to define inputs to the PINN-SDSD of patient-8: (a) surface

points, (b) chest points, and (c) interior points
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Fig.4 Analysis of patient-8, (a) clinically reported infrared temperature, (b) PINN-SDSD predicted
temperature, and (c) pathological and predicted tumor characteristics. In (a), the dashed circle
indicates the predicted region shown by the PINN-SDSD. In (c), the black spot indicates the
predicted tumor characteristics and red spot indicates the tumor characteristics in the pathology

report.

Figure 4 shows the information corresponding to patient-8,
including (a) the infrared temperature at the most predominant view,
(b) the PINN predicted temperature at a predominant region, and (c)
the tumor reported by pathology and the PINN prediction. The circle
in Fig. 4(a) shows the region used for training. The infrared image in
Fig. 4(a) shows abrupt changes in temperature creating isolated
hotspots and cold regions. A comparison between the results in
Figs. 4(a) and 4(b) shows that the PINN-SDSD effectively learned
the pronounced variations in temperature capturing the sharp
transitions from high to low temperatures. These results indicate
that the use of three hidden layers with twenty neurons is an effective
neural network configuration to capture the variation in temperature
in the breast surface with cancerous tumor signature. The results in
Fig. 4(c) indicate predicted smaller tumor located closer to the breast
surface. The smaller tumors with higher heat generation lead to more
pronounced hotspot regions over the surface. In addition, the PINN-
SDSD places the tumor closer to the surface to compensate for the
underestimation in the tumor size.

Figure 5 shows a regression analysis for quantification of the error
between the prediction and the infrared temperatures. The error
analysis considered a sample of N=50 random points for
comparison between the two data sets (predicted and infrared).
The scaling of the temperatures allows effective quantification of the
error. The results in Fig. 5 indicate that the PINN-SDSD closely
reproduces the IR temperatures with an R? = 0.98. The prediction is
accurate and only a few isolated points have a large error. The
maximum error occurs at around 0.7 observed scaled infrared
temperature. At this point, the predicted scaled infrared temperature
is 0.83. A 0.7 scale temperature corresponds to 304.8 K and 0.83
scaled temperature corresponds to 305.13 K. The maximum error is
then 0.33 K. These small errors are mainly driven by the noise in the

Journal of Heat and Mass Transfer

infrared image and the ability of the PINN-SDSD to predict an
output temperature free of noise.

Table 4 compares the predicted tumor location with the clinically
detected tumor characteristics. The results show that PINN-SDSD
accurately detected the tumor size and location. The PINN-SDSD
predicted a smaller tumor and placed the tumor closer to the surface.
Results show that the PINN-SDSD underestimates the tumor
diameter by 0.4 cm and overestimates the location of the tumor by
a maximum length of 0.3 cm. The predicted tumor has a depth of

1 . . . .
a N =50 R*=0.98
Aogl ™ Observed values
; | — Regression line
zZ
T 0.6
s
2 04¢
e}
b
=
g 0.2+
o
0 L L L " n n L s
0 0.2 0.4 0.6 0.8

Observed with infrared

Fig. 5 Error quantification of the predicted PINN-SDSD relative
to the IR temperatures
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Table 4 Comparison of tumor characteristics pathology and
predicted with PINN-SDSD

Analysis and error dy (cm) Xo (cm) yo (cm) zo (cm)
Pathology 1.7 4.7 7.3 12.3
Predicted 1.3 4.77 7.6 12.0
Error 04 0.07 0.3 0.3

3.3 cm, which implies an underestimation of the tumor depth by
0.1cm. These differences can be the result of errors in the
registration between the digital breast model and the infrared
image. Also, there is multiple possible solutions (e.g., larger tumors
located deeper from the surface can generate same thermal signature
as smaller tumors located closer to the surface). Still, the results
show that the breast surface curvature and the temperature variation
in the infrared image give enough information to constrain the
predicted tumor characteristic to a tumor that closely resembles the
tumor in the pathology report.

5 Limitations

Testing with one patient demonstrated the use of PINNs in
simultaneously performing inverse modeling and forward modeling
to find the tumor characteristics that satisfy the governing equations,
boundary conditions, and infrared data. However, testing with more
datasets is required to investigate the feasibility of the proposed
approach. Additional testing may consider computer modeling or
with in vitro experiments. Computer modeling creates scenarios
where the Pennes bioheat equation drives the thermal transport,
which can help with identitying the limits in terms of tumor diameter
and depth. In-vitro experiments with localized heat sources
embedded in 3D-printed plastic breasts can also contribute to
improving the overall detection system including the positioning of
the infrared camera. Also, identifying the performance of the PINN-
SDSD with dynamic infrared is a relevant aspect to explore since it
may improve the performance in terms of accuracy or detectability
limits. Moreover, recent studies show that dynamic infrared imaging
may contribute to identify the effect of internal vasculature on the
tumor signature on the breast surface [55].

The proposed PINN-SDSD approach accurately detects the tumor
by predicting tumor characteristics that closely match the results in
the pathology report. The results indicated small errors of 0.4 cm in
the predicted tumor diameter and 0.3 cm in the predicted tumor
location. However, testing with additional patient datasets is
required to identify if the PINN-SDSD can work with patients of
different tissue densities or breast morphologies. The application of
the PINN-SDSD to twenty datasets will allow the quantification
of the standard deviation in the predicted characteristics. Testing
additional patients will allow identifying the performance of the
proposed approach in terms of specificity and sensitivity for
comparison with other available techniques.

Optimization of the PINN-SDSD by reducing the training time
and ensuring an accurate prediction will allow a more effective and
robust tumor detection algorithm. The number of points in the point-
clouds needs to be varied to investigate the influence on the
performance. In addition, it is important to consider the number of
training iterations during the searching of the tumor location as well
as utilizing multiple graphics processing units simultaneously to
reduce the training time.

6 Conclusions

The present work demonstrated the use of a physics-informed
neural network to detect sources with surface data (PINN-SDSD).
The developed PINN-SDSD detected a tumor in a patient with
biopsy-proven breast cancer by training with surface infrared
images and the equations of thermal transport. The PINN-SDSD has
a fully connected neural network with spatial coordinates of points
as inputs and the temperature at these points as outputs. The machine

101201-8 / Vol. 146, OCTOBER 2024

learning model finds the optimal relation between the inputs and
output by minimizing losses defined based on the boundary
conditions, the Pennes bioheat equation governing the thermal
transport, and the infrared temperatures. In the PINN-SDSD, the
perfusion rate and metabolic heat generation in the Pennes bioheat
equation are expressed in terms of the tumor characteristics
(location and size). By minimizing the losses during the training,
the PINN-SDSD finds the optimal values of the tumor character-
istics that satisfy the physics equations, boundary conditions, and
infrared data. Generating point-clouds considered a digital breast
model obtained from MRI images. At the Rochester General
Hospital, the patient underwent MRI and infrared imaging in the
prone position to facilitate the registration between the two image
datasets.

The PINN-SDSD accurately identified the solution that satisfies
the Pennes bioheat equation, boundary conditions, and infrared
temperatures. The neural network captured the larger variations in
temperature in breast surface regions with hotspots (from the tumor
heat generation) and cold regions (near the nipple and other regions
with high curvature). The predicted temperatures matched the
infrared temperatures with a coefficient of determination R> = 0.98.
Moreover, the PINN-SDSD detected a tumor that closely resembled
the tumor specified in the pathology report. The highest absolute
errors were 0.4 cm in the predicted tumor diameter and 0.3 cm in the
identified location. These results indicate that the PINN-SDSD
detects cancerous tumors and achieves an acceptable prediction of
the tumor size and location.

Significant developments are required to establish the feasibility
of the PINN-SDSD as a preferred adjunct technology. The machine
learning algorithm needs improvements to reduce the training time,
which can be done by evaluating the effect of the number of points,
training iterations, and the use of multiple graphics processing units.
Other relevant areas of development lie in the infrared camera
position to improve the registration or the development of
alternative approaches to generate precise thermal-spatial point
clouds independently from MRI images. Testing with additional
patients will allow identifying the uncertainty in the prediction of the
tumor characteristics and will contribute to quantifying the
sensitivity and specificity of the proposed machine learning
approach.
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