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A B S T R A C T

In this paper, we propose a novel ROM stabilization strategy for under-resolved convection-
dominated flows, the approximate deconvolution Leray ROM (ADL-ROM). The new ADL-ROM
introduces AD as a new means to increase the accuracy of the classical Leray ROM (L-ROM)
without degrading its numerical stability. We also introduce two new AD ROM strategies:
the Tikhonov and van Cittert methods. Our numerical investigation for convection-dominated
systems shows that, when the filter radius is relatively large, the new ADL-ROM is more accurate
than the standard L-ROM. Furthermore, the new ADL-ROM is less sensitive with respect to
model parameters than L-ROM.

1. Introduction

Galerkin ROMs (G-ROMs) are computational models that leverage data to dramatically reduce the dimension of full order models
FOMs), i.e., models obtained from classical numerical discretizations (e.g., the finite element method (FEM)). G-ROMs have been
sed to reduce the FOM computational cost in the numerical simulation of laminar fluid flows described by the Navier–Stokes
quations (NSE) [1–5]. However, in the under-resolved regime (i.e., when the number of ROM degrees of freedom is not enough to
ccurately represent the flow dynamics), G-ROM yields inaccurate results, usually in the form of numerical oscillations. To alleviate
his numerical inaccuracy, several types of ROM stabilization techniques have been developed [6–20].
One popular type of ROM stabilization for fluid flows is regularized ROMs (Reg-ROMs) [21–30]. The principle used to construct

Reg-ROMs is to use a ROM filter to smooth out various terms in the underlying NSE. There are two ROM filters in current use: (i)
The ROM projection is a ROM filter in which filtering takes place exclusively in the ROM space. (ii) The ROM differential filter is
a ROM filter in which filtering takes place exclusively in the physical space. Higher-order DFs have been introduced in [31]. Both
the ROM projection and the ROM differential filter have been used to construct Reg-ROMs.

One of the most popular Reg-ROMs is the Leray ROM (L-ROM) [21,22,25,27,29], which is a ROM stabilization for under-resolved
onvection-dominated flows. The L-ROM, inspired by the work of Jean Leray in the mathematical theory of the NSE [32], is based
n a simple, yet powerful idea: Replace the nonlinear term in the NSE, 𝒖 ⋅∇𝒖, with 𝒖 ⋅∇𝒖, where 𝒖 denotes the ROM filtered velocity.
Because the filtered velocity, 𝒖, is smoother than the original, unfiltered velocity, 𝒖, Leray was able to prove the existence of weak
olutions to the NSE [32]. Filtering the velocity is also a good idea from the computational point of view: The Leray model was
sed in under-resolved simulations of turbulent flows with classical numerical discretizations [33]. The Leray model was extended
o reduced order modeling of the NSE in [29] (see [27] for earlier work on the Kuramoto–Sivashinsky equations). In [29], it was
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shown that the Leray ROM yields significantly more accurate results than the standard Galerkin ROM in the under-resolved numerical
simulation of the 3D flow past a circular cylinder at Reynolds number 𝑅𝑒 = 1000. Since then, the L-ROM has been successfully used
in the under-resolved simulation of various convection-dominated flows, e.g., further NSE applications [21,22,34,35], the stochastic
NSE [31,36], and the quasi-geostrophic equations [37,38].

Despite the significant improvement over the standard Galerkin ROM, one drawback of the L-ROM observed in these numerical
investigations is that it can be overdiffusive. For example, when the ROM filter radius, 𝛿, is too large, the filter introduces too much
dissipation in the L-ROM. Another drawback of the L-ROM observed in these numerical investigations is its sensitivity with respect
to the ROM filter radius. Specifically, small perturbations of the optimal filter radius can decrease the L-ROM accuracy.

To address these L-ROM drawbacks, we propose a new Reg-ROM, the approximate deconvolution Leray ROM (ADL-ROM), which
is a significant improvement of the L-ROM. The innovation in the new ADL-ROM is the leverage of approximate deconvolution,
a classical strategy used in the image processing and inverse problems communities, to increase the accuracy and decrease the
sensitivity of the L-ROM. Specifically, in the new ADL-ROM, the filtered L-ROM velocity, 𝒖, is replaced with the AD velocity, 𝐷(𝒖).
Thus, the ADL-ROM nonlinear term is 𝐷(𝒖) ⋅ ∇𝒖. Since 𝐷(𝒖) approximation of 𝒖 is both stable and accurate, using the AD operator
in the ADL-ROM has the role of increasing the accuracy of the nonlinear term while preserving the extra stability introduced by the
ROM filtering in 𝒖. Thus, the ADL-ROM can be thought of as a compromise between the G-ROM and the overdissipative L-ROM. To
our knowledge, this is the first time the AD concept is used to construct ROM stabilizations, such as Reg-ROMs.

The rest of the paper is organized as follows: In Section 2, we outline the construction of the standard G-ROM for the NSE. In
ection 3, we first present the differential filter and then introduce several AD strategies: the van Cittert, Tikhonov, and Lavrentiev
pproaches. In Section 4, we first present the classical L-ROM and then introduce the novel ADL-ROM. In Section 5, we perform a
numerical investigation of the new ADL-ROM. Specifically, we compare the ADL-ROM with the classical L-ROM and the standard
G-ROM in two numerical tests: the Burgers equation with a small diffusion coefficient and the convection-dominated flow past a
backward-facing step. Finally, in Section 6, we present our conclusions and outline future research directions.

2. G-ROM

In this section, we briefly describe the construction of the standard G-ROM. As a mathematical model, we consider the
incompressible NSE:

𝜕𝒖
𝜕𝑡

− 𝑅𝑒−1𝛥𝒖 +
(

𝒖 ⋅ ∇
)

𝒖 + ∇𝑝 = 𝒇 , in 𝛺 × (0, 𝑇 ] (1)

∇ ⋅ 𝒖 = 0, in 𝛺 × (0, 𝑇 ], (2)

where 𝛺 is the spatial domain, 𝑇 is the final time, 𝒖 = [𝑢1, 𝑢2, 𝑢3]⊤ ∶ 𝛺×[0, 𝑇 ] → R3 is the velocity vector field, 𝑝 ∶ 𝛺×[0, 𝑇 ] → R the
pressure field, 𝑅𝑒 the Reynolds number, and 𝒇 ∶ 𝛺×[0, 𝑇 ] → R3 the forcing term. The NSE are equipped with appropriate boundary
and initial conditions.

To build the G-ROM, we first collect the snapshots {𝒖0ℎ, 𝒖
1
ℎ,… , 𝒖𝑀ℎ }, which are FOM solutions at the time instances 𝑡0 ≡

0, 𝑡1,… , 𝑡𝑀 ≡ 𝑇 , which are assumed to be equispaced for simplicity of presentation. Further details about the FOM are postponed
to Section 5, as they are not essential for the presentation of the G-ROM. Next, we compute the centered snapshots {𝒖0ℎ − 𝑼ℎ, 𝒖1ℎ −
𝑼ℎ,… , 𝒖𝑀ℎ − 𝑼ℎ}, where the centering trajectory 𝑼ℎ of the flow is defined as 𝑼ℎ(𝒙) =

1
𝑀+1

∑𝑀
𝑘=0 𝒖

𝑘
ℎ(𝒙). Finally, we use the proper

rthogonal decomposition (POD) [39,40] on the centered snapshots to construct the ROM basis functions 𝝋1,… ,𝝋𝑟, where 𝑟 is the
ROM dimension. Although in our numerical experiments we use the POD to construct the ROM basis, we note that other ROM bases
could be used instead [2,3,5,41]. In what follows, we assume that the ROM velocity approximation can be written as

𝒖𝑟(𝒙, 𝑡) = 𝑼ℎ(𝒙) +
𝑟
∑

𝑗=1
𝑐𝑗 (𝑡)𝝋𝑗 (𝒙) , (3)

where 𝒄(𝑡) = [𝑐1(𝑡),… , 𝑐𝑟(𝑡)]⊤ are the sought ROM coefficients. The next step in the G-ROM construction is to replace 𝒖 with 𝒖𝑟 in (1)
and project the resulting equations onto the space spanned by the ROM basis, {𝝋𝑗}𝑟𝑗=1. This yields the G-ROM:

(

𝜕𝒖𝑟
𝜕𝑡

,𝝋𝑖

)

+
(

(𝒖𝑟 ⋅ ∇)𝒖𝑟,𝝋𝑖
)

+ 𝑅𝑒−1
(

∇𝒖𝑟,∇𝝋𝑖
)

=
(

𝒇 ,𝝋𝑖
)

, 𝑖 = 1,… , 𝑟 , (4)

where (⋅, ⋅) denotes the 𝐿2 inner product. We notice that the pressure does not appear anymore in (4) since the ROM basis functions
𝝋1,… ,𝝋𝑟 are divergence free. Alternative ROMs which also allow to recover the pressure are discussed, e.g., in [1,4,42–44]. Since
the Reg-ROMs introduced in Section 4 only differ in the treatment of the nonlinear term (which does not involve the pressure),
dropping the pressure unknown from the ROM is beneficial in view of a simpler exposition of the novel Reg-ROMs. The G-ROM can
be written as the following system of differential equations for the vector of time coefficients, 𝒄 = 𝒄(𝑡):

𝒄′ = 𝒃 + 𝐴𝒄 + 𝒄⊤𝐵𝒄 , (5)

where the vector 𝒃, the matrix 𝑨, and the tensor 𝑩 are defined as follows:

𝒃𝑖 =
(

𝝋𝑖,𝒇
)

−
(

𝝋𝑖,𝑼ℎ ⋅ ∇𝑼ℎ
)

− 𝑅𝑒−1
(

∇𝝋𝑖,∇𝑼ℎ
)

, (6)

𝑨 = −
(

𝝋 ,𝑼 ⋅ ∇𝝋
)

−
(

𝝋 ,𝝋 ⋅ ∇𝑼
)

− 𝑅𝑒−1
(

∇𝝋 ,∇𝝋
)

, (7)
2
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(

𝑩𝑖𝑚𝑛 = −
(

𝝋𝑖,𝝋𝑚 ⋅ ∇𝝋𝑛
)

, (8)

for 𝑖, 𝑛, 𝑚 = 1,… , 𝑟.
As illustrated in the numerical investigation in Section 5, although G-ROM (4) works well for laminar flows, for under-resolved

convection-dominated flows it yields numerical oscillations.

3. Approximate deconvolution (AD) ROM

In this section, we introduce the AD strategy, which is a new concept in ROM stabilization. AD is central in image processing
and inverse problems [45,46]. In a nutshell, the AD goal can be formulated as follows: Given an approximation of the filtered input
signal, 𝒖 ≐ 𝐺𝒖, where 𝐺 is an invertible spatial filter, find an approximation of the unfiltered input signal, 𝒖. Of course, the exact
econvolution, 𝐺−1𝒖, would seem a natural choice. Computationally, however, the exact deconvolution is a very bad idea since the
oise in the high wavenumber components of 𝒖 is amplified by the inverse filter, 𝐺−1. Thus, in practice, AD strategies are used
instead [45,46]. In large eddy simulations of turbulent flows, the AD models have been pioneered by Adams and Stolz for classical
numerical discretizations [47]. In reduced order modeling, the only AD model was proposed in [48], where AD was used to develop
a ROM closure model.

In this paper, we leverage the AD strategy to develop a different type of ROM: the ADL-ROM (Section 4.2), which is a ROM
stabilization. To construct the new ADL-ROM, we first present the ROM differential filter (Section 3.1). Then, we present three
different AD strategies: the van Cittert AD approach (Section 3.2), the Tikhonov AD approach (Section 3.3), and the Lavrentiev
AD approach (Section 3.4). We note that the Lavrentiev AD approach was used in [48] to develop a ROM closure model. To our
knowledge, however, the van Cittert and Tikhonov approaches have never been used to develop ROM AD operators (see [49–51] for
Tikhonov methods for ROM regularizations). We also note that, in Section 5.2, we perform a preliminary numerical investigation
of the three AD strategies.

In what follows, we will use the following expansions:

𝒖𝑟(𝒙, 𝑡) = 𝑼ℎ(𝒙) +
𝑟
∑

𝑖=1
𝑐𝑖(𝑡)𝝋𝑖(𝒙), 𝒄 ≐ [𝑐1,… , 𝑐𝑟]⊤, (9)

𝒖𝑟(𝒙, 𝑡) = 𝑼ℎ(𝒙) +
𝑟
∑

𝑖=1
𝑐𝑖(𝑡)𝝋𝑖(𝒙), 𝒄 ≐ [𝑐1,… , 𝑐𝑟]⊤, (10)

𝒖𝐴𝐷𝑟 (𝒙, 𝑡) = 𝑼ℎ(𝒙) +
𝑟
∑

𝑖=1
𝑐𝐴𝐷𝑖 (𝑡)𝝋𝑖(𝒙), 𝒄𝐴𝐷 ≐ [𝑐𝐴𝐷1 ,… , 𝑐𝐴𝐷𝑟 ]⊤. (11)

hat is, each of the different functions 𝒖𝑟 (unfiltered ROM velocity), 𝒖𝑟 (filtered ROM velocity), and 𝒖𝐴𝐷𝑟 (ROM approximate
deconvolution) is a linear combination of the same ROM basis functions 𝝋1,… ,𝝋𝑟 with different coefficients.

Remark 3.1. To simplify the presentation, in the rest of this section we assume that 𝑼ℎ = 𝟎 and that the NSE (1)–(2) are equipped
ith homogeneous Dirichlet boundary conditions. Thus, the centering trajectory, 𝑼ℎ, will drop from (9)–(11). We note, however,
hat a nonzero centering trajectory will actually be required in Section 5.2 to handle the nonzero inlet conditions. The methodology
ntroduced in this section readily extends to that case, which yields additional terms on the right-hand side of (14), (18), (21), and
23). For instance, following the same approach as that used in (6), we obtain the following modification of (14):

(

𝑴 + 𝛿2𝑺
)

𝒄 = 𝑴𝒄 + 𝒈,

where

𝒈𝑖 = −
(

𝝋𝑖,𝑼ℎ
)

− 𝛿2
(

∇𝝋𝑖,∇𝑼ℎ
)

.

3.1. The ROM differential filter

To develop the ADL-ROM, we will use the ROM differential filter (ROM-DF):

𝒖 = 𝐺𝒖 ≐ (𝐼 − 𝛿2𝛥)−1𝒖. (12)

That is, given a function 𝒖, we filter it with the ROM-DF 𝐺 = (𝐼 − 𝛿2𝛥)−1 to obtain a filtered function 𝒖. A filter radius, 𝛿, appears in
the definition of 𝐺, and is set by the user. The input 𝒖 will typically be the velocity of the NSE (1)–(2). We note that ROM-DF (12)
is equivalent to solving the PDE

(𝐼 − 𝛿2𝛥)𝒖 = 𝒖 in 𝛺, (13)
𝒖 = 𝟎 on 𝜕𝛺,

where 𝜕𝛺 is the boundary of the spatial domain, 𝛺.
3
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We notice that Eqs. (12)–(13) are reported in strong form, and for any input function 𝒖. In practice, however, we apply this filter
o the ROM velocity, 𝒖𝑟, and do so by solving the ROM linear system corresponding to the application of the Galerkin method for
13) on the space spanned by the ROM basis functions {𝝋1,… ,𝝋𝑟}:

(

𝑴 + 𝛿2𝑺
)

𝒄 = 𝑴𝒄, (14)

where 𝑴 is the POD mass matrix (which is the identity matrix since the POD basis functions are orthonormal) and 𝑺 is the POD
stiffness matrix, whose entries are defined as follows:

𝑴 𝑖𝑚 =
(

𝝋𝑖,𝝋𝑚
)

, 𝑺 𝑖𝑚 =
(

∇𝝋𝑖,∇𝝋𝑚
)

, 𝑖, 𝑚 = 1,… , 𝑟.

The goal is now to obtain 𝒖𝐴𝐷𝑟 ≈ 𝐺−1𝒖𝑟 without resorting to the inverse operator 𝐺−1, but applying instead an AD operator. Indeed,
pplying directly the filter inversion would result in an algorithm characterized by poor conditioning and ill-posedness [45,46,52].
hree AD operators are introduced below.

.2. The van Cittert AD

Given an integer 𝑁 , which represents the order of the AD operator, the van Cittert approximate deconvolution operator is given
y

𝒖𝐴𝐷 = 𝐷𝑁𝒖 =
𝑁
∑

𝑛=0
(𝐼 − 𝐺)𝑛𝒖, (15)

presented in [53, section 3.1.1]. To solve this, we use a Richardson iteration, described in [53, section 3.3.4]

𝒖(𝑛+1)𝐴𝐷 = 𝒖(𝑛)𝐴𝐷 + {𝒖 − 𝐺𝒖(𝑛)𝐴𝐷}, 𝑛 = 0,… , 𝑁 − 1, (16)

where the initial 𝒖(0)𝐴𝐷 is set as 𝒖. By running the iteration (16) 𝑁 times, we obtain 𝒖𝐴𝐷 ≐ 𝒖(𝑁)
𝐴𝐷 as the 𝑁th order van Cittert operator

applied to 𝒖. However, to make this iteration practical, we need to recall that each application of the filter 𝐺 requires the inversion
of a differential operator. Therefore, denoting by 𝒖̃(𝑛+1) the quantity 𝒖̃(𝑛+1) ≐ 𝐺𝒖(𝑛)𝐴𝐷, and substituting in our filter from (12), we
observe that 𝒖̃(𝑛+1) is found by solving

(𝐼 − 𝛿2𝛥)−1𝒖(𝑛)𝐴𝐷 = 𝒖̃(𝑛+1) ⟺ (𝐼 − 𝛿2𝛥)𝒖̃(𝑛+1) = 𝒖(𝑛)𝐴𝐷. (17)

Eq. (17) requires to solve a linear system at each iteration 𝑛 = 0,… , 𝑁−1. As discussed above, in order to employ the van Cittert AD
n a ROM setting, by multiplying (17) by each test function in our ROM space and expanding our prospective solution as a linear
ombination of ROM basis functions, we obtain the linear system

(

𝑴 + 𝛿2𝑺
)

𝒄̃(𝑛+1) = 𝑴𝒄𝑛𝐴𝐷. (18)

hus, the iterative process (16) amounts to setting 𝒄(0)𝐴𝐷 = 𝒄, updating the coefficients of the ROM AD velocity as

𝒄(𝑛+1)𝐴𝐷 = 𝒄(𝑛)𝐴𝐷 + {𝒄 − 𝒄̃(𝑛+1)} 𝑛 = 0,… , 𝑁 − 1,

and finally defining 𝒄𝐴𝐷 ≐ 𝒄(𝑁)
𝐴𝐷 .

3.3. The Tikhonov AD

The Tikhonov method of approximate deconvolution is defined as

𝒖𝐴𝐷 = 𝐷𝑇
𝜇 𝒖 = (𝐺∗𝐺 + 𝜇𝐼)−1𝐺∗𝒖, (19)

where 𝐺∗ denotes the adjoint of the operator 𝐺, and 𝜇 ∈ R+ is a positive constant; we refer, e.g., to [53, section 3.3.1] for further
details on the Tikhonov AD. When plugging in the specific filter from (12) and proceeding formally, we can write

[𝐺∗𝐺 + 𝜇𝐼]𝒖𝐴𝐷 = 𝐺∗𝒖,

[(𝐼 − 𝛿2𝛥)−∗(𝐼 − 𝛿2𝛥)−1 + 𝜇𝐼]𝒖𝐴𝐷 = (𝐼 − 𝛿2𝛥)−∗𝒖],
[(𝐼 − 𝛿2𝛥)−1 + 𝜇(𝐼 − 𝛿2𝛥)∗]𝒖𝐴𝐷 = 𝒖,

[𝐼 + 𝜇(𝐼 − 𝛿2𝛥)(𝐼 − 𝛿2𝛥)∗]𝒖𝐴𝐷 = (𝐼 − 𝛿2𝛥)𝒖,

[𝐼 + 𝜇(𝐼 − 𝛿2𝛥∗ − 𝛿2𝛥 + 𝛿2𝛥𝛿2𝛥∗)]𝒖𝐴𝐷 = (𝐼 − 𝛿2𝛥)𝒖,
[

𝐼 + 𝜇(𝐼 − 2𝛿2𝛥 + 𝛿4𝛥𝛥)
]

𝒖𝐴𝐷 = (𝐼 − 𝛿2𝛥)𝒖. (20)

In (20), we have used the fact that the Laplacian is self-adjoint. In the numerical comparison of the three AD approaches in
Section 5.2, for ease of implementation in our FE setting, we neglect the term 𝛿4𝛥2. Thus, expanding our desired solution as linear
combinations of ROM basis functions, we solve for the vector of coefficients 𝒄𝐴𝐷 satisfying

2 2 𝒄. (21)
4

[(1 + 𝜇)𝑴 + 2𝜇𝛿 𝑺]𝒄𝐴𝐷 = (𝑴 + 𝛿 𝑺)
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3.4. The Lavrentiev AD

The Lavrentiev method [48], which is the AD strategy we use in our numerical investigation in Section 5, is a modification of
he Tikhonov method suitable for self-adjoint, positive definite operators. The filter described in (12) has these properties, as shown
n [48]. Given 𝜇 ∈ R+, the Lavrentiev AD operator is given in [53, section 3.3.2] as

𝒖𝐴𝐷 = 𝐷𝐿
𝜇 𝒖 = (𝐺 + 𝜇𝐼)−1𝒖. (22)

We solve for 𝒖𝐴𝐷 by substituting in 𝐺

𝒖𝐴𝐷 =
[

(𝐼 − 𝛿2𝛥)−1 + 𝜇𝐼
]−1 𝒖,

[

(𝐼 − 𝛿2𝛥)−1 + 𝜇𝐼
]

𝒖𝐴𝐷 = 𝒖,
[

𝐼 + 𝜇(𝐼 − 𝛿2𝛥)
]

𝒖𝐴𝐷 = (𝐼 − 𝛿2𝛥)𝒖,
[

(1 + 𝜇)𝐼 − 𝜇𝛿2𝛥
]

𝒖𝐴𝐷 = (𝐼 − 𝛿2𝛥)𝒖.

Expanding our solution as a linear combination of ROM basis functions, multiplying by a test function, and integrating by parts, we
obtain the system

[

(1 + 𝜇)𝑴 + 𝜇𝛿2𝑺
]

𝒄𝐴𝐷 =
(

𝑴 + 𝛿2𝑺
)

𝒄 (23)

and solve for the vector of coefficients 𝒄𝐴𝐷.

4. Reg-ROMs

In this section, we present the Reg-ROMs that will be used in the numerical investigation in Section 5. First, in Section 4.1, we
resent the standard L-ROM. Then, in Section 4.2, we introduce the novel ADL-ROM.

.1. L-ROM

The initial use of the Leray model in 1934 by Jean Leray [32] was aimed at providing a theoretical framework for establishing
he existence of weak solutions for the NSE. More recently, researchers have employed the Leray model as a computational tool
or simulating convection-dominated flows (e.g., turbulent flows), utilizing conventional numerical methods [33], such as the
inite element method [53]. We note that, when the differential filter is used, the Leray model is similar to the NS-𝛼 model
dvocated by Foias, Holm, Titi, and their collaborators [54]. During the last decade, the Leray model was extended to the realm of
educed order modeling, first for the Kuramoto–Sivashinsky equations [27], and then for the NSE [29,55] and the quasi-geostrophic
quations [37,38].
In our setting, the L-ROM time discretization reads as follows: Given 𝒖𝑛𝑟 and 𝒖𝑛−1𝑟 , find 𝒖𝑛+1𝑟 such that

⎛

⎜

⎜

⎝

𝒖𝑛+1𝑟 − 4
3𝒖

𝑛
𝑟 +

1
3𝒖

𝑛−1
𝑟

𝛥𝑡
,𝝋𝑖

⎞

⎟

⎟

⎠

+ 2
3
𝑅𝑒−1

(

∇𝒖𝑛+1𝑟 ,∇𝝋𝑖
)

+ 2
3

((

𝒖𝑛+1𝑟 ⋅ ∇
)

𝒖𝑛+1𝑟 ,𝝋𝑖

)

= 0, (24)

∀𝑛 = 1,… ,𝑀−1 and ∀𝑖 = 1,… , 𝑟, where 𝛥𝑡 is the time step. Utilizing the ROM-DF (12) outlined in Section 3.1, the filtered convective
term in (24) is defined as follows:

𝒖𝑛+1𝑟 (𝒙, 𝑡) ≐
𝑟
∑

𝑗=1
𝑐𝑛+1𝑗 (𝑡)𝝋𝑗 (𝒙). (25)

The coefficients 𝒄𝑛+1 in (25) are found by solving the following reduced linear system:
(

𝑴 + 𝛿2𝑺
)

𝒄𝑛+1 = 𝑴𝒄𝑛+1, (26)

where 𝑴 and 𝑺 are the POD mass and stiffness matrices, respectively, 𝛿 is the radius of the ROM-DF, and 𝒄𝑛+1 is the vector of
reduced coefficients of the input variable, 𝒖𝑛+1𝑟 . We note that linear system (26) is linear system (14) for input coefficients 𝒄𝑛+1. We
also note that a second-order backward differences (BDF2) time discretization was used in (24), but other time discretizations are
possible.

Thus, at the time instance 𝑡𝑛+1, the L-ROM time discretization yields the following nonlinear system:
1
𝛥𝑡

𝑴
(

𝒄𝑛+1 − 4
3
𝒄𝑛 + 1

3
𝒄𝑛−1

)

+ 2
3
𝑅𝑒−1𝑺𝒄𝑛+1 + 2

3
𝑪(𝒄𝑛+1)𝒄𝑛+1 = 𝟎, (27)

where 𝒄𝑛+1 is the unknown reduced coefficient vector of the unfiltered solution at time 𝑡𝑛+1, 𝒄𝑛+1 the filtered velocity coefficient
vector at time 𝑡𝑛+1, and the matrix 𝑪(𝒄𝑛+1) is defined as

𝑪(𝒄𝑛+1)𝑖𝑗 =
(

(𝒖𝑛+1𝑟 ⋅ ∇)𝝋𝑖,𝝋𝑗

)

. (28)

System (27) is a nonlinear system of equations in the unknowns 𝒄𝑛+1, which we solve by using the Newton method. In particular, at
each iteration of the Newton method, given the current approximation to 𝒄𝑛+1, we update the vector 𝒄𝑛+1 via (26), and evaluate the
5
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residual of (27). We notice that the additional linear system (26) to be solved at each nonlinear iteration is still of small dimension
𝑟 × 𝑟.

In Algorithm 1, we outline the main steps of the L-ROM discretization.
Algorithm 1 L-ROM Pseudocode
1: 𝒖−1, 𝒖0, 𝒖𝑖𝑛, 𝑟 ⊳ Inputs needed
2: for 𝑛 ∈ {1,… ,𝑀 − 1} do ⊳ Time loop
3: FOM simulation to compute 𝒖𝑛+1ℎ ⊳ Snapshot collection
4: end for
5: 𝐔𝑟 ≐ POD

(

{

𝒖𝑛ℎ
}𝑀
𝑛=1 ; 𝑟

)

⊳ POD for velocity space
6: for 𝑛 ∈ {1,… ,𝑀 − 1} do ⊳ Time loop
7: Solve (27) to compute 𝒄𝑛+1 which requires to ⊳ L-ROM
8: solve (26) at each nonlinear iteration ⊳ Leray filtering
9: end for
L-ROM is a significant improvement over the standard G-ROM (4) since spatial filtering alleviates the spurious numerical

oscillations displayed by G-ROM in convection-dominated flows. However, when the ROM filter radius, 𝛿, is too large (i.e., the ROM
filtering is too aggressive), L-ROM can be overdiffusive and can yield inaccurate results, as shown in the numerical investigation
in Section 5. Furthermore, numerical investigations have revealed that L-ROM is sensitive with respect to 𝛿: small 𝛿 variations can
significantly decrease the L-ROM accuracy.

4.2. ADL-ROM

To address these L-ROM drawbacks, in this section we propose a novel Reg-ROM, the approximate deconvolution Leray ROM (ADL-
ROM), which is inspired from earlier work in the finite element setting based on a clever idea of Adrian Dunca [53,56,57]. The
new ADL-ROM is based on a simple yet powerful idea: Replace the filtered L-ROM velocity, 𝒖, with an approximate deconvolution
velocity, 𝐷(𝒖), where 𝐷 is one of the AD operators defined in Section 3. The numerical investigation in Section 5 shows that using the
AD operator in the ADL-ROM increases the accuracy of the L-ROM nonlinear term without compromising the L-ROM stability. Thus,
in a sense, ADL-ROM can be regarded as a compromise between the numerically unstable G-ROM and the potentially overdiffusive
L-ROM.

In our setting, the ADL-ROM time discretization reads as follows: Given 𝒖𝑛𝑟 and 𝒖𝑛−1𝑟 , find 𝒖𝑛+1𝑟 such that

⎛

⎜

⎜

⎝

𝒖𝑛+1𝑟 − 4
3𝒖

𝑛
𝑟 +

1
3𝒖

𝑛−1
𝑟

𝛥𝑡
,𝝋𝑖

⎞

⎟

⎟

⎠

+ 2
3
𝑅𝑒−1

(

∇𝒖𝑛+1𝑟 ,∇𝝋𝑖
)

+ 2
3

((

D𝐿
𝜇 (𝒖

𝑛+1
𝑟 ) ⋅ ∇

)

𝒖𝑛+1𝑟 ,𝝋𝑖

)

= 0, (29)

∀𝑛 = 1,… ,𝑀 − 1 and ∀𝑖 = 1,… , 𝑟.
Utilizing the ROM differential filter (12) outlined in Section 3.1 and the Lavrentiev AD operator (22) in Section 3, the AD

convective term in (29) is defined as follows:

𝒖𝑛+1𝐴𝐷, 𝑟(𝒙, 𝑡) ≐ D𝐿
𝜇 (𝒖

𝑛+1
𝑟 ) ≐

𝑟
∑

𝑗=1
𝑐𝑛+1𝐴𝐷, 𝑗 (𝑡)𝝋𝑗 (𝒙). (30)

The coefficients 𝒄𝑛+1𝐴𝐷 in (30) are found by solving the reduced linear system in (23), upon providing the current approximation of
the filtered coefficients 𝒄𝑛+1, which in turn are computed by solving the linear system (26). Although we utilize the BDF2 method
or the ADL-ROM time discretization (29), other time discretizations are possible.
Thus, at the time instance 𝑡𝑛+1, the ADL-ROM time discretization yields the following nonlinear system:

1
𝛥𝑡

𝑴
(

𝒄𝑛+1 − 4
3
𝒄𝑛 + 1

3
𝒄𝑛−1

)

+ 2
3
𝑅𝑒−1𝑺𝒄𝑛+1 + 2

3
𝑪(𝒄𝑛+1𝐴𝐷 )𝒄𝑛+1 = 𝟎, (31)

where 𝒄𝑛+1 are the unknown reduced coefficient vectors of the unfiltered velocity field, and 𝒄𝑛+1𝐴𝐷 the vectors of the corresponding
AD ROM velocity field obtained by solving (23) and (26). Therefore, each iteration of the Newton solver requires to solve two small
𝑟 × 𝑟 linear systems before the evaluation of the residual.

In Algorithm 2, we outline the main steps of the ADL-ROM discretization.

5. Numerical results

To maintain consistency with the only previous time AD methods were used in ROMs [48] and for reasons discussed in
Section 5.2, the rest of this paper will focus on the Lavrentiev AD method described in Section 3.4. Further references to the
ADL-ROM in our numerical results should be understood to refer to ADL-ROMs constructed with the Lavrentiev regularization
method.

5.1. Burgers equation

Goals. The following is an investigation of ADL-ROM performance in the simpler setting of Burgers equation, which is a common
test problem for new ROM methods, see, e.g., [58–61].
6
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Algorithm 2 ADL-ROM Pseudocode
1: 𝒖−1, 𝒖0, 𝒖𝑖𝑛, 𝑟 ⊳ Inputs needed
2: for 𝑛 ∈ {1,… ,𝑀 − 1} do ⊳ Time loop
3: FOM simulation to compute 𝒖𝑛+1ℎ ⊳ Snapshot collection
4: end for
5: 𝐔𝑟 ≐ POD

(

{

𝒖𝑛ℎ
}𝑀
𝑛=1 ; 𝑟

)

⊳ POD for velocity space
6: for 𝑛 ∈ {1,… ,𝑀 − 1} do ⊳ Time loop
7: Solve (31) to compute 𝒄𝑛+1 which requires to ⊳ L-ROM
8: solve (26) at each nonlinear iteration, and to ⊳ Leray filtering
9: solve (23) at each nonlinear iteration ⊳ AD
10: end for

Fig. 1. Burgers equation [62]: (a) FEM solution; (b) G-ROM solution.

omputational setting. Burgers equation is a nonlinear problem of one spatial dimension given as

𝑢𝑡 − 𝜈𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0. (32)

ere, 𝑢 ≐ 𝑢(𝑥, 𝑡) is defined for 𝑥 ∈ 𝛺 = [0, 1], 𝑡 ∈ (0, 1], and we consider the low viscosity setting where 𝜈 is small. A typical form of
urgers equation to make it more challenging in a computational setting is to use a discontinuous initial condition:

𝑢(𝑥, 0) =

{

1, 0 < 𝑥 < 0.5,
0, 𝑥 = 0, 0.5 ≤ 𝑥 ≤ 1.

(33)

Because of the similarity in structure between Burgers equation and the NSE, it may be solved at a FE and ROM level using
ethods similar to those discussed in Section 2, upon neglecting the pressure term in (1) and the divergence constraint (2).

riteria. We will consider the errors between a well resolved FE solution 𝑢(𝑡) and a ROM solution 𝑢𝑟(𝑡) as

𝐸𝑎
𝑢 (𝑡) ≐ ‖

‖

𝑢(𝑡) − 𝑢𝑟(𝑡)‖‖𝐿2(𝛺) . (34)

s a comparison between the ADL-ROM and the standard G-ROM, we will also employ a relative reduction in error defined as

𝑅𝐸(𝑡) = −100 ⋅

(

𝐸𝑎
𝑢 (𝑡)𝐺−𝑅𝑂𝑀 − 𝐸𝑎

𝑢 (𝑡)𝐴𝐷𝐿−𝑅𝑂𝑀
)

𝐸𝑎
𝑢 (𝑡)𝐺−𝑅𝑂𝑀

. (35)

With this formula, negative percent values indicate that the ADL-ROM is performing better than the G-ROM.

Numerical results. The plots in Figs. 1(a)–1(b) show that, even with a well resolved FE solution, the nonlinear nature of the problem
as well as the challenging initial condition present problems for the standard G-ROM.

The FE solution in Fig. 1(a) was computed with 350 evenly spaced elements between 0 and 1 and piecewise linear finite
element functions. Both the FE solution in Fig. 1(a) and the G-ROM solution in Fig. 1(b) were computed with an implicit Euler
time discretization and using a Newton solver, 75 even time steps between 0 and 1, and 𝜈 = 10−3. Even though the FE solution
is completely resolved, the ROM displays severe oscillations. As shown below, using instead an ADL-ROM constructed with the
Lavrentiev regularization method, we are able to lessen the oscillations.

We emphasize that, even though we are using a smoothing process, it is important to avoid over smoothing. The objective is
7

to minimize non-physical phenomena, not replace one (oscillations) with another (excessive smoothing). In Fig. 2(a), the Leray
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Fig. 2. Comparison of ROM solutions at 𝑡 = 0.5 with two 𝛿 values.

Fig. 3. ADL-ROM errors [62]: 𝛿 = 0.5, 𝜇 = 0.003.

Table 1
Mean absolute 𝐿2 errors across all time steps.
Model G-ROM L-ROM ADL-ROM

Mean Error 5.94 × 10−2 4.24 × 10−1 5.03 × 10−2

ROM with a large filter radius of 𝛿 = 0.5 produces a very smooth solution which is incompatible with the FE solution, while the
DL-ROM tapers the oscillations present in the G-ROM. In Fig. 2(b), a more moderate value of 𝛿 = 0.1 produces a L-ROM which is
till over-smoothed, though the ADL-ROM is now nearly identical to the G-ROM.
The plots in Fig. 2 demonstrate that the ADL-ROM is able to accommodate a larger filter radius than the L-ROM. Our investigation

uggests that the larger values of 𝛿, near 𝛿 = 0.5, are more suitable for minimizing our definition of error given in (34). Additionally,
the dramatic differences between the L-ROM in Figs. 2(a) and 2(b) as compared to the ADL-ROM solutions show that the addition
f the parameter 𝜇 causes the ADL-ROM solutions to vary less dramatically with changes in 𝛿.
While the effects of the ADL-ROM shown in Fig. 2(a) are mild at each time step, the errors in Figs. 3(a) and 3(b) show that a

reasonable reduction in error can be obtained from the ADL-ROM, which is only a single additional linear solve from the L-ROM.
In Table 1, the mean error of the L-ROM are of order 10−1, while the other two methods are of order 10−2, so the L-ROM errors
for each time step are not plotted in Fig. 3(a) to avoid distorting the scale.

These tests should not be taken to suggest that the L-ROM cannot be tuned provide acceptable results, but that the ADL-ROM
is a minimal cost adaption to the L-ROM, the main benefit of which is the ability to choose a larger radius filter than is possible
with the L-ROM. The second parameter 𝜇 is an additional complexity in choice, but at the same time the solutions generated by the
ADL-ROM are less variable than those generated by the L-ROM.

Additional test. Following on the observation that the ADL-ROM allows larger filter values of 𝛿, the following test aims to increase
the numerical oscillations in the solution and assess the ADL-ROM’s performance in a more challenging setting. If we take the same
initial condition as in but decrease the number of evenly spaced elements from 350 to 50, the shock will fail to be properly resolved
8
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Fig. 4. The G-ROM propagates the oscillations present in the FE solution.

Fig. 5. The ADL-ROM damps the oscillations.

Table 2
Mean absolute 𝐿2 errors across all time steps.
Model G-ROM L-ROM ADL-ROM

Mean Error 8.05 × 10−2 4.24 × 10−1 5.68 × 10−2

in the FE simulation and cause cascading oscillations in Fig. 4(a), which are propagated into the G-ROM of Fig. 4(b). The images
n Fig. 4 were generated with 𝜈 = 10−3, 100 evenly spaced timesteps between 0 and 1, but only 50 evenly spaced elements.
Because the input FE data is poor, this necessitates a change in how the errors in Fig. 5(b) are calculated. Instead of comparing

gainst the poor input FE data, we compute a higher resolution FE solution. In Fig. 5(b), the reduction in error is computed by using
FE solution with 200 evenly spaced elements and 100 timesteps.
With ADL parameters chosen as 𝛿 = 0.5, 𝜇 = 0.003, the ADL-ROM shown in Fig. 5 is able to substantially quell the oscillations

nherent in the FE and G-ROM solutions. Comparing between Tables 1 and 2, the ADL-ROM is able to maintain its accuracy
ignificantly better than the G-ROM is when downgrading the input data. The leading digits of error for the L-ROM are the same in
oth cases because the L-ROM fails in the same way in both cases by severely over smoothing the computed solution.
These results suggest that the ADL-ROM performs best when it is applied as a treatment for significant oscillations in the

umerical solution. In particular, this suggests the applicability of the method for use in convection-dominated flow simulations,
uch as the ones we propose for the NSE.

.2. Backward facing step

oals. In this section, we analyze and compare the performances of G-ROM (4), L-ROM (24), and ADL-ROM (29) for the NSE
1)–(2). The goal is to investigate ADL-ROM accuracy. We consider the two-dimensional velocity flow over the backward-facing
tep at Reynolds number 𝑅𝑒 = 1429.
9
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Fig. 6. The computational domain, 𝛺. 𝜕𝛺𝐷 ≐ 𝜕𝛺𝑖𝑛
𝐷 ∪ 𝜕𝛺wall

𝐷 , where the inlet boundary 𝜕𝛺𝑖𝑛
𝐷 is represented by a dashed red line and the no-slip boundaries by

solid blue line.

Fig. 7. The FE mesh.

Fig. 8. Time evolution of FOM kinetic energy.

omputational setting. We consider the motion of an incompressible flow in the same domain as that used in [63, section 4.4] and
n [64, section 3.5], i.e, 𝛺 ≐ {[0, 44] × [0, 9]}∖{[0, 4] × [0, 1]}, which is depicted in Fig. 6. We set a kinematic viscosity of 7× 10−4 and
se no-slip boundary conditions on 𝜕𝛺wall

𝐷 ≐ 𝜕𝛺B∪𝜕𝛺T, representing the union of the bottom 𝜕𝛺B and top walls 𝜕𝛺T of the channel
(solid blue boundary in Fig. 6), with a constant inlet velocity profile 𝒖𝑖𝑛 = (1, 0) on 𝜕𝛺𝑖𝑛

𝐷 (red dashed line in Fig. 6). Furthermore,
we employ homogeneous Neumann boundary conditions on 𝜕𝛺𝑁 (green line in Fig. 6).

Snapshot generation. We perform our tests on a triangular mesh with ℎmin = 0.15 and ℎmax = 0.6 (Fig. 7). For the spatial discretization,
we employ the inf-sup stable Taylor-Hood P2 − P1 FE pair for velocity and pressure, respectively, and this leads to a FE space of
dimension 𝑁ℎ ≐ 𝑁𝑢

ℎ +𝑁𝑝
ℎ = 18404 + 2370 = 20774. A second-order BDF2 scheme is used with the time step 𝛥𝑡 = 0.05 for both FOM

and ROM time discretizations. The time interval on which FOM is performed is [𝑇0, 𝑇 ] = [0, 150]. The value of the initial conditions
𝒖−1 and 𝒖0 is (𝟎, 𝟎).

At the FOM level, since we work in the under-resolved regime, we apply a regularization strategy. Specifically, we employ
the evolve-filter-relax (EFR) strategy (for details, see [65]). The EFR stabilization strategy allows us to obtain accurate results in
the convection-dominated regime on the coarse mesh in Fig. 7. We use EFR as a stabilization strategy for the following reasons:
EFR has been widely used at the FOM level, is easy to implement, is effective, and has been used successfully in our numerical
investigations [29,31,55,62,65,66]. We emphasize, however, that other regularization strategies (e.g., Leray or even ADL, which
ould ensure FOM-ROM consistency [65]) or stabilization approaches could be investigated. This could be subject of future work.
n Fig. 8, we plot the time evolution of the FOM kinetic energy on the time interval [100, 150]. This plot shows that the flow is not
eriodic or periodic-like.

OM construction. To build the ROM basis functions, we collect 1000 snapshots of the velocity field over the time interval
100.05, 150], as in [64,67]. The first 𝑟 = 10 POD modes capture about 80% of the flow’s energy. We limit ourselves to a small
umber of POD basis functions for the purpose of showing the effect of regularization when the ROM cannot accurately describe all
10
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Fig. 9. Pointwise difference between AD applied to G-ROM and G-ROM, 𝛿 = 0.6. 1st : Lavrentiev with 𝜇 = 0.1. 2nd: Tikhonov with 𝜇 = 0.1. 3rd: van Cittert with
= 10.

Fig. 10. Pointwise difference between AD applied to G-ROM and G-ROM, 𝛿 = 0.6. 1st: Tikhonov with 𝜇 = 0.05. 2nd: van Cittert with 𝑁 = 12.

cales of motion, which is the case in many realistic applications. These modes are used to construct all ROMs. All the ROMs are
nvestigated on the time interval [100.05, 150].

D comparison. Before proceeding to the discussion of ADL-ROM results, we report here on the choice of AD to use given the options
iscussed in Section 3. To do this, we will briefly examine the effects that these AD methods have on a standard G-ROM solution.
he G-ROM solution will be calculated following the methods discussed in Section 2 and in the previous paragraph to a final time
f 20 time units with a fixed step length of 0.01 time units.
In Figs. 9 and 10, we plot the pointwise difference between the computed G-ROM solution at 𝑡 = 20 and each of the AD methods

pplied to the G-ROM solution. Fig. 9 also shows that, with AD parameters chosen as labeled, the Lavrentiev AD method produces
esults which are the least similar to the Tikhonov or van Cittert methods. However, this is mostly a matter of tuning: Fig. 10 shows
that altering the AD parameters of 𝜇 for the Tikhonov or 𝑁 for the van Cittert method will make those methods produce very similar
results as to the Lavrentiev method in the first plot of Fig. 9.

Each of the AD methods shown in Figs. 9 and 10 affects the computed G-ROM solution most strongly near the backward facing
step, which is the primary place where vortices are formed and is where we want the smoothing to be focused. Additionally, by
varying either 𝛿 in the original filter or one of the AD parameters 𝜇 or 𝑁 as in Fig. 10, each of the AD regularization methods
can produce similar results to the other methods. For these reasons, the numerical results of this paper focus on the Lavrentiev AD
method described in Section 3.4.

Parameters. As mentioned before, the inlet velocity and the size of the step lead to a Reynolds number 𝑅𝑒 = 1429. For the EFR FOM
stabilization strategy, there are two parameters: the filtering radius of the differential filter, 𝛿𝐸𝐹𝑅, employed in the Filter step, and
the relaxation parameter, 𝜒 ∈ [0, 1], employed in the Relax step. For the rest of the article, we present results for 𝛿𝐸𝐹𝑅 = 0.01 and
𝜒 = 0.01. This choice limits the amount of dissipation introduced by the differential filter in the EFR algorithm.

One of the most important parameters of L-ROM and ADL-ROM is the radius of the ROM differential filter introduced in
Section 3.1, 𝛿. To avoid confusion between the filtering radius of the EFR step 𝛿𝐸𝐹𝑅, and the filtering radius of the ROM-DF, in
11

the discussion we will denote by 𝛿𝑅𝑂𝑀 the radius of the ROM-DF, instead of 𝛿. To illustrate the case of an aggressive choice of the
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Table 3
Average absolute and relative 𝐿2 errors for
G-ROM, L-ROM, and ADL-ROM.

Average 𝐿2 errors

Model 𝑎(𝐿2)  𝑟(𝐿2)

G-ROM 1.2668 7.25e−02
L-ROM 1.6061 8.88e−02
ADL-ROM 1.0144 5.60e−02

Fig. 11. Time evolution of the absolute and relative 𝐿2 errors for G-ROM (red), L-ROM (green), and ADL-ROM (blue).

-ROM filter radius, in our numerical investigation we used 𝛿𝑅𝑂𝑀 = 0.6. Another important ADL-ROM parameter is the Lavrentiev
regularization parameter, 𝜇. In the image processing and inverse problem communities (see [45,46]), numerous approaches are
proposed to determine the regularization parameters. In our numerical investigation, for the fixed 𝛿𝑅𝑂𝑀 = 0.6 value, we choose the
𝜇 value that ensures that the ADL-ROM solution is as close as possible to the FOM solution. This approach yields the value 𝜇 = 0.06.

Criteria. We test the ROMs accuracy by using the velocity field 𝐿2 absolute and relative errors, and the kinetic energy. The errors
are defined as

𝐸𝑎
𝒖(𝑡) ≐ ‖

‖

𝒖(𝑡) − 𝒖𝑟(𝑡)‖‖𝐿2(𝛺) and 𝐸𝑟
𝒖(𝑡) ≐

𝐸𝑎
𝒖(𝑡)

‖𝒖(𝑡)‖𝐿2(𝛺)
, (36)

while the kinetic energy is defined as

𝐾𝒖 ≐ 1
2
‖𝒖(𝑡)‖2

𝐿2(𝛺)
. (37)

To compare the ROMs’ performance, we also use the following error metric

time-average 𝐿2 norm ∶ 𝑎∕𝑟(𝐿2) ≐ 1
𝑀

𝑀
∑

𝑗=1
𝐸𝑎∕𝑟
𝒖 (𝑡𝑗 ), (38)

where the 𝑎 and 𝑟 superscripts refer to the absolute and relative errors, respectively.

umerical results. In Table 3, we list the average absolute and relative 𝐿2 errors (38) for the G-ROM, L-ROM, and ADL-ROM. These
results show that both the G-ROM and the ADL-ROM are more accurate than the L-ROM, with the G-ROM being about 30% more
accurate than the L-ROM, and the ADL-ROM about 60% more accurate than the L-ROM. Furthermore, the ADL-ROM is consistently
more accurate than the G-ROM with a difference of about 30%. Also the temporal trend of the absolute and relative 𝐿2 errors (36),
displayed in Fig. 11, confirms this conclusion. It shows that ADL-ROM always performs better than L-ROM and starts to perform
better than G-ROM after a while. On the other hand, G-ROM performs better than L-ROM except for the time interval [134, 142]. In
Fig. 12, we plot the time evolution of the kinetic energy (37) of the FOM projection, G-ROM, L-ROM, and ADL-ROM. These plots
upport the conclusions in Table 3 and in Fig. 11. Specifically, the G-ROM and L-ROM results are relatively inaccurate, while the
ADL-ROM results are significantly more accurate.

We show representative solutions of the velocity field for 𝑇𝑓 = 150 in Fig. 13. It is clear that the L-ROM is not able to reconstruct
the solution provided by the FOM, while the G-ROM leads to more accurate results and the ADL-ROM leads to the best results.
As additional proof, we exhibit the plot of pointwise error functions, i.e., the pointwise difference between the FOM and the
12
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Fig. 12. Time evolution of the kinetic energy for FOM projection (black), G-ROM (red), L-ROM (green), and ADL-ROM (blue).

Fig. 13. At 𝑇𝑓 = 150, 1st : FOM solution, 2nd: G-ROM solution, 3rd: L-ROM solution, and 4th: ADL-ROM solution.

ROMs solutions in Fig. 14. The previously observed difference in the accuracy of the ROMs solutions is even clearer in this plot by
considering the maximum pointwise value in each of the three plots.

The errors listed in Table 3 and all the plots show that both the G-ROM and the ADL-ROM are more accurate than the L-ROM.
Furthermore, the ADL-ROM is more accurate than the G-ROM.

Computational performance. The FE solution has 20774 degrees of freedom. The CPU time required by the 3000 time steps of the
FE simulation is 9900 s, and the CPU time required by the last 1000 final time steps is 3000 s. The final 1000 time steps of the ROM
solutions plotted in Fig. 13 require 2.20 s (G-ROM), 2.35 s (L-ROM), and 2.47 s (ADL-ROM). The mild increase in CPU time from
G-ROM to L-ROM is due to line 8 in Algorithm 1, which is required only by L-ROM. Similarly, the mild increase in CPU time from
L-ROM to ADL-ROM is due to line 9 in Algorithm 2, which is required only by ADL-ROM. We emphasize, however, that all the
ROMs yield a significant speedup: 1363.63 (G-ROM), 1276.59 (L-ROM) and 1214.58 (ADL-ROM).

6. Conclusions and future work

L-ROM is a popular ROM stabilization for convection-dominated flows [21–25,27,29,30]. One of L-ROM’s drawbacks is that its
ccuracy highly depends on 𝛿, the radius of the spatial filter used to smooth out the spurious numerical oscillations in the standard
-ROM. Indeed, L-ROM numerical investigations have shown that small variations around the optimal 𝛿 values (i.e., filter radius
alues that yield the most accurate L-ROM results) can result in inaccurate predictions. For example, an aggressive 𝛿 choice, such
13
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Fig. 14. At 𝑇𝑓 = 150, 1st: pointwise error between FOM and G-ROM solutions, 2nd: pointwise error between FOM and L-ROM solutions, and 3rd: pointwise error
between FOM and ADL-ROM solutions.

as using a large 𝛿 value intended to alleviate as much as possible the G-ROM oscillations, generally yields inaccurate L-ROM results
since in that case L-ROM is overdiffusive.

To alleviate L-ROM’s overdiffusive character in these settings, we propose a new regularized ROM, the ADL-ROM, which leverages
approximate deconvolution [45,53] to increase the L-ROM’s accuracy without compromising its numerical stability. ADL-ROM’s
ain novelty is the replacement of L-ROM’s nonlinear term 𝒖 ⋅ ∇𝒖 with 𝐷(𝒖) ⋅ ∇𝒖, where 𝐷(𝒖) is the approximate deconvolution of

the filtered ROM velocity, 𝒖. Another novel contribution of the ADL-ROM is the use of two new types of approximate deconvolution
OM operators: the van Cittert AD and the Tikhonov AD.
To assess the new ADL-ROM, we compare it with the standard L-ROM and G-ROM in the numerical investigations of two test

roblems: the Burgers equation with a small diffusion coefficient and the convection-dominated flow past a backward-facing step.
ur numerical investigation yielded the following conclusions: First, for a large filter radius, ADL-ROM yielded more accurate
esults than the standard L-ROM. Specifically, ADL-ROM added a limited amount of numerical diffusion, just enough to stabilize the
OM simulation. L-ROM, on the other hand, was overdiffusive, yielding inaccurate results. The second conclusion yielded by our
umerical investigation was that ADL-ROM was less sensitive with respect to parameter variations than L-ROM. Specifically, finding
he optimal ADL-ROM parameters was significantly easier than finding the optimal L-ROM parameters. The third conclusion of our
umerical investigation was that, for carefully chosen parameters, the three ROM approximate deconvolution strategies investigated
i.e., Lavrentiev AD, Tikhonov AD, and van Cittert AD) yielded similar results.
This first application of approximate deconvolution to construct novel regularized ROMs such as the new ADL-ROM has yielded

ncouraging results. There are, however, several research directions that could be further investigated. For example, the novel ADL-
OM can be assessed in the numerical simulation of more challenging convection-dominated flows, such as the turbulent channel
low [66]. One could also further investigate the role of the AD strategy in the ADL-ROM construction, both in terms of accuracy
nd parameter sensitivity. In particular, a thorough investigation of the accuracy of the new AD ROM strategies (Tikhonov and van
ittert) with ROM-DF and other filters should be performed. Finally, providing mathematical support (such as numerical analysis
nd parameter scalings) for the novel ADL-ROM is an open problem.
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