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Abstract

In this paper, we consider the direct and inverse problem for isotropic scatterers with
two conductive boundary conditions. First, we show the uniqueness for recovering
the coefficients from the known far-field data at a fixed incident direction for multiple
frequencies. Then, we address the inverse shape problem for recovering the scatterer
for the measured far-field data at a fixed frequency. Furthermore, we examine the direct
sampling method for recovering the scatterer by studying the factorization for the far-
field operator. The direct sampling method is stable with respect to noisy data and
valid in two dimensions for partial aperture data. The theoretical results are verified
with numerical examples to analyze the performance by the direct sampling method.

1 Introduction

In this paper, we investigate the inverse isotropic scattering problem, which involves
determining an inhomogeneous medium from measurements obtained far from the
scatterer. The problem focuses on two conductivity parameters, denoted as 1 and A,
previously explored in [12] from the perspective of a transmission eigenvalue problem.
These physical parameters model an object with a thin layer covering the exterior, such
as an aluminum sheet. Assuming a fixed wave number, we work with the measured far-
field pattern and employ qualitative reconstruction methods to recover the unknown
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scatterer(s). Qualitative reconstruction methods, widely used in various inverse scat-
tering problems [4, 5, 8, 27, 28, 36-38, 40, 41], require minimal a priori information
about the scatterer, making them advantageous for nondestructive testing in fields such
as medical imaging and engineering.

One of the main contributions of the paper is that the approach extends the applica-
tion of the Direct Sampling Method (DSM) for the case of two conductivity boundary
conditions as well as giving theoretical justification for the partial aperture problem.
Here, we assume to have access to the far-field operator, i.e., the measured far-field
pattern for all sources and receivers along the unit circle/sphere. The paper emphasizes
the application of the DSM for solving inverse shape problems in scattering theory,
as evidenced in related works [15, 16, 22, 30-34, 39]. Additionally, we address a
limited aperture problem using the DSM, considering a partial number of incident
and/or observation directions in R2. Despite having limited data, we demonstrate that
accurate scatterer recovery is achievable with partial information along the incident
and/or observation directions, which is a common problem in engineering and medical
imaging scenarios where data may be restricted.

The final component of our study focuses on the unique recovery of physical param-
eters n and n for the inverse problem and where a fixed boundary parameter A is
considered. While uniqueness studies are typically challenging, we establish a con-
nection from the inverse problem to a transmission eigenvalue problem with respect to
two conductivity parameters. With the help of the transmission eigenvalue problem,
one is able to establish discreteness to aid the uniqueness recovery of the physical
parameters n and 71 in the presence of fixed boundary parameter A. This discrete-
ness argument plays a crucial role in proving the uniqueness result for the physical
parameters n and n.

The paper is organized as follows: the next section outlines the direct and inverse
problems considered, detailing the scattering by an isotropic scatterer with two conduc-
tive boundary conditions. Section 3 delves into the uniqueness problem of a variable
refractive index n and complex constant conductivity parameter 1, exploring the
discreteness of the transmission eigenvalue problem. In Sect. 4, we derive a new fac-
torization of the far-field operator enabling the reconstruction of the medium with two
boundary parameters for both full and limited apertures. Finally, numerical examples
based on the DSM are presented in the last section.

2 The direct scattering problem

In this section, we formulate the direct scattering problem in R? for isotropic scatterers
with two conductive boundary conditions where d = 2, 3. Here, we assume that an
incident plane wave ul (x, y) = elk*J is used to illuminate the scatterer for an incident
direction § € S?~!(i.e. unit circle/sphere) and point x € RY. We will assume the
scatterer D C R has a boundary that is C> where v denotes the unit outward normal
vector to 9 D. Notice, that the incident field u! satisfies the Helmholtz equation in all
of R?. The interaction of the incident field and the scatterer produces the radiating
scattered field u® (x, y) € lec(Rd ) that satisfies
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Au' +k*n(x)u® = k(1 —n(x))u’ in RN\ID 1)
ul —u, =0 and Ad(u’ +u')=nE)(u +u')+d,(ul +u') on D
()

along with the Sommerfeld radiation condition

¢ s 1
aruA —iku’ =0 (m) as r — OQ. (3)

We let 9,¢ := v - V¢ for any ¢ and r := |x|. The radiation condition (3) is satisfied
uniformly in all directions X := x/|x| where k > 0 denotes the wave number. Here —
and + corresponds to taking the trace from the interior or exterior of D, respectively.
We also note that ' and its normal derivative are continuous across the boundary of
aD.

We assume that the refractive index n € L°°(D) satisfies that supp(n — 1) = D
and the conductivity n € L°°(d D) where

Im(n(x)) >0 forae.x e D and Im(n(x)) >0 forae.x € dD.

The second boundary parameter A is a fixed complex-valued constant. Note, that the
well-posedness of (1)—(3) was established in [8].

Due to the fact that u® is a radiating solution to the Helmholtz equation on the
exterior of D, similarly we have that (see for e.g. [10, 11])

o eiklx] e 1
M(X,y)=7/|x|(d—_1)/2{u (X,Y)-FO('T')} as |x| — 00
uniformly with respect to ¥ where
ei71/4 ) 1 3
= in R® and =— in R°.
v N8k e

The function #u® (%, y) denotes the far-field pattern of the scattered field for observation
direction £ and incident direction $ on S?! as well as the wave number k > 0. We
can now define the far-field operator denoted F given by

(Fg)(®) = /S L uEE D@ As@) for g e LAET “)

mapping L%(S¢~1) into itself.

We are interested in using the known far-field pattern to study the inverse shape
and parameter problems. To this end, we first need to show that u* along with (1)—(3)
satisfies a Lippmann—Schwinger integral equation. The radiating fundamental solution
for the Helmholtz equation is given by
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TH (klx —y) d=2
Qp(x,y) = {4eik|9—y
Imlx—y] d=3

)

where Hél) denotes the first kind Hankel function of order zero. Using Green’s 2nd
Theorem when x is in the interior of D gives that

W xp = — / (e, AU () + K’ (2)] dz
D
+/ D (x, 2)0yu’ (z) — u’ (2)9, Py (x, 2) ds(z)
oD

where xp is the indicator function on the scatterer D. In a similar manner, using
Green’s 2nd Theorem when x is in the exterior of D gives that

' (x)(1 = xp) = — /az) Dy (x, 2)dyu’ (z) — u’ (2)3, Pi(x, 2) ds(z)
+/ O (x, 2)dyu’ (z) — u’(2)9, Pr(x, 2) ds(z).
3Bg

where Bg = {x € R? : |x| < R} suchthat D C Bg. Therefore, by adding the above
expressions we obtain the Lippmann—Schwinger type representation of the scattered
field

u’(x) = kz/ (n— 1Dk (x, 2)[u’ (2) +u' (2)] dz—l—/ n®k(x, D[ () +u' (2)] ds(z)
D aD

+ / (1 = VP (x, DB’ (2) + B ()] ds (2). ©)
aD

Notice, that we have used the scattered field and fundamental solution satisfying the
radiation condition (3) to handle the boundary integral over d Bg by letting R — oo.
Equation (6) will be vital for the analysis in later sections.

3 Uniqueness result for the coefficients

In this section, we will prove a uniqueness result for recovering constant n and 7 from
the far-field data for one incident direction with multi-frequency data. Recently in [6,
20,21, 29, 42—-44] the authors have considered similar inverse scattering problems with
multi-frequency far-field data. Here we will assume that the scatterer D and parameter
A (also constant) are known. Therefore, we assume that we have the penetrable scatterer
(D,nj,nj, A)for j =1, 2 that produces the far-field data u?o()?; k) where the incident
direction y is fixed. We will also assume that we have the far-field data for a range of
wave numbers i.e. for all k € (kpin, kmax) C Ry where kyin < kmax.

In order to prove our uniqueness result, we will need to consider the corresponding
transmission eigenvalue problem that arises when we assume that

uS®(%; k) = uSC(%; k) forallx € ST~ and k € (kmin, kmax)-
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Since the far-field data for the scatterers (D, nj, n;, A) are equal we have that by
Rellich’s lemma the corresponding total fields u} = u3 forall x € R4\ D. Therefore,
by (1)—(3) we have that in the scatterer D the total fields satisfy

AuD + 12 uD =0 and Au® +k*nu® =0 in D
u® =u® and 2 (avu“> - avu(z)) = (n —n)u® on 3D.

Here ) = u* +u' corresponds to the total field for the scattering problem associated
with the scatterers (D, n, n;, A). This homogeneous system is similar to the transmis-
sion eigenvalue problem studied in [7]. The main difference is the fact that there are
two sets of parameters (n, n;) for j = 1, 2. We now turn our attention to proving that
the set of wave numbers k € C such that the above system has a non-trivial solution
is at most discrete.

3.1 Discreteness of transmission eigenvalue problem
Now, we consider the above system under the weaker assumptions that
nt —n2|™t € L¥(D) and | —m|”" € L*@D).

Notice that this assumption allows for the contrasts n; —n, and n; —n; to change signin
D and 0 D, receptively. The new transmission eigenvalue problem under consideration
is given by: find k € C and nontrivial (w, v) € L%(D) x L%*(D) such that

Aw+knjw=0 and Av+k’nv=0 in D 7
w=v and Ad,w =Ard,v+ (n] —n2)v on dD (8)

where w — v € X (D). It is important to remember that for the general application
of the problem £ is real, but in theory the transmission eigenvalues can be complex
values. Here, the variational space for the difference of the eigenfunctions is defined
as

X(D) = Hy(D)NH*(D) suchthat | -llxp) = A"l 2p)-

By our assumption that the boundary 9D is C? gives that the L?(D) norm of the
Laplacian is equivalent to the H 2(D) norm in the associated Hilbert space X (D).

Just as in [7, 23, 24] we will consider a 4th order formulation of (7)—(8). To this
end, we let u = w — v which implies that

Au+ kK*nu = —k*(n; —na)v  in D 9)
u=0 and Adyu = (n; —n2)v on dD. (10)

Now, we can formulate an analogous transmission eigenvalue problem with a con-
ductive boundary condition which is written as: find k € C values such that there is a
nontrivial solution u € X (D) satisfying
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(A + k%ny) (Au+k’niu)=0 in D (1)

ny—np
Adyu = (m —n2)v on 9D, 12)

where equation (12) is understood in the sense of the Trace Theorem and we have that

v = (Au + kznlu) and w = (Au + kznzu).

_kz(nl —ny) _kz(nl —ny)

It is clear that (7)—(8) and (11)—(12) are equivalent. To proceed, we must come up
with its respective variational formulation and exploit it. Taking a function ¢ € X (D),
multiply it by the conjugate of (11), and use Green’s 2nd Theorem to get

A2 — 1 _ _
/ Audydds(z) + / (Au+ K2niu)(Ag + k*nrd)dz = 0
ap M1 — 12 pnp—n2
(13)

We will use (13) to prove discreetness for the set of eigenvalues k € C for which there
is a non-trivial solution to (7)—(8).

To this end, we will use a T -coercivity argument studied in [14] as well as the Ana-
lytic Fredholm theorem (see for e.g. [11]) to prove the discreteness of the transmission
eigenvalues. We say that the sesquilinear form a(-, -) is T-coercive on X (D) if there
is an isomorphism 7' : X (D) —— X (D) such that a(-, T-) is a coercive sesquilinear
form. Using the inf-sup condition (see for e.g. [9] for more details) in this case, we have
that if a(-, -) is T-coercive, then a(-, -) can be represented by a continuous invertible
operator A : X(D) — X (D) where

a(u, ®) = (Au, ¢)xpy forall u,¢ € X(D).
We are going to use this definition to split the variational formulation (13) into a
compact and an invertible part. Therefore, one has that the variational formulation
(13) is given by

a(u, ) +br(u,d) =0 forall ¢ € X(D). (14)

We can show that a(-, -) and by (-, -) are both bounded on X (D) x X (D) and have the
form

a(u, ¢) =/Dn1 inzAqu_bdz (15)

and

by (u, ¢) =k2f
D

1 _ _
+Ak2/ 8vu8v¢ds(z)+k4/ ug dz, (16)
9D M — M2 D

(5Au+uA$)dz—k2/ Vu-Védz
nyp —np D
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where by (1, ¢) is the result of using Green’s 1st Theorem and adding and subtracting
like terms. The boundedness of both sesquilinear forms comes from the assumptions
on the physical parameters and the Trace Theorem.

Just as in [7] we can conclude that b (-, -) can be represented by a compact operator
By : X(D) — X (D). Thus we obtain that

bi(u, ¢) = (Bru, ¢)x(py forall u,¢ € X(D)

where By clearly depends analytically on k € C. We can also establish the existence
of a bounded linear operator A : X(D) —— X (D) that represents the sesquilinear
form a(-, -). Following the analysis in [14], we define 7' : X (D) —— X (D) such that

AT¢ = (n) —ny)A¢ forall ¢ € X(D). (17)

Now that we have a hold of our operator 7, we aim to show that this operator is
an isomorphism on the space X (D). We first notice that by the well-posedness of
the Poisson problem we have that for every ¢ € X(D), there is the existence of
Ty € HO1 (D) satistying (17). Using elliptic regularity as in [ 18], we can then conclude
that T¢p € X (D). The last item we need in order to proceed with our goal is a bound
under the conditions on the parameters and the definition of 7 in (17). To this end, by
(17) and |ny — na|~! € L%°(D) we have

CllAGI7: ) < [(ATH, AP) 12|

where C does not depend on ¢ but only on the contrast n; — ny. This gives that the
operator T is indeed coercive on the space X (D) and as a consequence we have an iso-
morphism by appealing to the Lax-Milgram Lemma. The existence of an isomorphism
in terms of the operator 7 is the set up for our main result in terms of the uniqueness
of the refractive index. Thus, we are ready to prove our discreteness result.

Theorem 3.1 Assume that |ny — ns|~! € L®(D) and |n1 — n2|~! € L>®(dD), then
the set of transmission eigenvalues in (11)—(12) is at most discrete.

Proof Asmentioned before, we will appeal to the Analytic Fredholm Theorem to prove
this result. We will use the definition of 7" in (17) and make the following observation

1 _
a(u, Tu) =/ AuATudz = ||Au||§2(D) forall u € X(D).
pnp—n2

As a consequence of this observation, we have that a(-, -) is T-coercive on X (D) and
thus a(-, -) can be represented by an invertible operator. By (14), we have that k € C
is a transmission eigenvalue if and only if A 4 By is not injective. We know that A is
invertible and By is compact by definition and this implies that A + By is Fredholm
with index zero. In our case, we denote By to be the zero operator where k = 0. Then
atk = 0, we have that A 4 By = A is injective and by the Analytic Fredholm Theorem
there is at most a discrete set of values in C where A + By fails to be injective. This
proves the claim. O
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3.2 Uniqueness for two of the material parameters

In this section, we present a uniqueness result in determining a constant refractive
index as well as conductivity parameter by using the fixed incident direction far-field
pattern. In the previous section, we proved that the set of transmission eigenvalues
is discrete with respect to our problem. We will be able to relate such result to the
study on uniqueness of the inverse scattering problem. Moreover, we will be able to
relate it to the interior transmission eigenvalue problem dealing with two conductivity
parameters. This means that we will consider the transmission eigenvalue problem
with two conductivity parameters and establish a relationship to the uniqueness of the
variable refractive index and complex constant conductivity parameter.

Theorem 3.2 Let u°(x; k) be the far-field patterns of the scattering field u’, to the
problem (1)—(3) with respect to the scatterer (D,nj,n;,X) for j = 1,2. Assuming
that

nt —na| ™' € L¥(D) and |y —ml|™" € L¥@D)

with A # 0 a fixed constant, then u$°(x; k) # uS°(x;k) for all ¥ € S and
k € (kmin, kmax)-

Proof We proceed by contradiction and assume that u{°(X; k) = u$°(%; k) for all
2 e S 1Vand k € (kpin, kmax). Therefore, by Rellich’s Lemma u} = uj for all
x € RA\D. As a consequence we have that

W =uP, ol =8,ul?,  which implies that u” =u® ondD.

Therefore, by the conductivity condition we have that
A0 uD — 20,u® = (1 —2)u® on 9D with A #£0.
It is clear to see that (uD, u®) € HY(D) x H(D) satisfies

Au + Pnu® =0 and Au® +k*nou® =0 in D (18)
u =@ and Xauu(l) — xavu@) =(n - nz)u(2) on 0D (19)

where A # 0 for all k € (kyin, kmax)-

Now we appeal to our transmission eigenvalue problem (7)—(8) where we have
shown that the set of values is at most discrete. Notice, the discreteness of the trans-
mission eigenvalues implies that there exists ko € (kjin, kmax) such that ko is not a
transmission eigenvalue. This implies that u" = ¥® = 0 in D and by using the
boundary conditions of the problem we have that u) = 3,u) =0 on dD. Thus
by unique continuation for the Helmholtz equation we have that u} = —u' in RA\D.
This says that u’ is an entire radiating solution to the Helmholtz equation in R?. This
is a contradiction since this would imply that ' = 0 in R¢ which is in opposition to
the fact that |u?| = 1 in R¥. This proves the claim.

As a consequence of this result, we have the following uniqueness result.
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Corollary 3.1 If n,n € C are constant, then u™ (%, ) for all € S* ' and k €
(kmin, kmax) uniquely determines n or 1.

We have shown the uniqueness of the refractive index variable n and complex
constant 7 for the inverse problem with two conductivity parameters. Now, we will
analyze the scattered field u®(x) with two conductivity parameters and reconstruct
some regions.

4 Direct sampling method

In this section, we study the Direct Sampling Method (DSM) to solve the problem
for the reconstruction of isotropic scatterers. First, we analyze the problem using a
full aperture and then a partial aperture. For the partial aperture, this means that we
are either limiting the number of observation or/and incident directions. In either
case, the Lippmann—Schwinger representation of the scattered field (6) will be used
in the analysis. We will derive a new factorization of the far-field operator defined in
(4) which is one of the main components of our analysis. We will prove that the new
proposed imaging function has the property that it decays as the sampling point moves
away from the scatterer.

4.1 Factorization of the scattered field with full aperture

We begin by factorizing the far-field operator defined in (4) which will allow us to
define an imaging function to facilitate the reconstruction of extended regions D.
Recall, that the far-field operator for g € L?(S?~!) is given by

(Fg)(®) = / G, g () ds(§)
Sd—l

where S?~! is the unit sphere/circle. Since it is well-known that the far-field pattern
is analytic (see for e.g. [17]) it is clear that F is a compact operator. The factorization
of the far-field operator was initially studied [37] for the case when n = 0 and A =
1 and in [8] it was studied for the case where A = 1 and n # 0. Now, by the
Lippmann—Schwinger representation of the scattered field given in (6) we have that

u®(x,y) = f K — D’ + u'le 24z —i—/ nlu’ + u'le 2 ds(z)
D oD
+/ (1 = W) [8pu. + dyu’ Je 57 ds(z).
aD

Using the above formula for the far-field pattern, we can change the order of integration
to obtain the following identity

Fg = / kK(n — Dlug + vg]e*ikﬁ'z dz + / nlug _ + vg]e*ik)e'Z ds(z)
D aD

+/ (1= M [Byuel, _ + dyvgle ™2 ds(z)
oD
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Here, we let v, (x) denote the Herglotz wave function defined as
= [ TG a6) md wgw= [ w6 s6)

where ug, solves the boundary value problem (1)—(3) when the incident field ut = Ug.
The factorization method for the far-field operator F is based on factorizing F into
three distinct pieces that act together and give us more information about the region
of interest D. To this end, one can show that

H:L2S4) — L2(D) x L2(3D) x H~2(3D) (20)

where Hg = (vglp, vlap, E),,vglap)T is a bounded linear operator. Now, we
consider the following auxiliary problem

(A+Knw=—-k*n—-1f in RN\OD 1)
w_ —w4+ =0 and Jw_ —dhwy=-—-n(w+h)— -1, w_-+¢g) on D
(22)

with f € L%(D), h € L*(dD), and g € H_%(BD). It is clear that the auxiliary
problem (21)—(22) along with the radiation condition is well-posed by [8] with w €
H ILC (R?) under the assumptions of this paper. We can define the operator T associated
with the auxiliary problem (21)—(22) such that

T : L2(D) x L2(3D) x H™2(dD) —> L*(D) x L2(3D) x H™2(3D)

which is given by

T 2 T
T(f.h )T = (Ko =D+ Do, nw+blap, (1= D@w-+9)) -
3)

Similarly, we have that T is a bounded and linear operator. Due to the fact that i,
solves (21)—(22) with f = ve|p, h = vg|sp, and g = 9, v, |yp We have that

.
THg = (K2(n = D+ vo)lp. G + v)lan, (1= )@ty _ + d,09)an )

for any g € L>(SY"!). In order to determine a suitable factorization of the far-field
operator F, we need to compute the adjoint of the operator H. It is clear (see for e.g.
[13]) that for (¢1, @2, (p3)T e L3(D) x L2(8D) X H%(BD) that the adjoint operator
is given by
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H*(p1, 902, 03) " =/ 1 (z)e k52 dz—i—/ 92 (2)e "7 ds ()
D aD
+ / e3(2)e 2 ds ().
aD
We then obtain

H*THg = / k*(n — l)[uz, + vg]e*””?'Z dz + / n[u; + vg]e*””e'Z ds(z)
D aD

+ / (1= DBy + dyvgle™ " ds(z) = Fg
D

for any g € L*(SY~!). Therefore, we have derived a factorization for the far-field
operator.

Theorem 4.1 The far-field operator F : L*(S¢~') — L2(S?~1) has the symmetric
factorization F = H*T H where the operators H and T are defined in (20) and (23),
respectively.

The factorization given above is one of the main pieces that will be used to derive an
imaging functional. The next step in our analysis is the Funk—Hecke integral identity,
this integral identity gives us the opportunity to evaluate the Herglotz wave function
for g = ¢, which is given by

v, (1) = / e keI gs(5) = {Z”J.O(k'x —&h Rj (24)
) sd-1 4r jo(klx —z]) inR-.

Here, Jy is the zeroth order Bessel function of the first kind and jg is the zeroth
order spherical Bessel function of the first kind. With the factorization of the far-field
operator F' and the Funk—Hecke integral identity, we can solve the inverse problem of
recovering D by using the decay of the Bessel functions (similarly done in [22, 25,
26]). For the reconstruction of the region(s) D, we use the direct sampling method
which implies that we have an imaging functional of the form;

Wosm(2) = |9, Fé:) o | (25)

To this end, by the definition of v, and the bound of the operator 7', we have

’((pm F¢Z)L2(Sd71)’ = ’((sz H*TH¢Z)L2(Sd—1)

= ’(H@, THg.)

< C|H¢.| n
L2(D)xL2(dD)xH 2 (3D)

LZ(D)xL2(aD)xH*% D)

=C <||U¢z 132 0py + 6. 1720y + ||auv¢z||2%(w)> :
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Clearly [lvg.ll2(py and [lvg. |l 2(5p) are bounded by the H 1(D) norm of vp, by the
continuous embedding of H 1(D) into L%(D) and the Trace Theorem. For the last
term, we use the fact that vy, satisfies Helmhotz equation and as a consequence we
have

10vvg. Il _1 C (||U¢z||H1(D) + ||AU¢Z||L2(D)) = C||U¢Z||H1(D)-

<
H™2@HD) —

Thus, the inequality above together with how the Bessel functions decay gives us the
following result that will characterized how our imaging function will decay.

Theorem 4.2 For all z € RI\D

= Odist(z, D)™ for dist(z, D) — oo.

‘ ((pz» F¢Z)L2(Sd71)

Here the indicator Wpsm(z) given by (25) will decay as z moves away from the
region D. Here we have used the fact that in R? we have that Jo(¢) and its derivative
decay at arate of /% as t — oo and in R3 we have jo(r) and its derivatives decaying
at arate of ! as r — oo. This theorem gives the resolution analysis for using the
imaging function as it implies that the imaging function will decay when we move
away from the scatterer.

We also take into consideration the stability of the imaging function (25). We ana-
lyze the imaging function Wpgpm(z) given by (25) with respect to a given/measured
perturbed far-field operator. The following theorem addresses the stability of the
imaging function.

Theorem 4.3 Assume that |F® — F|| < 8 as § —> 0, then for all z € R?

)<8 as & — 0.

(62 F202) poansy| = |00 F2) i,

Proof Using the triangle inequality we have that

‘ = ‘(d’z’ (F(s - F)¢Z)L2(Sd—l)
< 1gl72ary [F* = F|
= 20| RS~ |

(82 F26) poggay| = (620 F o) oy

where on the last line we have used the Cauchy—Schwarz inequality, proving the claim.

The stability result concludes the analysis for full aperture data. In the following
section we present the analysis for the case where we have a limited aperture in R

4.2 Remarks on limited aperture data in R?

We begin this section by assuming that we have a limited number of sources and/or
receivers for the partial aperture problem dealing with two conductivity parameters.
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The sources here come from S! C S! such that § € S! and where
S% = {(cosO, sinf) : 6 € [ay, Bs] € [0, 2]}
Similarly, the receivers come from S}, C S! such that £ € S}, and where
Sy = {(cos, sing) : ¢ € [ctm. Bw] < [0, 27]}.

Using a similar analysis as before, we have a far-field pattern of the form u*°(x, 3)
for limited sources and/or receivers. As a consequence of the far-field pattern, one can
define the far-field operator with limited aperture as in (4), but now given by

(Fo)(@) = /S UG D@ @) for g€ L2(S)) (26)

where F : Lz(SSl) — Lz(S,ln). Equivalently one wishes to construct an indicator
function (25) is valid where one only has the limited far-field operator. Thus, we aim
to factorize the operator F' using an analogous analysis as in the previous section. To
this end, we define that operator associated with limited aperture as

~ ~ ~ T ~ ikx-9 A A
H;g = (Ug|D » Vglap » 8vvg|8D) where vg(x) = '/%1 elkx Yg(3)ds()

s

and the adjoint operator for the H,, associated the limited receivers is given by

H (o1, 02, 03) " =/ o1 (z)e k= dz+f @ (2)e "7 ds(z)
D oD

+ / @3(7)e kEe ds(z)‘A
aD xGS,'n

where H,' can be easily computed as in the previous section. With this, we have the
following theorem addressing the factorization for the operator F.

Theorem 4.4 The far-field operator F: L2(S§) — LZ(S}n) that considers the lim-
ited aperture problem for sources and/or receivers has the symmetric factorization
F = H,;; T H; where T is as defined in (23).

Now that we have the factorization of the operator F , we want to formulate an
indicator function that will accurately recover the scatterer(s) as the indicator function
(25). We first consider the expansion of an integral that was first analyzed in [3] for a
limited aperture problem. We hope that by considering such form, we can construct an
indicator function and show that it will decay as we move away from the scatterer. We
begin by investigating the integral expansion presented in [3] that considers limited
sources and/or receivers
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/S 1 e Vds(9) = (ap — Bp)Jok|x))

o0 .[ _ _
+ 42 %Je(klxl)cos (—E(ap + Zp 2]/[)) sin (—Z(%z ﬁp))
=1

27)

where ¢ is the polar angle of x and p = m, s.
We will use (27) to numerically show that

|Hp¢-|| = O(dist(z, D)""/?)  for dist(z, D) — cc.

L2(D)x L2(3D)x H~ 2 (3 D)

First, it is well known that Bessel functions J;(¢) have the following asymptotic

behavior
Jo(t) (et>l as £ — oo
‘ 20
which implies that (27) converges uniformly on any compact subset of R%. Similarly,

one can take the partial derivative with respect to either |x| = r or ¢, and use the
recursive relationship JL,’ (1) = %(]e_l(l‘) — Jg+1(t)> to show that the partial deriva-
tives converge uniformly on any compact subset of RZ. Now, we provide a numerical

example to show the decay of (27) as |x| — oo. Therefore, in the following example
we fix

3 T T
()lp:?, ﬂpzz and (1)25
in (27) plot the absolute values of the truncated sum such that £ = 1, ..., 15. In Fig. 1,

we see that truncated function in (27) and it’s partial derivative decays like the function
lx|~Y2 as |x| — oo just as in the case of full aperture data.

The observations on the behavior of (27) allows one to make a numerical conjecture
about the decay of the sum that will characterize the imaging function for the case
when one only has the limited aperture far-field operator associated with the scattering
problem.

Remark 4.1 Let F be the limited aperture far-field operator. Then for all z € R>\ D

‘(¢z’ F¢Z)L2(Srln)‘ = ‘(HM(PZ? THS¢Z)

= CllHno:|l

L2(D)x L2(3D)x H™ 2 (3D)

H
LZ(D)xLZ(aD)xH‘%(aD) I S¢Z”LZ(D)xLZ(aD)xH‘%(aD)
= O(dist(z, D)"Y  for dist(z, D) — oo.

Here we can construct an indicator similar as (25) that will decay as z moves away
from the region D when F is replaced with F. We will show that we can still recover
the scatterer D with limited aperture data. Now, we are ready to present numerical
examples for the full and limited aperture problems.
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5 Numerical validation
5.1 Boundary integral equations
We first derive the boundary integral equation to compute far-field data for arbitrary
domains in two dimensions which are defined through a smooth parametrization. For
simplicity we will assume that the coefficients n, n and X are all constant. To begin,
since that total field # and radiating scattered field u* satisfies

Au' +ku*=0 inRA\D and Au+k’au=0 in D
we make the ansatz that

u=(SLes¥)(x) in D and u’(x) = (SLey2)(x) inR*\D.

Here for the wave number t we have that the single layer potential
SLy)(x) = / O (x, w)y (w) ds(w)
aD

where @, (x, y) is the fundamental solution to the Helmholtz equation in RZ. R_ecall
that the single layer potential satisfies the equation in D for T = k/n and R*\ D for
T = k along with the radiation condition for u*. Therefore, we need to find (v, wz)—r
that satisfies the boundary conditions

W 4+u)t—u" =0 and 9@* +u)t + 0w’ +uH)T =23,u” on ID
where the incident plane wave is given by form u! = e~ ¥ with incident direction
$ e Sl

By the jump relations (see for e.g. [35]) we have that the above boundary conditions
can be written as

) 1 1
Sya¥i — Sk = u' and A (51 + K]/“/ﬁ) v — <_§I + K,Q) Yo — nSiyn
=du + nui
for all x € 9 D. Here for the wave number 7 we define
Sy¥)(x) = / @ (x, w)yY(w)ds(w) and (K ) (x)
aD

_ / Bue) @+ (x. )Y (w) ds(w)
oD

for all x € 9D. This gives a2 x 2 system of equation to solve for (Y1, ¥») | . We then
use a boundary element collocation method to solve the above system of boundary
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integral equations (see [1, pp. 3-5] for a detailed explanation and [1, pp. 4-6] for
details on the handling of the singular kernels). The far-field data is given by

u® (%, §) = / e Wy (w; §) ds(w)
aD

which we can use in our numerical experiments after discretization.

In order to check the accuracy of our discretization via boundary element collocation
method of the system of boundary integral equation and the corresponding far-field,
we compare with the analytical solution when the scatterer D is the unit disk. To
this end, we will derive an analytical formula for the far-field pattern u®°(x, y) via
separation of variables. Similar calculations have been in greater details in [13]. With
this, we first note that

o]

o]
W)=Y iPa, H" (k|xe?O=? and u(x)= Y iPb,J,(ky/n|x)e? "9

p=—00 p=-00
where 6 is the angular coordinate for x and ¢ is the angular coordinate for 3. These

series solutions satisfy the differential equation and we only need to apply the boundary
conditions. Therefore, by the Jacobi-Anger expansion for plane waves, we have that

/ngn(k) —J(k/1) (a,,> _ ( —Jp(k) >
kHy () + nHy () —ndey/nd ) (ky/m) ) \bp) — \ kT (k) = nJp(k)

where the system of equations comes from forcing the boundary conditions. This
implies that the ‘Fourier’ coefficients a,, are given by

M0 000} G/ ) = Ty e/ ) (K00 + 1K) )
MeymHD (00 7 e/ = T ey (kHEY G0+ B ) )

Clp=

The gives that the far-field pattern has the form

4 = :
u® (%, y) = T Z apelp(0—¢) (28)

p=—00

which gives the analytic expression needed.

We let F; € C%*%* be the matrix containing the far-field data for 64 equidistant
incident directions and 64 evaluation points for the unit disk with the physical param-
eters, 1, A, n and given wave number k obtained by (28). We denote by F,((Nf) the
far-field data obtained through the boundary element collocation method, where N ¢
denotes the number of faces in the method. Note that the number of collocation nodes

is 3 - Ny and the absolute error is defined by
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Table 1 A}asolute error of the (Np) Np) (Np)
far-field with 64 equidistant Ny & &g &g
incident directions and 64
evaluation for the disk with 20 0.09931 0.72936 2.76920
R=1 40 0.00889 0.00988 0.04348
60 0.00091 0.00077 0.00149
80 0.00010 0.00008 0.00008
(Nyf) (Nyg)
g = F—F .

In Table 1, we show the absolute error of the far-field for 64 incident directions and 64
evaluation point, for a disk with radius R = 1 and the parameters n = 2 +1i, A = 2,
and n = 4 + 1 and the wave numbers k = 2, k = 4, and k = 6. As we can observe,
we obtain very accurate results using 120 collocation nodes.

5.2 Numerical examples

In this section, we present numerical examples for reconstructing extended scatter-
ers via the direct sampling method. We will show that Theorem 4.2 can be used to
numerically recover the scatterer. Similarly to the previous section, the numerical
computations are done in MATLAB 2021b. We used the system of boundary integral
equations from the previous section to approximate the discretized far-field operator

F=[u™G A-)]N
= i Yi)|. . -
i,j=1

We can discretize such that
X;i = y; = (cos(6;),sin(6;)) where 0; =2n(i —1)/64 fori=1,...,64.

We get then F which is a 64 x 64 complex valued matrix with 64 incident and observa-
tion directions. An additional component needed is the vector ¢, which we compute
by

¢, = (e_‘kx‘ R e_‘kxﬁ“'Z)T where 7z € R2.

In order to model experimental error in the data we add random noise to the discretized
far-field operator F such that

where  ||E|; = 1.

5 64
F=[F;0 +5E,-,j)]i ,

Here, the matrix E € (€<% ig taken to have random entries and 0 < § < 1 is the
relative noise level added to the data. This means that the relative error is given by
8. In the numerical examples when we add the relative error, it will be denoted as

“Reconstruction w/o added error” and without adding the relative error it is denoted
as “Reconstruction w/ added error.”
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Reconstruction w/o added error Reconstruction w/ added error

Fig.2 Reconstruction star region by the DSM without noise and with 10% noise

Thus, numerically we can approximate the imaging function by

2
Wpsm(2) = ‘(¢z’ F6¢z)gz

where we use the 2nd power to increase the resolution in the numerical examples. We
consider the following three domains with same fixed parameters: kite, peanut, and
star. Their respective parameterizations are given by

(= 1.55in(0), cos(0)+0.65 cos(20) — 0.65) ', 2 (cos(6), sin(©)) "

sin(9)2  cos(6)?
2 + 1
1 . T
and (2+0.3c05(56)) (cos(6), sin(@)) "
To analyze the change of different parameters, we use the unit disk as the domain of
interest given by the parameterization 0 D = (cos(G), sin(9))T.
To discretize the problem for limited aperture, we take the same form for X;, y;, and
0; asabovefori = 1, ..., 64. To simulate limited aperture for either the sources and/or
receivers, it is enough to either remove columns and/or rows, respectively, from F. In
this case, we limit the i’s for either x; and/or ;. For example, if we want a problem
with only half of the sources and all receivers, we take y; fori = 1, ..., 32 and x; for
i =1,...,64. Now, we are ready to present the numerical results for the full aperture
and limited aperture.

Example 1. Recovering a star region with full aperture:
For the star shaped domain, we assume that the refractive index is » = 4 + i and
boundary parameters n = 2 +1iand A = 2. We will take k = 27 as the wave number,
8 = 0.10 which corresponds to the 10% random noise added to the data, and use the
imaging functional (25) to recover the scatterer.

In Fig. 2, we see that both images are very similar and both give a good approxima-
tion of the star scatterer. Even with noise, we see that we capture the entire scatterer
which validates the theory presented in Theorems 4.2 and 4.3.
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Reconstruction /o added error Reconstruction w/ added error
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Fig.3 Reconstruction of peanut region by the DSM without noise and with 5% noise

Reconstruction w/ added error

Reconstruction /o added error

Fig.4 Reconstruction of kite region by the DSM without noise and with 15% noise

Example 2. Recovering a peanut region with full aperture:
For this reconstruction, we take the same values for the physical parameters as example
1. We add 5% random noise to the data and use the imaging functional presented in
(25) to recover the region of interest.

In Fig. 3, we see that with even more random noise added, the reconstruction is very
good. Using the imaging functional (25) we recover the scatterer in terms of position,
location, and size.

Example 3. Recovering a kite region with full aperture:
For this numerical experiment, we take the same values for the physical parameters
as previous examples and we add 15% random noise to the data.

In this example, the changes that we see in Fig. 4 are tiny as the discrepancies are
almost negligible. Thus, our imaging functional is performing well as we sample the
points. We capture entirely the scatterer in terms of position, size, and shape.

Example 4. Recovering a kite region with partial aperture (limited receivers):

In the next example, we consider limited aperture data for the kite shape domain. We
fix the physical parameters as in previous examples. We first consider the receivers
X; coming from fixing i = 33, ..., 64 and the sources y; coming from fixing i =
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Reconstruction w/o added error Reconstruction w/ added error
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Fig.5 Reconstruction of kite region using limited receivers by the DSM without noise and with 15% noise

1,..., 64. In other words, sampling on the receivers only on the second half of the
unit disk, but taking all the sources on the full unit disk. We add 15% random noise to the
data and use an imaging functional similar as (25) but making the proper adjustments
to account for the limited sources.

In Fig. 5, we see that even though that we had a limited amount of receivers on
the unit circle our reconstruction is positive and favorable. We lose information on
the upper half plane but we still understand the location, shape, and size of the kite
scatterer even without the full knowledge of the receivers. In addition, we see that
adding noise does not change the image and as a consequence we will consider other
scatterers with limited data without adding noise.

Example 5. Recovering a kite region with partial aperture using limited sources
and limited receivers and sources:

Let the physical parameters be as in the previous examples and we add 0% noise to
the data. In this example, we first limit the amount of receivers and then we limit the
amount of receivers and sources. In the left image we consider the limited aperture
example that takes the receivers x; coming from fixing i = 1, ..., 64 and the sources
yi coming from fixing i = 1, ..., 48. In other words, sampling on the receivers for a
full unit disk, but taking the first three halves of the unit disk for the sources. In the
image on the right, we take the receivers X; coming from fixing i = 1, ..., 32 and the
sources ¥; coming from fixing i = 16, ..., 64. So, the receivers come from the first
half of the unit disk and the sources come from the last three halves of the unit disk.
Thus, we have the following numerical examples for the kite scatterer with limited
data.

In Fig. 6, we see that having limited information on the receivers and sources
simultaneously gives a poor reconstruction in comparison to only limiting the receivers
(by previous example) or sources. Having either limited receivers or limited sources
still gives us a favorable and positive reconstruction in terms of the location, shape,
and size of the kite shape domain which validates our conjecture in the remarks on
limited aperture in R
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Reconstruction with all sources and limited receivers 10 Reconstruction with limited sources and limited receivers

“2

Fig. 6 Reconstruction of kite region using limited aperture with 0% added by the DSM. Image left to
right: reconstruction on limited aperture on the sources and reconstruction on limited aperture on both the
receivers and sources

Reconstruction w/o added error Reconstruction w/ added error
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Fig.7 Reconstruction of disk region using the DSM without noise and with 20% noise

Example 6. Recovering a disk region with full aperture:

For this reconstruction, we take the same values for the physical parameters as example
1. We add 20% random noise to the data and use our imaging functional presented in
(25) to recover the region of interests.

In this example, we also see that the reconstruction without noise added to the
data outperforms the one with noise. However, the one with noise still gives us the
scatterer’s position, shape, and location. In Fig. 7, we see that both images recover
the disk even though the clarity of the one without noise is better. Thus, our imaging
functional is performing well even when we add 20% noise to the data. This validates
Theorem 4.2 and Theorem 4.3.

Example 7. Recovering two disk regions with full aperture:

For this reconstruction, we take the same values for the physical parameters as example
1. We compute far-field data u{° and u5° independently for two circles with radius one
located at (3, 0) and (—3, 0), respectively. Since the two scattering objects are well-
separated, we add the far-field data together which are then used for the reconstruction
algorithm. Note that we ignore scattering effects between the two objects which is
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Reconstruction w/o added error Reconstruction w/ added error

Fig.8 Reconstruction of two disk regions by the DSM without noise and with 10% noise

justified due to the choice of the distance (see [19, Lemma 3.2] for the theory and [2,
pp. 22-24] for using this approach numerically). Then, we add 10% random noise to
the data and use the imaging functional presented in (25) to recover the regions of
interest. Here we wanted to consider more than one object to see how our imaging
functional would perform.

In Fig. 8, we see that considering two mediums and applying our imaging function
still gives a good reconstruction of the two objects. Using the imaging functional (25),
we recover the scatterers in terms of position, location, and size. Thus we can infer that
our imaging functional will perform well if one considers multiple scatterers which
are well-separated.

Example 8. Recovering a disk region with full aperture using different physical
parameters:

For the disk-shaped domain in this example, we assume that the refractive index is
n = 4 + 3i and the boundary parameters n = 2 + 2i and A = 5. Here, we will take
k = 2m as the wave number and we let § = 0.10 which corresponds to the 10%
random noise added to the data.

InFig. 9, we see that even when we change the physical parameters that correspond
to the problem, we obtain a positive and favorable reconstruction of the scattering
object even with noise added to the data. Adding noise to the data or not, we still
recover the disk scatterer in terms of position, size, and location.

Example 9. Recovering a disk region with limited aperture:

Let the physical parameters be as example 7 and here we add 10% noise to the data.
In this example, we first limit the amount of receivers and then we limit the amount
of sources. In the left image we consider the limited aperture example that takes the
receivers X; coming from fixing i = 1, ..., 48 and the sources y; coming from fixing
i =1,...,64. In other words, sampling on the receivers for the first three halves of
the unit disk, but taking the full unit disk for the sources. In the image on the right,
we take the receivers x; coming from fixing i = 1, ..., 64 and the sources y; coming
from fixing i = 16, ..., 64. So, the receivers come from the whole unit disk and the
sources come from the last three halves of the unit disk. In both images, we add 10%
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Reconstruction w/o added error Reconstruction w/ added error <107
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Fig.9 Reconstruction of disk region by the DSM without noise and with 10% noise

Reconstruction with all sources and limited receivers

Reconstruction with limited sources and all receivers

107
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Fig. 10 Reconstruction of disk region using limited aperture with 10% noise added by the DSM. Image left
to right: reconstruction on limited aperture on the receivers and limited aperture on sources

random noise to the data and thus we have the following numerical examples for the
limited aperture for the disk scatterer.

In Fig. 10, we see that having limited aperture information on the receivers or
sources gives a good reconstruction even with random noise added to the data. The
imaging functional that considers either limited receivers or sources still gives us a
good reconstruction in terms of the location, shape, and size of the disk-shaped domain.

6 Conclusion

In this paper, we investigated the inverse parameter and shape problem for an isotropic
scatterer with two conductivity coefficients. This work considers an additional bound-
ary parameter A and describes a novel method to recover the unknown scatterers. To
achieve this, we developed a factorization of the far-field operator and then analyzed
the operator to derive the new imaging function and showed that the imaging func-
tional is stable with respect to noisy data. Furthermore, we addressed the uniqueness
for recovering the coefficients from the known far-field data at a fixed incident direction



Inverse parameter and shape problem for an isotropic... Page250f27 90

for multiple frequencies. There are further questions to be explored for this scatter-
ing problem, such as: does the far-field data uniquely determine variable coefficients
for the refractive index n and boundary parameter n when A is not fixed, to numeri-
cally recover the conductivity parameters 1 and A, and simultaneously reconstruct the
conductivity parameters and the medium D.
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