Examining consistency of student errors in vector operations using module analysis

Nekeisha Johnson and John B. Buncher
Department of Physics, North Dakota State University, Fargo, ND, 58108, USA

It has been well documented that introductory physics students struggle with vector addition and subtraction.
We use the results of a multiple-choice assessment on one-dimensional vector addition and subtraction, admin-
istered to students in a large-enrollment algebra-based physics sequence, to explore the consistency in the types
of errors students make. The assessment was analyzed using Module Analysis for Multiple Choice Responses,
a type of network analysis that highlights groups of responses commonly given together. We find evidence for
five distinct modules that are consistent across multiple semesters. Of these groups, two support the method
of “closing-the-loop”, two are consistent with students performing the wrong operation, and one suggests that
students provide an answer independently of whether they were prompted to add or subtract two vectors, though
only for vectors that are anti-aligned.
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I. INTRODUCTION

Successful manipulation of vectors and vector quantities is
critical to success in introductory physics courses, and exten-
sive literature exists examining student difficulties with vector
operations, specifically addition and subtraction [1-11]. Prior
work has shown that students’ vector abilities are largely un-
changed even after a year of physics instruction [2], students’
solution methods are influenced by the relative position and
orientation of vectors [6, 7], and that students tend to stick
with the same solution method across a variety of problems,
even though a different method may be more appropriate [5].

Prior research has investigated the types of errors students
make when adding vectors as arrows, and the frequency of
those mistakes. Hawkins et al. hypothesized that the solu-
tion method students would use when solving vector addi-
tion questions would depend on the specifics of the problem;
how the vectors were initially drawn (head-to-head, tip-to-
tail, tail-to-tail, separated), the presence or absence of a grid
on which the vectors were drawn, and the relative orienta-
tion of the vectors to a grid [7]. In interviews involving 8
students solving 10 separate questions, they found 7 out of
8 students used the same solution method through all prob-
lems presented. In a follow-up study, they found that the
initial arrangement of vectors (tip-to-tail or tail-to-tail) had
a significant effect on students’ solution method, with more
students using a “head-to-tail” method when the vectors were
presented in a tip-to-tail format and more students choosing
a “bisector” method when the vectors were presented tail-
to-tail. Barniol and Zavala later investigated the effect that
problem context and vector positioning have on student solu-
tion methods for vector addition [6]. Problems 1-3 were pre-
sented in three different contexts (displacement, force, and
no explicit context), and problems 4-6 were presented with
different initial positioning (tail-to-tail, head-to-tail, and sep-
arated, all presented on the same grid). They found that stu-
dents were more likely to use a “head-to-tail” solution method
in the displacement context, but were more likely to draw
vectors tail-to-tail in the force context. When vectors were
presented to the students “head-to-tail”, students were more
likely to make a “closing the loop” error than in the other ori-
entations. In both the tail-to-tail and “separated” orientations,
students were more likely to make a tip-to-tip error, draw a
general bisector, or make an error by subtracting only one
of the components of the second vector [6]. We extend this
work by investigating if certain errors are likely to be chosen
together, across questions, using Module Analysis for Multi-
ple Choice Responses (MAMCR).

Brewe et al. were the first to propose MAMCR to analyze
the relationships among students’ incorrect answers on the
Force Concept Inventory (FCI)[15]. By examining the types
of incorrect answers that are closely tied together in a net-
work, it can provide insight into the consistency of student
reasoning across different questions. An example is the "im-
petus" module found by Brewe et al., which is dominated by
answers students could arrive at following a line of reasoning
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FIG. 1. Students were presented first with this addition problem.
Each of the four possible responses comes from the various combi-
nations gf ig and £5. Inﬁhis case, a)is —|—14Y + E, b) is —&—A' — B,
c)is—A— B,andd)is —A + B.

where a contact force (either constant or diminishing) con-
tinues to act on an object after contact has stopped. Recent
work has expanded MAMCR to work with larger FCI data
sets [19], applied this modified MAMCR to the FMCE [17],
and extended it to include students’ correct answers on the
FCI [18].

In this work, we apply Brewe et al.’s original MAMCR to
the “arrows-on-a-grid” questionnaire originally designed to
compare students’ ability to add and subtract vectors in an
“arrows-on-a-grid” representation and an ijk representation
[10]. By using MAMCR, we hope to determine if students
make a particular type of mistake across multiple iterations
of the same type of vector addition and subtraction problems.
While we can use this methodology to examine if student er-
rors are consistent across problems, it does not tell us explic-
itly what mistakes students are making. The coupling of un-
derstanding what kinds of incorrect answers are commonly
given together, along with explanations of how students ar-
rive at these incorrect answers, should guide us to targeted
instruction aimed at each potential mistake.

II. METHODS

A. Data collection

The data for this study was collected in introductory
algebra-based courses (both first and second semester). The
courses met for 150 minutes per week with an optional 2-
hour lab component. The courses used a mixture of Peer
Instruction and traditional lecture, and included weekly on-
line assignments [14]. Graphical vector addition was covered
explicitly in the first-semester course, and was used in the
second-semester course. One of the authors of this study (JB)
was the instructor for all sections where data were collected.

Students were administered an online, multiple choice quiz
at the end of the semester. The quiz was offered on an opt-in
(2015) and an opt-out (2017 and 2018) basis, and consisted
of 12 one-dimensional (1-D) and 16 two-dimensional (2-D)
vector addition and subtraction problems. In this paper we
examine only the 1-D problems: additional analysis of the 2-



D responses is in progress, including the use of handwritten
work on some of the questions. For the 1-D questions there
were six combinations of vectors A and §, and students were
prompted to first add them (questions “+1” through “+6”") and
then subtract them (questions “-1” through “-6"). Each prob-
lem had four possible choices, corresponding to +A + B,
+/Y — E, A + g, and —A — B. In all problems, vectors
were presented on separate grids. The image accompanying
question “+1” is presented in Fig. 1.

B. Analysis

We employed Brewe et al.’s MAMCR process to analyze
the student responses. All analysis was implemented us-
ing the R programming language and the igraph networking
package. A network of the students’ responses was created,
with the possible choices represented as nodes weighted by
the number of students who selected that response. Edges
connecting two nodes were weighted by the number of stu-
dents who selected both responses. The “backbone” (or un-
derlying structure) of the network was extracted using locally
adaptive network sparsification (LANS) [20]. LANS calcu-
lates how critical each edge is to both connected nodes. If
an edge is deemed insignificant at both nodes, the edge is cut
from the network, leaving behind the backbone. For our pur-
poses, we use a significance level of a = 0.05.

As an analogy, consider using Google Maps to travel be-
tween city A and city B. The cities are the nodes of our net-
work, and the roads connecting them are the edges. If there
are multiple ways to travel between these two cities - an in-
terstate, a state highway, and a county road - then the back-
bone from city A to city B would be the interstate, and LANS
would remove the state highway and the county road. If city
C is connected to city A by only a small county road, LANS
leaves that as part of the backbone.

The backbone network was run through igraph’s built-in
implementation of the InfoMap community detection algo-
rithm [21]. From examining the nodes in each group (com-
munity), we aim to classify and describe the kinds of mis-
takes that students make on one-dimensional vector addition
and subtraction problems.

III. RESULTS

The data collected from four courses is summarized in
Tab. I and Fig. 2. Since MAMCR uses only the incorrect
answers in the analysis, we list this for each section in Tab. L.
Figure 2 shows the percent of students answering correctly
for each question. Figure 2 also shows that vector subtrac-
tion was consistently more difficult for students than vector
addition in all courses, even in the 1-D case. We note that the
results for question “-2” are excluded from Fig. 2 as there was
an error in the version of the question that was administered
during the Spring 2015 semester.
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TABLE 1. Vector addition and subtraction data collected from
algebra-based introductory physics I (Seml) and II (Sem?2). Fall
is considered on-sequence for Sem1, and Spring is considered on-
sequence for Sem?2. The students performed comparably on any one-
dimensional question when compared across courses, regardless of
if graphical vector addition was covered explicitly in the course.

Semester On/Off N n
- Course Sequence (Students) (incorrect)
Spl5 - Seml Off 63 109
Spl15 - Sem2 On 52 109
Fal7 - Seml On 175 491
Fal8 - Seml On 201 568
100-
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FIG. 2. Percent of correct responses on each one-dimensional prob-
lem. Students performed much better on vector addition than sub-
traction. Error bars represent +1 SE.

The remaining eleven questions are comprised of six addi-
tion and five subtraction problems, with each addition ques-
tion having a corresponding subtraction version. Questions
1, 3, and 4 had vectors in an “aligned” orientation, with both
vectors pointing to the right, while questions 2, 5, and 6 had
vectors “anti-aligned”, with A pointing to the right and B
pointing left. Students in these courses perform better on
vector addition than subtraction, and perform better on vector
subtraction when the two vectors are parallel (“aligned”) than
when they are anti-parallel (“anti-aligned”), consistent with
previous literature [9, 10].

In order to categorize groups, we applied a naming scheme
that would allow us to find consistent patterns in answer
types. This naming scheme is detailed in Tab. II, with each
response referred to by one method students use to combine
+A and £B. As an example, back in Fig. 1, option a) is
+1:4+A+B, option b) is +1:+A-B, option c) is +1:-A-B, and
option d) is +1:-A+B. We emphasize that, without written
work, we cannot be sure how students are arriving at a given
answer. However, if a student arrives at an answer of -A+B
on one problem and then uses the same process on another
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—3:-A-B
-1:-A-B
—4:—A-B
+3:-A-B
+2:—A+B
+6:+A-B
+2:+A-B
+5:+A-B
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+1:-A+B
+4:-A-B
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=5=A-B
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+4:+A-B
—6:-A-B
—6:+A+B
—5:+A+B
+3:-A+B
—3:+A+B
—1:+A+B
—4:+A+B
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+4:-A+B
+1:+A-B
—4:-A+B
—3:-A+B
+2:-A-B
—6:-A+B

FIG. 3. Heatmap generated from the backbone networks from each of the four courses. The color of each square indicates how many times
the two nodes appeared in the same groups across the four courses. The naming scheme is further explained in Tab. II. Some nodes are
not present in some of the networks, resulting in an inconsistent maximum occurrence count. The ordering of the nodes was determined
by R’s “heatmap” function, which computes a dendrogram from the co-occurrence matrix to determine how dissimilar two nodes are, using
the euclidean distance between two rows as a measure of dissimilarity. Nodes that are less dissimilar are closer together on the axes. There
appear to be two very strong groupings, groups 2 and 3, as well as three more moderate groupings, groups 1, 4, and 5. It appears plausible
that some of these groups are connected in larger modules, but additional data is required to determine this.

problem, they will again get an answer of -A+B.

TABLE II. The node labelling scheme for 1-D presents four pieces
of information: the operation the student was asked to perform, the
question number (the set of vectors asked about), and the direction
of both original vectors that could be correctly added to yield the
student’s chosen resultant.

Operation Vector Set Direction of A Direction of B
+ or — 1-6 +Aor—A +Bor—B
addition or question positive A or positive B or

subtraction number (Q) negative A negative B

The communities for each course were extracted from 1000
trials of InfoMap. We then create a heatmap from the co-
occurrence matrix across all courses, shown in Fig. 3. In this
representation we can see how often InfoMap determined that
two responses belonged to the same community across all
four courses. The ordering of the nodes in Fig. 3 was de-
termined by R’s “heatmap” function, which computes a den-
drogram from the co-occurrence matrix to determine how dis-
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TABLE III. Cross-course stable memberships for 1-D problems. For
each group (highlighted in Fig. 3), the bold responses are those that
follow the dominant trend of the group.

Group 1 Group 2 Group 3 Group 4 Group 5
-6:-A+B -4:+A+B -6:-A-B +1:-A+B +2:-A+B
+2:-A-B -1:+A+B +4:+A-B +5:-A+B +3:-A-B
-3:-A+B -3:+A+B +6:-A-B +3:+A-B -4:-A-B
-4:-A+B +3:-A+B +5:-A-B +5:+A-B -1:-A-B
+1:+A-B -5:+A+B -1:-A+B +2:+A-B -3:-A-B
+4:-A+B -6:+A+B -5:-A-B +6:+A-B

-5:-A+B

similar two nodes are, using the euclidean distance between
two rows as a measure of dissimilarity. Nodes that are less
dissimilar are closer together on the axes. It should be noted
that the center diagonal represents how often a response was
present in a backbone network. Some nodes are not present in
every backbone - students in a course either never chose that
response, or in rare cases, that response was chosen only with



correct answers and therefore was dropped from the backbone
network.

The heatmap in Fig. 3 shows two strong groups, brighter
white at middle (group 3), and just below and to the left of
middle (group 2), and three slightly weaker groups, two at
top right (groups 4 and 5) and one at bottom left (group 1).
The membership of each group is listed in Tab. III, where the
groups are numbered from bottom-left to top-right. Some of
these groups are possible subgroups of larger modules, but
we would need more data sets in order to determine this.

IV. DISCUSSION

Based on the literature, we attempted to classify these re-
sulting modules into possible error types. Each group indi-
cated in Fig. 3 is addressed individually, from bottom-left
to top-right, to present possible arguments or misconceptions
for the bold responses in Tab. III.

Group 1 - The dominant mistake in this module, present in
four of the the seven nodes, is -Q:-A+B. This mistake is con-
sistent with two plausible solution methods. The first method
is for students to perform subtraction backwards, reversing
the direction of A instead of 5. Alternatively, students could
be doing the set up correctly, aligning Aand —B tip to tail,
but then closing the loop and going from the tip of B to the
tail of A, rather than from the tail of A to the tip of B.

Group 2 - There appears to be a subset of students who
will consistently do addition instead of subtraction. Group 2
contains all of the responses that follow this pattern (recall
that we had to drop question “-2”). It is interesting that in
each class section the largest nodes are -1:+A+B, -5:+A+B,
and -6:+A+B. Since questions were presented sequentially,
“-1” was the first combination of vectors that students were
asked to subtract. It is possible that some of the weight of the
-1:4+A+B node simply came from the students being on au-
topilot - to further examine this, we plan to shuffle the order
of the questions in future iterations of the quiz. The preva-
lence of -5:+A+B and -6:+A+B is interesting because these
are the two subtraction questions with anti-aligned vectors.

Group 3 - This module includes the same answer, -A-B, for
both the addition and subtraction versions of problems 5 and
6. These questions have anti-aligned vectors, and that these
nodes often end up in the same group together suggests that
students are making the same mistake for both addition and
subtraction. This could stem from students correctly adding
—Aand —B, or closing the loop when combining A with B.

Group 4 - Intriguingly, there seems to be a subset of stu-
dents that gave the answer consistent with doing subtraction
when prompted to do addition. It is interesting to note that the
three nodes that seem to have the strongest connections within
this module are +2:+A-B, +5:+A-B, and +6:+A-B, which are
the three pairs of anti-aligned vectors. If students were to
reverse the direction of B and then add it to ff, they would
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come out to this result. This suggests that students are con-
flating vectors pointing to the right with a positive vector, and
therefore addition.

Group 5 - In this last module, there are three responses
that follow the -Q:-A-B pattern. Interestingly, these three
responses are the three subtraction problems with aligned
vectors, while the other two -Q:-A-B responses (from anti-
aligned vectors) were in Group 3. This suggests that different
students make this same mistake depending on the alignment
of the vectors. There are again two plausible errors that we
consider. First, these answers are consistent with adding A

to —B. Students may be inclined to do this if they associate
vectors pointing to the left with negative - and therefore sub-
traction as well. The other possible mistake is students may
have chosen the negative of the result from vector addition,
again consistent with closing the loop.

V. FUTURE WORK

Moving forward, collecting handwritten work on the same
set of questions would validate or refute our interpretations
of each group. We are currently analyzing the results of the
two-dimensional questions, not discussed here, for which we
have both multiple-choice responses and handwritten work.
A modified version of the 1-D questions could also be useful,
with some questions having vector A pointing to the left. This
would aid in our interpretation of Groups 4 and 5.

VI. CONCLUSIONS

The results of this work support earlier findings that stu-
dents are consistent in how they approach vector addition
and subtraction in an “arrows-on-a-grid” format. We find
evidence for five broad groupings of mistakes that students
consistently make across multiple problems: performing sub-
traction in the wrong order, performing addition instead of
subtraction, closing the loop regardless if asked to perform
addition or subtraction for anti-aligned vectors, performing
subtraction instead of addition for anti-aligned vectors, and
closing the loop for aligned vectors. We again emphasize that
we cannot be certain without written work that students used
these specific methods, but the consistency of their choices
and the groupings found strongly suggest this to be the case.
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