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HIGHLIGHTS GRAPHICAL ABSTRACT

e A novel SERS method coupled with
machine learning tools was established.

o Gold-silver  core-shell nanoparticles
significantly enhanced Raman signals.

o Five types of pesticides were classified
by mL models with 98% accuracy.

e Quantitative analysis resulted in an
MAE of 0.966 and an MSE of 1.826.

e This study helps monitor pesticide
contamination in agricultural products.
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ARTICLE INFO ABSTRACT
Keywords: This study introduces an innovative strategy for the rapid and accurate identification of pesticide residues in
Pesticide agricultural products by combining surface-enhanced Raman spectroscopy (SERS) with a state-of-the-art trans-

Artificial intelligence former model, termed SERSFormer. Gold-silver core-shell nanoparticles were synthesized and served as high-

Is\fiime learnin performance SERS substrates, which possess well-defined structures, uniform dispersion, and a core-shell
Transformer & composition with an average diameter of 21.44 + 4.02 nm, as characterized by TEM-EDS. SERSFormer em-

ploys sophisticated, task-specific data processing techniques and CNN embedders, powered by an architecture
features weight-shared multi-head self-attention transformer encoder layers. The SERSFormer model demon-
strated exceptional proficiency in qualitative analysis, successfully classifying six categories, including five
pesticides (coumaphos, oxamyl, carbophenothion, thiabendazole, and phosmet) and a control group of spinach
data, with 98.4% accuracy. For quantitative analysis, the model accurately predicted pesticide concentrations
with a mean absolute error of 0.966, a mean squared error of 1.826, and an R? score of 0.849. This novel
approach, which combines SERS with machine learning and is supported by robust transformer models, show-
cases the potential for real-time pesticide detection to improve food safety in the agricultural and food industries.
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1. Introduction

The widespread use of pesticides in agriculture around the world has
been pivotal for enhancing crop yields and ensuring food security [1,2].
However, the persistence of these chemicals raises concerns about res-
idues in food products, posing health risks from acute toxicity to chronic
diseases [3,4]. Therefore, there is an urgent need for advanced tech-
nologies to quickly and accurately detect pesticide residues, ensuring
the safety of agricultural products. In recent years, surface-enhanced
Raman spectroscopy (SERS) has emerged as a cutting-edge technique
with immense potential to revolutionize food safety assessment. SERS
leverages the phenomenon of enhanced Raman scattering when mole-
cules are adsorbed onto metallic nanostructures, such as silver or gold
nanoparticles [5]. This method offers many advantages in analyzing
pesticide residues in agricultural products [6].

Compared to traditional methods, such as gas chromatography-mass
spectrometry (GC-MS) [7], SERS provides non-destructive, rapid anal-
ysis, ideal for real-time food industry monitoring [8]. SERS provides
high sensitivity for detecting trace chemical compounds with excep-
tional precision. It reliably identifies different pesticides at low con-
centrations through the vibrational fingerprints of molecules [9].
Additionally, SERS can be integrated with advanced artificial intelli-
gence (AI) and machine learning techniques based on the cutting-edge
transformer technology that has achieved great success in large lan-
guage models (e.g., ChatGPT) for natural language processing,
providing a powerful synergy for accurate and efficient identification of
pesticide residues [10,11].

Machine learning, a key subfield of artificial intelligence (AI), de-
velops algorithms that automatically learn hidden patterns and re-
lationships from data without explicit programming [12]. Leveraging
big data and high-performance computing, it has revolutionized infor-
mation processing and decision-making by enabling computers to
improve tasks over time [13,14]. Machine learning has significantly
evolved from its early focus on pattern recognition to widespread use in
various sectors, including healthcare, finance, and food science [15]. In
food science, it assists in evaluating dietary consumption across pop-
ulations [16], improving food processing procedures and safety analysis
[17]. Furthermore, deep learning, a key advancement in machine
learning featuring multi-layered neural networks, has enhanced its
ability to solve complex problems by analyzing intricate patterns in
datasets [18]. This progress is largely driven by the availability of large
datasets, including those obtained from techniques like SERS.

However, there are challenges in analyzing spectral data, including
data preprocessing and variability in Raman signals [19], necessitating
robust, specialized models. Additionally, models capable of simulta-
neously assessing both the quantity and type of pesticide residues in food
are crucial. This study investigates combining SERS technology with
machine learning, particularly deep learning, for pesticide analysis in
foods. This was achieved by developing the SERSFormer that utilizes the
innovative transformer deep-learning approach, known for its
self-attention mechanism [11], to simultaneously quantify and qualify
pesticides in SERS data through multi-task learning and weight sharing
[20]. This innovative methodology offers a robust and efficient tool for
unraveling complex molecular information encoded in SERS spectra. By
harnessing the enhanced sensitivity and specificity of SERS, coupled
with the data-processing capabilities of machine learning algorithms,
this study aims to pioneer a novel methodology for the rapid and ac-
curate detection of pesticide residues in agricultural products.

2. Experimental
2.1. Materials
In this study, gold(III) chloride solution, silver nitrate, L-ascorbic

acid, tri-sodium citrate dihydrate, and 96% ethanol were acquired from
Sigma Aldrich (St. Louis, Missouri, USA) to synthesize SERS metallic
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nanostructures. Pesticide standards, including coumaphos, oxamyl,
carbophenothion, thiabendazole, and phosmet, were procured from
Sigma Aldrich in analytical standard grade (PESTANAL®). High-purity
chemicals and USDA-approved organic food samples were used to
minimize pre-existing residues, focusing the analysis on contaminants
introduced rather than those already present. This careful selection
ensures a thorough investigation into rapid pesticide residue detection
in agricultural products.

2.2. Synthesis of SERS substrates and the characterization of core-shell
nanoparticles

The synthesis of gold-silver core-shell nanoparticles (Au@Ag NPs)
was carried out to optimize SERS substrate performance [21]. Initially,
gold nanoparticles were synthesized by adding 8.6 uL of HAuCl4 to 50
mL of deionized water. The solution was then heated using a heater
stirrer until it approached near-boiling temperature. Subsequently, 1 mL
of 1% tri-sodium citrate dihydrate solution was introduced, and the
solution was maintained at the boiling temperature for 20 min, resulting
in a distinctive color change to wine red. The solution was then removed
from heat and allowed to cool. Next, a 100 mM L-ascorbic acid solution
was prepared and mixed with the gold nanoparticle solution at a ratio of
1:6, ensuring thorough homogenization for 10 min. Finally, 1 mM so-
lution of AgNO3 was added drop by drop to the gold solution while
stirring at high speed, maintaining a ratio of 1:3.5. The resultant
core-shell nanoparticles, crucial for SERS analysis, were obtained after
the addition of the silver solution [22]. The core-shell nanoparticles
were characterized using transmission electron microscopy with
energy-dispersive X-ray spectroscopy (TEM-EDS) using the Spectra 300
STEM instrument (ThermoScientific, Ltd., USA). TEM-EDS analysis re-
veals the morphology, size, and elemental composition of the gold-silver
core-shell nanoparticles, confirming the successful synthesis and vali-
dating the structural integrity of the core-shell nanoparticles [22].

2.3. The preparation of food samples and spiking with pesticides

Spinach samples were thoroughly washed, drained, and finely
chopped. Pesticide samples, including coumaphos, oxamyl, carbophe-
nothion, thiabendazole, and phosmet, were prepared in concentrations
ranging from 0.5 to 10 ppm (Table S1). These compounds were uni-
formly applied to the spinach samples to mimic contamination.
Following this process, the samples were air-dried to enhance the
binding of the analytes to the food matrix [23]. Next, each treated
spinach sample was transferred into a vial, to which an equal volume of
deionized water was added to maintain constant concentration levels.
This step facilitated the extraction of analytes from the food matrix into
the aqueous phase, enhancing their interaction with the synthesized
Au@Ag NPs during SERS analysis. The concentration range of 0.5 to 10
ppm was methodically applied across five samples to generate a
comprehensive dataset for analysis. Control samples were also prepared,
consisting of spinach without any pesticide residues. The collection of
data included the analysis of both food and water samples containing
pesticides, with pesticide-free food samples serving as controls [24].

2.4. Data collection with the Raman spectroscopy

The food samples were mixed with synthesized Au@Ag NPs, and a
10 pL of the mixture was dispensed onto a gold-coated slide that was
analyzed using a DXR2 Raman spectrometer (ThermoFisher Inc, Wal-
tham, MA, USA), scanning across a wave number range from 500 to
2000 cm ! with a laser power of 20 mW [22]. Representative spectra
were acquired from a minimum of 300 points within each sample using
OMNIC software (ThermoFisher). Noise reduction was crucial, with a
5% threshold applied to eliminate unwanted noises while preserving
spectral intensity. This approach improved the signal-to-noise ratio to
accurately identify pesticide residues [25]. Additionally, baseline
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correction was also conducted using a quadratic polynomial equation to
mitigate potential variations, ensuring an accurate depiction of spectral
features. Such pre-processing improved the quality of the Raman spec-
tral data, which is crucial for subsequent phases of analysis and inter-
pretation [26].

2.5. Data-feature extraction and preprocessing

SERSFormer undertakes both qualitative and quantitative analyses
using a unified model, utilizing preprocessed data after baseline
correction. This model analyzes the intensity of individual spectra for
each pesticide and concentration across consistent wavenumber ranges.
Fig. 1 shows the SERS spectra of all five pesticides and the control
sample, with intensity on the vertical axis (y-axis) and Raman shift on
the horizontal axis (x-axis).

In qualitative analysis, the model classifies six categories, encom-
passing five selected pesticides and a control group. For quantitative
analysis, it employs regression to predict pesticide concentrations. The
SERSFormer model features two branches: classification and regression,
delivering detailed outcomes on both pesticide identity and its concen-
tration. Preprocessing, especially normalization, is crucial in machine
learning to enhance model performance and interpretability. Normali-
zation is essential for establishing a standardized scale across features,
alleviating the impact of magnitude variations and mitigating issues
related to exploding gradient problems during the learning process [27].
Pesticides exhibit unique Raman scattering signals, forming distinct
peaks for identification. Consequently, log-min-max normalization was
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applied to the Raman spectra sample intensities, ensuring a standardized
scale across the dataset. The details about the log-min-max normaliza-
tion are provided in the Supplementary Material.

The concentration of pesticides in SERS spectra directly correlates
with Raman spectra intensity levels, with higher intensities suggesting
greater concentrations. As a result, regression was employed to predict
concentrations. Each task requires the normalization procedures that
suit the prediction task at hand. The log-min-max normalization, which
was utilized in the classification task, cannot be applied to the regression
task due to the potential dependency of concentration on intensity
values. Min-Max normalization scales each sample to a range of [0,1],
which could potentially blur the distinguishable properties of the in-
tensities that are crucial for regression. Therefore, the log-convolution of
the spectrum was employed, considering it as a time-dependent signal.
Convolution, a widely used signal-processing technique, is employed to
track the impact of causal input on the current input [28]. Convolution is
essentially a moving windowed average. In this study, 1D Convolution
was performed with a windowed Hann pulse of length 32 on the spec-
trum signal. The details about the convolution are provided in the
Supplementary Material.

Each log-convoluted spectrum sample preserves the original distin-
guishable intensity differences while scaling down the intensities to a
trainable range for SERSFormer. In addition to the convoluted signal, we
also extracted features greater than or equal to the 95, 85, 75, and 50
percentile of the intensities as additional features to be concatenated to
the regression head at the later stage of the regression model. These
percentile intensities were also verified based on the characteristic peaks
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Fig. 1. SERS spectra of five pesticides and the control spinach samples.
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observed in the analysis of each pesticide. Initially, the log-convoluted
spectrum signal was input into the regression embedding layer of the
SERSFormer.

2.6. SERSFormer model

The schematic representation of the comprehensive architecture of
SERSFormer is depicted in Fig. 2. Our model comprises three main
components: a task-specific embedding layer, a multi-tasking weight-
sharing transformer encoder [20], and dedicated Multilayer Perceptron
(MLP) heads preceding the output layers. Notably, SERSFormer en-
compasses two distinct branches for Classification and Regression, each
equipped with an individual convolutional neural network (CNN)
embedder of a similar design. The Transformer Encoder comprises
multiple Multi-head Attention Encoder layers strategically shared by
both the regression and classification branches. The classification
branch extends into a two-layered MLP head, predicting outcomes
across six distinct classes. Conversely, the Regression branch augments
the contextual information regarding pesticide types by incorporating
features from the Classification branch. This augmented information is
then channeled into a Regression MLP head, supplemented by the
concatenation of additional percentile features, yielding predictions
related to the concentration of the pesticide present. The shared weights
of the Transformer encoder facilitate the learning of nuanced associa-
tions, contributing to the model’s dual functionality in handling both
classification and regression tasks.

2.7. The embedding feature generator

The embedding layer in a deep neural network is crucial as it bridges
the raw input data and the subsequent layers of the network. This
transformation enables the network to identify patterns and relation-
ships better, improving generalization and performance by providing a
nuanced understanding of the data, thereby enhancing the model’s ac-
curacy and efficiency. For both regression and classification in our
model, we implemented 2-layer 1D CNNs [29] with a shared stride of 3,
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Relu activation, and Maxpooling on each CNN layer. CNNs can capture
and leverage the contextual relationships between adjacent inputs,
which is utilized in the SERSFormer architecture by retaining and using
information about the influences of preceding inputs on the current
ones. Consequently, the utilization of CNNs obviates the necessity for
additional positional encoding in the transformer component of the
SERSFormer. The 1D convolutional operations enable the network to
capture hierarchical features and learn representations essential for
discriminating subtle variations in the spectral data [30]. The CNN’s
role as an embedding layer eliminates the positional encoding overhead
and more effectively understands complex patterns in the SERS data,
ultimately improving performance across both task types.

2.8. Transformer encoder

The Transformer signifies a crucial advancement in neural network
design, tailored for sequence transformation tasks, notably in natural
language processing [11]. The Transformer deviates from the traditional
recurrent or convolutional networks by utilizing a self-attention mech-
anism to identify intricate patterns and dependencies in sequential data.
It can capture long-range dependencies without the constraints of
sequential processing, thereby mitigating challenges associated with the
vanishing or exploding gradients. The architecture of the Transformer,
which comprises self-attention layers and feedforward sub-layers, en-
ables parallelization, thus enhancing efficiency in both training and
inference. Our model, the SERSFormer, exemplifies the Transformer
Encoder, integrating a transformer attention layer. It’s structured
around multi-head self-attention layers [11]. The attention mechanism
empowers the model to selectively emphasize different segments of the
input sequence during the prediction process. Within this mechanism,
the concept of multi-head attention is employed, wherein multiple sets,
or '"heads," independently perform scaled dot-product self-attention
calculations. The scaled dot-product self-attention computation involves
utilizing query, key, and value matrices to derive attention scores,
subsequently guiding the weighted summation of values.

Fig. 3 explains the multi-head scaled dot product self-attention layer
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of the transformer encoder module. The important steps in the multi-
head attention layer are provided in the Supplementary Materials.
This configuration enhances the model’s capacity to discern and weigh
the relevance of different elements within the input sequence, thereby
optimizing the encoding process. The nuanced derivation of attention
within the SERSFormer model underscores its theoretical foundation
rooted in the transformative concepts introduced in the pioneering work
on attention mechanisms in neural networks [11].

Both classification and regression tasks employ a six-layer trans-
former encoder with four attention heads with shared weights, allowing
the Transformer encoder to discern intricate relationships between
various types of pesticides and their respective concentrations. For
classification, the output from the transformer encoder is directly uti-
lized as input for the Classification Multi-layer Perceptron (MLP) mod-
ule with two hidden linear layers, Rectified Linear Unit (ReLU)
activation functions, and batch normalization, ultimately yielding six
outputs with softmax activation for the generation of multi-class clas-
sification probabilities. In regression, before being fed into the regres-
sion MLP head, a skip connection is established by adding the encoded
features from the transformer encoder of the classification branch to
those of the regression branch. The summation of values is performed to
maintain dimensionality consistency. Subsequently, the augmented
features, including additional percentile features containing information
about the magnitude of the input signals, are concatenated with the
newly encoded features. This expanded feature set is then fed into the
regression MLP module, which consists of two hidden layers with ReLU
activation functions and batch normalization, aiming to predict con-
centrations accurately.

2.9. Training of data

The dataset is partitioned into training, validation, and test sets with
a 70:10:20 ratio to facilitate proper model evaluation. While splitting,
it’s ensured that all the classes and all the concentration values in the
test dataset are in equal ratio and are unseen to the training to ensure
rigorous testing. For classification tasks, the model employs the cross-
entropy loss function, Adam optimizer, with a learning rate of 0.0001.
The architecture encompasses 4 attention heads and 6 layers of a
Transformer encoder, enriched with regularization techniques such as
dropouts of 0.5 and batch normalization in between every embedding
layer and MLP layer. The output layer utilizes softmax activation to
facilitate the classification decision. Conversely, for regression tasks, the
mean squared error loss function is adopted, coupled with the Adam
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optimizer employing a learning rate of 0.0001. The regression-oriented
Transformer model mirrors the architecture utilized in classification,
featuring 4 attention heads and 6 layers, while regularization is achieved
through the incorporation of dropouts of 0.5 and batch normalization
between every CNN layer and MLP layer. The complete model un-
dergoes 100 epochs of training, with early stopping privilege. The table
below shows the best hyperparameters for the best performance of the
SERSFormer (Table 1).

3. Results & discussion
3.1. Characterization of synthesized nanoparticles via TEM-EDS

The synthesized Au@Ag NPs were characterized using TEM-EDS,
revealing a well-defined nanoparticle structure with an average diam-
eter of 21.44 + 4.02 nm. These nanoparticles exhibited a normal
dispersion, indicating a uniform distribution across the sample. TEM
images unveiled spherical nanoparticles, while EDS elemental mapping
confirmed the core-shell configuration (Fig. 4). Specifically, gold was
identified, forming the core, encased by a distinct silver layer serving as
the shell. This characterization confirmed the successful synthesis of the
core-shell nanoparticles and provided insights into their size,
morphology, and elemental composition, affirming their suitability for
subsequent SERS analysis.

3.2. Characteristic Raman peaks of pesticide molecules

This study analyzed five distinct pesticide samples—coumaphos,
oxamyl, carbophenothion, thiabendazole, and phosmet—each display-
ing characteristic patterns in their Raman spectral data. These patterns
can be used for identifying pesticide residues by chemometric tech-
niques. For instance, coumaphos, an organophosphorus pesticide, ex-
hibits distinctive peaks at 519, 616, 648, 1197, 1343, 1556, 1607, and
1740 cm ™! in its Raman spectrum. These peaks correspond to specific
vibrational modes related to its molecular structure, such as P-C
stretching, P-O-C bending, C-H bending, C-N stretching, and C=0
stretching vibrations [31]. Similarly, oxamyl, a carbamate pesticide,
displays prominent peaks at 681 and 1311 cm™?, indicative of C-N
bending and C-N stretching vibrations, respectively [32].

Similarly, carbophenothion, another organophosphorus pesticide,
displays distinct peaks at 536, 1059, 1078, 1093, 1174, and 1566 cm !
in its Raman spectrum, corresponding to various vibrational modes such
as P = S stretching, P-O-C stretching, and P-S-C bending vibrations [31].
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Table 1

The best hyperparameters for the best performance of the SERSFormer.
Name Learning rate Attention head Encoder layers Number of classes Epochs Batch size
SERSFormer 0.0001 4 6 6 45 32

Fig. 4. TEM-EDS analysis of synthesized gold-silver core-shell nanoparticles.

Thiabendazole, a benzimidazole fungicide, manifests characteristic
peaks at 771, 883, 981, 1001, 1592, and 1626 cml, representing C-S
stretching, C-N stretching, C-H in-plane bending, and C=C stretching
vibrations [22]. Additionally, phosmet, an organophosphorus pesticide,
exhibits distinct features in its Raman spectrum, with peaks at 602, 646,
765, 1013, and 1174 cm™}, corresponding to P-S stretching, P-O-C
stretching, P-O-C bending, and P-S-C bending vibrations [33]. The
unique spectral profiles of these pesticides facilitate their identification
and enable the development of machine learning models for accurately
discerning and quantifying their presence in samples.

3.3. Evaluation and results of SERSFormer

SERSFormer integrates the functionalities of both classification and
regression to deliver thorough qualitative and quantitative assessments.
Each SERS spectrum sample analyzed by SERSFormer yields two con-
current outcomes: identification of the pesticide type, if present, and
determination of its concentration. In cases where no pesticide is found,
the model assigns a concentration value of O ppm. To evaluate the
model’s efficacy, we conducted separate evaluations for the classifica-
tion and regression tasks. For the multiclass classification, the evalua-
tion of model’s performance requires the use of various metrics. This
study employed multiclass precision, recall, accuracy, and F1 score,
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each providing unique insights into the classifier’s efficiency [34].

e Precision, defined as the ratio of true positive predictions to the sum
of true positives and false positives, elucidates the model’s accuracy
in correctly identifying instances of a specific class.

e Recall, in contrast, measures the model’s capability to capture all
instances of a particular class by measuring the ratio of true positives
to the sum of true positives and false negatives.

e Accuracy, a fundamental metric, gauges the overall correctness of
the classification model by calculating the ratio of correctly pre-
dicted instances to the total number of instances.

e The F1 score, a harmonic mean of precision and recall, combines
these metrics into a single value, providing a balanced assessment of
the model’s performance.

Our SERSFormer achieves a 98% accuracy rate in identifying and
classifying pesticides, as evidenced in Table 2. All evaluation metrics
confirm that SERSFormer proficiently conducts qualitative analyses of
food contamination.

All these evaluation metrics can be derived from the confusion ma-
trix, a pivotal tool in assessing the performance of classification models,
particularly in multiclass scenarios (Fig. 5). The confusion matrix is a
table that displays classification outcomes by comparing predicted la-
bels against true labels across various classes. In a multiclass setting, this
matrix takes the form of a square, with each row representing the true
class and each column representing the predicted class. The diagonal
elements of the matrix represent the instances that are correctly classi-
fied, while off-diagonal elements indicate misclassifications. The six
classes represent five distinct pesticides (thiabendazole, phosmet, car-
bophenothion, coumaphos, and oxamyl, respectively) and one class for
samples without any pesticides. Accordingly, the confusion matrix is a
6 x 6 matrix. Each cell (i, j) within this matrix denotes the number of
instances from class i that were predicted as class j. For instance, if cell
(3, 3) holds the value 258, it means that 258 instances belonging to class
3 (which corresponds to a specific pesticide) were correctly predicted as
class 3. Conversely, if cell (4, 5) contains the value 1, it means that one
instance from class 4 was misclassified as class 5. By examining the
confusion matrix, various performance metrics such as precision, recall,
accuracy, and the F1 score can be calculated for each class, providing a
detailed and nuanced assessment of the model’s ability to distinguish
among the different classes in a multiclass classification problem. The
confusion matrix is an indispensable tool for understanding the
strengths and weaknesses of a model across diverse classes, thereby
aiding in the refinement and optimization of classification algorithms.
The confusion matrix from the test dataset corroborates the high effi-
ciency of our evaluation metrics.

For regression of concentration, evaluating predictive models is
crucial, and several metrics serve as benchmarks to assess the model’s
performance. We use the R? score, mean absolute error (MAE), and
mean squared error (MSE) as evaluation metrics [35]. The MAE quan-
tifies the average magnitude of errors between the predicted and actual
values, providing a direct metric of accuracy. While the MSE calculates
the average of squared differences between predicted and actual values,
giving more weight to larger errors. Both MAE and MSE offer insights
into the precision of the model’s predictions, with lower values signi-
fying superior accuracy. This triad of metrics collectively affords a ho-
listic evaluation of the regression model’s ability to accurately predict
concentrations, considering both the overall fit to the data and the

Table 2

Journal of Hazardous Materials 470 (2024) 134208

magnitude of predictive errors. Such comprehensive assessments are
integral to refining and optimizing regression models for enhanced
predictive capabilities in diverse applications. The table below shows
the evaluation metrics for the quantitative analysis of pesticides on the
test dataset (Table 2).

Fig. 6 depicts the predictive analysis of pesticide concentration, with
the predicted pesticide concentration plotted against the actual con-
centrations. Due to the variability in the input sample spectrum within
the concentration, there are possibilities of outliers in the regression.
With improved sample data and a pool of concentrations, we plan to
improve the SERSFormer further (Fig. 6).

3.4. Kernel density estimates of regression

Fig. 7 presents kernel density violin plots, a graphical tool that
combines elements of box plots and kernel density estimation (KDE) to
provide a detailed representation of the density distribution in quanti-
tative predictions. These plots effectively convey density characteristics,
with the highest bulge indicating the region of maximum density. The
precise predicted density is visualized using grey sticks. Violin plots
serve as a visual aid in illustrating the distribution of predicted con-
centrations by utilizing the width of the plot at specific concentration
levels, thereby encapsulating the estimated density [36]. In Fig. 7, the
X-axis represents the actual concentration, and the Y-axis represents the
predicted concentration from SERSFormer on the test dataset. The
various targets along the X-axis denote concentrations of 0, 0.5, 1, 2, 5,
and 10 ppm, respectively. The KDE estimate clearly demonstrates the
ability of SERSFormer to predict concentrations, as the highest density
closely aligns with the actual concentration levels. Additionally, the
model demonstrates a noteworthy proficiency in predicting uncontam-
inated samples without any pesticide residues. The decrease in predic-
tion efficacy at concentrations of 0.5 and 1 ppm can be attributed to
subtle differences in intensity levels. The intensity levels are directly
associated with pesticide concentrations, as detailed in the Discussion
section (refer to Fig. 6 and Table 3 for more details). Thus, the kernel
density violin plots serve as an analytical tool that facilitates a nuanced
understanding of the precision and distribution of SERSFormer pre-
dictions across a range of concentration levels.

3.5. Importance of shared weights

The utilization of multi-tasking weight sharing in the SERSFormer
model, namely employing a Transformer encoder for both classification
and regression tasks, offer several significant advantages. The adoption
of weight-sharing enhances parameter efficiency, enabling the model to
acquire a succinct representation of input data suitable for both tasks.
This is particularly beneficial in situations where data availability, such
as SERS data for both tasks, is limited. Furthermore, shared weights act
as a mechanism for transfer learning, allowing the seamless transfer of
knowledge from classification tasks to regression tasks and vice versa,
thereby enhancing performance across the board [20]. Additionally, the
multi-task weight sharing drastically decreases the overall complexity of
the model. Instead of maintaining separate models for classification and
regression, the shared parameterization simplifies the architecture,
leading to expedited training and inference times. In regression, shared
weights promote the reusability of features, empowering the model to
extract pertinent features that capture underlying patterns or relation-
ships in the data. This shared knowledge enhances the model’s accuracy

Evaluation metrics for the test dataset for classification and quantitative analysis of the pesticides on the test dataset.

Evaluation metrics for classification

Evaluation metrics for quantitative/regression

Multiclass accuracy Multiclass F1 score Multiclass precision

Multiclass recall

Mean absolute error Mean squared error R? score

0.984 0.982 0.983

0.984

0.966 1.826 0.849
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Fig. 5. Confusion Matrix for identification of pure spinach sample (class 0) and five different pesticides (thiabendazole, phosmet, carbophenothion, coumaphos, and

oxamyl, respectively).
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Fig. 6. The predictive analysis of the concentration of pesticides, with predicted pesticide concentrations plotted against true concentrations.

in predicting continuous values. Moreover, the SERSFormer model,
through the utilization of shared weights, demonstrates improved
generalization capabilities. The model acquires a more comprehensive
representation of input features that surpasses the specific requirements
of classification or regression tasks, thus fostering enhanced its adapt-
ability to new and unseen data. Shared weights promote a unified
learning approach, enabling the model to dynamically adjust its pa-
rameters based on the intrinsic characteristics of the data, whether for
classification or regression. This amalgamation of benefits underscores
the efficacy of multi-task weight sharing in the SERSFormer model,
providing a versatile and efficient solution for tackling both classifica-
tion and regression objectives.

3.6. Effects of different normalization procedures on classification

In this ablation study, our objective was to scrutinize the pivotal
factors influencing qualitative prediction and emphasize the signifi-
cance of efficient signal or data processing in deep learning models. The
SERSFormer model underwent training with distinct data processing
techniques aimed at comprehending the model’s learning behavior and
identifying the key factors influencing its efficiency in classification
tasks. Various normalization methods, including min-max normaliza-
tion, log-min-max normalization, z-score normalization, and convoluted
signals of various window lengths used in regression features, were
employed [28,37]. Fig. 8 illustrates a sample spectrum of spinach
sample contaminated with oxamyl, processed using different normali-
zation techniques.

Table 3 presents the outcomes of these data processing techniques on
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Table 3 peaks at specific wavenumbers within the spectrum. This experiment
able

Effects of different data-processing techniques on the classification task of
SERSFormer.

Normalization types/Metrics Accuracy Precision Recall F1-Score
Min-max normalization 0.967 0.964 0.967 0.963
Log-min-max normalization 0.984 0.983 0.984 0.982
Z-score normalization 0.965 0.957 0.965 0.958
Log-convolution-389 0.615 0.6638 0.615 0.554
Log-convolution-32 0.956 0.946 0.956 0.941

model’s performance. Notably, log-min-max normalization displayed
the best performance, followed by min-max normalization and log-z-
score normalization. Conversely, the log-convoluted signal with a win-
dow length of 389 exhibited the least favorable performance. Scientifi-
cally, it is widely accepted that each pesticide has unique functional
groups and molecular properties, which result in distinct Raman shift

Min-Max Normalization

08
0.6

04

Log-Min-Max Normalization

provides further evidence for these scientific principles, confirming that
our model effectively captures the intricate relationship between Raman
peaks and the types of pesticides. The suboptimal performance of the
convolution-389 signal can be attributed to its tendency to smooth out
exact peak positions, leading to the loss of minute details in the signals.
While min-max normalization performs better than convoluted signals,
it may sometimes cause the model to neglect smaller peaks, especially
when the differences between peaks are substantial, resulting in
diminished gradients and suboptimal training. Log-min-max normali-
zation mitigates this issue by amplifying smaller peaks and providing
adequate information within the necessary normalization range, thereby
contributing to more effective model training.
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Fig. 8. Plots of data processing techniques applied on the spectra of oxamyl samples for a classification task.
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3.7. Influence of convolution on regression

This section provides an analysis of the impact of various normali-
zation and data processing techniques on the prediction of analyte
concentrations. Our investigation involved the application of min-max
normalization, utilized in the classification branch, and convolutions
with different window lengths on regression features. The objective was
to ascertain whether the model could effectively learn inherent regres-
sion features associated with concentration and to identify critical fea-
tures influencing concentrations. In Fig. 9, it is observed that both min-
max and log-min-max normalizations scale down concentrations to the
[0,1] range, resulting in uniform intensities across all concentrations.
This uniformity potentially hampers the model’s learning process,
making it challenging to distinguish between different concentration
inputs. In contrast, the convoluted signal demonstrates the ability to
differentiate between two distinct input concentrations. Convolution, a
widely employed processing technique in Digital Signal Processing,
functions as a causal moving average technique. It effectively reduces
higher variability in the data while preserving sufficient differences
between signal amplitudes [38].

Table 4 elucidates the effects of various input processing techniques
on the model’s performance in regression tasks. As anticipated, the
model normalized with min-max struggles to learn, resulting in poor
performance, whereas models with convoluted inputs exhibit signifi-
cantly higher efficiency. The Regression branch leverages shared
weights from the Transformer and integrates context regarding the type
of pesticide from the Classification branch, which inherently relies on
the positions of wavenumbers. In this context, Convolution 32 emerges
as the most effective, as it retains crucial information about minute peak
positions needed for classifying pesticide types while effectively dis-
tinguishing between different concentrations. These findings substanti-
ate the assertion that the quantity of pesticide in a sample is determined
by the intensity levels in the SERS spectrum, specific to each sample.
Consequently, our SERSFormer demonstrates robust regression

Min-Max Normalization
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Table 4
Effects of different data-processing techniques on regression task of
SERSFormer.

Regression features/Metrics MAE MSE R2-Score
Min-max normalization 1.379 5.534 -13.127
Log-convolution-389 1.165 3.371 0.6598
Log-convolution-64 1.632 4.484 0.5648
Log-convolution-32 0.966 1.826 0.849

capabilities, accurately predicting concentrations based on the distinct
characteristics of each pesticide.

While the proposed methodology shows promising results, several
limitations require consideration. The reliance on synthesized Au@Ag
NPs introduces a potential source of variability. Although efforts were
made to ensure daily synthesis and characterization, subtle variations
may still occur over time, affecting the reproducibility of results. Future
research should explore strategies for nanoparticle stabilization to
minimize these temporal variations. Additionally, the performance of
the current models might be influenced by the specificity of the pesti-
cides analyzed. Expansion of the analyte set to include a broader range
of pesticides would enhance the model’s applicability in diverse agri-
cultural settings. Furthermore, incorporating data from real-world sce-
narios with varying environmental conditions and sample matrices will
further validate the model’s robustness.

4. Conclusions

This study synergizes cutting-edge machine learning models and
advanced SERS techniques to rapidly and accurately detect pesticide
residues in agricultural products. Integrating SERS and the SERSFormer
model demonstrates the potential to transform pesticide analysis with
high sensitivity, specificity, and efficiency. Gold-silver core-shell nano-
particles, serving as SERS substrates, ensure significant enhancement of
Raman scattering signals. TEM-EDS analysis confirms successful
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Fig. 9. Plots illustrating data processing techniques applied on the spectra of oxamyl samples for a regression task, using two different concentrations: 2 and 5 ppm,

respectively.
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nanoparticle synthesis and provides insights into their structure and
composition. The SERSFormer serves as a versatile tool for both quali-
tative and quantitative analysis. Qualitatively, it accurately identified
six pesticide categories, benefiting significantly from preprocessing
techniques like noise reduction, baseline correction, and normalization.
Quantitatively, the model excelled in predicting pesticide concentra-
tions, with the integration of log-convolution and percentile feature
extraction capturing subtle concentration-dependent spectral features.
Evaluation metrics such as R? Score, MAE, and MSE highlighted the
model’s quantitative accuracy, offering a comprehensive assessment of
its predictive capabilities. The study underscores the significance of data
normalization techniques in pesticide classification and quantification
tasks, including log-min-max normalization, log-convolution, and
confusion matrix analysis. This integrated approach, combining SERS
with machine learning, offers a promising route for rapid, reliable
pesticide detection, with significant implications for monitoring food
safety in the agriculture and food sectors.

Environmental implication statement

Pesticides, known for their detrimental impact on ecosystems,
human health, and non-target organisms, persist in the environment,
contaminating soil, water, and food. Our development of SERS-based
rapid pesticide detection coupled with machine learning tackles this
crucial issue. By swiftly and accurately identifying pesticide residues in
food, our method promotes food safety and encourages sustainable
agricultural practices. This approach safeguards ecosystems and public
health by enabling early detection and monitoring of pesticide
contamination.
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