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The affine matrix-ball construction (abbreviated AMBC) was developed by Chmutov,
Lewis, Pylyavskyy, and Yudovina as an affine generalization of the Robinson-Schensted
correspondence. We show that AMBC gives a simple way to compute a distinguished
involution in each Kazhdan-Lusztig cell of an affine symmetric group. We then use
AMBC to give the 1st known canonical presentation for the asymptotic Hecke algebras
of extended affine symmetric groups. As an application, we show that AMBC gives a
conceptual way to compute the Lusztig—-Vogan bijection. For the latter, we build upon

prior works of Achar and Rush.

1 Introduction

The Robinson-Schensted algorithm provides a bijection between the symmetric group
and the set of pairs of standard Young tableaux of the same shape. It has become ubiqg-
uitous since its invention and now it appears in the theory of crystals, symmetric func-
tions, representations of symmetric groups, Kazhdan-Lusztig cells, etc. Furthermore,
it has been generalized in many ways, for example, as the Robinson-Schensted-Knuth
correspondence [15], domino insertion algorithm for hyperoctahedral groups [10-12],

and exotic Robinson-Schensted algorithm [13], to name a few.
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16052 D. Kim and P. Pylyavskyy

Recently, Chmutov, Lewis, Pylyavskyy, and Yudovina [6, 7] introduced its affine
generalization, called the affine matrix-ball construction (abbreviated AMBC), which
extends the work of Shi [26]. The affine matrix-ball construction provides a bijection
®:wr— (P(w),Q(w), p(w)) from the extended affine symmetric group to the set of
triples (P, Q, p) where P and Q are row-standard Young tableaux of the same shape and
7 is an integer vector satisfying certain properties. This algorithm also enjoys a lot of
properties that the usual Robinson-Schensted algorithm possesses.

On the other hand, an (extended) affine symmetric group (or more generally
an affine Weyl group) plays a central role in representation theory. It is strongly
connected to the Springer theory (and its affine analogue), representations of Lie groups
and Lie algebras, geometry of flag varieties, etc. (See e.g., [8, 14, 16, 31].) In order
to understand this group and its representation theory, it is desirable to find not
only its characters but also the parametrization and realizations of its (irreducible)
representations.

To this end, Lusztig [17] introduced the asymptotic Hecke algebra, convention-
ally denoted J (see [20, Chapter 18] for more details). It is a free abelian group with
basis parametrized by elements of the corresponding affine Weyl group, say t,, and
the multiplication is given by t, - t, = >, ¥, w-1t, where the structure constants
Yuvw-1 come from those of the affine Hecke algebra with respect to the canonical
basis. Usually, it has a much simpler structure than the original affine Hecke algebra.
For example, if we start with the extended affine symmetric group, then the structure
constants of such 7 can be obtained from Littlewood-Richardson coefficients of some
(smaller) symmetric groups. Also, we will later observe that in this case J is a direct
sum of certain matrix algebras. Nonetheless, it contains a lot of information of the
representation theory of corresponding affine Hecke algebra. Thus, in order to study
affine Hecke algebras, it is often very useful to first understand the structure of the
corresponding asymptotic version 7.

This paper develops such understanding of the structure of the asymptotic
Hecke algebra J for GL,, in terms of AMBC. Here we briefly explain our results. For each

integer partition A - n, we define F; to be GL,,, x GL,,, x --- where m; is the number of

m;
is appearing in the parts of A. Also, let ¢, be the two-sided Kazhdan-Lusztig cell in the
extended affine symmetric group parametrized by A in the sense of [19]. Xi [30] proved
that for a certain left cell I'*" C ¢, , there exists a ring isomorphism between Jran)-1qpan
and the representation ring R(F,) where the former is defined to be the restriction
of J to the intersection of I'*" and its inverse. Our 1st main result is the following

theorem.
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Asymptotic Hecke Algebras 16053

Theorem (Theorem 4.2).  The ring isomorphism Jran)-1ran = R(F,) defined by Xi
coincides with the map t, — [V, where P (w) is the integer vector of the image
w — (P(w),Q(w), p(w)) under AMBC and [V

representation of F; parametrized by o (w).

2wl 1s the class of an irreducible

Originally, in his paper, Xi used his bijection above to prove the conjecture
of Lusztig [19, Conjecture 10.5]. It states that jgx’ or the asymptotic Hecke algebra
restricted to c,, is isomorphic to a matrix algebra with base ring R(F,). He gave a
description of such an isomorphism, but his construction was not canonical; one needs
to pick an identification of each left cell with a fixed one, which relies on the choice
of star operations and multiplication by a shift element that connect two such cells.
In this paper, we describe such an isomorphism that naturally comes from AMBC,
which is therefore more canonical; AMBC does not depend on the cell structure of
(extended) affine symmetric group but relies only on their combinatorial properties.
More precisely, we have the following theorem. Here, D is the set of elements in the
extended affine symmetric group, which correspond to primitive idempotents in 7,

called the distinguished involutions.

Theorem (Theorems 6.1 and 7.2). Consider a matrix algebra over R(F,), denoted
M, whose rows (resp. columns) are parametrized by left cells (resp. right cells) in c,.
Then there exists an isomorphism of rings ng = M that sends t,, to the matrix
whose (I'py), (FQ(W))*I)-entry is [V )] and 0 elsewhere. Here, (P(w), Q(w), p(w)) is the
image of w under the AMBC map, and 'y (resp. (I';)~!) is the left cell (resp. right cell)

parametrized by T. Moreover, we have w € D if and only if P(w) = Q(w) and ¢ (w) = 0.

Meanwhile, the conjecture of Lusztig on the structure of the asymptotic Hecke
algebra J provides a certain bijection between the set of irreducible representations of
GL,,, denoted Dom(GL,,), and the union of Dom(F,) where A runs over all the partitions
of n. This is now called the Lusztig—Vogan bijection and is studied by Achar [1, 2],
Bezrukavnikov [3-5], Ostrik [22], and Rush [23, 24]. As AMBC gives a proof of Lusztig's
conjecture, there also exists a new interpretation of the Lusztig—Vogan bijection in terms

of AMBC. Our next result is that these bijections are all equal; we have

Theorem (Theorem 8.1). The Lusztig-Vogan bijection induced from AMBC (see
the beginning of Section 8 for the precise definition) is equal to that of Achar [1],
Bezrukavnikov [3, 4], Ostrik [22], and Rush [23, 24].
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16054 D. Kim and P. Pylyavskyy

This paper is organized as follows: in Section 2, we recall basic notations and
definitions used in this paper; in Section 3, we introduce the notion of canonical and
anti-canonical left cells; in Section 4, we prove the theorem stating that the bijection of
Xi is compatible with the result of AMBC; in Section 5, we study how multiplication
by a shift element and a star operation behave in terms of AMBC; in Section 6, we
describe the image of distinguished involutions under AMBC; in Section 7, we provided
an isomorphism between the asymptotic Hecke algebra attached to a two-sided cell and
a certain matrix algebra using the AMBC map; in Section 8, we describe the Lusztig—
Vogan bijection, explain some of its properties, and state that the bijection that is
derived from AMBC is equal to the one previously studied by Achar, Bezrukavnikov,
Ostrik, and Rush, whose proof is given in Section 9. In the appendix, we briefly discuss
how our results can be applied to other affine Weyl groups of type A, especially those
of SL,, and PGL,,.

2 Backgrounds
2.1 Setup

Fora,b € Z, we set [a, bl tobe {x € Z | a < x < b}. Forn € Z_, we define [n] = (1,2,...,7}
to be the set of residues modulo n.

For n € Z_, we define the extended affine symmetric group to be
:S‘vn ={w:Z — Z | w is bijective, w(i + n) = w(i) + n for all i € Z}.

We shall use the window notation for elements of 5;: w = [w(l),w(2),...,w(n)]. An
important distinguished element w € g; is the shift permutation v = [2,3,...,n,n + 11.
We shall often identify w € :S’Tl with the set B,, C Z x Z of all pairs (i, w(i)),i € Z. We
refer to elements of Z x Z that are of the form (i, w(i)) as balls of w. If we set S,, to be
the (finite) symmetric group permuting [1, n], then there exists a canonical embedding
S, — :S; which sends w to [w(1),..., w(n)l.
A partition A = (A, Ay,...) is a finite sequence of integers satisfying A, > 1, >
- > 0. We denote by A’ the transpose of A, often also referred to as the conjugate
partition. We define its size to be n = > ;A; and also write A + n. A partition
A = (Ay,Ay,...) b n can also be denoted A = (1™2™M2...), where m; is the number of
parts of size i among the Aj-s.
For A - n, we define a tabloid T = (T, T,, . ..) of shape A to be a Young diagram of

shape A filled with the elements [n] where each residue appears exactly once. The order
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Asymptotic Hecke Algebras 16055

of elements in each row does not matter, but it is convenient to regard elements of T; as
being ordered with respect to the linear ordering 1 < --- < 7. In this case, we say that
T is row standard. For a partition A + n, define RSYT(L) to be the set of row-standard
Young tabloid of shape A.

Forn > 1, we define Dom(GL,) = Dom(GL,,(C)) to be the set of integer vectors

Dom(GL,) :={(ay,ay,...,a,) €Z" |ay > ay, > --- > a,}.

We naturally identify this with the set of dominant weights of GL,,. Also let Rep(GL,) =
Rep(GL,,(C)) be the category of finite-dimensional rational representations of GL,,. Then
for any @ € Dom(GL,), there is an irreducible representation V(i) € Rep(GL,) of
highest weight i, and {V() € Rep(GL,) | ¥ € Dom(GL,)} is a complete collection
of irreducible objects in Rep(GL,) up to isomorphism. If we further define R(GL,) to
be the Grothendieck ring of Rep(GL,) (see [29, II.6] for the definition of Grothendieck
rings), then the classes of V(i) form a Z-basis of R(GL,,).

Let J be the asymptotic Hecke algebra of :S’; defined in [17, Section 2]. It is a free
Z-module with a basis {t,, | w € :Svn}, and (7, {t, | w e 3;}) is a based ring in the sense
of [18, Section 1]. Also if we set D C S, to be the set of distinguished involutions, then
D is finite and the unit of 7 is given by >, .p t,,-

For a subset X C S,,, we define Jy := D ex Zt,, to be the free sub-Z-module of
J generated by {t,, | w € X}. Then for a two-sided cell ¢ C :S; jg is a two-sided ideal
of J. Also, (T fty | W ec) isa based ring and Zwepﬁg t,, is its unit. In other words,
we have a decomposition of based rings J = @5, J, where the sum is over all the
two-sided cells ¢ of S,. Also if T is a left cell in é then Jr (resp. Jp-1, Jr-1nr) is a left
(resp. right, two-sided) ideal of 7. It is known [17] that Jp-1r is @ commutative ring
with unit t,, where w is the unique element in ' N D.

Recall some facts about nilpotent orbits, we refer the reader to [9] for an
exposition. Nilpotent adjoint orbits of LieGL,, are parametrized by partitions of n, where
to each A - n one associates a nilpotent orbit O, such that the Jordan type of any
element in O, is A. Also, there exists a canonical bijection between nilpotent adjoint
orbits of LieGL,, and two-sided cell in S, defined in [19]. We denote the two-sided cell
corresponding to O, by c,.

Let the conjugate partition of A be A" = (1,15, ...). We define

F, :=GLy, X GLy,, X -+~ and L; := GL;, X GL, x---.
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Then Dom(F,) = Dom(GL,, ) x Dom(GL,,,) x - - is naturally a subset of Z!®. For N € O,,
we may identify F, with the reductive part of Z;, (N), the stabilizer subgroup of N
in GL, = GL,(C). Then it follows from [30] that there exists an isomorphism of rings
from Jp-1qp to R(F,) under which each t,, maps to an irreducible representation, say
V(e(w)). Here, I' is a certain left cell contained in c,. (Such I" will be called the anti-
canonical left cell of c,; see Sections 3 and 4.) Furthermore, he proved that there exists

a (non-canonical) isomorphism J, =~ Mat, , , (R(F,)) compatible with the isomorphism

XXX

above. Here, x is the Euler characteristic of the Springer fiber of some/any

NeO,.

_ n!
T Ailagle

2.2 AMBC and Kazhdan-Lusztig cells

Here we briefly recall some notations from [6] and [7] and discuss the relations between
the affine matrix-ball construction (abbreviated AMBC) and Kazhdan-Lusztig cells.
For T = (T,,...,T) € RSYT(A) and i € [1,1 — 1], we define lch;(T), called the local
charge in row i of T, as follows. Suppose that T; = (a,,...,a,) and T;; = (by,...,b,).
Then Ich;(T) is the smallest d € N such that a;_; < b; for ! € [d + 1, t]. Pictorially, this
measures necessarily shift of T; to the right so that (T;, T;, ;) becomes a standard Young
tableau (of skew shape). For example, if T; = (3,5,7,8) and T;,; = (1,2,4,6), then we

have Ich;(T) = 2, which can be obtained from the following picture.

sls5]7]8] _ 357|8\
HE

For P,Q € RSYT(A) where A = (A,...,1;), we define the symmetrized offset

constants with respect to (P, Q), denoted by §>P,a =(S1,.--.5) € 7}, as follows.
0 ifi=1orx; > A,
Si =
s;_1 +1ch;_;(P) —1ch;_,(Q) otherwise.

In other words, we have s; —s;_; = Ich;_;(P) — Ich;_;(Q) whenever A;_; = ;. (See [7,
Definition 5.8] and [6, Theorem 5.10] for the equivalent definitions.) It is easy to show
that for tabloids P, Q, R of the same shape, we have

Spo+ Sar = Spg, thusin particular Sp 4+ Sgp= Spp =0.
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Example 2.1. Let P = and Q = . Then Ich;(P) = 0,lch,(P) =

=l wl| N
all| | Wl
|| ool ol
B =l wl
ol| NI ol
©l| ool I

1,1ch; (Q) = 2, and Ich,(Q) = 0. Thus, it follows that S, = (0, -2, —1).

For A = (Ay,...,A,) and @ = (p;,...,p,), we define rev, () to be the integer
vector obtained from 7 by reversing the order of elements corresponding to the parts
of the same length in A. For example, if A = (2,2,1,1,1) and 7 = (3,1,5,2,4), then we
have rev, (8) = (1,3,4,2,5). We say that g € Z» is dominant with respect to (P, Q)
if —(8 — Spo) € Dom(F,), or equivalently rev, (8 — Sp,) € Dom(F,). In other words,

7 € 7! is dominant with respect to (P, Q) if and only if 7 — Sp o is “anti-dominant”.

Example 2.2. Inthe Example 2.1, the vector 7 = (2,0, 2) € Z3 is dominant with respect

to (P, Q) because p — §>P,O = (2,2,3) is a nondecreasing sequence.
We set

Q:=| |RSYT(2) x RSYT(}) x 7,
AEn

Qdom = {(P,Q, P) € 2| p is dominant with respect to (P, Q)}.

We define ®: :S\; = Qgom: W > (P(w),Q(w), p(w)) to be the bijection defined in [7]
using the affine matrix-ball construction (abbreviated AMBC). Also, let ¥: Q@ — :S;
be the surjection defined by the backward AMBC. Then by [7, Theorem 5.12] we have
Vgm = ®~!. Both AMBC and backward AMBC were explained in great detail in both
[6] and [7].

Before we investigate their definitions, we recall some of their properties in
terms of Kazhdan-Lusztig cells. It follows from [7] and [26] that for each tabloid P, the
union of fibers ¥ (P, Q, ©) for (P,Q, B) € Q where we vary Q and 7 are exactly a right
cell of :S‘; denoted by F;l. Similarly, if we fix a tabloid Q, the union of fibers is a left
cell of S, denoted by I',. Moreover, it essentially follows from [25] that w € ¢, if and
only if the shape of both P(w) and Q(w) is A. On the other hand, [6, Proposition 3.1]
implies that if ®(w) = (P,Q, Sp 4+ £), then d(w!) = (Q,P, S 4 p — rev, (7). If we want

to restrict to a non-extended affine symmetric group S_n defined to be

S ={weS, |wd)+-- 4+ wn) =nn+1)/2},
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16058 D. Kim and P. Pylyavskyy

then by [7, Theorem 10.3] the same claims hold verbatim if we add the condition

> p; =0 where 0 = (py, 05, -..).

For w € S,,, we define
Rw)={ielnl|w@) >w@+1)} (resp.L(w)={ielnl|w i@ >wli+D)}),

called the right (resp. left) descent set of w. Also for a tabloid T, we define its t-invariant
by

©(T) := {i € [n] | i lies in a strictly higher row of T than i + 1}.

Then by [6, Proposition 3.6], we have L(w) = t(P(w)) and R(w) = t(Q(w)).

2.3 Definition of ® and ¥

Here we discuss the definitions of ® and ¥ and related notations briefly.

For (x;,y;),(X,,¥,) € Z?, we say that (x;,y;) is (weakly) southwest of (x,,y,),
denoted by (x;,¥;) <gw (X5,¥5), if x; > x, and y; < y,. Similarly, we say that (x;,y;) is
(weakly) northwest of (x,,y,), denoted by (x;,¥;) <yw (X2.¥2),if x; < x, and y; < y,.
Pictorially, we regard elements in Z? as located in the xy-plane where the x-axis directs
southbound and y-axis directs eastbound, that is, the whole plane is rotated clockwise
by 90° from the conventional direction.

We define a partial (affine) permutation to be an injection w : X + nZ — Z for
some X C [1,n] such that w(i + kn) = w(i) + kn for i € X and k € Z. Then its window
notation is defined to be w = [w(1),...,w(n)] where we set w(i) = ¥ fori ¢ X. We
say that a partial permutation S : X + nZ — Z is a stream if S(i) < S(j) whenever
i < j@if S@),SG) # 0), that is, it is a chain with respect to the northwest ordering.
The density of S is defined to be the size of X. The altitude a(S) of S is defined to be
> xex(Tw(x)/n]—1) where [t] is the smallest integer not smaller than ¢ (cf. [6, Definition
2.11]). If we set D(x,y) = [y/n] — [x/n], called the block diagonal of (x, y), then we have
a(S) = > ex D(x, w(x)).

For a partial permutation w and a substream S C w, we call S a channel of w if
the density of S is maximum among all the substreams of w. Among all the channels of
w, there exists a unique one C such that for any channel ¢’ ¢ w and any ball (x, w(x)) €C,
there exists (y, w(y)) € C’' such that x > y and w(x) < w(y). We call such C the southwest

channel of w.

20z AINr 6z uo Josn sjeusie pallddy Ad 1 #G2£9/1.509L/81L/EZ0Z/AI0IE/UILWOo dNodlWapEsE//:SA)Y WOl POPEOjUMOQ



Asymptotic Hecke Algebras 16059

For a stream S, we say that d : S — Z is a proper numbering if it is a bijection
and [i(X, Sx)) < a(y, S(y)) whenever x < y. It is clear that such a numbering is unique
up to shift. For a channel Cl of w equipped with the proper numbering d:C— 7, we

define the channel numbering d$, = d° : w — Z to be
d®(b) = max{d(b') + k | there exists a reverse path (b’ = by, by, ..., by = b) of balls in w}.

Here, a reverse path is a sequence (x;,y;),...,(X,,,¥,,) such that x; < --- < x,,, and
¥y < -+ < V- Then d° is also uniquely determined once d is fixed. When C is the
southwest channel of w, we call it the southwest channel numbering of w and write
d=d¢ (ord,, =dS).

For a partial permutation w and its channel C C w, we define the forward step
w — (fw,(w), sto(w)) as follows. For each m € Z, we label the balls of w mapped to m
under d = dg, by (x;, w(x;)),..., (x, w(x)) so that x; > --- > x;. Then it is easy to show
that w(x;) < --- < w(xy). Set Z,,, = I(Z,,,) U O(Z,,,) US(Z,,), called the zigzag labeled m, to
be

I(Z,,) = {(x;, w(xy)) | L € [1, K]},

0(Zy,) = {(x;; w(x;y 1) | T €l k—11} S(Zp,) = {(x, w(xp))}.

Then we have w N Z,, = I(Z,,). Now set fw.(w) = |_|,,c7 0(Z,,) and st(w) = | |,,c7 S(Z,,).
Then fw;(w) is again a partial permutation and st.(w) is a stream whose density is
equal to C. When C is the southwest channel of w, we simply write fw(w) and st(w)
instead of fw,(w) and st (w).

We are ready to provide the precise definition of ® : S, — Qg Starting
with wy, = w e S,, we successively set wi, = fw(w;) and S;;; = st(w;) until
we obtain an empty partial permutation. For each S;, there exist P;, Q; C [1,n] such
that S; : P, + nZ — Q; + nZ is a bijection. Now we set ®(w) = (P,Q, p) where
P = (P,,P,,..),Q =(Q;,Q,,...),and § = (a(S;),a(S,),...) (the sequence of altitudes
of S;).

For a stream S and a partial permutation w, we say that S is compatible with
w if SU w is still a partial permutation and the density of S is not smaller than that of
any substream of w. Then we define the backward numbering da}{'s =dPkS:w - Zas
follows (cf. [7, Definition 4.1]). Let d : S — Z be a proper numbering and for (x, w(x)) € w
we let d(x, w(x)) = max{El(y,S(y)) €S|y <x,S() < w(x)}. Now we repeat the following

process:
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e If d(x,w(x)) < d(y,w(y)) for any x,y such that x < y and w(x) < w(y) (if
w(x), w(y) # 0), then we terminate the process.

e Otherwise, choose a ball (x, w(x)) such that

- there exists a ball (y, w(y)) such that d(x, w(x)) > d(y, w(y)), x < y, and
w(x) < w(y),
- for any ball (z,w(z)) such that z < x and w(z) < w(x) we have
d(z,w(z)) < d(x, w(x)).
e For each i € Z, we lower the value of d(x + in, w(x) + in) by 1 and return to
the 1st step.

After this process is done, we set dP%S = d. This numbering is always well defined.

For a partial permutation w and a compatible stream S, we define the backward
step (w, S) — bkg(w) as follows. Let d be the proper numbering on Sand d = dﬁ}“s be the
induced backward numbering on w. For each m € Z, we label the balls of w mapped to
m under d by (x;, w(x;)), ..., (x, w(x)) so that x; > --- > x;. Also there exists a unique
ball (y,S(y)) such that El(y, S(y)) = m. Then it is easy to show that w(x;) < --- < w(xy).
SetZ,, =I(Z,,) uO(Z,,) uS(Z,,), called the zigzag labeled m, to be

I(Zy,) = (x4, w(xp) [T €1, k— 11} u{x;, SN Uy, wxp)},
0(Zy) = {(x;, w(xy) | i € [1,kl}, SZ,,) ={y, Sy}
Then wN Z,, = 0(Z,,) and SN Z,, = S(Z,,). We set bkg(w) = | |,,,c7 I(Z,,). Then bkg(w) is
a partial permutation each of whose channel has its density equal to that of S.
Now we define ¥ : Q — :S'; as follows. For P = (P,...,P), Q = (Qy,...,Q)), and
P = (py,.-.,pp, we define S; to be the unique stream yielding a bijection from P; + nZ to
Q; + nZ and whose altitude is given by a(S;) = p;. Now starting with the empty partial

permutation w;, we successively define w;_; = bkg (w;) for i € [1,1]. This process is well
defined and we set ¥(P,Q, p) = w,,.

Example 2.3. For P and Q as in Example 2.1 and for p = (2,0,2) as in Example 2.2, we
have W(P,Q, p) =1[3,7,14,2,18,4,19, 8, 6].

3 Canonical and Anti-canonical Left Cells

Let wy € S, be the longest element in S,, and define

Sy = 1{w € 8, | lw) + Uwg) = Uwwy)} = {w € S, | Rw) C {7},

20z AINr 6z uo Josn sjeusie pallddy Ad 1 #G2£9/1.509L/81L/EZ0Z/AI0IE/UILWOo dNodlWapEsE//:SA)Y WOl POPEOjUMOQ



Asymptotic Hecke Algebras 16061

that is, the set of elements each of which has minimal length in its left S,-coset. Then
for each two-sided cell ¢ C S,,, the intersection '@ := ¢ N :f is a single left cell and is
called the canonical left cell of ¢ [21]. If ¢ = ¢, , then we denote its canonical left cell by

can
rean,

Lemma 3.1. Let T72" be the reverse row superstandard tabloid of shape A with start at

1 in the sense of [6, 2.1] (see the example below). If w € I'{2", then we have Q(w) = T;".

Proof. By assumption, we have 1(Q(w)) = R(w) C {n}. Since T;?" is the unique tabloid
of shape A that satisfies ¢(T;*") C {n}, the result follows. |

8]

Example 3.2. We have T(;3 ) =

wl| o

IR

’b—d\ N O

This time, let w{; be the longest element in S,, := S XSy X Thus for example
w(()l'l"“'l) = wy and W(()n) = id. By direct calculation, we see that the shape of P(wé) and

Q(wy}) is A, thus wj € c,.

Lemma 3.3. Let T2" be the standard Young tableau of shape A with {1,2,...,1]} on the
Ist column, {3} +1,...,1] + A5} on the 2nd column, etc. (See the example below.) Then

we have ®(wj) = (T2, T2",0).

Proof. It is clear that R(w) = [n] — {A], 1] + A5,...}. Since T{" is the unique tabloid of
shape A, which satisfies t(T2") = [n] — {A}, A} +15,...}, we have Q(w{)) = T2". Since w{, is
an involution, we also have P(WS) = T{" by [6, Proposition 3.1]. Moreover, wé € S, thus
P (w) =0 by [7, Theorem 10.2]. [ |

We define I'®® C ¢, to be the left cell containing w};, called the anti-canonical

left cell of ¢,. Then the lemma above implies that w € I'#" if and only if Q(w) = T{".

8

Example 3.4. We have T(a‘ffsyl) =

(S]]
|| ol

’00\ N[ |

4 Bijection of Xi and AMBC

Our goal in this section is to show that the bijection ¢: (l‘i"“)‘l NI — Dom(F,)

defined by Xi [30] can be interpreted in terms of AMBC. First, we describe his bijection
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—

g (Ff{m)_l N re* — Dom(F,) following [30, 5.2.1]. We start with the following

definition.

Definition 4.1. For A = (A, X,,...) F n, we say that {S1/S2, Sy} is a complete
stream family of w € ¢, (or complete antichain family in the sense of [30]) if S; are
pairwise disjoint streams, the density of each S; is equal to 2;, and Lli(:)‘i S, =8,.

Let {S),S;,...,Sy;)} be a complete stream family of w e (T{)~' n ",
which always exists by [30, Theorem 5.1.12]. After rearranging S;s if necessary,
we may assume that a(S;) > a(S;,;) whenever A; = A;,;. Now we define T(w) =
(a(Sy),a(Sy), ..., a(Sy,,)) € Dom(F,), which gives the bijection e (F';‘n)‘1 nry —
Dom(F,) of Xi. By [30, Lemma 5.2.4], this value does not depend on the choice of the
complete stream family {S;,S,,...,S;} of w.

We state the main theorem of this section.
Theorem 4.2. Forw € ()~ N T2 we have € (w) = rev, (5 (w)).

The rest of this section is devoted to its proof. To this end, first we define
i—1 i
— / / .
P, = an+2kj+1,an+2Aj CZ|laecZ 0<i<)
j=1 j=1

For example, P3,21.1) consists of {1,2,3,4},{5,6}, {7} and their shifts by multiples of 7.

It is clear that P, is a partition of Z.

Lemma 4.3. Letw e '™,

(a) B, N(A x Z) for any A € P, is totally ordered with respect to the southwest
ordering.
(b) For any stream S C B, #(SN (A x Z)) < 1.

Proof. Since w e I'f", we have Q(w) = T{", which means that R(w) = r(Q(w)) =
n] — {(\,, A} + 245, ...}. It implies that W(Z};} A} +1) > W(Z]‘;} A]’. +2)> - > W(ZJL-:1 A]’.)

for any 0 <i < A;. Now the statement easily follows from this. [ |

For a stream S C B, we define

SY:={(4,B) e P? | SN (A x B) # ).

20z AInr 6 uo Josn sjeusiey pallddy Aq 1 #5Z€9/1S091/81/€20Z/301e/ulwl/Wwod"dnooiwapede//:sdiy Wolj papeojumoq



Asymptotic Hecke Algebras 16063

Suppose that w € (I'®)~! N T2, Then the lemma above applied to both w and w™!
implies the following: for any stream S C B, we have (4,B) € SH & #SN@A xB) =1.
Also for any (4, B), (C,D) € SD, we have either A < C,B<DorA>C,B>D.(HereX <Y
means x < y for any x € X and y € ¥.) In other words, S is totally ordered with respect
to northwest ordering.

The next lemma is the key step of the proof of the main theorem in this section.

Lemma 4.4. Let w € (F;‘“)_1 N I'2?, and assume that {5/2'5/3'-“'52@)} is a complete
stream family of the partial permutation fw(w). Then there exists a complete stream

family {S,,S,,...,S);,} of w such that

(1) S, is a channel of B,
(2) a(S,) = p; where §(w) = (py, py,...), and
(3) s =sF.

Proof. Recall the construction of the backward AMBC algorithm. In particular, B, is
obtained by following the steps below.

(@) Let S := st, (T{",T{") and give S some proper numbering; here T7" =
(T$", 75", ...). (Here, 5tp1(Tan,Tfm) is the unique stream of altitude p; that
maps T5" 4+ nZ to itself. See [7, Section 3.4] for the definition of st.)
(b) Calculate the backward numbering do5 on B wr)-
(c) Foreachi e Z, consider the zigzag Z; labeled i whose outer corner-posts are
balls in By, labeled by i.
(d) The union of all inner corner-posts of Z; foralli € Z is B,,,.
Now suppose that some proper numbering on S = st, (T{", T{") is given, say
S = {S» | i € Z} where S¥ = (a;,b;) € S is the ball labeled i. We claim that if
da}"s(x,y) = i

In other words, on the construction of the backward numbering in 2.3, the iterating

(x,7) € Bpyw satisfies (x,y) >yy SO but (x,y) #yw SV, then

process terminates without changing the initial numbering, say dy. Indeed, suppose
(a,b),(c,ad) € Bfw(w) satisfies dy(a, b) = dy(c, d). In other words,

(alb)l(cld) € {(le) € Zz |X = airy = bl} - {(le) € Zz | X > ai+11y = bi+1}'
However, the balls in

Beyw) N ({(X,y) €Z’|x>a,y>b}—{(x,y) €Z® | x>a;,,y> bi+1})
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are totally ordered with respect to southwest ordering by Lemma 4.3. Note that
this lemma applies to fw(w) since @®(fw(w)) = Ty (T30, 7)’22) where
(Tf‘n)22 = (T9",T§",...) is also an anti-canonical tableau when restricted to indices
not in T$". Therefore, if (a,b) <y (c,d), then (a,b) = (c,d) and the claim follows by
looking at the construction of the backward numbering.

Now let I(Z;) be the set of inner corner-posts of Z;, O(Z;) be the set of outer corner-
postsof Z;, and S(Z;) = {S¥} as in 2.3. Then the backward AMBC algorithm replaces balls
in O(Z;) U S(Z;) with those in I(Z;). By Lemma 4.3, it is easy to check that for (x,y) € I(Z;)
and (z, w) € O(Z;) we have

o ify=wandag; <x,z< ai+1,thenz:x+ 1 and

° 1fX:zandbl5y,w<bl+1,thenW=y+1

From this, it follows that for any A, B € P, we have
#((A x B)yNI(Z;) = #((A x B) N (0(Z;) U S(Z)))).
In other words, we have

o #(AxB)NB,) =#((A x B) N By + 1if (4,B) € S, and
o #((AxB)NB,) = #((A x B) N By, otherwise.

Now we can choose S;,S,,... so that S[I:I = SY and SiD = SF for 2 < i < I(A).
Indeed, for any pair A, B € P, and for any stream SQ, we know that at most one element
of this stream lies in A x B. We also know the same for the stream S, as can be seen by
examining the rows of T3". Let us arbitrarily biject elements of O(Z;) US(Z;) lying inside
a particular A x B with those of I(Z;) lying inside the same A x B. This maps each of
the streams S, S; into a new stream S;, S;. It is clear that {S;,S,, ...} satisfy the desired

properties. |
To illustrate this proof, we give the following example.

Example 4.5. Letn =16and w=[11,5,4,3,2,-9,13,10,9,8,1,15,12,22, 14, 16]. Then
fw(w) = [¢,11,5,4,3,-8,0,13,10,9, 2,0,15,0, 22,]. It is easy to see that w € (I'*™)~1 N
an forr=(5,4,2,2,2,1). Let A=B={7,8,9,10,11}. Then

(A xB)N B, ={(8,10),(9,9),(10,8)} and (A x B) N (Bgyw, US) = 1{(7,7),(9,10),(10,9)}.
We choose an arbitrary bijection between the two sets and repeat it for other pairs (4, B).

Then streams of any complete stream family of By, together with S biject to streams

of a complete stream family of B,,.
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We are ready to prove the main theorem in this section.

Proof of Theorem 4.2. We proceed by induction on I = (1) = A]. When I = 1, we have
w = w? for some d € Z and in this case it is easy to see that ¢(w) = rev, () (w) =
(d). (Recall that @ is the shift permutation [2,3,...,n,n + 1].) In general, we choose a
complete stream family (S;,S5, ... ,S;} of fw(w) and {S;,S,,...,S;} of w as Lemma 4.4.

Then p; = a(S;), and for any 2 < i < [ we have

w- ¥ [Hea- T [Mei-as

(x,y)€S; 1=x<n (x,y)€S;,1<x<n

since SiD = S;.D. In other words, as a multiset, we have

{101!102! s lpl} = {a(Sl)} U {pZI RN ,Ol}
= {a(Sp}ufalsy),...,alSp}

={a(Spiufa(sSy),...,a(S)}

by induction assumption. After reordering a(S;) if necessary, we have &(w) =

rev, (p(w)) as desired. [ |

5 Shift, Knuth Moves, and AMBC

In this section, we discuss how multiplication by @ = [2, 3, ...,n,n+ 1] and Knuth moves
behave under the AMBC. We start with some definitions.

Definition 5.1. Fori = (A,,...,%,) and ¢ = (p;,..., p,), we say that 7 is determinantal

(with respect to A) if p; = p; whenever A; = ;.

Note that if 7 is determinantal with respect to A then both 7 € Dom(F,)
and rev, (p) € Dom(F,). Also it is a highest weight of a tensor product of powers of

determinant representations of factors of F;,.

Definition 5.2. Let T = (T}, T,,...) be a tabloid of shape A and suppose that i € T,
forsomel <i<nand1l <t <I[()). We define X(T, ) = (81,82, -1 813)) and 7(T,1) =
41/t 14, as follows. Here [-] is the Iverson bracket.

e IfA, =1, ;, then we put 5’(T, )= 0. Otherwise, §(T, )= ([Aj = )‘t])lfjfl(k)'

o T(T,i) =W =th<jap = G € Tiijan-
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5.1 Multiplication by the shift element

Here we discuss how to relate ® (@w), ®(ww ') and ®(w). Let us start with the following

lemma.

Lemma5.3. LetT = (T, T,,...) beatabloid of shape A and suppose that 77 is contained
in T,.

(1) lchj(w(T)) = 1chj(T) ifj#¢tt—1and A= Ajgr-

(2) If Ay = Ay, then Ich,(@(T)) = Ichy(T) — 1.

(3) If A, , = A, then Ich, ,(&(T)) =lch, ,(T) + 1.

Proof. The 1st part is straightforward. For (2), we choose the ordering on o(T;) to
be the standard activation ordering as in [6, Definition 5.1] and that on T, to be the
same one except that 7 is set to be the smallest entry. Then @ : T, — (T,) is order
preserving and  also preserves the charge matching of (T;, T, ), that is, if @ € T, is
matched to b ¢ T;. 1, then w(a) = at+1le w(T,) is matched to wb)=b+1c¢ (T, ). (See
[6, Definition 5.2] for the definition of the charge matching.) However, nn € T, contributes
to the charge whereas (@) = 1 € w(T;) does not, from which (2) follows. (3) is also

similarly proved. |

Lemma 5.4. For tabloids P, Q of the same shape A, we have

Sho@ =Spa— L(@Qn)+38(Q,n) and S,po=Spg+ L(P,n)—8(P,n).
Proof. It follows from Lemma 5.3 and [6, Theorem 5.10]. [ |
Proposition 5.5. Suppose that ®(w) = (P, Q, ?P,a + ©). Then we have

d(wol) = (P,0(Q), Spyq + B — 3(Q,n)

D (W) = @(P),Q, T ypy o + B + 8 (P,1)
In particular, if ®(w) = (P, P, p) then ®(@ww™!) = (0(P), ®(P), ).
Proof. By Lemma 5.4, it is enough to argue the following:

®(wo™ ') = (P,0(Q),Spo+ 7 — T(Q,n),

®(0w) = (@(P),Q, Sp o+ 7 + T(@,0).
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This follows from the definition of the altitude of a stream. Indeed, if we compare the
process of applying the AMBC to w and ww, they are identical up to the @ of residues
modulo n, except there is a unique forward step of the AMBC when the block diagonal
D(b) of exactly one ball b increases by 1 in the shifted version. It is exactly the step t

such that 7 € P,. Similar consideration works for ww™!. |
We finish with an example.

Example 5.6. ILet n = 9 and w = [-1,3,10,-5,14,-3,18,7,2]. Then ®(w) =
(P,Q,Spq + 7)), where P,O,E’P'a are as in the Example 2.1, and 7 = (0,1,2). Then
ow =10,4,11,—-4,15,-2,19,8,3] and ®(ww) = (@(P), Q, §p o + p), where o’ = (0,1,3) =

7 +(0,0,1) =73 +¢(P,9), and (P) = . One checks that 8, o = (0,—2,0), in

IR
Nol| ool| ol
ol| ol I |l

agreement with Proposition 5.5.

5.2 Knuth moves and star operations

Until the end of this section, we assume n > 3.

For w € :S; and i € Z such that either w(i — 1) or w(i 4+ 2) is between w(i) and
w(i+ 1), we define the right star operation w — w* for % ~ i where w* is obtained from
w by exchanging w(i + kn) and w(i + 1 + kn) for each k € Z. We similarly define the

1

left star operation w — *w for % ~ i to be w — ((w~1)*)~1 if w! satisfies the above

condition. We also call them Knuth moves as it is an affine analogue of the usual Knuth

moves for S,,.

Definition 5.7. Let n > 3. For a tabloid T and 1 < i < n, suppose that the rows of T
containing i and i + 1 are different. Let S be the tabloid obtained from T by exchanging
iand i+ 1. If they satisfy either

T(MN{,i+1LtS)N{E, i+ 1} ={{},{i+1}} or

{t(MN{i-1,8,t(S)N{i— 1,1 = {{i— 1}, {@}),
then we say that T* is well defined for * ~ i and define T* := S.

Note that T* is well defined then (T*)* is also well defined and (T*)* = T. More-
over, by [6, Proposition 3.6], we have L(w) = t(P(w)) and R(w) = 7(Q(w)). This implies
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that for i € Z, Q(w)* (resp. P(w)*) is well defined for % ~ i if and only if w* (resp. *w)
is well defined for * ~ i. Now [6, Theorem 3.11] provides the following description of
how star operations changes the result of AMBC. Suppose that ®(w) = (P, Q, ¢) for some

w e S~n If x % 7, then we have
d(w*) = (P,Q*%, p) and ®(*w) = (P*,Q, )
whenever w*, *w are well defined. If * ~ n, then we have
d(w*) = (P,Q*, 7 + T(Q,1) — T(Q,n)) and ®(*w) = (P*,Q, B — T(P, 1) + T(P,n))

whenever w*, *w are well defined.

Now we discuss how the star operation affects symmetrized offset constants.

Lemma 5.8. Forn > 3, let T be a tabloid of shape A - n such that T* is well defined
for « ~ i. If i # 7, then lch;(T) = lch;(T*) for any j. Now suppose thati=7,1 ¢ T,, and
nefT,.
(a) If |t —s| > 2, then Ichy(T*) = lch(T) if j ¢ {s — 1,s,t — 1,¢} and
o if A=Ay, thenlchy(T*) =l1chy(T) + 1.
o if A, ; =Ag, thenlch, ,(T*) =1ch;_;(T) — 1.
o if X, = Ay, then Ich,(T*) = 1ch,(T) — 1.
o if A, ; =A, thenlch, ;(T*) =1ch,_;(T)+ 1.
(b) Ift=s+1,then either2 € T, or n — 1 € T,. In this case lch;(T*) = 1chy(T) if
jé{s—1,s=t—1,t}and
o if A, ; =X, thenlch, (T%) =1ch,_;(T) - 1.
o ifA; =1 (=21, thenIchy(T*) = Ichy(T) + 2.
e if A, = A,, then lch,(T*) = lch,(T) — 1.
(c) Ifs=t+1,theneither2 € T, orn — 1 € T,. In this case, lch;(T*) = Ich(T) if
jé€{t—1,t=s—1,s}and
o Ifix,;=2x;thenlch, (T*) =Ich, ;(T)+1.
o IfA; =X, (=2, thenlchg ,(T*) =Ich_,(T) — 2.
o If Ay = Agyq, then Ichy(T*) = Ichy(T) + 1.

Proof. Let us 1st assume that « ~ i # 7 and suppose that i € T,and i+ 1 € T,. Then
s # t, and if |s — t| > 2 then it is clear that lchj(T*) = lchj(T) for any j. Thus, it remains
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to check the case when |s — t| = 1, thatis, t = s+ 1 or s = t 4+ 1. But since T** = T, by
symmetry it suffices to show the case when t = s 4+ 1, which we assume from now on.

It is still clear that lchj(T*) = lchj(T) if j # s. Thus, we only need to show that
lchy(T*) = 1chy(T) when A; = A, ;. Since in this case we have i € 7(T*) — 7(T), for
the star operation to be well defined, we should have either i + 2 € T, = Ty, so that
i+let(T)—t(T*)ori—1eT,=T, ,sothati—1 e t(T) — t(T*).

Here we only deal with the case when i +2 € T, = T, ., but the other case
can also be similarly proved. We take activation orderings on T, and T;, which are
the same as the standard activation ordering except that i+1 € T, and i € T are
the smallest element in each row. Then i+1 € T, is matched to i+2 € T,,, and
i € T is matched to i +1 € Ty .-
are the same as those between T; and Tj , except one; there exists j such that j € T,

Furthermore, the matchings between T and T,

is matched to i € Tsy1 and j € T is matched to i +2 € Tg,,. However, this does not
affect the local charge since j # i+ 1, that is, either j < i or i + 2 < j. Thus, we
have Ichy(T*) = 1ch(T).

It remains to consider the case when * ~ 7. We assume that 1 € T; and 7w € T},
and first suppose that [¢ —s| > 2. It is still clear that Ich;(T*) = Ich(T) if j ¢ {s — 1,5,
t—1,t}. Now if A; = A, ;, then we choose activation orderings on T, and Ty, which are
the same as the standard activation ordering except that € Ty becomes the smallest
element. Then it is clear that the star operation preserves matchings between (T, Ty, ;)
and (Tg, Ty, ), and 1 € T, does not contribute to the charge but 7 € T always does.
Thus, it follows that lch (T*) = Ich(T) + 1.

On the other hand, if A,_; = A, then we take the standard activation ordering on
both T;_; and T;_,. Then it is also clear that the star operation is matching preserving,
but the element k € T, , that is matched to 1 contributes to the charge whereas
ke T;_, that is necessarily matched to 7 does not. In other words, we have Ichg_(T*) =
Ich,_,(T) — 1. Now the statements about the local charges on ¢-th and (¢ — 1)-th row
follow from applying this argument to T*.

If |t — s| = 1, then it suffices to consider the case when t = s + 1 because the
other case is proved by switching T and T*. Now if ¢ = s + 1, that is, if 1 € T, and
n € Tg,,, then clearly lchj(T*) = 1chj(T) when j € {s — 1,s,s + 1}. First, suppose that
Ls_1 = Az If we pose the standard activation ordering on both T;_; and T;_,, then the
star operation is matching preserving. Also, there exists 2 < k < n— 1 such that k e T,
is matched to 1 € Ty but k € T}, is matched to 7@ € T#. Thus, it is clear that Ichy_,(T*) =
Ichy_,(T) — 1. Now when Ay, ; = Ay 5, then similar argument applies and one can show
that Ichg ;(T*) = Ichy (T) — 1.
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This time we assume that A = A¢,; and prove that Ichy(T*) = lchy(T) + 2. Note
that either 2 € T, ; or n — 1 € T for the star operation to be well defined for * ~ 7.
Here we only discuss the case when 2 € T, 1, but the other case is proved similarly. We
choose the activation ordering of T, and Ty to be the standard one except that n € Ty
becomes the smallest element. Then 1 € T is matched to 2 € Ty, whereas 7 € T is
matched to 1 € T, ;.
whereas T | is obtained from T, by replacing 7 with 2. This causes the local charge

Besides these matchings, there is no difference between T, and T},

of T* at row s to be bigger by 1 than that of T. Together with considering the matching
(1,2) in T and (7, 1) in T*, we see that lch (T*) = Ichy(T) + 2 as desired. [ |

Lemma5.9. Forn > 3,let T, P, Q be tabloids of shape A - n such that T* is well defined

for x ~ i. If i # 7, then we have Sp ;= Sp. and S g = S o. If i = 77, then we have
Spr = Spr+ T(T,1) — T(T,n) — §(T, 1) + 5 (T, n) and

Sro=Sra— (T, 1)+ T(T,n)+ 8(T,1) — §(T,n).
Proof. It follows from Lemma 5.8 and [6, Theorem 5.10]. [ |

Proposition 5.10. For n > 3, suppose that w € :S:; satisfies ®(w) = (P, Q, ?P,O + p) for
some tabloids P, Q of shape A - n and rev, (¢) € Dom(F;).

—

1) If Q* is well defined for  ~ i # 7, then ®(w*) = (P, Q*, Spo++ 7). Similarly,
if P* is well defined for * ~ i # 77, then ®(*w) = (P*,Q, Sp. o + D).
2) If Q* is well defined for * ~ 7, then ®(w*) = (P,Q% §’P,Q* + 0 +
3(0, 1) — X(O,n)). Similarly, if P* is well defined for x ~ 7, then ®(*w) =
(P*,Q,Spg+ 7B — 321+ 5 (P,n).
In particular, if ®(w) = (P, P, p) for some P such that P* is well defined, then ® (*w*) =

(P*,P*, p). (Here *w* = (*w)* = *(w*).)

Proof. By symmetry, it suffices only to prove the statements for w* when Q* is well
defined. If x ~ i # n, then by [6, Theorem 3.11] we have ®(w*) = (P, Q%,
(P, Q%, §)P,Cl* + p). Now if * ~ 7z, then again by [6, Theorem 3.11] we have

—

Sp,a"‘ﬁ) =

d(w*) = (P,Q", §po+ 4+ 7(Q1) - T(Q,n)

= (P,Q" Spo-+ B+ 8(Q,1) — 5(Q,n)

by Lemma 5.9. |
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Example 5.11. Letn =9 and w = [-1,3,10,-5,14,-3,18,7,2] as in the Example 5.6.
Recall that ®(w) = (P,Q,Sp, + p), where P,Q, S, are as in the Example 2.1, and
7 = (0,1,2). For x ~ 9, we have w* = [-7, 3,10, —5, 14, —3, 18, 7, 8]. Then one checks that
o (w*) = (P,Q*,(0,0,0)). Since for P = % and Q* =

we have Sp 5. = (0,—1,-2),

O~ [+ |
({e] (o] (ep]
— N o
W oo fjor
(o2] (<=1 /N

1
the claim of Proposition 5.10 reduces to
(0,0,0)=(0,-1,-2)+(0,1,2) + §(Q,1) — 5(Q,9).

The latter is true since 8(Q,1) = §(Q,9) = (0,0, 0).

6 Distinguished Involutions

Here we study distinguished involutions defined in [17]. Originally, we say that w € §;

is a distinguished involution if its Coxeter length equals a(w)+2 deg P;

id.we Where a(w) is

the value of Lusztig’s a-function and P;; ,, is the Kazhdan-Lusztig polynomial attached
to (id, w). However, this definition is equivalent that t, is the unit element in Jp 1
where I' is the left cell containing w, see 2.1. Recall that D is the set of such elements in

S,,. The main result in this section is as follows.

Theorem 6.1. Suppose that w € 3; Then w € D if and only if ®(w) = (T, T,0) for

some T.
Its proof consists of the following three lemmas.

Lemma 6.2. LetI';,I',, '3, ', be left cells of :S‘; contained in the same two-sided cell.
Then,

(a) Fl_l N I'; can be obtained from I‘z_1 NI, by applying (left and right) star
operations and (left and right) multiplication by w.

(b) TI'; can be obtained from I', by applying right star operations and right
multiplication by .

(c) Ffl N T, can be obtained from Fgl N T, by applying the map w +— *w*
(where the left and right star operations correspond to the same i for some

1 <i < n) and conjugation by w.

Proof. It is a reformulation of [30, Lemma 2.2.1, Corollary 2.2.2, Proposition 2.2.3]
based on the result of [25]. Also note that (b) follows from (a) and (c) follows from (b). W
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Lemma 6.3. If w € D, then *w* € D (where the left and right star operations

correspond to the same i for some 1 <i < n)and ewe ! € D.

Proof. It directly follows from [30, Proposition 1.4.6]. |
Lemma 6.4. D NS, consists of all the involutions in S,,. In particular, w{; € D.

Proof. This follows from [17, Corollary 1.9(d)] and the fact that every involution in S,
is distinguished. n

Proof of Theorem 6.1. By Lemma 6.2(c) and Lemma 6.3, any distinguished involution
can be obtained from another one in the same two-sided cell by applying w +— *w*

and w — owe !

several times. Therefore, by Propositions 5.5 and 5.10, it suffices
to show that ®(w) = (T, T,0) for at least one distinguished involution in each two-
sided cell. Now the result follows from the fact that wj; € ¢, N D by Lemma 6.4 and

®(wg) = (T2, T2, 0) by Lemma 3.3. n

6]9] .
8] . Applying

the reverse AMBC construction to (T,T,0) we get the distinglﬁﬁled involution
[-3,5,3,7,2,10,4,8,9] € S,.

2
Example 6.5. Let n = 9 and consider the tabloid T = |3
1

(S21 BN| 1

7 Structure of Asymptotic Hecke Algebras Attached to Two-Sided Cells

Let ¢ = ¢, for some A  n and recall the definition of € : (Ti‘n)*1 N T{" — Dom(F,) in
Section 4. A conjecture of Lusztig [19], proved by Xi [30] for G = GL,,, states that there
vy (R(F})) where x = ﬁ Furthermore,
it restricts to an isomorphism ngn)_lmrgn ~ R(F,;), which maps t,, to V(& (w)).

exists an isomorphism between 7, and Mat

One problem of Xi's construction is that the isomorphism jc,\ ~ Mat,, , (R(F,))
is not canonical; it depends on the choice of the identification of each left cell in ¢, with
I'73" using star operations and multiplication by w. Here we propose a more canonical

construction of such an isomorphism using AMBC.

Definition 7.1. For an element w € :S‘; such that ®(w) = (P,Q, p), we denote
t,, by t(P,Q, 0). (Here ¢ is always dominant with respect to (P,Q).) Also we define
tp o ==t(P,Q,Sp ).

Our claim is that there exists an isomorphism such that t; 5 corresponds to an

“elementary matrix”. The main result of this section is the following theorem.
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Theorem 7.2. Let us label the left cellsinc = ¢, by I';, 'y, ..., Fx' Then there exists
oy (R(F,)) such that if w € I;' NT; and
d(w) = (P,Q,Spq + p), then T(t,) is the matrix whose (i,j)-entry is V(rev, (7)) and

an algebra isomorphism Y = 7, : J, — Mat
other entries are zero.

It is clear that Y gives a well-defined isomorphism of abelian groups. Therefore,

- =

the theorem is true if for any g, o’ € rev, (Dom(F,)) we have

tP,Q,Spo+7) QR Sgr+7B) =800 D> M,y PR Spp+ 7",

0

where V(rev, (p)) ® V(rev,(0") = @3, V(rev, (5" N®™er»" . This equation holds when
Q # Q' by [17, Corollary 1.9]. Thus, we may assume that Q = Q’, that is, we only need to
show that

t(P,Q,Spo+7P) t(QR,Sgr+70)= Zmp,p,lp/,t(P,R, Spr+ 1. (1)

I

Example 73. Letn = 9 and w = [-1,3,10,-5,14,-3,18,7,2]. Then ®(w) =

[-1,
= . 2]46 3[5]7] R
(P,Q,8pq + p), where P = [3[7]8], Q = [1]2[8], Spq = (0,—2,-1), and p = (0,1,2).
1[5[9 4[6]9

= - 4|5
Letw =[-6,2,-4,15,18,-2,8,22,10]. Then ®(w’) = (Q, R, Sort p"), where R =[2[7
13

8
9],
6

ga,R =(0,1,—-1), and ,57 = (0,0, 2). Tensoring GL, representations with highest weights
(2,1,0) and (2,0,0) we get

V(Z,1,09V(2,0,0=V410eV320eVE3E1,1)eV(Z21).

Taking into account that E’P,R = (0,—1,—-2) and applying inverse AMBC, we conclude
that

tw - tw =Y_7,3,-5,18,19,—3,7,23,81 T Y{-7,7,-5,14,18,—3,8,19,12] T {(-5.3,-3,14,18,2,7,19,8]

+ t[75,7,73,10,14,2,8,18,12]'

For example, (0,—1,—-2) + (0,1,4) = (0,0,2) and &~ 1((P,R,(0,0,2)) =[-7,3,-5,18,19,
—3,7,23,8]. On the other hand, t,, - t,, = 0 since R # P.
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The rest of this section is devoted to the proof of Equation (1). We start with the

following lemma.

Lemma 7.4. For some u,v € :S’; suppose that t,t, = 2we§; Yuv,w1

(1) If v* is well defined for some % ~ i, then w* is also well defined when
Yuvw-t # 0, and we have t,t. =3 5y, o -1ty

(2) If *u is well defined for some * ~ i, then *w is also well defined when
Yuww-1 #0,and we have t.,t, = > &y o 1ty

(3) Suppose that t,t, # 0. Then for some * ~ i, u* is well defined if and only if
*v is well defined. In this case, we have t.t., = > 5 vy vw-1tw-

(4) Foranyi,j k€ Z, we have t,i,oitovet = 2ywes, Yur,w toiwe*-

Proof. The 1st three statements follows from [30, Theorem 1.6.2]. The last one follows
from the fact that t,,, = t,t,, tye = twt,, and t, 1 = t; 1. [

® W' "We w '

- =

Now suppose that one of p, p’ € rev, (Dom(F,)) is determinantal. Then we know
that

V(rev, (p)) ® V(rev, (p)) ~ V(rev, (p) + rev, (p)).
Here we prove (1) in an analogous situation.
Lemma 7.5. Suppose that one of 7, 3’ € rev, (Dom(F,)) is determinantal. Then
t(P,Q,Spg+ P) HQ,R,Sqr+8)=tP,R,Spr+ 5+ 5.
In particular, we have tp otg g = tp g-

Proof. For tabloids P, Q,R of the same shape we denote by ‘PB(P, Q, R) the statement
that the equation above is true for the triple (P,Q,R) and any g, p’ such that one of
P, P’ is determinantal. The proof of this lemma consists of three steps.
(1) B(T,T,T) holds for any tabloid T. We already know that PB(T2", T3", T3™)
holds by Theorem 4.2 and [30, Theorem 8.2.1]. Thus by Lemma 6.2, it suffices
to show that

BT, T,T) = BT, T, T, P@(D), o(T), o(T)),
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where T* is well defined for some * ~ i. This follows from Proposition 5.5,
Proposition 5.10, and Lemma 7.4.

B(T, T, T') holds for any tabloid T and T’ of the same shape. We know that it
holds when T = T’ by the 1st step. Thus again by Lemma 6.2, it suffices to
show that

SB(T, T, T') = P(T, T, T*),B(T, T, o(T)).

where T'* is well defined for some % ~ i. We again use Proposition 5.5,

Proposition 5.10, and Lemma 7.4. First of all, if x # 7, then from
(T, T, /_0)) (T, T/, §>T,T’ + 7))/) =T, T/, E)T,T’ + 7)) + 7))/)

we have

—

T, T, 8) (T, T, Sppu+8) =T, T, Sppu + 8+ 7))

thus B(T, T, T™*) holds. Now if * ~ 7, then we have

—

WT, T, B) - «T, T, Sppu+ B + 3(T', 1) — 5 (T',n))

=T, T Sppu+ B+ B + (T, 1) — 3(T',n)).

Thus, if we replace g’ by ' — K(T/, 1)+ S’(T/, n), then we see that B(T, T, T™*)
also holds in this case. Note that K(T’, 1) and E)(T/,n) are determinantal;
— o

thus, one of 7, ¢’ is determinantal if and only if one of 7,78’ — S(T, 1) +

X(T’ ,n) is determinantal. Finally, we also have

T, T, B) - H(T,&(T), Sg iy + B — 8(T',n) =T, &(T), Sy + 0
+7 = 8T n)).
Thus, if we replace 3’ by B’ + 8 (T",n), then it follows that (T, T, »(T"))
holds.

B(P,Q,R) holds for any tabloids P,Q,R of the same shape. Similarly to

above, it suffices to show that

PP, Q,R) = P(P,Q",R), PP, w(Q),R),
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where Q* is well defined for some % ~ i. We again use Proposition 5.5,

Proposition 5.10, and Lemma 7.4. If % # 7, then from
t(P,Q,Spq+ P) - HQ,R,Sur+08)=tP,R, Spr+ 7 +7)
we have
t(P,Q*, Spo-+ B) - t(Q" R, Sgug+ ) =tP,R,Spr+ 70+ 7,
which implies (P, Q*, R). On the other hand, if * ~ 7, then we have

P, Q% Spo- + B +3(Q, 1) —8(Q,n)-HQ* R, Sg- g+ B — 3(Q, 1)+ 5(Q,n)
=t(P,R,Spr+ P+ 7).
Thus, by replacing ¢ and g’ with 7 — 5(Q,1)+ 8(Q,n) and o+ 5(Q,1) —
5)(0, n), respectively, we see that (P, Q*, R) holds. Finally, we also have
HP, w(Q), gp,w(a) + 70 —68(Q,n) - t(w(Q),R, §)w(o),R + 7'+ é8(Q,n)
=t(P,R,Spr+ P+ 7).

Thus, by replacing p and g’ with 7 + _6’((2, n)and p’ — 3(0, n), respectively,
we see that P(P, w(Q), R) holds.

The lemma is proved. n
Now we prove (1) in the case when P = Q = R without any restriction on 5 or p’.

Lemma 7.6. For any tabloid T we have

WT, T, 7) 4T, T, B) = D m, y o 4T, T, 3"

P

where V(revx(ﬁ)) (24 V(revk(f)”)) x~ @-pm V(I‘evk(/_o)//))@mﬂ,ﬂ/,p”_

Proof. By Theorems 4.2 and [30, Theorem 8.2.1], at least we know that the statement
holds when T = T?" Now it follows from Proposition 5.5, Proposition 5.10, and
Lemma 7.4. ]
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Proof of Theorem 7.2. Here we prove that equation (1) holds. By Lemma 7.5, we have

t(P,Q,Spq+ P) - HQ,R,Sqgr+ 7))

=t(P,P,p) - t(P,Q,Spy) - 1(Q,Q, 7)) HQ,R, SgR)
=t(P,P,p) - t(P,Q,Spy+ P -t(Q,R, SR
=tP,P,7) - t(P,P, 8- t(P,Q,Spy) - (Q,R, Sy R)

=t(P,P, 3) - t(P,P, ") - t(P,R, Spg)
which is the same as

> m, PP, B") t(P,R, Spp)

0

by Lemma 7.6. Again by Lemma 7.5 it is equal to

> m, , PR Spr+ 8",

P

which is what we want to prove. |

8 Equality of Two Lusztig-Vogan Bijections

Let G be a reductive group over C. Lusztig [19] defined a conjectural bijection between
Dom(G) and

0:={(N,p) | N € N, 7 € Dom(Fy)}/G,

where Fy is the reductive part of the stabilizer Z;(N) of an element N € N of the
nilpotent cone and the quotient by G is with respect to adjoint action on LieG. Later,
a similar bijection was also independently conjectured by Vogan [28]. We call such a
correspondence the Lusztig—Vogan bijection.

In this section, we focus on the case when G = GL,(C). Then we may and
shall identify O with | |,, , Dom(F,). Let us describe some properties of this bijection
as described in [17, 10.8]. Suppose that ® : Dom(GL,) — O = | |;, , Dom(F,) is such a
bijection. We regard Dom(GL,,) as a subset of:S‘; by identifying 17 = (1, iy, - - ., i4y,) With

wy = [npu; +1,npu, +2,...,nu, + 0l € S.. Then we have a decomposition of S, into
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double §,, cosets

weDom(GLy)

In particular, there exists an one-to-one correspondence between Dom(GL,) and double
S,-cosets of S, that is, Dom(GL,,) =~ S,\S,/S,. Indeed, by acting on an element of S,
by §,, on the right we can order the residues modulo n in the window in natural order,
while acting by S,, on the left we can then order the y; in the dominant order. It is clear
that in both cases the choice of an appropriate element of S, exists and is unique.
Recall that g;f is defined to be the set of minimal length elements in each left
S,,-coset. We define f:S;f = (:S‘;f)‘l N :S';f, that is, the set of minimal length elements
in each double §,,-coset. Then clearly we have a bijection between (S, and double S,,-
cosets in Sy, that is, (S, =~ 5,\S,/S,. On the other hand, from the result of Section 3,

we have fSZf = | |, (T~ NT$2", Therefore, we have a chain of bijections

~ _ = = )
O: | |yt i = 18, > S,\S8,/S, — Dom(GL,) = |_| Dom(F,).
An AFn

Now [17, 10.8] asserts that ® should satisfy that (:)((l“f"m)‘1 NI = Dom(F,), and

furthermore it induces an algebra isomorphism
Jireany-1npean = R(E,) ¢ by, > V(OW).

We already have one candidate deduced from the result of Section 7. Indeed,
recall that there is an algebra isomorphism 7, : Je — Mat, ., (R(F,)), which restricts
to an isomorphism 7; : kﬂrian)—lnrgan — R(F,). It sends t,, for w € (Ff"m)‘1 N Ieas to

rev, (p(w)) € Dom(F,). Let us define

O, : |_|(1“§f’m)—1 nreae |_| Dom(F,)
AFn AEn

to be the disjoint union of such bijections. Then it is clear that &, satisfies the properties

of ® above. In other words, the composition

©,: Dom(GLy) = S,\8, /S, =~ |_| s nri*® 25 | | Dom(F,) = 0
AFn AFn

is a Lusztig-Vogan bijection.
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There is another realization of such a bijection studied by Achar, Bezrukavnikov,
Ostrik, and Rush. First of all, for a reductive group G over C, Ostrik [22] estab-
lished such a bijection using a G x C*-equivariant K-theory of the nilpotent
cone of LieG. Also, Bezrukavnikov defined two bijections in terms of a bounded
derived category of G-equivariant coherent sheaves on the nilpotent cone of
LieG [3] and a tensor category attached to each two-sided cell in the affine
Weyl group of G [4]. Later, it is proved that they are indeed the same as one
another [5].

For G = GL,(C), Achar also described such a bijection in a combinatorial way
[1] and proved that this bijection is the same as the one defined by Bezrukavnikov and
Ostrik [2]. Later, his method is simplified by Rush [23, 24]. From now on, we denote this
bijection by ®, : Dom(GL,, (C)) — O.

Note that the bijection @, : | |;,,(I'$8) "1 N1 — | |, Dom(F,) induced from
©, satisfies the properties that ® above possesses. Indeed, ®, is derived from the
equivalence of two tensor categories Rep(Z;) — AJQc asin [5, 1.7]. (Here Z; is the stabilizer
of a nilpotent element N € LieGL,(C) whose orbit corresponds to the two-sided cell
c.) If we take the K-theory of this equivalence, then we have an algebra isomorphism
R(Fy) = R(Zy) = J(reamy-1nrean, Which sends 7 = O,(w) to t,, for w e (ream-tnrgn,
from which the claim follows. (Since F, is the reductive part of Z;, we may identify R(F;)
and R(Z,) canonically.)

We claim that these two realizations of the Lusztig—-Vogan bijection coincide,
that is,

Theorem 8.1. We have ®; = @,, or equivalently ©; = 0,.

Let us show how this can be used to compute Lusztig—Vogan bijection in

practice.

Example 8.2. Let n = 7 and take a dominant weight @ = (5,1,1,1,-2,-2,-2) €
Dom(GL;). Then wp = [36,9,10,11,—9,—-8,—7]. Rearranging this window in
increasing order, we find the element [-9,-8,-7,9,10,11,36] € f:S'\;f in the same

double S,-coset 87\:9;/87 as wyp. Applying to it the AMBC construction, we get

[N
(8] [e2]|

[7] . .
(T,T,(—2,1,3)), where T = [4] is a canonical tableau, as expected. We conclude

1]
that the Lusztig-Vogan bijection maps # = (5,1,1,1,—2,—2,—2) to the pair (A, 7),
where A = (3,3,1) is the shape of T and rev,(p) = (1,-2,3) € Dom(F,). (Note
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Example 8.3. Let n = 7. Take a nilpotent orbit corresponding to A = (2,2,1,1,1)
and let ¥ = (0,0,1,0,—1) € Dom(F,). We wish to apply the inverse Lusztig—

Vogan bijection to the pair (A, ). We have T(C;'Izl,l'l’l) =

inverse AMBC construction to the triple (Tf:;rzl,l,1,1)fT(Cia,rzl,1,1,1)r(Orof_lfor1))f we get
[-28,—-8,—-2,4,10,16,36] < fS7f. Rearranging this window in the order increasing
modulo 7, we get w = [36,16,10,4,—2,—8,—28]. This happens to be w for

78
“=(5,21,0,-1,-2,-5) € Dom(GL,), which is the desired answer.

, and applying the

9 Proof of Theorem 8.1

This section is devoted to the proof of Theorem 8.1. We start with the following lemma.

Lemma 9.1. For A = (1™2™2...)  n, we identify Dom(F,) = Hileom(GLmi) and
define 7, (r,s) = (py)i>1 € Dom(F,) where each p; € Dom(GL,, ) is set to bep;=0ifi#r
and p,. = (s,0,...,0). Set

Y, :={0}u {7, (r,s) € Dom(F,) | re i, s> 1}.

If @)fl and @51 coincideon | |, , ¥, C O, then ®; = 0,.

Proof. Let A,, to be the ring of symmetric Laurent polynomials of m variables. Then

— +1 —
Ay, =Zley, €y, ... 61, € I Wheree, = > o ;o X; X, -

-+ X; are elementary symmet-
ric functions. Thus, an algebra endomorphism of A, stabilizing e;,e,,...,e,_;,e,
is the identity on A,,. Since Zle,,e,,...,e,_ 1.6, = Zlh;,hy, ..., hy,_;,h,] where
h, = Zi1§izs~~sia X; X;, -+ X; are complete homogeneous symmetric functions, an
algebra endomorphism of A, stabilizing h;, h,,...,h,,_;,h, is also the identity
on A,,.

Since there exists a ring isomorphism R(GL,,) ~ A,,, which sends V(s,0,0,...)
to hg (see e.g., [27, Chapter 7: Appendix 2]), if we identify R(F;) with [, R(GLy,) ~
[li>1 A, then an algebra endomorphism of R(F,) stabilizing each element in Y; is the
identity. Now the lemma follows from the fact that R(F;) — R(F;) : V(P) > V((©, 0

@1_1)(7)’)) is an algebra automorphism by the argument in the previous section. |

Remark. Indeed, the proofis still valid if we replace Y, by {ff,\(?‘, s) € Dom(F,) | r € A,

1<s<m,}.
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For a partition A, we define 20, (0) be the Young tableau of shape A whose i-th

column is filled with )»Q -1, )\g -3,...,3— kg, 1-— A;. from top to bottom. For example, we
have
3|1
2 -1
Wz3.221)(0 =0 |-1
—2(-3
—4

Also, when i € A we define the Young tableau 20, (r, s) of shape A as follows. The entries
of 2, (r, s) are the same as those of 20, (0) except (1,1)-entries for 1 <i < r. Let us write
a;, b; to be the (1,17)-th entry of 2, (0) and 20, (r, s), respectively, for 1 <i < r. Then b; are

uniquely determined by the following conditions.
e a;<b;forl<i<r.
e by>by,>-.->b,.

o Yiibi=s+3i,a;
o« >, bl? is the minimum among the choice of b; satisfying the properties

above.

For example, we have

61
~1
Wi 3021)(2,5) =01
—2|-3
—a

(Note that only (1,1)- and (1,2)-entries are different.)

We define i, (0) (resp. i,(r,s)) to be a dominant weight of GL, consist-
ing of entries of 2U,(0) (resp. 2, (r,s)). For example, we have /_[(3'3’2,2'1)(0) =
(4,3,2,1,1,0,—1,-1,-2,-3,-4) and Z(33221,(2,5) = (6,6,2,1,1,0,—1,~1,-2, -3, —4).

Lemma 9.2. ©,(Z,(0)) = 0 and O,(1Z,(r,s)) = p,(r,5).

Proof. @ We briefly review some properties of ®, following [23]. For A + n and

1 < j < Ay, it is clear that Zi>J m; = )L}. Thus, we may consider a standard block
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diagonal embedding ¢;: [];.; GL,,, — GLAJ/,. Let ¢ = [[;¢ = [li<j<n, ({izj GLim, — GI',)L})
be a product of such morphisms. On the other hand, we also define §; : GL,,. — (GL,)" to
be the diagonal embedding, and let & = [[;¢; & : [1;c,(GL,,, — (GLmi)i) be their product.
Then since HieA(GLmi)i = [liea( lisj GLm,) = [11<j<, ({1i>j GLp,,), the composition ¢ o & :
[Ticx GLm, — Tli<j<s, GLA]/, is well defined. If we let L, to be [];;;, GLAJ/,, then ¢ o &
defines a morphism F, =~ Hie/\ GLmi — L,. For example, if A = (4,4,2,1,1), then
¢ o0& :GLy x GLy x GLy — GLg x GL3 x GL, x GL, is defined by

A 0 O
A0
(A,B,C) — 0 B O ( ),A,A
0 0 C

Let us investigate (¢ o §)* : R(L,) — R(F,) in terms of Laurent symmetric
functions. Recall that R(GL,,) ~ A,, where A,, is the ring of symmetric Laurent
polynomials of m variables. Therefore, we may identify R(F,) with &, A(X;) where
A(X,) is the ring of Laurent symmetric functions with variables X; = (x;1, X;5, - - - + Xim,)-
Similarly, we identify R(L;) with @; A(7j) where A()_/’j) is the ring of Laurent symmetric
functions with variables )71- = Vj1/ Vjgr--- yﬁ}). Then direct calculation shows that
(¢ o £)* maps f(f/}) € ®jA(?j) to f(?(’zj) where 3{21' is the union of X; for i > j.
Furthermore, if P € ®j A(?j) is homogeneous in Ujf/’j, then the image (¢ o £)*(P) is also
homogeneous in Ui}’i and (¢ o &)* is degree preserving. For example, if A = (4,4,2,1,1),
then

< Oé)*(f(Ym,Yzz,st)) =f(X11,X12,X21)-
Now suppose that we are given § € Dom(F,). For Vv € Dom(GL,), defined

v’" € Dom(L,) which satisfies the following conditions.

(a) As multisets, V is the same as the union of parts in V.

(b) Let A, € Dom(L,) be the half sum of positive roots of L,. Then V' — 24, is
dominant.

(c) Let V(V' — 2A,) be the irreducible representation of L, of highest weight
V' —2A,. Then V(p) appears as an irreducible constituent of (¢ o &)*(V(V' —
2A,)), that is, the restriction of V(V’' — 2A,) to F, under ¢ o €.

Let X = {V € Dom(GL,) | such V"’ exists}. Then according to [2] and [23], we have that
©,(K) = p if and only if i € X and ||| = min{||V|| | V € X3}. Also in this case i’ is

uniquely determined.
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We set I’ = @ + 2A; where & = (¢;);j<;, is such that o; = (@1, @, 0j0) €
J J
R(F,) ~ Q; A(X;) and R(L;) =~ ®; A(7j), the irreducible representation V(&) € R(L,)
corresponds to ]_[J- saj(f/’j) € ®j A(f/’j) where Sa,; is the Schur function corresponding to
a;. Therefore, (¢ 0 £)*V(d) € R(F,) is identified with []; saj(i'zj) e ®,; A(X)).
We first suppose that ©, (i) = 0. Then (c) implies that []; Saj(’_{zj) € ®; A(X;) has

Dom(GLA}). Thus, we have o;; > oy > -+ > aﬂ} by (b). Under the identification

a nonzero constant term. Let b be the smallest part in A, then we have a factorization
[1; saj(¥>J-) = j=p saj(¥zj) [-s saj(}’a-). Note that the variables X, does not appear in
[Tj=5 So; (X =)- Thus for [];s,, (X)) to have a constant term, we also have that X, does
not appear in ngb saj(}’zj). Now direct calculation shows that it is only possible when
there exists ,BJ- € Z for 1 < j < b such that oj = (ﬁj,ﬂj,...,ﬂj) and Z]l-’:l ,BJ- = 0. Then
[Tj<» Saj(})z}') = 1and []; Saj(;{zj) = [ljs» Sot]-(}_{zj)-

We iterate the above argument by enlarging b to cover all the parts in A and
conclude that there exists /3]- € Zfor 1 <j < A, such that oj = (,Bj,,Bj, .. ,,Bj) for all j and
ZJ’-CZI B =0 whenever k € A. In this case, we have Hj saj(E’Zj) = 1, thus the assumption
is satisfied. On the other hand, if we let (A,); be the component of A, corresponding to

GL,,, then from the definition we have
J

2(7;); = (,\} —1,) —

/ /
] 3,...,3—Aj,1—kj).

Therefore, in order to find jZ, we need to minimize

DB +M =D BN =+ (B + 1 - 1))
j

subject to the condition Z}-‘Zl B =0 whenever k € A. Now it is easy to show that the
minimum is achieved when & = 0, that is, i = 2A,. Thus, it follows that Z = 1, (0) by
the definition of 20, (0).

We proceed to the case when ©,(i) = 7, (r,s) and argue similarly to above. The
condition (c) implies that <]_[J saj(fzj),ss()_{’r)> # 0 where ( ) is the pairing on @ A(X})
induced from the standard bilinear form on the ring of (Laurent) symmetric functions.
In this case, it is not hard to show that there exists ,Bj € Zforl <j<x; and Y € N for
1 <j < rsuch that

(ﬁ]lﬂ]l!ﬁ]) ifr<j§)\1r
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Z};l B; = 0 whenever k € A, and Z]r':1 y; = s. Now in order to find i1, we need to minimize

DBy AN =D+ B+ N =+ B+ 1= 2DD)
1<j<r

+ D (B A D2+ BN =3 (B 1 - AP

r<j<m

subject to the condition that Z};l B; = 0 whenever k € A and Z}:l ¥j =S.

It is again easy to show that g; = O for each j; thus, it suffices to minimize
2a<j<r + )»]/- — 1)2. Also it follows that @ + 2A, is obtained from 7z, (0) by replacing
M—-Lx,—1,... A, —1withy, +2] — 1,9, +25, —1,...,y.+ A. — 1. Now it is clear that
{bi,by,....b} = {y; + A} — 1L,y + 1, —1,...,¥.+ A, — 1} by considering the defining
conditions of b;. (Recall that b; is the (1,i)-entry of 20, (r,s).) Thus, it follows that

= £, (r,s) as desired. [ |

By Lemmas 9.1 and 9.2, in order to prove Theorem 8.1, it suffices to show that
©,(&,;(0)) = 0 and ©,(Z,(r,s)) = p,(r,s). We analyze this condition more directly in
terms of AMBC.

Lemma 9.3. Suppose that we are given A - n, il = (Ky, Mo, .., y) € Dom(GL,,), and
p € Dom(F;). Then the following are equivalent:
1) ©,(w)=7.
(2) If w = (TP, TP, rev,(p)), then w and wy are in the same double
S,,-coset.
(3) If w = (T, TP, rev, (p)), then {w(1), w(2),..., w(n)} = {nu; + 1,nu, +
2,...,nu, +n}.
(4) Let w = W(Ty®", TP", rev, (p)) and R C B, be a set of representatives in
each translation class by (n, n). (For example, we may take R = {(x, w(x)) |
x € [1,n]}).) Then {D(x) | x € R} = i as multisets, where D(x) is the block
diagonal defined in 2.3.

Proof. (1) and (2) are equivalent by the definition of ®,. Now if (3) holds, then since
wp = [nu, + 1,nu, +2,...,nu, + nl, there exists o € S,, such that wpo = w. Thus,
(2) holds. Now let us assume (2). Then w € (Ffan)*1 N I3 thus, it is of the minimal
length in its double S, -coset. On the other hand, it is easy to show that wy is of the

minimal length in its right S, -coset. Thus, there exists o € S, such that wpo = w,
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which implies that {w(1), w(2),...,w(n)} = (we(),wi(2),..., wepm)}. Aswy = [nup, +
1L,nuy,+2,...,nu, +nl, (3) holds.

If we assume (3), then (4) clearly holds. Now we assume (4). Let &' =
(uy, o, ..., uy) € Dom(GL,) be such that w and Wy are in the same double S, -coset,
which always exists by the bijection Dom(GL,) ~ S,\S, /S, =~ Ll (T~ nrsan, Ag
(2) implies (3), we have {w (1), w(2),...,w(n)} = {nu} + 1,nu, +2,...,nu, + n}. But

then {D(i,w()) | i € [1,n]l} = &’ as multisets, thus { = &’ by assumption and thus
(3) holds. [ |

Therefore, in order to prove Theorem 8.1, it suffices to find a set of representa-

tive R C B,, in each translation class by (n,n) such that

{D( ) | } '“)L(] rs) Wl]en w \IJ(T)tan Tcan )\(_, ( )))
X X € R = r 4 rev ,0 A r, S ’
! )\.(O) ‘Nhen w = \II(T)Lca[ T( an 0)‘

From now on, we proceed by induction on the number of rows in 1. We first
consider one-row case, that is, A = (n). For s > 0, there exist a,b ¢ Nsuchthat0 <b <n
and s = an + b. Then i, (n,s) (when s > 0) consists of b numbers of (a + 1)s and (n — b)

numbers of as. Thus by Lemma 9.3 it suffices to show that

(wl),w?2),...,wn)}={a+Dn+ill<i<bluf{an+i|b<i<n}

:{S+1,S+2,...,S+n}

where w = W(T73", Ty2%, (s)). But this is obvious because w = w® in this case.

Now suppose that we are given A + n such that I(A) > 2 and assume that
Theorem 8.1 is true for partitions of < I(1) parts. We set w = W(T{?", TS, rev, (p))
for ¥ = 7,(r,s) or § = 0 and let ¥ € Dom(GL,) such that ©,() = 7. Also we let
n =n-—»x, xo= (Ag,A3,...) F n’ and w’ := fw(w). Then there exists g’ € Dom(F;)
such that w' = \I'(Tican,Tgan,'”) as a partial permutation. Indeed, p’ is defined such
that revx(f)’/ ) is obtained by removing the 1st entry from rev, (©). Thus in particular we

have

pi(r,s) if g =7,(rs)ywherer # 1, orr=2»x1 =2,,

0 otherwise.
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Let /£’ € Dom(GL,,) such that ©,(iI') = ¢’. Then by induction assumption, £’ = iZ;(0) if

p'=0and i’ = i;(r,s) if 8" = F;(r,s). Also, for some r > 0 we have

st(n'+1,n' +2,...n}, (" +1,n +2,...,n}) if =70, and r; > A,,
st(w) =
sto(n' +1,n'+2,...,n},{n +1,n +2,...,n}) otherwise.

(See 2.3 for the definition of st(w). Also, st (A,B) is a stream of altitude a yielding a
bijection from A + nZ to B + nZ. See [7, Section 3.4] for more details.)
Case 1. Let us first consider the case when r = A, > 1, st(w) = st,({n’ + 1,
n+2,...,n,{n"+1,n+2,...,n}) for some s > 0, and p’ = 0. We know that Theorem 8.1
holds when p = 0 since @fl(O) = @51(0); see Lemma 9.1 and the following remark. We
prove the statement by induction on s, increasing it by 1.

Consider the tableau 20, (1, s) and define its 20-channel as follows. It is a subset
of boxes such that (1) its intersection with each column has exactly one box; (2) there
exists k € Z such that the content of each box in it is either k or k + 1; (3) the boxes in

the right columns are not lower than the boxes in the left columns.

Example 9.4. Two 20-channels of the tableau 24 3 5 5 ;,(0) are shown below:

3(1]0 3/1|0
2 —1 —1
0 [—1 and 0|-1
—2|-3 —2|-3
—4 —4

Lemma 9.5. Each 20, (1, s) has either one or two 20-channels.

Proof. Let k be the filling of the single box in the leftmost column among those of
size 1 (which is possible as we assume that A; > 1,). By definition of 27, (,, 5), we know
k is non-negative, since b; > a; = 0 if i is the index of the column of size 1. It is clear
that any 20-channel must contain this k, and therefore it can only be filled with either
k-s and k + 1-s, or with k and k — 1. Furthermore, for each of those two choices there
is at most one 2U-channel filled with them, this is because no two entries in the same
column of 20, (1,, s) are consecutive integers. What remains to argue is that at least one

of those two 20-channels does exist.
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Assume that i is the smallest column index such that b; = k. First we suppose
that we can find one of the entries k — 1, k, k+ 1 in the column i — 1 below the 1st row. If
it is k — 1, then we can find either k or k — 1 in each column to the left of it. If it is k or
k + 1, we can find either k or k + 1 in each column to the left of it. Assume now that all
entries below the 1st row in column i — 1 are at most k — 2. This means that q;_; < k. If
we had b;_; > k+ 2, we could reduce b;_, by 1 and increase b; by 1 while decreasing the
sum of squares of b-s. Thus, b;,_; = k+ 1. Let j be the smallest column index such that
b; = k+ 1. Then if we can find an entry equal to k or k + 1 below the 1st row in column
j — 1, we can proceed to find such entry in each next column to the left. If not, we know
that aj_; < k+ 1. On the other hand, by assumption bj_l > k+ 2. Reducing bj_l by 1 and
increasing b; by 1 decreases the sum of squares of b's, which is a contradiction. This

completes the proof. |

Let w = W(T{", TS, rev, (5, (A, 5))) and assume that the entries of 20, (A, 5)
coincide with the multiset {D(x,w(x)) | x € [1,nl}. (This holds for W (T;?", T{3",0) as

observed in Lemma 9.3, which is the base case for our induction step.)

Lemma 9.6. Suppose the situation above. Then there is an one-to-one correspondence
between channels of w and 20-channels of 20, (1;,s) so that the multiset {D(b) | b €

CNI[1,n] x Z} is equal to the entries of the 2-channel corresponding to the channel C.

Proof. Throughout the proof, we are using the fact that w lies in both left and right
canonical cells, that is, w(1) < w(2) <--- < w(n) and wl1(1) < w1(2) <--- < wl(n).
Then from the condition it easily follows that if C is a stream of w then there exists
k € Z such that D(b) € {k,k + 1} for any b € C. Moreover, for any k € Z the set {(x, w(x)) |
D(x,w(x)) € {k,k + 1}} is always a stream of w by similar reason. Thus, it is indeed a
channel of w if and only if k and k + 1 together appear in 20, (1;,5) exactly A; times.
This is equivalent to the existence of a 2J-channel of entries in {k, k+ 1}. Thus, the result
follows. |

We proceed with the step of induction. Let us increase s by 1. By [7, Theorem
16.9], this results in a shift of size 1 of the most northeast channel of the indexing river.
(See [7, Definition 13.9] for the definition of the shift of a stream, [7, Definition 3.18] for
a river, and [7, Definition 16.6] for an indexing river.) In our situation, since A; > A, we
only have one river of w and thus it is equal to the set of all channels of w. When there is

only one channel, then it will automatically the most northeast channel and we setk € Z
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so that the set of entries of the corresponding 20-channel are either {k} or {k, k + 1}. If
there are two of them, the most northeast one corresponds to the 2J-channel of entries

in {k, k + 1} if the other one corresponds to that of entries {k, k — 1} for some k € Z.

Remark. Theorem 16.9 of [7] is stated in the generality when the streams have the
same flow as the width of the Shi poset. This is equivalent to A; = 1,. We are interested
in the case when A; > A,. The proof of all statement in [7, Section 16.1] however extends

verbatim to this generality as well.

It is easy to see that the multiset of block diagonals D(x) as we vary x over
equivalence classes in the most northeast channel changes so that we get one less of
D(x) = k and one more of D(x) = k + 1. Note that by construction the smallest entry in
the 1st row belongs to all (i.e., one or two) 2J-channels. Thus, it follows that k is indeed
the smallest entry in the 1st row.

We now argue that the same change happens to the total content of 20, (1, s)
as we increase s by 1, that is, 20, (A,,s + 1) is obtained from 20, (1,,s) by increasing
the smallest entry of the 1st row by 1. Indeed, keeping in mind that we are trying to
minimize > bf conditioned on knowing > b; and the fact that b; > a; > 0, it is not hard
to check that first, one is indeed related to the other by a single increase of an entry by

1, and second, it has to be the smallest entry. This completes the step of induction.

Example 9.7. The following illustrates how the 20-channels change as we start with
s = 0 and increase it until s = 5 for W 5 5 3,(4,s). In each step, the union of all boxes

belonging to some 20-channel is described as follows.

3(3]0 3131 3[3(2
—1|-1 = —1|-1 = —1-1
—2|-3|-3 —2|-3|-3 —2|-3|-3
-4 —4 —4
3(3]3 4133 4|43
2 21 211
= —1|-1 = —1]-1 = —1|-1
—2(-3|-3 —2(-3|-3 —2(-3|-3
—4 —4 —4
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Case 2. It remains to consider the case when st(w) = sty({n’ + 1,0 + 2,...,n},{n’ +1,
n+2,...,n)and p' = 7));(7", s) for some r and s. Here we define some ad hoc notations;
for an integer vector vV and i € Z, we define V® to be the number of i in V. Also let
vE) — Disi v and define V9, V(=) and V(<Y similarly. We start with the following

lemma.

Lemma 9.8. Let 1£5(0), iZ;(r, s) be as before. Here i’ can be any of 5 (0) or iZ;(r, s).
(1) For k € Z, we have '® + /®+D) < 3,.
(2) For k € Z, we have i;(0)® = 1Z;(0)%.
(3) For k <0, we have Z;(r,s)® = 1Z;(0)®.
(4) 5 r, )0 = 11509,
(65) 5,9 < iZ;:(0©.
6) w9 > 7= or equivalently /G > z/(=0,
(7) For k > 0, we have /G0 — /(<=0 < k.

Proof. (1) holds since each column of 2U;(0) and 2U;(r,s) does not contain any two
consecutive integers. (2) is obvious. (3) is also straightforward since the negative entries
of 2;(0) and 2U;(r, s) are the same. (4) follows immediately from (3). (5) follows from
the description of 20;(r, s). (6) holds because of (2), (4), and (5). For (7), by (3) and (4) it

suffices to prove the inequality when 1’ = Z;(0). But £;(0)=? = Z;(0)=? by (2), thus
the result follows from (1). [ |

Suppose that the window notation of w’ is given by
[Cl,Cz,...,Cl_[/(<0),bl7’/(0),...,bz,bl,aﬁ’/(>0),.-.,az,al,@,@,...,ﬂl.
In particular, we have
€] <Cy <+ < Cpu<o) < bﬁmm <.+ <by<b <apeo <--- < day < ay.
Furthermore, it is clear that
a a A 1(>0) b b b
7 = ([_1] —1,(—ﬂ —1,...,[ X —‘—1,[—1—‘ —1,[—2—‘ —1,...,[ oy,
n n n n n n
C721(<0) C c
[ 7 —‘—1,...,[—2-‘ —1,[—% —1).
n n n
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It follows that [$£] > 2, {%—‘ =1, and 5] < 0 for any a;, b;, c;.

Example 9.9. Letn=11,%=(4,3,3,1), and 3’ = (0,2,0) = 7 331)(3,2). Then
w’ =[-15,-6,-5,4,23,24,25,0,0,, .

Thus, we have

a, =25, a,=24, a3 =23, b, =4, cg=-5, ¢, =—6, ¢, = —15,

l_[/ = (21 2r 2: Or _1r _1r _2) - 3(313’1)(3, 2)

Indeed, 23 3 1,(3,2) is given by

The following lemma will turn out to be useful later on.

Lemma 9.10. LetkeZ_,,.
(1) Forl<i<®'®9andkeZ_y [4]-1<kifandonlyifi> /.
(2) Forl<i<p@/“QDandkeZ_y 1-[4%]<kifandonlyifi> n==h,
(3) Foranyl <i=<j=< @'<?, we have 2 LJ,\;;J < F—J] - [4].

n n

Proof. (1) and (2) follow from the description of i’ above. (3) is equivalent to that
if j —i > ki, for some k € N then (%’—‘ — [4] > 2k. This is easily obtained from
Lemma 9.8(1). n

We define (recall that n’ =n — ;)

Ai=n"+1-1i,q) for1 <i< g'¢9,

B, == +1-i,b) for1 <i< '@,

¢i=(a-[2pn+ia-[Z]n+a) for1<i< "0,
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Then it is immediate that
A;,B;, C; eBW/ﬂ({(a,b) €Z*|a>1,b>1}—{(ab)cZ?| azn’+1,bzn’+1})

and that {4; | 1 <i< Z/COYuB; |1 <i<ZOlu{C; |1 <i< 'Y} contains exactly

one representative in each translation class by (n,n) in B,,,. Also, we have
Al <nw Az <yw - <zvw Az =0) <nw B1s
Cy <vw C2 <nyw - <aw Cgr(<0) <zw B1.
By <yw B2 <yw -+ <nw BT[’(O)'
However, A; and C; are not comparable with respect to northwest ordering.
Example 9.11. When w' =[-15,-6, 5,4, 23,24, 25,0,%,7,7] as above, we have

A, = (7,25),A, = (6,24), A, = (5,23),B, = (4,4),C; = (13,5),C, = (14,6), C; = (23,7).

Thus, A, <yw Ay <yw Az <yw By and C; <y Co <yw C3 <yw B;. However, any of A;

and C; are not comparable.

In order to proceed the backward AMBC, it is necessary to calculate the
backward numbering dﬁi‘,’ﬁt(w)
numbering of st(w) such that st(w)~! = (0,0), that is, (0, 0) is labeled -1. Also we define

the numbering d on 4;, B;, and C; by

as in [7, Section 4.2]. For this, first we fix a proper

dA) =—i, dB)=—(Z'"%+i), d(C)=—i

and extend to the whole of B, by periodicity, that is, if b € B,,, then d(b + k(n,n)) =
d(b) + kx,. Note that this is the largest monotone numbering on {A;}; U {B;}; U {C;};,
which respects <y, subject to the condition that d(4;) = d(C;) = —1. (Recall that

7'>0 > 7<0) by Lemma 9.8.)
Example 9.12. When w’ =[-15,—-6,-5,4,23,24,25,%,0,%, ] as above, d is defined by
d(A;) =d(C)) =—1, d(Ay) =d(Cy) =—2, d(As) =d(C3) =—-3, d(B,)=—4.

Lemma 9.13. Let d be the numbering of B,,, defined above. Then d = daﬁ'ﬁ tw),
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16092 D. Kim and P. Pylyavskyy

Proof. Suppose otherwise. Then from the construction of backward numbering, there

exist b, b’ € B, such that b <y, b’ and d(b) > d(b’). Without loss of generality, we may

assume that b is one of A;, B;, or C;. We consider each case in the following.

(a)

(b)

(c)

Suppose that b = A; for some 1 < i < #'%. In particular, d(b) = —

If ' = A; + k(n,n) for some 1 < j < 29 and k e Z, then

we have d(b') = —j + kr; < —i, that is, k < TL Comparing the
y-coordinates, we also have a; + kn > a;, thatis, k > a‘T It follows

that & aJ < % < 1. But this is impossible since (a;, a,,...) is a strictly
decreasmg sequence.

b' = B; + k(n,n) for some 1 < j < ' and k € Z. This case we have

—=2/(>0)
d) = —(Z'C9 +j) + kry < —i, that is, k < “—ﬂl Comparing
the y-coordinates, we also have bj + kn > a that is, k > a‘be
ai—b- . . . . . .

It follows that WTJr]]—z < % < 1. This is again impossible since
(a,,as, ..., a,—;/(>0),b1,b2, ...) is strictly decreasing.

b = C; + k(n,n) for some 1 < j < 7<% and k € Z. This case we
have d(b') = —j + kA; < —i. Comparing the y-coordinates, we also have

(1—{ -I)n+c + kn > a;, that is, k > @—1+(%—| > % — 1. Thus,
[%] — 1 < k, which implies i > %'>% by Lemma 9.10. Thus, we have
WO >j>kn +i>ky + 200 > @9 by Lemma 9.8 (as A, > 4,),

which is not possible.

Suppose that b = B, for some 1 < i < &'9. In particular, d(b) = —(Z'¢? +1i).

Ifb' = A;+k(n,n) for some 1 <j < 2'>% and k € Z, then we have d(b) =
—j+kr < —(@C9 +i0), that is, kay <j—i— @’'*? < —i < 0. However,
comparing the x-coordinates we have /C® +1 —j < kn+ (n/ + 1 — i),

thatis, kn > /9 —j+i—n' = @/G0 —

—j+1>1i> 0. This is impossible.
b’ = B; + k(n,n) for some 1 < j < '@ and k € Z. This case we have
db) = —(BCY +j) + kry < —(@'>Y + ), that is, kA, < j— i. Since
J—il < @@ < i, < 1, by Lemma 9.8, it follows that k = 0. This is
impossible since it implies b’ = B;.

b’ = C; + k(n,n) for some 1 < j < /<9 and k € Z. This case we have
d) = —j+kr < —(@'CY +10), thatis, kr; <j—-i—-w"?Y <-i<0
since /<9 < /9 by Lemma 9.8. By looking at the y-coordinates, we
also have b; < (1 — (ﬁ—‘)n +cj+ kn, thatis, kn > b; — ci— (11— {ﬁ—‘)n >

b, —n > —n, thus k > —1. This is again impossible.

Suppose that b = C; for some 1 < i < /<9, In particular, d(b) = —
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o Ifb' = A;+ k(n,n) for some 1 < j < 7’9 and k € Z, then we have

d@®d’) = —j + kxr; < —i. By looking at the x-coordinates, we also have
n+1—j+kn>1-[%])n+i thatis, k> M+1 [2] > 14 %]
Thus by Lemma 9.10 it follows that i > 72/(=~®. But then we have /=9 >
w9 >j> ki +i> ki, + /=" but this is not possible by Lemma 9.8.
b’ = B; + k(n,n) for some 1 < j < 77’¥ and k € Z. This case we have
d®) = —(2'¢9 +j) + kr; < —i. By looking at the x-coordinates, we
alsohave (1 — [Shn+i < @'Y +1 —j + kn, that is, k > %
1-[4%] > 1-[4%]. Thus, i > #'“% by Lemma 9.10. Now we have
wWEY >+ @G0 > ka, +i > kay + <70 but this is not possible by
Lemma 9.8.

b" = C; + k(n,n) for some 1 < j < 2'<9 and k € Z. This case we have
a@d’) = —j+kr; < —i, thatis, k < %l By looking at the y-coordinates, we
also have (1 — {%])n#—cﬂ—kn > (1-[3%]hn+c;, thatis, k > - C’ +{ -‘
|—%-| > —1. Thus, k > 0, and since k = 0 case is not p0551b1e we have
k > 1. Also j > i. This time we compare the x-coordinates and obtain
A= [2]m+j+kn >0 -[Ehn+i, thatis, k> T+ [ 2] - [2]. Thus,
- [%1 as |i — j| < n. By Lemma 9.10, it implies that 2 LJL‘J <

k<L J i which is true only when < ll < 1. This contradicts that

We considered all the possible cases. The lemma is proved. |

P R _ . . .
We set R' := | |;1; R; where R; = {b € B, | d(b) = —i}. Then it is clear that R’ is

the set of representatives in each translation class by (n,n) in B,,,. Also for 1 <i < i,

let Z; be the zigzag with the back corner-post at st(w)» = (1 —i,1—1) and outer corner-

posts at the balls in R;. We set R := U:\;1 R; where R; = {inner corner-posts of Z;}. Then it

is also clear that R is the set of representatives in each translation class by (n,n) in B,,.

Our goal is to show that {D(b) | b € R} is equal to i, (0) or i, (r,s), and by Lemma 9.3 it

implies Theorem 8.1.

ForkeZand1 <i <, letusset

Apii=Ap, i +kn,n) if1 <kr +i< 00,
Ek,i = Bk)»1+i—l_/c)’(>0) + k(n, n) if 1 < k)\l + 1— /TL)/(>0) < ﬁ/(o),
Cri 1= Cpaypi + k(1) if1<kr +i< @20
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16094 D.Kim and P. Pylyavskyy

Note that d(Ay,) = d(By;) = d(Cy;) = —i. Also let N; = L%J so that Na, +i <
1= < (W; + 1)a; +1i. Since 7'EY — 29 < i, by Lemma 9.8, (N; + 2)A; +i > &'9.

Now we consider the three possible cases below.

(a) Suppose that (V; + DA, +i < Z'¢9. Then
Ri={Ap; |1 <k<N;+1}u{C,;|1=<k=<N;}.
(b) Suppose that 2’ < (V; + 1A, +i < Z’E?. Then
Ri={Ap; |1 <k<N}u{By ,}u{C,|1<k<N}
(c) Suppose that (N; + 1), +i > 2'E?. Then

Ri=1{A; |1 <k<N}u{C;|1<k=<N}.

Example 9.14. Suppose that n =15, A = (5,4,4,2), and p’ = (0,4,0). Thus,
w = lI/(T(Cflﬂlz), T(Céf,z,Z)' (0,3,0)) =[-21,—20,-8,-7,5,6,32,33,34,46,0,0,0,9, 7.
Then

Al = (10146)1 A2 = (9/ 34)1 A3 = (8! 33)! A4 = (71 32)1 Bl = (616)1 Bz = (515)1

Cy=(18,7), Cy=(19,8), C,=(31,9), C, =(32,10)

and d(4,) = d(C;) = —1,d(B;) = =5 —i. Also,

Ag;=A;for1<i<4, Cy;=C;forl<i<4,

By, =By +(15,15) = (20,20), Byg =B, = (6,6).
Thus, in particular d(Ao,i) = d(&o,i) — jforl <i<4and d(él,l) =1, d(éo,s) - _5
Recall the process to calculate inner corner-posts of a zigzag from the back and

outer corner-posts. If a zigzag Z consists of the back corner-post (a,,by) and outer

corner-posts (a;,b,),(ay,by), ...,(a,,b,) such that a; < a, < --- < a,, then the outer

20z AInr 6 uo Josn sjeusiey pallddy Aq 1 #5Z€9/1S091/81/€20Z/301e/ulwl/Wwod"dnooiwapede//:sdiy Wolj papeojumoq



Asymptotic Hecke Algebras 16095

corner-posts of Z is given by

{(ag, by), (@, by),...,(a,_1,b,), (a by}

We wish to apply this rule to each Z; for 1 < i < A,. However, in fact it is
sufficient only to calculate the block diagonals {D(x) | x € Z;} for each Z; for our purpose.

To this end, we simplify the argument by exploiting the notion of block diagonals.

Definition 9.15. For (x,y) € Z?, we define the n-block coordinate (or block coordi-

nate if there is no confusion) of (x,y) to be ([£]—1,[£] —1) and write [(x,y)], =

([£]-=1,[£] —1). For a subset A C Z?, we define [A], := {[b], | b € A}. Note that if

n

[b], = x,y), then D(b) =y — x.

For 1 <i < A, direct calculation shows that [5t(w)(_i)]n = (—1,—1) and also

[, = (e[ 5t em)- [l = o, = (een- [554]5)

Therefore, [R}] and {D(x) | x € R}} for 1 <i < 4, is given as follows.

(a) Suppose that (N; + DA, +i < Z'¢9. Then

[R;]nz[(k,’r%—‘+k—l)|lgk§m+1]

u[(k+1—[%—‘,k)|1§k§Ni],

{D(X)lXERQ}:”M—‘—l|1§k§Ni+1}I_IHM—‘—Hlfngi].
n n

(b) Suppose that /9 < (N; + 1)A; +i < @Y. Then

—
=
-
N
Il

[(k,’r%—‘+k—l) | 1§k§Ni}|_|{(Ni+1,Ni+1)},=

u[(kﬂ—[%w,k)uskgzvi],

n

D) | x € R} = ”%—‘—1|1§k51vi]u{0}u”c’“1+’w—1 | 1§k§Ni].
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16096 D.Kim and P. Pylyavskyy

(c) Suppose that (N; + 1)A; +1i > 2'E?. Then

[R;]n=[(k[%—‘+k—1) |1§k§Ni]

u[(k+1—{%—‘,k)|1§k§Ni],

{D(X)lXGRQ}:”%—‘—Hlikfmlu”%—‘—Hlfkgm .

Now we calculate [Ri]n for each 1 < i < A;. Note that there are no two balls
b,b' € R, such that [b]n and [b’]n have the same x or y coordinate. Thus, to this end,
we may apply the usual backward AMBC process on {[(1 —i,1 — )] } U [R;], directly; it
will give the same result as applying the backward AMBC process on {(1 —i,1 — 1)} UR;
and calculating the block coordinates of the result. Now direct calculation shows the

following.

(a) Suppose that (V; + DA, +i < Z'¢9. Then

[Ri], = [(k_l,[%%k—l) | 15ksNi+1}u{(Ni+1,Ni)}

u{(kJrl—(%—‘,k—l)kagNi],

{D(x)|xeRi}=”%—‘ugkgzvﬁl]u{—1}u”%—‘—2|15k51\q].

(b) Suppose that @'? < (V; + 1)A; +1 < @Y. Then

[R], = [(k—lw%—‘jtk—l) | 1§k§Ni]

UA{(N;, N; + 1), (N; + 1,N;))

u[(k+1—[%1,k—1)|1gkgzvi],

[D(x) | x € R;} = ”%—‘|1§k§Ni]u{l,—l}u[’r%—‘—zufkfm].
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(c) Suppose that (N; + 1)A; +1i > 2'E9. Then

[R], = [(k [%—‘ +k— 1) |1 <k<N;tu{(v;,N;)}

u[(k+1—[%w,k)|1gkgzvi],

{D(x)|xeRi}=”%—‘|1§k5Ni]u{O}u”C"“*’W—m15k§Ni].

n

Example 9.16. Recall the example above when n = 15, A = (5,4,4,2), p’ = (0,4,0), and
w = \IJ(T(Cfiz), T(sz,Ii,Z)' (0,3,0)) =[-21,—-20,-8,-7,5,6,32,33,34,46,0,0,0,9, 7.
We have

{stw) "V} UR] ={(0,0),4q,,B, ;,Co 1} = {(0,0),(10,46), (20, 20), (32,10)},
{stw) TPYUR, = {(=1,-1),4g,Copt = 1{(=1,-1),(9,34),(31,9)},
{stw)"PYURS = {(—1,-1),A03,Cos} ={(—2,—-2),(8,33),(19,8)},
{stw)PYUR, = {(=1,-1),4g4,Coa} =1{(=3,-3),(7,32),(18,7)},

{stw) "} URg = (=1, 1), By 5) = {(—4,-4),(6,6)}.
Therefore,

[(stw) VY UR]| = {(-1,-1),(0,3),(1,1),(2,0)},
[(stn) "2} UR,| = {(~1,-1),(0,2),(2,0)},

[(stn) "D} UR,| = {(~1,-1),(0,2),(1,0)},

[(stwn) P} UR,| = {(—1,-1),(0,2),(1,0)},

(st Py U R | = {(—1,-1), (0,0},
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16098 D. Kim and P. Pylyavskyy

By applying the backward AMBC algorithm to each [R;]n, we get

[R,], = ((-1,3),(0,1),(1,0), (2, - D)},
[R,], = {(=1,2),(0,0), (2, - 1)},
[Rs],, = {(=1,2),(0,0), (1, -1)},
[R,], = 1(=1,2),(0,0), (1, -1},

[Rs],, = {(=1,0),(0,—1)}.
Note that this is consistent with

R, = {(0,46), (10, 20), (20, 10), (32,0)},
R, = {(—1,34),(9,9), (31, -1)},
Ry ={(—2,33),(8,8),(19,—2)},
R, ={(-3,32),(7,7),(18,-3)},

Ry ={(—4,6),(6,—4)}.
Furthermore, we have

{D(x) | x € R}} =1{3,0,-2}, {D(x) | x € Ry} = {2,-2},

{D(x) | x € Ry} = {D(x) | x € Ry} = {2, -1}, {D(x) | x € Rg} = {0}
and

{Dx) | x€R}}=1{4,1,-1,-3}, {Dx) | x € Ry} ={3,0,-3},

{D(x) | x € Ry} = {D(x) | x € Ry} = {3,-0, -2}, {D(x) | x € Rg} = {1,—1}.

From this calculation, we derive the relations between & and ’. (Recall that
W= | Z52

e Forj> 0, ZU+D = ') and g7~ = gD,

o ZO=#i|l<i<ir, V;+Dr, +i>g'EY)

o HW=#{il1=i=<h, @CY < W+ Dy +i< 1=

o BUV=#{i|1<i<i, W;+Dr +i< /&0

20z AInr 6 uo Josn sjeusiey pallddy Aq 1 #5Z€9/1S091/81/€20Z/301e/ulwl/Wwod"dnooiwapede//:sdiy Wolj papeojumoq



Asymptotic Hecke Algebras 16099

Now it is clear from the description that #(V) = /G0 -7’0 = 7770 Also by Lemma 9.8,

gD =0 - g0 = 1050 - 100 = 10 = 3 (-DF
k>1

Since ey KV = Ay + Xjez 1Y, it follows that Z©@ = 37, (—=1)k5,.

Now suppose that ' = ;(0). Then it is easy to see that i, (0)V+) =
2509, 2, (0) 7D = ;0P forj > 0 and 7,00 = #{i | 1 <i < A,A, € 27} =
Zkiz(—l)kkk. By comparing this with the relations between 1 and 1/, we conclude that
I_L) = I_L))L(O)-

This time suppose that i’ = 1;(r,s) where r € A. Then by Lemma 9.8 and the

argument above it is still true that 1Z, (s, )7~ = Z;(s, ) for j > 0 and also

s =2,0 Y =#i|1 <i<i,rj—1e2Z)=> (-D¥ 1
k>1

2sn@ =2, 0@ =#i|1<i<x,2e2Z)=> (-Dfn.
k>2

(The 2nd equation holds since r < 1,.) Also from the construction of 2U; (r, s) and 2, (r, s),
it is also easy to show that i, (s, U™V = 1Z;(s,r)¥ for j > 0. Now it follows from
ez KT, P = r; + ez /_[g) that £, (s, )V = 15(s,r)©. But this also shows that
I = £, (s,r) by considering the relations between 1 and 12’

This completes the proof of Theorem 8.1.

A Asymptotic Hecke Algebras for SL,, and PGL,,

So far, we discussed the extended affine symmetric group and its asymptotic Hecke
algebra. In terms of representation theory, it means that we only considered the affine
Weyl group of GL,,. In this section, we observe how our result can be extended to simple
groups of type A, especially SL,, and PGL,,. For simplicity, we assume that GL,,, SL,,, and
PGL,, are all defined over C.

A.l1 G = SLy case

Note that @” € S, is in the center of S,,. The affine Weyl group of SL, can be identified
with 3;/ (@™), and its two-sided cell (resp. left cell, resp. right cell) is given by the image
of such a cell of:S'; under the quotient map 7 : :S‘Vn —» :S;/ (w”) In particular, its two-sided

cells are also parametrized by the partitions of n.
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Likewise, for a two-sided cell ¢ of S, we define jQSL = J./(@" — 1). Then it is
clear that this is an asymptotic Hecke algebra corresponding to SL,, attached to the two-
sided cell 7 (c). Now the following theorem gives a structural description of jQSL in terms
of Theorem 7.2.

Theorem A.1. For ¢ = c,, the isomorphism in Theorem 7.2 factors through
I~ Mat,, (R(F,))/(@" — 1) ~ Mat , (R(F,)/ (V())),

where both Te and Mat, , ,(R(F,)) are regarded as Zlw™"]-algebras and V(1) is the
irreducible representation of F, of highest weight A = (A;,1;,...) € Dom(F,). In

particular, ngL is a matrix algebra.

Proof. The 1st isomorphism is obvious. The 2nd isomorphism follows from the
fact that if ®(w) = (P,Q,p), then ®w") = (P,Q,p + A), which follows from
Proposition 5.5. u

Remark. A similar statement can also be found in [30, Section 8.4].

A.2 G = PGLy, case

Consider the case when G = PGL,,. Then its affine Weyl group is

S,i={weS, | D wi)=nn+1)/2},

i=1
that is, the (non-extended) affine symmetric group. For an integer sequence (a;, a,, . ..),

let us define |(a;,a,,...)| := 2 ;a;. Then by [7, Theorem 10.3], we have
q)(S_n) = {(Pl al 3) € szd_o]n | |7)>| = o}'

Also its two-sided cell (resp. left cell, resp. right cell) is obtained from the intersection of
such a cell in S, with S,,. In particular, the two-sided cells of S,, are also parametrized
by the partitions of n.

Let JQP GL J be the asymptotic Hecke algebra corresponding to PGL,, attached
tocNS, . In general, jgp GL is no longer a matrix algebra; a counterexample is given in [30,
Section 8.3]. Here, we discuss a sufficient condition when jQPGL is indeed isomorphic to

a matrix algebra.

Theorem A.2. Suppose that ¢ = c,. If gcd(A],A,,...) = 1, then there exists a ring

isomorphism JF6L ~ Mat (R(F,)) where F, = F, /{cI | ¢ € C}.

XXX
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Proof. As gcd(A},A,,...) = 1, by [6, Theorem 8.6] any tabloid T of shape A can be
obtained from T{" by successive star operations (without applying w). Now for each
T € RSYT(A), we fix a series of such star operations. Then it induces a bijection ¢ :
™ — I'; defined by the composition of right star operations. Here, I'; is the left cell
parametrized by T, that is, w € I'; if and only if Q(w) = T. Also note that star operations
stabilizes S, C S,,, which implies that it restricts to ¢y : rans —rp.nSs,.

Now for any tabloid T of shape A, we define wy := ¢ (w}) where w} is as in
Section 3. Then it follows that ®(wy) = (T2, T, 51 + E’T;mIT) for some B = (py,p,---)
such that |54| + |§’T§HIT| = 0. By similar argument to Lemma 7.5, we see that g is
determinantal and t,,,, = t(T®", T*", §'7)tran 7. Note that ¢(T%", 7", §1) and tran 7 are not
in general contained in jgp GL but t,, is an element of jgp GL,

For P,Q € RSYT(A), let us define t},a = (t f
thq =P, P, Pa— Pp)tpqg- As o — O p is determinantal, {ts o | P,Q € RSYT(1)} also gives

wp) M, € JECE. Then it is clear that

a matrix basis of Jg, that is, we have an algebra isomorphism Y’ : Jg — MatXXX(R(FA))
where Y’ (t},la) is an elementary matrix for any P, Q € RSYT()). (In general, Y’ is different
from Y defined in Theorem 7.2 since 5, — 0 p needs not be zero.)

It remains to show that Y'(JF%") = Mat, (R(F,)); here we identify R(F,) with
the subring of R(F,) generated by V(i) such that || = 0. Recall that for any w € S_n we
have ®(w) = (P, Q, p) such that | g| = 0. In particular,

t, =tP,Q,0) =tP,P, B —Spotpg
=t(P,P, 0 — §>p,Q +0Bp— Ha)fiola
where

|8 —Spa+ Bp—Bal =18pl —1Bal —1Spal = —|§T§n,p| + |§T§n,a| —8pql=0
. —> _‘> an — =4 / 3 ]
since Sran g —Sqan p = Spg. A~s T'(t,,) is a matrix whose only nonzero entr}] corresponds
to V(F—Spo+Pp—Pa) € R(F,), we conclude that Y'(J7 ) C Mat,,,  (R(F})). The other
inclusion also follows in almost the same manner. [ |
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