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• A novel SERS method coupled with 
machine learning tools was established. 

• Gold-silver core-shell nanoparticles 
significantly enhanced Raman signals. 

• Five types of pesticides were classified 
by mL models with 98% accuracy. 

• Quantitative analysis resulted in an 
MAE of 0.966 and an MSE of 1.826. 

• This study helps monitor pesticide 
contamination in agricultural products.  
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A B S T R A C T   

This study introduces an innovative strategy for the rapid and accurate identification of pesticide residues in 
agricultural products by combining surface-enhanced Raman spectroscopy (SERS) with a state-of-the-art trans
former model, termed SERSFormer. Gold-silver core-shell nanoparticles were synthesized and served as high- 
performance SERS substrates, which possess well-defined structures, uniform dispersion, and a core-shell 
composition with an average diameter of 21.44 ± 4.02 nm, as characterized by TEM-EDS. SERSFormer em
ploys sophisticated, task-specific data processing techniques and CNN embedders, powered by an architecture 
features weight-shared multi-head self-attention transformer encoder layers. The SERSFormer model demon
strated exceptional proficiency in qualitative analysis, successfully classifying six categories, including five 
pesticides (coumaphos, oxamyl, carbophenothion, thiabendazole, and phosmet) and a control group of spinach 
data, with 98.4% accuracy. For quantitative analysis, the model accurately predicted pesticide concentrations 
with a mean absolute error of 0.966, a mean squared error of 1.826, and an R2 score of 0.849. This novel 
approach, which combines SERS with machine learning and is supported by robust transformer models, show
cases the potential for real-time pesticide detection to improve food safety in the agricultural and food industries.  
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1. Introduction 

The widespread use of pesticides in agriculture around the world has 
been pivotal for enhancing crop yields and ensuring food security [1,2]. 
However, the persistence of these chemicals raises concerns about res
idues in food products, posing health risks from acute toxicity to chronic 
diseases [3,4]. Therefore, there is an urgent need for advanced tech
nologies to quickly and accurately detect pesticide residues, ensuring 
the safety of agricultural products. In recent years, surface-enhanced 
Raman spectroscopy (SERS) has emerged as a cutting-edge technique 
with immense potential to revolutionize food safety assessment. SERS 
leverages the phenomenon of enhanced Raman scattering when mole
cules are adsorbed onto metallic nanostructures, such as silver or gold 
nanoparticles [5]. This method offers many advantages in analyzing 
pesticide residues in agricultural products [6]. 

Compared to traditional methods, such as gas chromatography-mass 
spectrometry (GC-MS) [7], SERS provides non-destructive, rapid anal
ysis, ideal for real-time food industry monitoring [8]. SERS provides 
high sensitivity for detecting trace chemical compounds with excep
tional precision. It reliably identifies different pesticides at low con
centrations through the vibrational fingerprints of molecules [9]. 
Additionally, SERS can be integrated with advanced artificial intelli
gence (AI) and machine learning techniques based on the cutting-edge 
transformer technology that has achieved great success in large lan
guage models (e.g., ChatGPT) for natural language processing, 
providing a powerful synergy for accurate and efficient identification of 
pesticide residues [10,11]. 

Machine learning, a key subfield of artificial intelligence (AI), de
velops algorithms that automatically learn hidden patterns and re
lationships from data without explicit programming [12]. Leveraging 
big data and high-performance computing, it has revolutionized infor
mation processing and decision-making by enabling computers to 
improve tasks over time [13,14]. Machine learning has significantly 
evolved from its early focus on pattern recognition to widespread use in 
various sectors, including healthcare, finance, and food science [15]. In 
food science, it assists in evaluating dietary consumption across pop
ulations [16], improving food processing procedures and safety analysis 
[17]. Furthermore, deep learning, a key advancement in machine 
learning featuring multi-layered neural networks, has enhanced its 
ability to solve complex problems by analyzing intricate patterns in 
datasets [18]. This progress is largely driven by the availability of large 
datasets, including those obtained from techniques like SERS. 

However, there are challenges in analyzing spectral data, including 
data preprocessing and variability in Raman signals [19], necessitating 
robust, specialized models. Additionally, models capable of simulta
neously assessing both the quantity and type of pesticide residues in food 
are crucial. This study investigates combining SERS technology with 
machine learning, particularly deep learning, for pesticide analysis in 
foods. This was achieved by developing the SERSFormer that utilizes the 
innovative transformer deep-learning approach, known for its 
self-attention mechanism [11], to simultaneously quantify and qualify 
pesticides in SERS data through multi-task learning and weight sharing 
[20]. This innovative methodology offers a robust and efficient tool for 
unraveling complex molecular information encoded in SERS spectra. By 
harnessing the enhanced sensitivity and specificity of SERS, coupled 
with the data-processing capabilities of machine learning algorithms, 
this study aims to pioneer a novel methodology for the rapid and ac
curate detection of pesticide residues in agricultural products. 

2. Experimental 

2.1. Materials 

In this study, gold(III) chloride solution, silver nitrate, L-ascorbic 
acid, tri-sodium citrate dihydrate, and 96% ethanol were acquired from 
Sigma Aldrich (St. Louis, Missouri, USA) to synthesize SERS metallic 

nanostructures. Pesticide standards, including coumaphos, oxamyl, 
carbophenothion, thiabendazole, and phosmet, were procured from 
Sigma Aldrich in analytical standard grade (PESTANAL®). High-purity 
chemicals and USDA-approved organic food samples were used to 
minimize pre-existing residues, focusing the analysis on contaminants 
introduced rather than those already present. This careful selection 
ensures a thorough investigation into rapid pesticide residue detection 
in agricultural products. 

2.2. Synthesis of SERS substrates and the characterization of core-shell 
nanoparticles 

The synthesis of gold-silver core-shell nanoparticles (Au@Ag NPs) 
was carried out to optimize SERS substrate performance [21]. Initially, 
gold nanoparticles were synthesized by adding 8.6 µL of HAuCl4 to 50 
mL of deionized water. The solution was then heated using a heater 
stirrer until it approached near-boiling temperature. Subsequently, 1 mL 
of 1% tri-sodium citrate dihydrate solution was introduced, and the 
solution was maintained at the boiling temperature for 20 min, resulting 
in a distinctive color change to wine red. The solution was then removed 
from heat and allowed to cool. Next, a 100 mM L-ascorbic acid solution 
was prepared and mixed with the gold nanoparticle solution at a ratio of 
1:6, ensuring thorough homogenization for 10 min. Finally, 1 mM so
lution of AgNO3 was added drop by drop to the gold solution while 
stirring at high speed, maintaining a ratio of 1:3.5. The resultant 
core-shell nanoparticles, crucial for SERS analysis, were obtained after 
the addition of the silver solution [22]. The core-shell nanoparticles 
were characterized using transmission electron microscopy with 
energy-dispersive X-ray spectroscopy (TEM-EDS) using the Spectra 300 
STEM instrument (ThermoScientific, Ltd., USA). TEM-EDS analysis re
veals the morphology, size, and elemental composition of the gold-silver 
core-shell nanoparticles, confirming the successful synthesis and vali
dating the structural integrity of the core-shell nanoparticles [22]. 

2.3. The preparation of food samples and spiking with pesticides 

Spinach samples were thoroughly washed, drained, and finely 
chopped. Pesticide samples, including coumaphos, oxamyl, carbophe
nothion, thiabendazole, and phosmet, were prepared in concentrations 
ranging from 0.5 to 10 ppm (Table S1). These compounds were uni
formly applied to the spinach samples to mimic contamination. 
Following this process, the samples were air-dried to enhance the 
binding of the analytes to the food matrix [23]. Next, each treated 
spinach sample was transferred into a vial, to which an equal volume of 
deionized water was added to maintain constant concentration levels. 
This step facilitated the extraction of analytes from the food matrix into 
the aqueous phase, enhancing their interaction with the synthesized 
Au@Ag NPs during SERS analysis. The concentration range of 0.5 to 10 
ppm was methodically applied across five samples to generate a 
comprehensive dataset for analysis. Control samples were also prepared, 
consisting of spinach without any pesticide residues. The collection of 
data included the analysis of both food and water samples containing 
pesticides, with pesticide-free food samples serving as controls [24]. 

2.4. Data collection with the Raman spectroscopy 

The food samples were mixed with synthesized Au@Ag NPs, and a 
10 µL of the mixture was dispensed onto a gold-coated slide that was 
analyzed using a DXR2 Raman spectrometer (ThermoFisher Inc, Wal
tham, MA, USA), scanning across a wave number range from 500 to 
2000 cm−1 with a laser power of 20 mW [22]. Representative spectra 
were acquired from a minimum of 300 points within each sample using 
OMNIC software (ThermoFisher). Noise reduction was crucial, with a 
5% threshold applied to eliminate unwanted noises while preserving 
spectral intensity. This approach improved the signal-to-noise ratio to 
accurately identify pesticide residues [25]. Additionally, baseline 

M. Hajikhani et al.                                                                                                                                                                                                                             



Journal of Hazardous Materials 470 (2024) 134208

3

correction was also conducted using a quadratic polynomial equation to 
mitigate potential variations, ensuring an accurate depiction of spectral 
features. Such pre-processing improved the quality of the Raman spec
tral data, which is crucial for subsequent phases of analysis and inter
pretation [26]. 

2.5. Data-feature extraction and preprocessing 

SERSFormer undertakes both qualitative and quantitative analyses 
using a unified model, utilizing preprocessed data after baseline 
correction. This model analyzes the intensity of individual spectra for 
each pesticide and concentration across consistent wavenumber ranges.  
Fig. 1 shows the SERS spectra of all five pesticides and the control 
sample, with intensity on the vertical axis (y-axis) and Raman shift on 
the horizontal axis (x-axis). 

In qualitative analysis, the model classifies six categories, encom
passing five selected pesticides and a control group. For quantitative 
analysis, it employs regression to predict pesticide concentrations. The 
SERSFormer model features two branches: classification and regression, 
delivering detailed outcomes on both pesticide identity and its concen
tration. Preprocessing, especially normalization, is crucial in machine 
learning to enhance model performance and interpretability. Normali
zation is essential for establishing a standardized scale across features, 
alleviating the impact of magnitude variations and mitigating issues 
related to exploding gradient problems during the learning process [27]. 
Pesticides exhibit unique Raman scattering signals, forming distinct 
peaks for identification. Consequently, log-min-max normalization was 

applied to the Raman spectra sample intensities, ensuring a standardized 
scale across the dataset. The details about the log-min-max normaliza
tion are provided in the Supplementary Material. 

The concentration of pesticides in SERS spectra directly correlates 
with Raman spectra intensity levels, with higher intensities suggesting 
greater concentrations. As a result, regression was employed to predict 
concentrations. Each task requires the normalization procedures that 
suit the prediction task at hand. The log-min-max normalization, which 
was utilized in the classification task, cannot be applied to the regression 
task due to the potential dependency of concentration on intensity 
values. Min-Max normalization scales each sample to a range of [0,1], 
which could potentially blur the distinguishable properties of the in
tensities that are crucial for regression. Therefore, the log-convolution of 
the spectrum was employed, considering it as a time-dependent signal. 
Convolution, a widely used signal-processing technique, is employed to 
track the impact of causal input on the current input [28]. Convolution is 
essentially a moving windowed average. In this study, 1D Convolution 
was performed with a windowed Hann pulse of length 32 on the spec
trum signal. The details about the convolution are provided in the 
Supplementary Material. 

Each log-convoluted spectrum sample preserves the original distin
guishable intensity differences while scaling down the intensities to a 
trainable range for SERSFormer. In addition to the convoluted signal, we 
also extracted features greater than or equal to the 95, 85, 75, and 50 
percentile of the intensities as additional features to be concatenated to 
the regression head at the later stage of the regression model. These 
percentile intensities were also verified based on the characteristic peaks 

Fig. 1. SERS spectra of five pesticides and the control spinach samples.  
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observed in the analysis of each pesticide. Initially, the log-convoluted 
spectrum signal was input into the regression embedding layer of the 
SERSFormer. 

2.6. SERSFormer model 

The schematic representation of the comprehensive architecture of 
SERSFormer is depicted in Fig. 2. Our model comprises three main 
components: a task-specific embedding layer, a multi-tasking weight- 
sharing transformer encoder [20], and dedicated Multilayer Perceptron 
(MLP) heads preceding the output layers. Notably, SERSFormer en
compasses two distinct branches for Classification and Regression, each 
equipped with an individual convolutional neural network (CNN) 
embedder of a similar design. The Transformer Encoder comprises 
multiple Multi-head Attention Encoder layers strategically shared by 
both the regression and classification branches. The classification 
branch extends into a two-layered MLP head, predicting outcomes 
across six distinct classes. Conversely, the Regression branch augments 
the contextual information regarding pesticide types by incorporating 
features from the Classification branch. This augmented information is 
then channeled into a Regression MLP head, supplemented by the 
concatenation of additional percentile features, yielding predictions 
related to the concentration of the pesticide present. The shared weights 
of the Transformer encoder facilitate the learning of nuanced associa
tions, contributing to the model’s dual functionality in handling both 
classification and regression tasks. 

2.7. The embedding feature generator 

The embedding layer in a deep neural network is crucial as it bridges 
the raw input data and the subsequent layers of the network. This 
transformation enables the network to identify patterns and relation
ships better, improving generalization and performance by providing a 
nuanced understanding of the data, thereby enhancing the model’s ac
curacy and efficiency. For both regression and classification in our 
model, we implemented 2-layer 1D CNNs [29] with a shared stride of 3, 

Relu activation, and Maxpooling on each CNN layer. CNNs can capture 
and leverage the contextual relationships between adjacent inputs, 
which is utilized in the SERSFormer architecture by retaining and using 
information about the influences of preceding inputs on the current 
ones. Consequently, the utilization of CNNs obviates the necessity for 
additional positional encoding in the transformer component of the 
SERSFormer. The 1D convolutional operations enable the network to 
capture hierarchical features and learn representations essential for 
discriminating subtle variations in the spectral data [30]. The CNN’s 
role as an embedding layer eliminates the positional encoding overhead 
and more effectively understands complex patterns in the SERS data, 
ultimately improving performance across both task types. 

2.8. Transformer encoder 

The Transformer signifies a crucial advancement in neural network 
design, tailored for sequence transformation tasks, notably in natural 
language processing [11]. The Transformer deviates from the traditional 
recurrent or convolutional networks by utilizing a self-attention mech
anism to identify intricate patterns and dependencies in sequential data. 
It can capture long-range dependencies without the constraints of 
sequential processing, thereby mitigating challenges associated with the 
vanishing or exploding gradients. The architecture of the Transformer, 
which comprises self-attention layers and feedforward sub-layers, en
ables parallelization, thus enhancing efficiency in both training and 
inference. Our model, the SERSFormer, exemplifies the Transformer 
Encoder, integrating a transformer attention layer. It’s structured 
around multi-head self-attention layers [11]. The attention mechanism 
empowers the model to selectively emphasize different segments of the 
input sequence during the prediction process. Within this mechanism, 
the concept of multi-head attention is employed, wherein multiple sets, 
or "heads," independently perform scaled dot-product self-attention 
calculations. The scaled dot-product self-attention computation involves 
utilizing query, key, and value matrices to derive attention scores, 
subsequently guiding the weighted summation of values. 

Fig. 3 explains the multi-head scaled dot product self-attention layer 

Fig. 2. Overview of SERSFormer architecture that uses shared weights Transformer Encoder for classification (qualitative) and regression (quantitative) tasks.  
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of the transformer encoder module. The important steps in the multi- 
head attention layer are provided in the Supplementary Materials. 
This configuration enhances the model’s capacity to discern and weigh 
the relevance of different elements within the input sequence, thereby 
optimizing the encoding process. The nuanced derivation of attention 
within the SERSFormer model underscores its theoretical foundation 
rooted in the transformative concepts introduced in the pioneering work 
on attention mechanisms in neural networks [11]. 

Both classification and regression tasks employ a six-layer trans
former encoder with four attention heads with shared weights, allowing 
the Transformer encoder to discern intricate relationships between 
various types of pesticides and their respective concentrations. For 
classification, the output from the transformer encoder is directly uti
lized as input for the Classification Multi-layer Perceptron (MLP) mod
ule with two hidden linear layers, Rectified Linear Unit (ReLU) 
activation functions, and batch normalization, ultimately yielding six 
outputs with softmax activation for the generation of multi-class clas
sification probabilities. In regression, before being fed into the regres
sion MLP head, a skip connection is established by adding the encoded 
features from the transformer encoder of the classification branch to 
those of the regression branch. The summation of values is performed to 
maintain dimensionality consistency. Subsequently, the augmented 
features, including additional percentile features containing information 
about the magnitude of the input signals, are concatenated with the 
newly encoded features. This expanded feature set is then fed into the 
regression MLP module, which consists of two hidden layers with ReLU 
activation functions and batch normalization, aiming to predict con
centrations accurately. 

2.9. Training of data 

The dataset is partitioned into training, validation, and test sets with 
a 70:10:20 ratio to facilitate proper model evaluation. While splitting, 
it’s ensured that all the classes and all the concentration values in the 
test dataset are in equal ratio and are unseen to the training to ensure 
rigorous testing. For classification tasks, the model employs the cross- 
entropy loss function, Adam optimizer, with a learning rate of 0.0001. 
The architecture encompasses 4 attention heads and 6 layers of a 
Transformer encoder, enriched with regularization techniques such as 
dropouts of 0.5 and batch normalization in between every embedding 
layer and MLP layer. The output layer utilizes softmax activation to 
facilitate the classification decision. Conversely, for regression tasks, the 
mean squared error loss function is adopted, coupled with the Adam 

optimizer employing a learning rate of 0.0001. The regression-oriented 
Transformer model mirrors the architecture utilized in classification, 
featuring 4 attention heads and 6 layers, while regularization is achieved 
through the incorporation of dropouts of 0.5 and batch normalization 
between every CNN layer and MLP layer. The complete model un
dergoes 100 epochs of training, with early stopping privilege. The table 
below shows the best hyperparameters for the best performance of the 
SERSFormer (Table 1). 

3. Results & discussion 

3.1. Characterization of synthesized nanoparticles via TEM-EDS 

The synthesized Au@Ag NPs were characterized using TEM-EDS, 
revealing a well-defined nanoparticle structure with an average diam
eter of 21.44 ± 4.02 nm. These nanoparticles exhibited a normal 
dispersion, indicating a uniform distribution across the sample. TEM 
images unveiled spherical nanoparticles, while EDS elemental mapping 
confirmed the core-shell configuration (Fig. 4). Specifically, gold was 
identified, forming the core, encased by a distinct silver layer serving as 
the shell. This characterization confirmed the successful synthesis of the 
core-shell nanoparticles and provided insights into their size, 
morphology, and elemental composition, affirming their suitability for 
subsequent SERS analysis. 

3.2. Characteristic Raman peaks of pesticide molecules 

This study analyzed five distinct pesticide samples—coumaphos, 
oxamyl, carbophenothion, thiabendazole, and phosmet—each display
ing characteristic patterns in their Raman spectral data. These patterns 
can be used for identifying pesticide residues by chemometric tech
niques. For instance, coumaphos, an organophosphorus pesticide, ex
hibits distinctive peaks at 519, 616, 648, 1197, 1343, 1556, 1607, and 
1740 cm−1 in its Raman spectrum. These peaks correspond to specific 
vibrational modes related to its molecular structure, such as P-C 
stretching, P-O-C bending, C-H bending, C-N stretching, and C––O 
stretching vibrations [31]. Similarly, oxamyl, a carbamate pesticide, 
displays prominent peaks at 681 and 1311 cm−1, indicative of C-N 
bending and C-N stretching vibrations, respectively [32]. 

Similarly, carbophenothion, another organophosphorus pesticide, 
displays distinct peaks at 536, 1059, 1078, 1093, 1174, and 1566 cm−1 

in its Raman spectrum, corresponding to various vibrational modes such 
as P = S stretching, P-O-C stretching, and P-S-C bending vibrations [31]. 

Fig. 3. Design of multi-head (4-head) transformer encoder module with six scaled dot product attention layers (A); block diagram of the scaled dot product attention 
mechanism (B). 
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Thiabendazole, a benzimidazole fungicide, manifests characteristic 
peaks at 771, 883, 981, 1001, 1592, and 1626 cm−1, representing C-S 
stretching, C-N stretching, C-H in-plane bending, and C––C stretching 
vibrations [22]. Additionally, phosmet, an organophosphorus pesticide, 
exhibits distinct features in its Raman spectrum, with peaks at 602, 646, 
765, 1013, and 1174 cm−1, corresponding to P-S stretching, P-O-C 
stretching, P-O-C bending, and P-S-C bending vibrations [33]. The 
unique spectral profiles of these pesticides facilitate their identification 
and enable the development of machine learning models for accurately 
discerning and quantifying their presence in samples. 

3.3. Evaluation and results of SERSFormer 

SERSFormer integrates the functionalities of both classification and 
regression to deliver thorough qualitative and quantitative assessments. 
Each SERS spectrum sample analyzed by SERSFormer yields two con
current outcomes: identification of the pesticide type, if present, and 
determination of its concentration. In cases where no pesticide is found, 
the model assigns a concentration value of 0 ppm. To evaluate the 
model’s efficacy, we conducted separate evaluations for the classifica
tion and regression tasks. For the multiclass classification, the evalua
tion of model’s performance requires the use of various metrics. This 
study employed multiclass precision, recall, accuracy, and F1 score, 

Table 1 
The best hyperparameters for the best performance of the SERSFormer.  

Name Learning rate Attention head Encoder layers Number of classes Epochs Batch size 

SERSFormer 0.0001 4 6 6 45 32  

Fig. 4. TEM-EDS analysis of synthesized gold-silver core-shell nanoparticles.  
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each providing unique insights into the classifier’s efficiency [34].  

• Precision, defined as the ratio of true positive predictions to the sum 
of true positives and false positives, elucidates the model’s accuracy 
in correctly identifying instances of a specific class.  

• Recall, in contrast, measures the model’s capability to capture all 
instances of a particular class by measuring the ratio of true positives 
to the sum of true positives and false negatives.  

• Accuracy, a fundamental metric, gauges the overall correctness of 
the classification model by calculating the ratio of correctly pre
dicted instances to the total number of instances.  

• The F1 score, a harmonic mean of precision and recall, combines 
these metrics into a single value, providing a balanced assessment of 
the model’s performance. 

Our SERSFormer achieves a 98% accuracy rate in identifying and 
classifying pesticides, as evidenced in Table 2. All evaluation metrics 
confirm that SERSFormer proficiently conducts qualitative analyses of 
food contamination. 

All these evaluation metrics can be derived from the confusion ma
trix, a pivotal tool in assessing the performance of classification models, 
particularly in multiclass scenarios (Fig. 5). The confusion matrix is a 
table that displays classification outcomes by comparing predicted la
bels against true labels across various classes. In a multiclass setting, this 
matrix takes the form of a square, with each row representing the true 
class and each column representing the predicted class. The diagonal 
elements of the matrix represent the instances that are correctly classi
fied, while off-diagonal elements indicate misclassifications. The six 
classes represent five distinct pesticides (thiabendazole, phosmet, car
bophenothion, coumaphos, and oxamyl, respectively) and one class for 
samples without any pesticides. Accordingly, the confusion matrix is a 
6 × 6 matrix. Each cell (i, j) within this matrix denotes the number of 
instances from class i that were predicted as class j. For instance, if cell 
(3, 3) holds the value 258, it means that 258 instances belonging to class 
3 (which corresponds to a specific pesticide) were correctly predicted as 
class 3. Conversely, if cell (4, 5) contains the value 1, it means that one 
instance from class 4 was misclassified as class 5. By examining the 
confusion matrix, various performance metrics such as precision, recall, 
accuracy, and the F1 score can be calculated for each class, providing a 
detailed and nuanced assessment of the model’s ability to distinguish 
among the different classes in a multiclass classification problem. The 
confusion matrix is an indispensable tool for understanding the 
strengths and weaknesses of a model across diverse classes, thereby 
aiding in the refinement and optimization of classification algorithms. 
The confusion matrix from the test dataset corroborates the high effi
ciency of our evaluation metrics. 

For regression of concentration, evaluating predictive models is 
crucial, and several metrics serve as benchmarks to assess the model’s 
performance. We use the R2 score, mean absolute error (MAE), and 
mean squared error (MSE) as evaluation metrics [35]. The MAE quan
tifies the average magnitude of errors between the predicted and actual 
values, providing a direct metric of accuracy. While the MSE calculates 
the average of squared differences between predicted and actual values, 
giving more weight to larger errors. Both MAE and MSE offer insights 
into the precision of the model’s predictions, with lower values signi
fying superior accuracy. This triad of metrics collectively affords a ho
listic evaluation of the regression model’s ability to accurately predict 
concentrations, considering both the overall fit to the data and the 

magnitude of predictive errors. Such comprehensive assessments are 
integral to refining and optimizing regression models for enhanced 
predictive capabilities in diverse applications. The table below shows 
the evaluation metrics for the quantitative analysis of pesticides on the 
test dataset (Table 2). 

Fig. 6 depicts the predictive analysis of pesticide concentration, with 
the predicted pesticide concentration plotted against the actual con
centrations. Due to the variability in the input sample spectrum within 
the concentration, there are possibilities of outliers in the regression. 
With improved sample data and a pool of concentrations, we plan to 
improve the SERSFormer further (Fig. 6). 

3.4. Kernel density estimates of regression 

Fig. 7 presents kernel density violin plots, a graphical tool that 
combines elements of box plots and kernel density estimation (KDE) to 
provide a detailed representation of the density distribution in quanti
tative predictions. These plots effectively convey density characteristics, 
with the highest bulge indicating the region of maximum density. The 
precise predicted density is visualized using grey sticks. Violin plots 
serve as a visual aid in illustrating the distribution of predicted con
centrations by utilizing the width of the plot at specific concentration 
levels, thereby encapsulating the estimated density [36]. In Fig. 7, the 
X-axis represents the actual concentration, and the Y-axis represents the 
predicted concentration from SERSFormer on the test dataset. The 
various targets along the X-axis denote concentrations of 0, 0.5, 1, 2, 5, 
and 10 ppm, respectively. The KDE estimate clearly demonstrates the 
ability of SERSFormer to predict concentrations, as the highest density 
closely aligns with the actual concentration levels. Additionally, the 
model demonstrates a noteworthy proficiency in predicting uncontam
inated samples without any pesticide residues. The decrease in predic
tion efficacy at concentrations of 0.5 and 1 ppm can be attributed to 
subtle differences in intensity levels. The intensity levels are directly 
associated with pesticide concentrations, as detailed in the Discussion 
section (refer to Fig. 6 and Table 3 for more details). Thus, the kernel 
density violin plots serve as an analytical tool that facilitates a nuanced 
understanding of the precision and distribution of SERSFormer pre
dictions across a range of concentration levels. 

3.5. Importance of shared weights 

The utilization of multi-tasking weight sharing in the SERSFormer 
model, namely employing a Transformer encoder for both classification 
and regression tasks, offer several significant advantages. The adoption 
of weight-sharing enhances parameter efficiency, enabling the model to 
acquire a succinct representation of input data suitable for both tasks. 
This is particularly beneficial in situations where data availability, such 
as SERS data for both tasks, is limited. Furthermore, shared weights act 
as a mechanism for transfer learning, allowing the seamless transfer of 
knowledge from classification tasks to regression tasks and vice versa, 
thereby enhancing performance across the board [20]. Additionally, the 
multi-task weight sharing drastically decreases the overall complexity of 
the model. Instead of maintaining separate models for classification and 
regression, the shared parameterization simplifies the architecture, 
leading to expedited training and inference times. In regression, shared 
weights promote the reusability of features, empowering the model to 
extract pertinent features that capture underlying patterns or relation
ships in the data. This shared knowledge enhances the model’s accuracy 

Table 2 
Evaluation metrics for the test dataset for classification and quantitative analysis of the pesticides on the test dataset.  

Evaluation metrics for classification Evaluation metrics for quantitative/regression 

Multiclass accuracy Multiclass F1 score Multiclass precision Multiclass recall Mean absolute error Mean squared error R2 score 

0.984 0.982 0.983 0.984 0.966 1.826 0.849  
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in predicting continuous values. Moreover, the SERSFormer model, 
through the utilization of shared weights, demonstrates improved 
generalization capabilities. The model acquires a more comprehensive 
representation of input features that surpasses the specific requirements 
of classification or regression tasks, thus fostering enhanced its adapt
ability to new and unseen data. Shared weights promote a unified 
learning approach, enabling the model to dynamically adjust its pa
rameters based on the intrinsic characteristics of the data, whether for 
classification or regression. This amalgamation of benefits underscores 
the efficacy of multi-task weight sharing in the SERSFormer model, 
providing a versatile and efficient solution for tackling both classifica
tion and regression objectives. 

3.6. Effects of different normalization procedures on classification 

In this ablation study, our objective was to scrutinize the pivotal 
factors influencing qualitative prediction and emphasize the signifi
cance of efficient signal or data processing in deep learning models. The 
SERSFormer model underwent training with distinct data processing 
techniques aimed at comprehending the model’s learning behavior and 
identifying the key factors influencing its efficiency in classification 
tasks. Various normalization methods, including min-max normaliza
tion, log-min-max normalization, z-score normalization, and convoluted 
signals of various window lengths used in regression features, were 
employed [28,37]. Fig. 8 illustrates a sample spectrum of spinach 
sample contaminated with oxamyl, processed using different normali
zation techniques. 

Table 3 presents the outcomes of these data processing techniques on 

Fig. 5. Confusion Matrix for identification of pure spinach sample (class 0) and five different pesticides (thiabendazole, phosmet, carbophenothion, coumaphos, and 
oxamyl, respectively). 

Fig. 6. The predictive analysis of the concentration of pesticides, with predicted pesticide concentrations plotted against true concentrations.  
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model’s performance. Notably, log-min-max normalization displayed 
the best performance, followed by min-max normalization and log-z- 
score normalization. Conversely, the log-convoluted signal with a win
dow length of 389 exhibited the least favorable performance. Scientifi
cally, it is widely accepted that each pesticide has unique functional 
groups and molecular properties, which result in distinct Raman shift 

peaks at specific wavenumbers within the spectrum. This experiment 
provides further evidence for these scientific principles, confirming that 
our model effectively captures the intricate relationship between Raman 
peaks and the types of pesticides. The suboptimal performance of the 
convolution-389 signal can be attributed to its tendency to smooth out 
exact peak positions, leading to the loss of minute details in the signals. 
While min-max normalization performs better than convoluted signals, 
it may sometimes cause the model to neglect smaller peaks, especially 
when the differences between peaks are substantial, resulting in 
diminished gradients and suboptimal training. Log-min-max normali
zation mitigates this issue by amplifying smaller peaks and providing 
adequate information within the necessary normalization range, thereby 
contributing to more effective model training. 

Fig. 7. Kernel density violins for each predicted concentration against true concentration.  

Table 3 
Effects of different data-processing techniques on the classification task of 
SERSFormer.  

Normalization types/Metrics Accuracy Precision Recall F1-Score 

Min-max normalization  0.967  0.964  0.967  0.963 
Log-min-max normalization  0.984  0.983  0.984  0.982 
Z-score normalization  0.965  0.957  0.965  0.958 
Log-convolution-389  0.615  0.6638  0.615  0.554 
Log-convolution-32  0.956  0.946  0.956  0.941  

Fig. 8. Plots of data processing techniques applied on the spectra of oxamyl samples for a classification task.  
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3.7. Influence of convolution on regression 

This section provides an analysis of the impact of various normali
zation and data processing techniques on the prediction of analyte 
concentrations. Our investigation involved the application of min-max 
normalization, utilized in the classification branch, and convolutions 
with different window lengths on regression features. The objective was 
to ascertain whether the model could effectively learn inherent regres
sion features associated with concentration and to identify critical fea
tures influencing concentrations. In Fig. 9, it is observed that both min- 
max and log-min-max normalizations scale down concentrations to the 
[0,1] range, resulting in uniform intensities across all concentrations. 
This uniformity potentially hampers the model’s learning process, 
making it challenging to distinguish between different concentration 
inputs. In contrast, the convoluted signal demonstrates the ability to 
differentiate between two distinct input concentrations. Convolution, a 
widely employed processing technique in Digital Signal Processing, 
functions as a causal moving average technique. It effectively reduces 
higher variability in the data while preserving sufficient differences 
between signal amplitudes [38]. 

Table 4 elucidates the effects of various input processing techniques 
on the model’s performance in regression tasks. As anticipated, the 
model normalized with min-max struggles to learn, resulting in poor 
performance, whereas models with convoluted inputs exhibit signifi
cantly higher efficiency. The Regression branch leverages shared 
weights from the Transformer and integrates context regarding the type 
of pesticide from the Classification branch, which inherently relies on 
the positions of wavenumbers. In this context, Convolution 32 emerges 
as the most effective, as it retains crucial information about minute peak 
positions needed for classifying pesticide types while effectively dis
tinguishing between different concentrations. These findings substanti
ate the assertion that the quantity of pesticide in a sample is determined 
by the intensity levels in the SERS spectrum, specific to each sample. 
Consequently, our SERSFormer demonstrates robust regression 

capabilities, accurately predicting concentrations based on the distinct 
characteristics of each pesticide. 

While the proposed methodology shows promising results, several 
limitations require consideration. The reliance on synthesized Au@Ag 
NPs introduces a potential source of variability. Although efforts were 
made to ensure daily synthesis and characterization, subtle variations 
may still occur over time, affecting the reproducibility of results. Future 
research should explore strategies for nanoparticle stabilization to 
minimize these temporal variations. Additionally, the performance of 
the current models might be influenced by the specificity of the pesti
cides analyzed. Expansion of the analyte set to include a broader range 
of pesticides would enhance the model’s applicability in diverse agri
cultural settings. Furthermore, incorporating data from real-world sce
narios with varying environmental conditions and sample matrices will 
further validate the model’s robustness. 

4. Conclusions 

This study synergizes cutting-edge machine learning models and 
advanced SERS techniques to rapidly and accurately detect pesticide 
residues in agricultural products. Integrating SERS and the SERSFormer 
model demonstrates the potential to transform pesticide analysis with 
high sensitivity, specificity, and efficiency. Gold-silver core-shell nano
particles, serving as SERS substrates, ensure significant enhancement of 
Raman scattering signals. TEM-EDS analysis confirms successful 

Fig. 9. Plots illustrating data processing techniques applied on the spectra of oxamyl samples for a regression task, using two different concentrations: 2 and 5 ppm, 
respectively. 

Table 4 
Effects of different data-processing techniques on regression task of 
SERSFormer.  

Regression features/Metrics MAE MSE R2-Score 

Min-max normalization 1.379 5.534 -13.127 
Log-convolution-389 1.165 3.371 0.6598 
Log-convolution-64 1.632 4.484 0.5648 
Log-convolution-32 0.966 1.826 0.849  
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nanoparticle synthesis and provides insights into their structure and 
composition. The SERSFormer serves as a versatile tool for both quali
tative and quantitative analysis. Qualitatively, it accurately identified 
six pesticide categories, benefiting significantly from preprocessing 
techniques like noise reduction, baseline correction, and normalization. 
Quantitatively, the model excelled in predicting pesticide concentra
tions, with the integration of log-convolution and percentile feature 
extraction capturing subtle concentration-dependent spectral features. 
Evaluation metrics such as R2 Score, MAE, and MSE highlighted the 
model’s quantitative accuracy, offering a comprehensive assessment of 
its predictive capabilities. The study underscores the significance of data 
normalization techniques in pesticide classification and quantification 
tasks, including log-min-max normalization, log-convolution, and 
confusion matrix analysis. This integrated approach, combining SERS 
with machine learning, offers a promising route for rapid, reliable 
pesticide detection, with significant implications for monitoring food 
safety in the agriculture and food sectors. 

Environmental implication statement 

Pesticides, known for their detrimental impact on ecosystems, 
human health, and non-target organisms, persist in the environment, 
contaminating soil, water, and food. Our development of SERS-based 
rapid pesticide detection coupled with machine learning tackles this 
crucial issue. By swiftly and accurately identifying pesticide residues in 
food, our method promotes food safety and encourages sustainable 
agricultural practices. This approach safeguards ecosystems and public 
health by enabling early detection and monitoring of pesticide 
contamination. 
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