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FIGURE 1: The Sketch2Prototype framework takes in a conceptual design sketch as input, and produces multiple inspired images, a 3D

model, and finally a fabricated prototype.

ABSTRACT

Sketch2Prototype is an AI-based framework that transforms

a hand-drawn sketch into a diverse set of 2D images and 3D pro-

totypes through sketch-to-text, text-to-image, and image-to-3D

stages. This framework, shown across various sketches, rapidly

generates text, image, and 3D modalities for enhanced early-

stage design exploration. We show that using text as an inter-

mediate modality outperforms direct sketch-to-3D baselines for

generating diverse and manufacturable 3D models. We find limi-

tations in current image-to-3D techniques, while noting the value

of the text modality for user-feedback and iterative design aug-

mentation.

INTRODUCTION

During product design and development, a design concept

moves through many modalities. It may be represented as a

sketch, a textual description, a looks-like or works-like proto-

type, and finally materialize as a finished product [1]. Early in

the engineering design process, sketches and prototypes are piv-

otal for conveying ideas, investigating various design possibili-

ties, and exploring the design space [2]. Developing a looks-like

prototype is an essential step in the engineering design process,

offering a tangible, visual representation of a product idea, and

1These authors contributed equally to this work.

communicating the design concept to stakeholders. However,

prototyping can be time-consuming and resource-intensive, in-

volving multiple iterations and manual adjustments to achieve

the desired outcome [3].

In the phase of conceptual design, it’s typical to progress

from sketching to prototyping in a linear fashion. Yet, research

indicates that tackling these activities concurrently can offer sig-

nificant advantages [2]. Given that conceptual design determines

up to 70-80% of a product’s lifetime cost [4, 5] exploring the de-

sign space with proper breadth and depth is indeed valuable. De-

spite this, sketching and prototyping are often done in sequence

because sketching is quicker and has lower overhead than proto-

typing [1].

Recent breakthroughs in generative AI have enabled people

to generate novel, unseen images by learning underlying patterns

in training data. Through generative models, the looks-like pro-

totyping process can be streamlined, allowing for rapid genera-

tion and iteration of design options, thus significantly reducing

time and costs associated with manual methods. This enables

design space exploration, motivating designers with a diverse set

of examples. Moreover, incorporating machine learning in the

prototype development process opens the door for enhanced user

interaction and feedback through easy iterations, as shown later

in Figure 7. Furthermore, communication between the develop-

ment team can be bolstered by having a physical manifestation

of their design vision. Ultimately, the integration of machine
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learning in creating looks-like prototypes facilitates a more effi-

cient, cost-effective, and user-centered approach to product de-

velopment, aligning technological innovation with aesthetic and

practical design needs.

In this work, we propose Sketch2Prototype, a framework

for understanding sketches, generating new conceptual images

inspired by those sketches, converting the images to 3D mod-

els, and finally fabricating a looks-like prototype from these 3D

models. There are various existing models that can perform each

of these subtasks, we demonstrate several state-of-the-art meth-

ods. We found that GPT-4V(ision), a vision language model

by OpenAI, 2023, is able to interpret and explain hand-drawn

sketches [6]. Therefore, we use GPT-4V, to convert sketches into

textual prompt descriptions, then DALL-E 3, which is a gener-

ative text-to-image model, generates a set of more descriptive

images from the text. We then use those images to generate a

3D model which, after postprocessing, we fabricated via additive

manufacturing. We demonstrate Sketch2Prototype in a series

of case studies with real hand drawn sketches of milk frothers,

phone stands, pen and coin holders, and mugs. Our method en-

hances design space exploration by three means: 1) inherent de-

sign expansion caused from automatically generating multiple

2D images inspired by one sketch 2) increased breadth and depth

of exploration made possible by working with sketches and pro-

totypes in parallel [2], and 3) allowing for user-centered feedback

via the text modality. The contributions of this work are as fol-

lows:

1. We introduced a generative AI-based framework to rapidly

create a prototype from a sketch, enabling design explo-

ration as the design moves through sketch, text, image, and

3D modalities.

2. We compared our framework to direct sketch-to-3D and

ControlNet-generated image-to-3D frameworks. Our model

generates more diverse images and manufacturable designs.

3. We demonstrated examples of the successful

Sketch2Prototype, moving from a hand drawn sketch

to a fabricated 3D looks-like prototype for four design

categories and six designs.

4. We built an open-source dataset of 1,087 milk frother

sketches each with four paired images inspired by the sketch

and generated by our framework. This results in 4,348 im-

ages.

1 RELATED WORK

In the following sections we discuss related works regarding

sketching and prototyping in engineering design, recent advance-

ments in vision language models, image-to-3D models, and 3D

representations.

1.1 Sketching and Prototyping in Engineering Design

Sketching is documented as a valuable skill in engineering

design, and researchers have studied ways to encourage and un-

derstand sketching in engineering education [7, 8]. Sketching

provides a rapid external representation that comes at very lit-

tle cognitive cost [9]. Researchers also explored creativity and

decision making with sketches [10], using sketching for finite

element analysis [11], and using machine learning to predict

creativity-ratings from sketches and text [12, 13].

In product design, prototypes can be defined as ªan approx-

imation of the product along one or more dimensions of inter-

estº [1]. Prototypes, as well as the process of building and test-

ing them, offer invaluable information to designers [8]. As such,

many works have surveyed and explored different prototyping

strategies [14,15]. Research has explored how combining sketch-

ing and prototyping during conceptual design impacts design

space exploration. On average, only sketching leads to a broader

design space and generated more novel designs, only prototyp-

ing leads to more aesthetically pleasing designs with better func-

tionally, both sketching and prototyping explored and generated

final ideas that were perceived as more creative [2]. Sketching

can lead to a higher quantity of designs [16], but prototyping can

be used to both explore and refine designs [17]. Furthermore,

this work suggests benefits of using both sketch and prototype

modalities during conceptual design to explore the design space

with both breadth and depth and ultimately generate creative de-

signs.

One challenge that prevents designers from prototyping in

parallel with sketching is that prototypes are often slower to cre-

ate and have higher associated costs than sketching [3], and de-

signers are often reluctant to spend money and time on things

when uncertainty is high, like early in the conceptual stage [1].

This is where we believe the integration of machine learning to

efficiently create looks-like prototypes presents a transformative

opportunity.

1.2 Large Language Models and Vision Language

Models

Large language models (LLMs) are billion-parameter trans-

formers that are pre-trained on significant amounts of data, en-

abling them to perform a wide variety of natural language pro-

cessing tasks such as translation, summarization and recognition.

LLMs such as LLaMA [18] learn to generate text aligned with

human preferences through Reinforcement Learning with Hu-

man Feedback.

Vision language models (VLMs) have also become quite

popular. To create cohesive understanding between image and

text, CLIP (Contrastive Language-Image Pre-training) [19] is a

model that creates a joint embedding space between vision and

language. CLIP is an efficient metric for measuring similarity

between an image-text or image-image pair [20]. Hence, VLMs



FIGURE 2: The Sketch2Prototype framework uses transformer-based models for the sketch-to- text and text-to-image steps, as well as

an encoder and conditional diffusion model for image- to-3D model. Post-processing of the 3D model is performed in Blender.

such as GPT-4V and FLAVA [21] are similar to LLMs except

that they train on multimodal datasets and often employ CLIP or

similar methodologies learn a joint space between language and

vision. VLMs need to understand complex relationships between

text and image, thus requiring multimodal data for training. Al-

though there is a certain degree of overlap in their applications,

VLMs are distinctively advantageous for tasks necessitating vi-

sual comprehension, in contrast to LLMs, which excel in purely

text-based endeavors. Given the inherently multimodal nature of

early-stage design, VLMs are particularly well-suited for such

applications.

Text-to-image synthesis has been explored via models like

Imagen [22], DALL-E 3 [23]. Many researchers have used dif-

fusion models for text-to-image tasks as diffusion models tend

to be faster. Many text-to-image models also enable users con-

trol over their picture by prompting the model to change specific

regions of an image via text, known as inpainting. However, in-

painting for these models is often limited to text.

To enable users to control image generation with their

own sketches, models such as ControlNet and T2IAdapter have

emerged. These models freeze the text-to-image model and use

the users’ sketches to guide the text-to-image generation process.

However, these models give too much control to the users, and

often results in images too similar to the users’ sketch, mean-

ing less exploration of the design space, as we show later, these

models lead to fixation on the original concept. By leveraging

VLMs’ ability to provide text descriptions, which can then be

expanded by text-to-image models, we generate a highly diverse

set of prototypes.

1.3 3D Representations and Image-to-3D Models

3D representations enable users to visualize the dimensions

and proportions of objects. Furthermore, 3D representations en-

able manufacturing decisions, by displaying different geomet-

ric constraints. Lastly, 3D prototypes enable useful feedback

from designers, customers, and stakeholders regarding the user-

experience with a design [8]. Neural Radiance Fields (NeRFs)

[24] have become a popular method for 3D scene representa-

tions. Although NeRFs are used in 3D reconstruction [25] and

generation [26] , optimizing NeRFs are time consuming to train

and memory intensive. 3D Gaussian splatting [27] is a recent

alternative to NeRFs and has demonstrated promising results in

both speed and quality in 3D reconstruction. Recent work has

tried applying Gaussian Splatting to generation tasks [28] that

outperform methods that use NeRFs for 3D representations.

Image-to-3D models try to generate 3D assets from a single

image, which can also be reformulated as a single-view 3D re-

construction tasks, but often produce blurry results [29]. Using

image captioning models, text-to-3D methods can be adapted for

image-to-3D generation [30]. Dream Gaussian [28] is a recent

model that uses companioned mesh extraction and texture refine-

ment in UV space. Even though the results of Dream Gaussian

are promising, it fails to produce high quality models of unseen

models. Shap-E [31] is another recent image-to-3D and text-to-

3D model that utilizes a conditional diffusion model to output



FIGURE 3: Our framework enables exploration of the design space by automatically generating multiple diverse images inspired by one

sketch. Here a single sketch results in three fabricated looks-like prototypes.

high fidelity 3D objects.

In engineering design, it is often time consuming for design-

ers to create high-quality images that can be used for image-to-

3D generation tasks. Sketches are often abstract, lack detail, and

are often unfit for image generation. Past work has tried to pre-

dict 3D functionality from a 2D image; however, 3D information

performs best [32]. Our work shows an end-to-end system that

generates multiple high-quality images from the original sketch,

which can then generate a printable 3D prototype.

2 METHODOLOGY

In the following sections, we expound on the multi-stage

process where a sketch is transformed into text, then to images.

We further discuss the post-processing and fabrication stages,

where 3D models are refined in Blender to meet fabrication stan-

dards and subsequently 3D printed to materialize the design con-

cepts.

2.1 Framework from Sketch to Prototype

Our proposed framework treats the Sketch2Prototype prob-

lem as a sequence of tasks that move between design modalities:

from sketch-to-text, then from text-to-image(s), and finally from

image-to- 3D model, as shown in figure 2. For sketch-to-text,

we fed our sketch as input along with a verbal description of the

sketch into GPT-4V and prompted it to give it a description of

the image. We also asked GPT-4V to describe it such that it will

be passed as a prompt into DALL-E 3. DALL-E 3 performs text-

to-image by converting the text description of the original sketch

into a text embedding, then feeding it into a diffusion prior to

generate an image embedding, which finally gets decoded into an

image. We chose not to extract the words found on the sketches

as they may give semantic meaning to specific areas of the im-

age. To generate a variety of novel designs, we ask DALL-E 3

to generate 4 images from the original prompt. DALL-E 3 also

attempts to generate more diverse images by rephrasing the input

prompt.

The resulting image generated from DALL-E 3 may con-

tain text, which negatively affects the generation quality when

converting from image to 3D. To prevent this, we manually se-

lect a set of images that do not include any text and feed it into

our image-to-3D model. Current state-of-the-art models such as

Shap-E [31] and DreamGaussian have varied performance de-

pending on the provided image. As a result, we feed our images

into three state-of-the-art models (One-2-3-45, DreamGaussian

and Shap-E) and pick the mesh that is most similar to the origi-

nal image while also being the most manufacturable.

2.2 Post-processing and Fabrication

While models like Shap-E excel at generating 3D models,

they may not adhere to fabrication requirements. Hence, we per-

form post-processing of the 3D model in Blender 3.6.5. Shap-E

outputs a 3D model in the Polygon File Format (PLY) family.

This can be directly imported to Blender 3.6.5, post-processed as



FIGURE 4: Examples of the full Sketch2Prototype framework for four different design types: rodeo-inspired milk frother, pen-and-coin

holder, phone stand, and backpack-inspired mug.

needed, and exported as an STL file, which can be 3D printed.

We print the models with either the Bambu Lab X1-Carbon

Combo 3D Printer, which is a fused deposition modelling printer,

or Formlabs Form 3 Printer, which is a stereolithography printer.

3 RESULTS

In this section, we display the results of our framework

via a number of examples. Figure 3 demonstrates how the

Sketch2Prototype framework enables exploration of the design

space. From one design sketch of a phone stand, our framework

leads to three diverse prototypes. The images and 3D printed

models show a diverse set of functional phone stands. Figure 4

showcases the full Sketch2Prototype framework for four differ-

ent design types: a rodeo-inspired milk frother, a pen-and- coin

holder, a phone stand, and a backpack-inspired mug. For each

of these, we demonstrate an automatic exploration of the design

space in the text-to-image step. Here, using a text description

created from a sketch via generative-AI, a designer is automat-

ically presented with any number of detailed design images in-

spired by the sketch. We chose to display four images for each

sketch, however there is no imposed limit on this. A benefit of

design exploration in this stage is that it mitigates design fixation,

and can thus be used as an assistant for designers. Furthermore,

showing a designer multiple diverse examples can aid in creative

ideation. To assess the diversity and feasibility of our designs,



FIGURE 5: A: 3D models generated from varying input images: Sketch2Prototype generates more diverse and manufacturable designs.

B: The text modality allows for user control. We append text to the original prompt to generate different designs.

we compare the diversity and manufacturability of our model’s

designs to those made from a sketch alone or using ControlNet,

which adheres to the sketch geometry (Figure 5A).

3.1 Enhanced diversity and manufacturability over
baselines

We perform a qualitative evaluation of Sketch2Prototype by

generating 3D models with two baseline approaches. The first

approach is directly passing an unprocessed sketch into Shap-E

to generate the resulting mesh. The second approach is passing

our sketch into ControlNet to generate 4 candidate images. We

then pass each image into Shap-E and, for standardization, select

the first generated mesh. For Sketch2Prototype, we also generate

4 candidate images and perform the same mesh selection process.

We test our method on a phone stand design and a pen-and-coin

holder. Sketch-to-text via GPT-4V, text-to-image via DALL-E 3

or ControlNet, and image-to-3D via Shap-E each take a matter of

seconds, so the time difference between these three approaches

is negligible.

Results are shown in Figure 5A. We can see that the meshes

generated from unprocessed sketches are sparse and unmanufac-

turable. For ControlNet, the generated images lack diversity. In

the case of the phone stand, due to the simplicity of the sketch,

this process also produces unmanufacturable designs. The Con-

trolNet generated images lack diversity due to directly matching

the sketch geometry. Finally, our model generates diverse vari-

ations of each sketch. Our model also generated functional and

cohesive meshes for prototyping.

3.2 Generation and exploration via human-in-the-

loop feedback

We also evaluate the controllability of Sketch2Prototype via

the text modality. In Figure 5B, we add sentences to the DALL-E

3 prompt to alter the output image according to designer feed-

back. For example, when the original prompt is appended with

The milk frother is made of wood and styled like and old sa-

loon,º the output image changes form accordingly. The interme-

diate text modality thus enables users to add iterative feedback,

allowing for extra user control. Hence, there is immense value in

using text as an intermediary modality to help with exploration

and addition of new requirements, which are difficult to update

in sketch directly.



FIGURE 6: CLIP scores between Sketch and Text, Image and

Text, and Image and Sketch modalities for sets of the sketch,

text, and images corresponding to the same design. A high CLIP

score indicates a high level of similarity and alignment between

the respective pairs.

FIGURE 7: Average pairwise CLIP score between the four gener-

ated images. A lower CLIP score indicates a more diverse set of

images. Yellow, red, green, blue and pink lines correspond to 5th,

50th, and 95th percentiles respectively. The original sketches are

shown to the left of the set of images generated from them.

3.3 Dataset alignment and diversity

We show quantitatively that Sketch2Prototype generates im-

ages that match the original description while being diverse. We

generated a synthetic dataset from a set of milk frother designs

and evaluated its alignment with the original dataset and its di-

versity. This dataset of milk frothers contains 359 hand-drawn

sketches of milk frothers drawn by unique individuals. Each milk

frother design often has a brief text description of the design con-

cept in addition to text annotations on the sketch. To generate

the synthetic dataset, we provided the image to GPT-4V and in-

corporated the text description into prompt that asks GPT-4V to

generate a DALL-E 3 prompt. For each sketch, we generate 4

images, giving us a synthetic dataset of 1,436 total images.

For our generated dataset, we show 1) that the generated

images align with their sketches, and 2) that the generated images

represent a diverse set, thus exploring the design space. To show

our synthetic dataset aligns with the original dataset, we compute

the CLIP score between each sketch in the original dataset and

the provided text description. We also take the average CLIP

score between the 4 images in the augmented dataset with the

text description. Finally, we take the CLIP score between the

sketches and the images. The results are listed in the plot on

Figure 6.

The resulting average CLIP score for the sketch vs text, im-

age vs text and sketch vs image sets are 25.8, 28.1 and 64.4

respectively. The higher average between the image vs text

and sketch vs text is expected, since GPT-4V gave a more de-

tailed text representation for generation compared to the original

sketch. Likewise, CLIP scores between two images are gener-

ally higher than CLIP scores between image and text, so it is

expected that the image-sketch CLIP score is higher than the re-

maining two.

To measure diversity, we compute the average pairwise

CLIP score for each of the 4 images in each sample. Higher

CLIP scores indicate less diverse datasets. Figure 7 illustrates

the distribution of these pairwise CLIP scores. At the 5th, 50th,

and 95th percentiles, we show an example of a sketch and four

generated images to give better context on how these scores cor-

respond to the diversity images. As percentile increases, we ob-

serve a decrease in geometric variation and fewer components.

At the 95th percentile, the milk frother designs shown have al-

most identical geometries - every design are variations of a cylin-

drical container attached to a handle. However, designs at the 5th

percentile have varied shapes and multiple components, such as

handles of different curvatures, and different containers.

4 DISCUSSION

4.1 Integrating AI into the Design Thinking Process

In this work, we proposed a framework, Sketch2Prototype,

that utilizes generative AI to rapidly generate a textual descrip-

tion, a diverse set of 2D images, and 3D models from a hand

drawn sketch. We compare our framework to two baseline

models, using sketch-alone and using ControlNet-generated im-

ages. We showed that our framework generates more diverse

designs and manufacturable models than the others (Figure 5A).

Sketch2Prototype also increases the breadth and depth of explo-



ration by allowing designers to work with sketches and proto-

types in parallel. We exhibit the entire framework, resulting in

six fabricated prototypes from four hand-drawn sketches.

We also demonstrate how user feedback can be incorpo-

rated via the text modality. Our framework represents a design

as a sketch, text, image, and 3D model. The intermediate text

modality can be easily edited by a designer to add more require-

ments that are not present in original text. This allows iterative

refinement and improvement, shown in Figure 5B. The two re-

sults shown in Figure 5 demonstrate the balance between user-

control and automatic design expansion. While ControlNet al-

lows for strict geometric adherence to an input image, this elimi-

nates most diversity and may not be desirable when dealing with

an imprecise hand-drawn sketch. On the other hand, DALL-E

3 generates very diverse designs, however iterative feedback via

text may be necessary to generate a desired image.

Tools such as Sketch2Prototype can be incorporated into

traditional design thinking processes, enhancing ideation, and

prototype development. Sketch2Prototype enables engineers to

rapidly explore the design space by expanding simple, abstract

sketches into diverse images and 3D printable looks-like proto-

types. Our framework allows for human-in-the-loop feedback

in the text-to-image phase, and facilitates prototype development

by converting these images into 3D models.

4.2 Limitations within the existing framework

We must emphasize that this is a preliminary exploration of

how emerging AI tools may benefit designers via accelerated de-

sign transformation from sketch to text, images, and 3D models.

The 3D models are meant to be looks-like, not functional, proto-

types that can be built using additive manufacturing techniques.

Further studies are necessary to determine which AI tools per-

form best at each step of the framework, and, in fact, define what

ªbestº means.

The process of combining different design transformation

steps means that deviance from the desired design can be intro-

duced at every step. In the sketch-to-text phase, the user benefits

from having much control via simple text editing. However, we

observe a failure case in sketch-to-text then text-to- image when

GPT-4V generates a text description that is deemed an ªunsafeº

prompt by DALL-E 3. This indicates that GPT-4V’s text genera-

tion is not grounded on DALL-E 3’s safety mechanisms.

Another limitation is the lack of repeatability in the text-

to-image stage. Using off-the-shelf image generation tools such

as DALL-E 3 means that the same prompt will not generate the

same image when repeated. Furthermore, changes to the design

are often global rather than local, even if the textual prompt only

requests a local change.

The greatest limitation that we observe is in the image-to-

3D stage. Though we utilize state of the art image-to-3D mod-

els, design details are often lost at this stage, and 3D models

generated using image-to-3D are often non-smooth, fragmented,

and sometimes non-manufacturable. As a result, postprocessing

is required either to smooth surfaces, fill holes, or remove un-

manufacturable parts. Even with postprocessing, image-to-3D

models tend to create uneven surfaces or holes, which indicate

that NeRFs, while strong for 3D visualization purposes, may not

be ideal for 3D printing. Due to the postprocessing step, the time

taken for Sketch2Prototype increases.

Finally, aside from manufacturability problems, there may

be a lack of control over the final mesh. For earlier steps in the

framework, users can edit intermediate representations to better

control the product, such as editing descriptions during sketch-

to-text or inpainting during text-to-image. The only control users

have over a mesh is the postprocessing stage, which is limited to

removal or minor edits to surfaces. Enabling users to ªinpaintº

3D meshes would give significantly more flexibility over their

final product.

5 FUTURE WORK

Future research could explore the application of this

framework in more complex design scenarios, such as multi-

component systems or intricate structures. These tasks are chal-

lenging since models would need to identify distinct parts, under-

stand part-interfaces, and ensure compatibility. This challenge

becomes even harder when dealing with sketches that have in-

ternal components, as internal components need to have correct

proportions with respect to their container in order to fit, and we

note that the image-to-3D models we use did not capture internal

components well.

Current research on image-to-3D models is often concerned

with synthesizing 3D images from objects for visualization pur-

poses, but making these meshes functional is much harder. This

work reveals that NeRFs may not be an ideal candidate for repre-

senting manufacturable prototypes. An area for exploration may

be to create a new representation of meshes specifically for 3D

printing purposes.

This work aims to demonstrate how existing AI tools enable

transformation from sketch to text, image, and 3D modalities,

which can enhance design space exploration. Sketch2Prototype

should assist designers in efficiently ideating with different

modalities. To this end, future work may include incorporating

user-centered design principles in the Sketch2Prototype frame-

work, focusing on intuitive interfaces and user feedback.

6 CONCLUSION

We demonstrate a framework to convert sketches into fab-

ricated prototypes via intermediate steps: sketch-to-text, text-to-

image, and image-to-3D. We show that our framework enhances

design space exploration by generating a set of diverse 2D im-

ages and 3D models from a single sketch, and by enabling de-



signers to work with sketches and prototypes in parallel. We

find that using text as an intermediate modality allows for it-

erative user feedback and enhanced user control. Furthermore,

text- to-image-to-3D generates more diverse and manufacturable

3D models than sketch-to-3D baselines. However, manufactura-

bility is still a limitation of current image-to-3D models. The

Sketch2Prototype framework gains potential as each step is ac-

tively worked on by the machine learning community.
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