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The affine matrix-ball construction (abbreviated AMBC) was developed by Chmutov,

Lewis, Pylyavskyy, and Yudovina as an affine generalization of the Robinson–Schensted

correspondence. We show that AMBC gives a simple way to compute a distinguished

involution in each Kazhdan–Lusztig cell of an affine symmetric group. We then use

AMBC to give the 1st known canonical presentation for the asymptotic Hecke algebras

of extended affine symmetric groups. As an application, we show that AMBC gives a

conceptual way to compute the Lusztig–Vogan bijection. For the latter, we build upon

prior works of Achar and Rush.

1 Introduction

The Robinson–Schensted algorithm provides a bijection between the symmetric group

and the set of pairs of standard Young tableaux of the same shape. It has become ubiq-

uitous since its invention and now it appears in the theory of crystals, symmetric func-

tions, representations of symmetric groups, Kazhdan–Lusztig cells, etc. Furthermore,

it has been generalized in many ways, for example, as the Robinson–Schensted–Knuth

correspondence [15], domino insertion algorithm for hyperoctahedral groups [10–12],

and exotic Robinson–Schensted algorithm [13], to name a few.
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16052 D. Kim and P. Pylyavskyy

Recently, Chmutov, Lewis, Pylyavskyy, and Yudovina [6, 7] introduced its affine

generalization, called the affine matrix-ball construction (abbreviated AMBC), which

extends the work of Shi [26]. The affine matrix-ball construction provides a bijection

� : w �→ (P(w), Q(w), #»ρ (w)) from the extended affine symmetric group to the set of

triples (P, Q, #»ρ ) where P and Q are row-standard Young tableaux of the same shape and

#»ρ is an integer vector satisfying certain properties. This algorithm also enjoys a lot of

properties that the usual Robinson–Schensted algorithm possesses.

On the other hand, an (extended) affine symmetric group (or more generally

an affine Weyl group) plays a central role in representation theory. It is strongly

connected to the Springer theory (and its affine analogue), representations of Lie groups

and Lie algebras, geometry of flag varieties, etc. (See e.g., [8, 14, 16, 31].) In order

to understand this group and its representation theory, it is desirable to find not

only its characters but also the parametrization and realizations of its (irreducible)

representations.

To this end, Lusztig [17] introduced the asymptotic Hecke algebra, convention-

ally denoted J (see [20, Chapter 18] for more details). It is a free abelian group with

basis parametrized by elements of the corresponding affine Weyl group, say tw, and

the multiplication is given by tu · tv =
∑

w γu,v,w−1 tw where the structure constants

γu,v,w−1 come from those of the affine Hecke algebra with respect to the canonical

basis. Usually, it has a much simpler structure than the original affine Hecke algebra.

For example, if we start with the extended affine symmetric group, then the structure

constants of such J can be obtained from Littlewood–Richardson coefficients of some

(smaller) symmetric groups. Also, we will later observe that in this case J is a direct

sum of certain matrix algebras. Nonetheless, it contains a lot of information of the

representation theory of corresponding affine Hecke algebra. Thus, in order to study

affine Hecke algebras, it is often very useful to first understand the structure of the

corresponding asymptotic version J .

This paper develops such understanding of the structure of the asymptotic

Hecke algebra J for GLn in terms of AMBC. Here we briefly explain our results. For each

integer partition λ � n, we define Fλ to be GLm1
× GLm2

× · · · where mi is the number of

is appearing in the parts of λ. Also, let cλ be the two-sided Kazhdan–Lusztig cell in the

extended affine symmetric group parametrized by λ in the sense of [19]. Xi [30] proved

that for a certain left cell �an ⊂ cλ, there exists a ring isomorphism between J(�an)−1∩�an

and the representation ring R(Fλ) where the former is defined to be the restriction

of J to the intersection of �an and its inverse. Our 1st main result is the following

theorem.
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Asymptotic Hecke Algebras 16053

Theorem (Theorem 4.2). The ring isomorphism J(�an)−1∩�an
�
−→ R(Fλ) defined by Xi

coincides with the map tw �→ [V #»ρ (w)] where #»ρ (w) is the integer vector of the image

w �→ (P(w), Q(w), #»ρ (w)) under AMBC and [V #»ρ (w)] is the class of an irreducible

representation of Fλ parametrized by #»ρ (w).

Originally, in his paper, Xi used his bijection above to prove the conjecture

of Lusztig [19, Conjecture 10.5]. It states that Jcλ
, or the asymptotic Hecke algebra

restricted to cλ, is isomorphic to a matrix algebra with base ring R(Fλ). He gave a

description of such an isomorphism, but his construction was not canonical; one needs

to pick an identification of each left cell with a fixed one, which relies on the choice

of star operations and multiplication by a shift element that connect two such cells.

In this paper, we describe such an isomorphism that naturally comes from AMBC,

which is therefore more canonical; AMBC does not depend on the cell structure of

(extended) affine symmetric group but relies only on their combinatorial properties.

More precisely, we have the following theorem. Here, D is the set of elements in the

extended affine symmetric group, which correspond to primitive idempotents in J ,

called the distinguished involutions.

Theorem (Theorems 6.1 and 7.2). Consider a matrix algebra over R(Fλ), denoted

M, whose rows (resp. columns) are parametrized by left cells (resp. right cells) in cλ.

Then there exists an isomorphism of rings Jcλ

�
−→ M that sends tw to the matrix

whose (�P(w), (�Q(w))
−1)-entry is [V #»ρ (w)] and 0 elsewhere. Here, (P(w), Q(w), #»ρ (w)) is the

image of w under the AMBC map, and �T (resp. (�T)−1) is the left cell (resp. right cell)

parametrized by T. Moreover, we have w ∈ D if and only if P(w) = Q(w) and #»ρ (w) = 0.

Meanwhile, the conjecture of Lusztig on the structure of the asymptotic Hecke

algebra J provides a certain bijection between the set of irreducible representations of

GLn, denoted Dom(GLn), and the union of Dom(Fλ) where λ runs over all the partitions

of n. This is now called the Lusztig–Vogan bijection and is studied by Achar [1, 2],

Bezrukavnikov [3–5], Ostrik [22], and Rush [23, 24]. As AMBC gives a proof of Lusztig’s

conjecture, there also exists a new interpretation of the Lusztig–Vogan bijection in terms

of AMBC. Our next result is that these bijections are all equal; we have

Theorem (Theorem 8.1). The Lusztig–Vogan bijection induced from AMBC (see

the beginning of Section 8 for the precise definition) is equal to that of Achar [1],

Bezrukavnikov [3, 4], Ostrik [22], and Rush [23, 24].
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16054 D. Kim and P. Pylyavskyy

This paper is organized as follows: in Section 2, we recall basic notations and

definitions used in this paper; in Section 3, we introduce the notion of canonical and

anti-canonical left cells; in Section 4, we prove the theorem stating that the bijection of

Xi is compatible with the result of AMBC; in Section 5, we study how multiplication

by a shift element and a star operation behave in terms of AMBC; in Section 6, we

describe the image of distinguished involutions under AMBC; in Section 7, we provided

an isomorphism between the asymptotic Hecke algebra attached to a two-sided cell and

a certain matrix algebra using the AMBC map; in Section 8, we describe the Lusztig–

Vogan bijection, explain some of its properties, and state that the bijection that is

derived from AMBC is equal to the one previously studied by Achar, Bezrukavnikov,

Ostrik, and Rush, whose proof is given in Section 9. In the appendix, we briefly discuss

how our results can be applied to other affine Weyl groups of type A, especially those

of SLn and PGLn.

2 Backgrounds

2.1 Setup

For a, b ∈ Z, we set [a, b] to be {x ∈ Z | a ≤ x ≤ b}. For n ∈ Z>0, we define [n] = {1, 2, . . . , n}

to be the set of residues modulo n.

For n ∈ Z>0, we define the extended affine symmetric group to be

S̃n := {w : Z → Z | w is bijective, w(i + n) = w(i) + n for all i ∈ Z}.

We shall use the window notation for elements of S̃n: w = [w(1), w(2), . . . , w(n)]. An

important distinguished element ω ∈ S̃n is the shift permutation ω = [2, 3, . . . , n, n + 1].

We shall often identify w ∈ S̃n with the set Bw ⊂ Z × Z of all pairs (i, w(i)), i ∈ Z. We

refer to elements of Z × Z that are of the form (i, w(i)) as balls of w. If we set Sn to be

the (finite) symmetric group permuting [1, n], then there exists a canonical embedding

Sn → S̃n which sends w to [w(1), . . . , w(n)].

A partition λ = (λ1, λ2, . . .) is a finite sequence of integers satisfying λ1 ≥ λ2 ≥

· · · > 0. We denote by λ′ the transpose of λ, often also referred to as the conjugate

partition. We define its size to be n =
∑

i λi and also write λ � n. A partition

λ = (λ1, λ2, . . .) � n can also be denoted λ = (1m12m2 · · · ), where mi is the number of

parts of size i among the λj-s.

For λ � n, we define a tabloid T = (T1, T2, . . .) of shape λ to be a Young diagram of

shape λ filled with the elements [n] where each residue appears exactly once. The order
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Asymptotic Hecke Algebras 16055

of elements in each row does not matter, but it is convenient to regard elements of Ti as

being ordered with respect to the linear ordering 1 < · · · < n. In this case, we say that

T is row standard. For a partition λ � n, define RSYT(λ) to be the set of row-standard

Young tabloid of shape λ.

For n ≥ 1, we define Dom(GLn) = Dom(GLn(C)) to be the set of integer vectors

Dom(GLn) := {(a1, a2, . . . , an) ∈ Z
n | a1 ≥ a2 ≥ · · · ≥ an}.

We naturally identify this with the set of dominant weights of GLn. Also let Rep(GLn) =

Rep(GLn(C)) be the category of finite-dimensional rational representations of GLn. Then

for any #»μ ∈ Dom(GLn), there is an irreducible representation V( #»μ) ∈ Rep(GLn) of

highest weight #»μ, and {V( #»μ) ∈ Rep(GLn) | #»μ ∈ Dom(GLn)} is a complete collection

of irreducible objects in Rep(GLn) up to isomorphism. If we further define R(GLn) to

be the Grothendieck ring of Rep(GLn) (see [29, II.6] for the definition of Grothendieck

rings), then the classes of V( #»μ) form a Z-basis of R(GLn).

Let J be the asymptotic Hecke algebra of S̃n defined in [17, Section 2]. It is a free

Z-module with a basis {tw | w ∈ S̃n}, and (J , {tw | w ∈ S̃n}) is a based ring in the sense

of [18, Section 1]. Also if we set D ⊂ S̃n to be the set of distinguished involutions, then

D is finite and the unit of J is given by
∑

w∈D tw.

For a subset X ⊂ S̃n, we define JX :=
⊕

w∈X Ztw to be the free sub-Z-module of

J generated by {tw | w ∈ X}. Then for a two-sided cell c ⊂ S̃n, Jc is a two-sided ideal

of J . Also, (Jc, {tw | w ∈ c}) is a based ring and
∑

w∈D∩c tw is its unit. In other words,

we have a decomposition of based rings J =
⊕

c⊂S̃n
Jc where the sum is over all the

two-sided cells c of S̃n. Also if � is a left cell in c, then J� (resp. J�−1 , J�−1∩�) is a left

(resp. right, two-sided) ideal of Jc. It is known [17] that J�−1∩� is a commutative ring

with unit tw where w is the unique element in � ∩ D.

Recall some facts about nilpotent orbits, we refer the reader to [9] for an

exposition. Nilpotent adjoint orbits of LieGLn are parametrized by partitions of n, where

to each λ � n one associates a nilpotent orbit Oλ such that the Jordan type of any

element in Oλ is λ. Also, there exists a canonical bijection between nilpotent adjoint

orbits of LieGLn and two-sided cell in S̃n defined in [19]. We denote the two-sided cell

corresponding to Oλ by cλ.

Let the conjugate partition of λ be λ′ = (λ′
1, λ′

2, . . .). We define

Fλ := GLm1
× GLm2

× · · · and Lλ := GLλ′
1
× GLλ′

2
× · · · .
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16056 D. Kim and P. Pylyavskyy

Then Dom(Fλ) = Dom(GLm1
)× Dom(GLm2

)× · · · is naturally a subset of Zl(λ). For N ∈ Oλ,

we may identify Fλ with the reductive part of ZGLn
(N), the stabilizer subgroup of N

in GLn = GLn(C). Then it follows from [30] that there exists an isomorphism of rings

from J�−1∩� to R(Fλ) under which each tw maps to an irreducible representation, say

V(ε(w)). Here, � is a certain left cell contained in cλ. (Such � will be called the anti-

canonical left cell of cλ; see Sections 3 and 4.) Furthermore, he proved that there exists

a (non-canonical) isomorphism Jcλ
� Matχ×χ (R(Fλ)) compatible with the isomorphism

above. Here, χ = n!
λ1!λ2!··· is the Euler characteristic of the Springer fiber of some/any

N ∈ Oλ.

2.2 AMBC and Kazhdan–Lusztig cells

Here we briefly recall some notations from [6] and [7] and discuss the relations between

the affine matrix-ball construction (abbreviated AMBC) and Kazhdan–Lusztig cells.

For T = (T1, . . . , Tl) ∈ RSYT(λ) and i ∈ [1, l − 1], we define lchi(T), called the local

charge in row i of T, as follows. Suppose that Ti = (a1, . . . , as) and Ti+1 = (b1, . . . , bt).

Then lchi(T) is the smallest d ∈ N such that al−d < bl for l ∈ [d + 1, t]. Pictorially, this

measures necessarily shift of Ti to the right so that (Ti, Ti+1) becomes a standard Young

tableau (of skew shape). For example, if Ti = (3, 5, 7, 8) and Ti+1 = (1, 2, 4, 6), then we

have lchi(T) = 2, which can be obtained from the following picture.

For P, Q ∈ RSYT(λ) where λ = (λ1, . . . , λl), we define the symmetrized offset

constants with respect to (P, Q), denoted by #»s P,Q = (s1, . . . , sl) ∈ Z
l, as follows.

si =

⎧
⎨
⎩

0 if i = 1 or λi > λi+1,

si−1 + lchi−1(P) − lchi−1(Q) otherwise.

In other words, we have si − si−1 = lchi−1(P) − lchi−1(Q) whenever λi−1 = λi. (See [7,

Definition 5.8] and [6, Theorem 5.10] for the equivalent definitions.) It is easy to show

that for tabloids P, Q, R of the same shape, we have

#»s P,Q +
#»s Q,R =

#»s P,R, thus in particular #»s P,Q +
#»s Q,P =

#»s P,P = 0.
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Asymptotic Hecke Algebras 16057

Example 2.1. Let P = and Q = . Then lch1(P) = 0, lch2(P) =

1, lch1(Q) = 2, and lch2(Q) = 0. Thus, it follows that #»s P,Q = (0, −2, −1).

For λ = (λ1, . . . , λr) and #»ρ = (ρ1, . . . , ρr), we define revλ(
#»ρ ) to be the integer

vector obtained from #»ρ by reversing the order of elements corresponding to the parts

of the same length in λ. For example, if λ = (2, 2, 1, 1, 1) and #»ρ = (3, 1, 5, 2, 4), then we

have revλ(
#»ρ ) = (1, 3, 4, 2, 5). We say that #»ρ ∈ Z

l(λ) is dominant with respect to (P, Q)

if −( #»ρ −
#»s P,Q) ∈ Dom(Fλ), or equivalently revλ(

#»ρ −
#»s P,Q) ∈ Dom(Fλ). In other words,

#»ρ ∈ Z
l(λ) is dominant with respect to (P, Q) if and only if #»ρ −

#»s P,Q is “anti-dominant”.

Example 2.2. In the Example 2.1, the vector #»ρ = (2, 0, 2) ∈ Z
3 is dominant with respect

to (P, Q) because #»ρ −
#»s P,Q = (2, 2, 3) is a nondecreasing sequence.

We set

	 :=
⊔

λ�n

RSYT(λ) × RSYT(λ) × Z
l(λ),

	dom := {(P, Q, #»ρ ) ∈ 	 | #»ρ is dominant with respect to (P, Q)}.

We define � : S̃n → 	dom : w �→ (P(w), Q(w), #»ρ (w)) to be the bijection defined in [7]

using the affine matrix-ball construction (abbreviated AMBC). Also, let 
 : 	 → S̃n

be the surjection defined by the backward AMBC. Then by [7, Theorem 5.12] we have


|	dom
= �−1. Both AMBC and backward AMBC were explained in great detail in both

[6] and [7].

Before we investigate their definitions, we recall some of their properties in

terms of Kazhdan–Lusztig cells. It follows from [7] and [26] that for each tabloid P, the

union of fibers 
(P, Q, #»ρ ) for (P, Q, #»ρ ) ∈ 	 where we vary Q and #»ρ are exactly a right

cell of S̃n, denoted by �−1
P . Similarly, if we fix a tabloid Q, the union of fibers is a left

cell of S̃n, denoted by �Q. Moreover, it essentially follows from [25] that w ∈ cλ if and

only if the shape of both P(w) and Q(w) is λ. On the other hand, [6, Proposition 3.1]

implies that if �(w) = (P, Q, #»s P,Q + #»ρ ), then �(w−1) = (Q, P, #»s Q,P − revλ(
#»ρ )). If we want

to restrict to a non-extended affine symmetric group Sn defined to be

Sn = {w ∈ S̃n | w(1) + · · · + w(n) = n(n + 1)/2},
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16058 D. Kim and P. Pylyavskyy

then by [7, Theorem 10.3] the same claims hold verbatim if we add the condition
∑

i ρi = 0 where #»ρ = (ρ1, ρ2, . . .).

For w ∈ S̃n, we define

R(w) = {i ∈ [n] | w(i) > w(i + 1)} (resp. L(w) = {i ∈ [n] | w−1(i) > w−1(i + 1)}),

called the right (resp. left) descent set of w. Also for a tabloid T, we define its τ -invariant

by

τ(T) := {i ∈ [n] | i lies in a strictly higher row of T than i + 1}.

Then by [6, Proposition 3.6], we have L(w) = τ(P(w)) and R(w) = τ(Q(w)).

2.3 Definition of � and 


Here we discuss the definitions of � and 
 and related notations briefly.

For (x1, y1), (x2, y2) ∈ Z
2, we say that (x1, y1) is (weakly) southwest of (x2, y2),

denoted by (x1, y1) ≤SW (x2, y2), if x1 ≥ x2 and y1 ≤ y2. Similarly, we say that (x1, y1) is

(weakly) northwest of (x2, y2), denoted by (x1, y1) ≤NW (x2, y2), if x1 ≤ x2 and y1 ≤ y2.

Pictorially, we regard elements in Z
2 as located in the xy-plane where the x-axis directs

southbound and y-axis directs eastbound, that is, the whole plane is rotated clockwise

by 90◦ from the conventional direction.

We define a partial (affine) permutation to be an injection w : X + nZ → Z for

some X ⊂ [1, n] such that w(i + kn) = w(i) + kn for i ∈ X and k ∈ Z. Then its window

notation is defined to be w = [w(1), . . . , w(n)] where we set w(i) = ∅ for i �∈ X. We

say that a partial permutation S : X + nZ → Z is a stream if S(i) < S(j) whenever

i < j (if S(i), S(j) �= ∅), that is, it is a chain with respect to the northwest ordering.

The density of S is defined to be the size of X. The altitude a(S) of S is defined to be
∑

x∈X(�w(x)/n�−1) where �t� is the smallest integer not smaller than t (cf. [6, Definition

2.11]). If we set D(x, y) = �y/n� − �x/n�, called the block diagonal of (x, y), then we have

a(S) =
∑

x∈X D(x, w(x)).

For a partial permutation w and a substream S ⊂ w, we call S a channel of w if

the density of S is maximum among all the substreams of w. Among all the channels of

w, there exists a unique one C such that for any channel C′ ⊂ w and any ball (x, w(x))∈C,

there exists (y, w(y)) ∈ C′ such that x ≥ y and w(x) ≤ w(y). We call such C the southwest

channel of w.
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Asymptotic Hecke Algebras 16059

For a stream S, we say that d̃ : S → Z is a proper numbering if it is a bijection

and d̃(x, S(x)) < d̃(y, S(y)) whenever x < y. It is clear that such a numbering is unique

up to shift. For a channel Cl of w equipped with the proper numbering d̃ : C → Z, we

define the channel numbering dC
w = dC : w → Z to be

dC(b) = max{d̃(b′) + k | there exists a reverse path (b′ = b0, b1, . . . , bk = b) of balls in w}.

Here, a reverse path is a sequence (x1, y1), . . . , (xm, ym) such that x1 < · · · < xm and

y1 < · · · < ym. Then dC is also uniquely determined once d̃ is fixed. When C is the

southwest channel of w, we call it the southwest channel numbering of w and write

d = dC (or dw = dC
w).

For a partial permutation w and its channel C ⊂ w, we define the forward step

w �→ (fwC(w), stC(w)) as follows. For each m ∈ Z, we label the balls of w mapped to m

under d = dC
w by (x1, w(x1)), . . . , (xk, w(xk)) so that x1 > · · · > xk. Then it is easy to show

that w(x1) < · · · < w(xk). Set Zm = I(Zm) � O(Zm) � S(Zm), called the zigzag labeled m, to

be

I(Zm) = {(xi, w(xi)) | i ∈ [1, k]},

O(Zm) = {(xi, w(xi+1)) | i ∈ [1, k − 1]}, S(Zm) = {(xk, w(x1))}.

Then we have w ∩ Zm = I(Zm). Now set fwC(w) =
⊔

m∈Z O(Zm) and st(w) =
⊔

m∈Z S(Zm).

Then fwC(w) is again a partial permutation and stC(w) is a stream whose density is

equal to C. When C is the southwest channel of w, we simply write fw(w) and st(w)

instead of fwC(w) and stC(w).

We are ready to provide the precise definition of � : S̃n → 	dom. Starting

with w0 = w ∈ S̃n, we successively set wi+1 = fw(wi) and Si+1 = st(wi) until

we obtain an empty partial permutation. For each Si, there exist Pi, Qi ⊂ [1, n] such

that Si : Pi + nZ → Qi + nZ is a bijection. Now we set �(w) = (P, Q, #»ρ ) where

P = (P1, P2, . . .), Q = (Q1, Q2, . . .), and #»ρ = (a(S1), a(S2), . . .) (the sequence of altitudes

of Si).

For a stream S and a partial permutation w, we say that S is compatible with

w if S ∪ w is still a partial permutation and the density of S is not smaller than that of

any substream of w. Then we define the backward numbering dbk,S
w = dbk,S : w → Z as

follows (cf. [7, Definition 4.1]). Let d̃ : S → Z be a proper numbering and for (x, w(x)) ∈ w

we let d(x, w(x)) = max{d̃(y, S(y)) ∈ S | y < x, S(y) < w(x)}. Now we repeat the following

process:
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16060 D. Kim and P. Pylyavskyy

• If d(x, w(x)) < d(y, w(y)) for any x, y such that x < y and w(x) < w(y) (if

w(x), w(y) �= ∅), then we terminate the process.

• Otherwise, choose a ball (x, w(x)) such that

- there exists a ball (y, w(y)) such that d(x, w(x)) ≥ d(y, w(y)), x < y, and

w(x) < w(y),

- for any ball (z, w(z)) such that z < x and w(z) < w(x) we have

d(z, w(z)) < d(x, w(x)).

• For each i ∈ Z, we lower the value of d(x + in, w(x) + in) by 1 and return to

the 1st step.

After this process is done, we set dbk,S
w = d. This numbering is always well defined.

For a partial permutation w and a compatible stream S, we define the backward

step (w, S) �→ bkS(w) as follows. Let d̃ be the proper numbering on S and d = dbk,S
w be the

induced backward numbering on w. For each m ∈ Z, we label the balls of w mapped to

m under d by (x1, w(x1)), . . . , (xk, w(xk)) so that x1 > · · · > xk. Also there exists a unique

ball (y, S(y)) such that d̃(y, S(y)) = m. Then it is easy to show that w(x1) < · · · < w(xk).

Set Zm = I(Zm) � O(Zm) � S(Zm), called the zigzag labeled m, to be

I(Zm) = {(xi+1, w(xi)) | i ∈ [1, k − 1]} � {(x1, S(y))} � {(y, w(xk))},

O(Zm) = {(xi, w(xi)) | i ∈ [1, k]}, S(Zm) = {(y, S(y))}.

Then w ∩ Zm = O(Zm) and S ∩ Zm = S(Zm). We set bkS(w) =
⊔

m∈Z I(Zm). Then bkS(w) is

a partial permutation each of whose channel has its density equal to that of S.

Now we define 
 : 	 → S̃n as follows. For P = (P1, . . . , Pl), Q = (Q1, . . . , Ql), and

#»ρ = (ρ1, . . . , ρl), we define Si to be the unique stream yielding a bijection from Pi + nZ to

Qi + nZ and whose altitude is given by a(Si) = ρi. Now starting with the empty partial

permutation wl, we successively define wi−1 = bkSi
(wi) for i ∈ [1, l]. This process is well

defined and we set 
(P, Q, #»ρ ) = w0.

Example 2.3. For P and Q as in Example 2.1 and for #»ρ = (2, 0, 2) as in Example 2.2, we

have 
(P, Q, #»ρ ) = [3, 7, 14, 2, 18, 4, 19, 8, 6].

3 Canonical and Anti-canonical Left Cells

Let w0 ∈ Sn be the longest element in Sn and define

S̃nf := {w ∈ S̃n | l(w) + l(w0) = l(ww0)} = {w ∈ S̃n | R(w) ⊂ {n}},
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Asymptotic Hecke Algebras 16061

that is, the set of elements each of which has minimal length in its left Sn-coset. Then

for each two-sided cell c ⊂ S̃n, the intersection �can := c ∩ S̃nf is a single left cell and is

called the canonical left cell of c [21]. If c = cλ, then we denote its canonical left cell by

�can
λ .

Lemma 3.1. Let Tcan
λ be the reverse row superstandard tabloid of shape λ with start at

1 in the sense of [6, 2.1] (see the example below). If w ∈ �can
λ , then we have Q(w) = Tcan

λ .

Proof. By assumption, we have τ(Q(w)) = R(w) ⊂ {n}. Since Tcan
λ is the unique tabloid

of shape λ that satisfies τ(Tcan
λ ) ⊂ {n}, the result follows. �

Example 3.2. We have Tcan
(4,3,1)

= .

This time, let wλ
0 be the longest element in Sλ′ := Sλ′

1
×Sλ′

2
×· · · . Thus for example

w
(1,1,...,1)
0 = w0 and w

(n)
0 = id. By direct calculation, we see that the shape of P(wλ

0) and

Q(wλ
0) is λ, thus wλ

0 ∈ cλ.

Lemma 3.3. Let Tan
λ be the standard Young tableau of shape λ with {1, 2, . . . , λ′

1} on the

1st column, {λ′
1 + 1, . . . , λ′

1 + λ′
2} on the 2nd column, etc. (See the example below.) Then

we have �(wλ
0) = (Tan

λ , Tan
λ , 0).

Proof. It is clear that R(w) = [n] − {λ′
1, λ′

1 + λ′
2, . . .}. Since Tan

λ is the unique tabloid of

shape λ, which satisfies τ(Tan
λ ) = [n] −{λ′

1, λ′
1 +λ′

2, . . .}, we have Q(wλ
0) = Tan

λ . Since wλ
0 is

an involution, we also have P(wλ
0) = Tan

λ by [6, Proposition 3.1]. Moreover, wλ
0 ∈ Sn thus

#»ρ (w) = 0 by [7, Theorem 10.2]. �

We define �an
λ ⊂ cλ to be the left cell containing wλ

0, called the anti-canonical

left cell of cλ. Then the lemma above implies that w ∈ �an
λ if and only if Q(w) = Tan

λ .

Example 3.4. We have Tan
(4,3,1)

= .

4 Bijection of Xi and AMBC

Our goal in this section is to show that the bijection #»ε : (�an
λ )−1 ∩ �an

λ → Dom(Fλ)

defined by Xi [30] can be interpreted in terms of AMBC. First, we describe his bijection
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16062 D. Kim and P. Pylyavskyy

#»ε : (�an
λ )−1 ∩ �an

λ → Dom(Fλ) following [30, 5.2.1]. We start with the following

definition.

Definition 4.1. For λ = (λ1, λ2, . . .) � n, we say that {S1, S2, . . . , Sl(λ)} is a complete

stream family of w ∈ cλ (or complete antichain family in the sense of [30]) if Si are

pairwise disjoint streams, the density of each Si is equal to λi, and
⊔l(λ)

i=1 Si = Bw.

Let {S1, S2, . . . , Sl(λ)} be a complete stream family of w ∈ (�an
λ )−1 ∩ �an

λ ,

which always exists by [30, Theorem 5.1.12]. After rearranging Sis if necessary,

we may assume that a(Si) ≥ a(Si+1) whenever λi = λi+1. Now we define #»ε (w) =

(a(S1), a(S2), . . . , a(Sl(λ))) ∈ Dom(Fλ), which gives the bijection #»ε : (�an
λ )−1 ∩ �an

λ →

Dom(Fλ) of Xi. By [30, Lemma 5.2.4], this value does not depend on the choice of the

complete stream family {S1, S2, . . . , Sl} of w.

We state the main theorem of this section.

Theorem 4.2. For w ∈ (�an
λ )−1 ∩ �an

λ , we have #»ε (w) = revλ(
#»ρ (w)).

The rest of this section is devoted to its proof. To this end, first we define

Pλ =

⎧
⎨
⎩

⎡
⎣an +

i−1∑

j=1

λ′
j + 1, an +

i∑

j=1

λ′
j

⎤
⎦ ⊂ Z | a ∈ Z, 0 ≤ i ≤ λ1

⎫
⎬
⎭ .

For example, P(3,2,1,1) consists of {1, 2, 3, 4}, {5, 6}, {7} and their shifts by multiples of 7.

It is clear that Pλ is a partition of Z.

Lemma 4.3. Let w ∈ �an
λ .

(a) Bw ∩ (A × Z) for any A ∈ Pλ is totally ordered with respect to the southwest

ordering.

(b) For any stream S ⊂ Bw, #(S ∩ (A × Z)) ≤ 1.

Proof. Since w ∈ �an
λ , we have Q(w) = Tan

λ , which means that R(w) = τ(Q(w)) =

[n] − {λ′
1, λ′

1 + λ′
2, . . .}. It implies that w(

∑i−1
j=1 λ′

j + 1) > w(
∑i−1

j=1 λ′
j + 2) > · · · > w(

∑i
j=1 λ′

j)

for any 0 ≤ i ≤ λ1. Now the statement easily follows from this. �

For a stream S ⊂ Bw, we define

S� := {(A, B) ∈ P2
λ | S ∩ (A × B) �= ∅}.
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Asymptotic Hecke Algebras 16063

Suppose that w ∈ (�an
λ )−1 ∩ �an

λ . Then the lemma above applied to both w and w−1

implies the following: for any stream S ⊂ Bw, we have (A, B) ∈ S� ⇔ #(S ∩ (A × B)) = 1.

Also for any (A, B), (C, D) ∈ S�, we have either A < C, B < D or A > C, B > D. (Here X < Y

means x < y for any x ∈ X and y ∈ Y.) In other words, S� is totally ordered with respect

to northwest ordering.

The next lemma is the key step of the proof of the main theorem in this section.

Lemma 4.4. Let w ∈ (�an
λ )−1 ∩ �an

λ , and assume that {S′
2, S′

3, . . . , S′
l(λ)

} is a complete

stream family of the partial permutation fw(w). Then there exists a complete stream

family {S1, S2, . . . , Sl(λ)} of w such that

(1) S1 is a channel of Bw,

(2) a(S1) = ρ1 where #»ρ (w) = (ρ1, ρ2, . . .), and

(3) S�

i = S′�
i .

Proof. Recall the construction of the backward AMBC algorithm. In particular, Bw is

obtained by following the steps below.

(a) Let S := stρ1
(Tan

1 , Tan
1 ) and give S some proper numbering; here Tan

λ =

(Tan
1 , Tan

2 , . . .). (Here, stρ1
(Tan

1 , Tan
1 ) is the unique stream of altitude ρ1 that

maps Tan
1 + nZ to itself. See [7, Section 3.4] for the definition of st.)

(b) Calculate the backward numbering dbk,S
w on Bfw(w).

(c) For each i ∈ Z, consider the zigzag Zi labeled i whose outer corner-posts are

balls in Bfw(w) labeled by i.

(d) The union of all inner corner-posts of Zi for all i ∈ Z is Bw.

Now suppose that some proper numbering on S = stρ1
(Tan

1 , Tan
1 ) is given, say

S = {S(i) | i ∈ Z} where S(i) = (ai, bi) ∈ S is the ball labeled i. We claim that if

(x, y) ∈ Bfw(w) satisfies (x, y) ≥NW S(i) but (x, y) �≥NW S(i+1), then dbk,S
w (x, y) = i.

In other words, on the construction of the backward numbering in 2.3, the iterating

process terminates without changing the initial numbering, say d0. Indeed, suppose

(a, b), (c, d) ∈ Bfw(w) satisfies d0(a, b) = d0(c, d). In other words,

(a, b), (c, d) ∈ {(x, y) ∈ Z
2 | x ≥ ai, y ≥ bi} − {(x, y) ∈ Z

2 | x ≥ ai+1, y ≥ bi+1}.

However, the balls in

Bfw(w) ∩
(
{(x, y) ∈ Z

2 | x ≥ ai, y ≥ bi} − {(x, y) ∈ Z
2 | x ≥ ai+1, y ≥ bi+1}

)
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16064 D. Kim and P. Pylyavskyy

are totally ordered with respect to southwest ordering by Lemma 4.3. Note that

this lemma applies to fw(w) since �(fw(w)) = ((Tan
λ )≥2, (Tan

λ )≥2, #»ρ ≥2) where

(Tan
λ )≥2 = (Tan

2 , Tan
3 , . . .) is also an anti-canonical tableau when restricted to indices

not in Tan
1 . Therefore, if (a, b) ≤NW (c, d), then (a, b) = (c, d) and the claim follows by

looking at the construction of the backward numbering.

Now let I(Zi) be the set of inner corner-posts of Zi, O(Zi) be the set of outer corner-

posts of Zi, and S(Zi) = {S(i)} as in 2.3. Then the backward AMBC algorithm replaces balls

in O(Zi) ∪ S(Zi) with those in I(Zi). By Lemma 4.3, it is easy to check that for (x, y) ∈ I(Zi)

and (z, w) ∈ O(Zi) we have

• if y = w and ai ≤ x, z < ai+1, then z = x + 1 and

• if x = z and bi ≤ y, w < bi+1, then w = y + 1.

From this, it follows that for any A, B ∈ Pλ we have

#((A × B) ∩ I(Zi)) = #((A × B) ∩ (O(Zi) ∪ S(Zi))).

In other words, we have

• #((A × B) ∩ Bw) = #((A × B) ∩ Bfw(w)) + 1 if (A, B) ∈ S�, and

• #((A × B) ∩ Bw) = #((A × B) ∩ Bfw(w)) otherwise.

Now we can choose S1, S2, . . . so that S�
1 = S� and S�

i = S′�
i for 2 ≤ i ≤ l(λ).

Indeed, for any pair A, B ∈ Pλ and for any stream S′
i, we know that at most one element

of this stream lies in A × B. We also know the same for the stream S, as can be seen by

examining the rows of Tan
λ . Let us arbitrarily biject elements of O(Zi) ∪ S(Zi) lying inside

a particular A × B with those of I(Zi) lying inside the same A × B. This maps each of

the streams S, S′
i into a new stream S1, Si. It is clear that {S1, S2, . . .} satisfy the desired

properties. �

To illustrate this proof, we give the following example.

Example 4.5. Let n = 16 and w = [11, 5, 4, 3, 2, −9, 13, 10, 9, 8, 1, 15, 12, 22, 14, 16]. Then

fw(w) = [∅, 11, 5, 4, 3, −8, ∅, 13, 10, 9, 2, ∅, 15, ∅, 22, ∅]. It is easy to see that w ∈ (�an
λ )−1 ∩

�an
λ for λ = (5, 4, 2, 2, 2, 1). Let A = B = {7, 8, 9, 10, 11}. Then

(A × B) ∩ Bw = {(8, 10), (9, 9), (10, 8)} and (A × B) ∩ (Bfw(w) ∪ S) = {(7, 7), (9, 10), (10, 9)}.

We choose an arbitrary bijection between the two sets and repeat it for other pairs (A, B).

Then streams of any complete stream family of Bfw(w) together with S biject to streams

of a complete stream family of Bw.
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We are ready to prove the main theorem in this section.

Proof of Theorem 4.2. We proceed by induction on l = l(λ) = λ′
1. When l = 1, we have

w = ω
d for some d ∈ Z and in this case it is easy to see that ε(w) = revλ(

#»ρ )(w) =

(d). (Recall that ω is the shift permutation [2, 3, . . . , n, n + 1].) In general, we choose a

complete stream family {S′
2, S′

3, . . . , S′
l} of fw(w) and {S1, S2, . . . , Sl} of w as Lemma 4.4.

Then ρ1 = a(S1), and for any 2 ≤ i ≤ l we have

a(Si) =
∑

(x,y)∈Si,1≤x≤n

⌈y

n

⌉
− 1 =

∑

(x,y)∈S′
i
,1≤x≤n

⌈y

n

⌉
− 1 = a(S′

i)

since S�

i = S′�
i . In other words, as a multiset, we have

{ρ1, ρ2, . . . , ρl} = {a(S1)} ∪ {ρ2, . . . , ρl}

= {a(S1)} ∪ {a(S′
2), . . . , a(S′

l)}

= {a(S1)} ∪ {a(S2), . . . , a(Sl)}

by induction assumption. After reordering a(Si) if necessary, we have #»ε (w) =

revλ(
#»ρ (w)) as desired. �

5 Shift, Knuth Moves, and AMBC

In this section, we discuss how multiplication by ω = [2, 3, . . . , n, n+1] and Knuth moves

behave under the AMBC. We start with some definitions.

Definition 5.1. For λ = (λ1, . . . , λr) and #»ρ = (ρ1, . . . , ρr), we say that #»ρ is determinantal

(with respect to λ) if ρi = ρj whenever λi = λj.

Note that if #»ρ is determinantal with respect to λ then both #»ρ ∈ Dom(Fλ)

and revλ(
#»ρ ) ∈ Dom(Fλ). Also it is a highest weight of a tensor product of powers of

determinant representations of factors of Fλ.

Definition 5.2. Let T = (T1, T2, . . .) be a tabloid of shape λ and suppose that i ∈ Tt

for some 1 ≤ i ≤ n and 1 ≤ t ≤ l(λ). We define
#»

δ (T, i) = (δ1, δ2, . . . , δl(λ)) and #»ι (T, i) =

(ι1, ι2, . . . , ιl(λ)) as follows. Here [−] is the Iverson bracket.

• If λt = λt−1, then we put
#»

δ (T, i) =
#»

0 . Otherwise,
#»

δ (T, i) = ([λj = λt])1≤j≤l(λ).

• #»ι (T, i) = ([j = t])1≤j≤l(λ) = ([i ∈ Tj])1≤j≤l(λ).
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16066 D. Kim and P. Pylyavskyy

5.1 Multiplication by the shift element

Here we discuss how to relate �(ωw), �(wω
−1) and �(w). Let us start with the following

lemma.

Lemma 5.3. Let T = (T1, T2, . . .) be a tabloid of shape λ and suppose that n is contained

in Tt.

(1) lchj(ω(T)) = lchj(T) if j �= t, t − 1 and λj = λj+1.

(2) If λt = λt+1, then lcht(ω(T)) = lcht(T) − 1.

(3) If λt−1 = λt, then lcht−1(ω(T)) = lcht−1(T) + 1.

Proof. The 1st part is straightforward. For (2), we choose the ordering on ω(Tt) to

be the standard activation ordering as in [6, Definition 5.1] and that on Tt to be the

same one except that n is set to be the smallest entry. Then ω : Tt → ω(Tt) is order

preserving and ω also preserves the charge matching of (Tt, Tt+1), that is, if a ∈ Tt is

matched to b ∈ Tt+1, then ω(a) = a + 1 ∈ ω(Tt) is matched to ω(b) = b + 1 ∈ ω(Tt+1). (See

[6, Definition 5.2] for the definition of the charge matching.) However, n ∈ Tt contributes

to the charge whereas ω(n) = 1 ∈ ω(Tt) does not, from which (2) follows. (3) is also

similarly proved. �

Lemma 5.4. For tabloids P, Q of the same shape λ, we have

#»s P,ω(Q) =
#»s P,Q − #»ι (Q, n) +

#»

δ (Q, n) and #»s
ω(P),Q =

#»s P,Q + #»ι (P, n) −
#»

δ (P, n).

Proof. It follows from Lemma 5.3 and [6, Theorem 5.10]. �

Proposition 5.5. Suppose that �(w) = (P, Q, #»s P,Q + #»ρ ). Then we have

�(wω
−1) = (P, ω(Q), #»s P,ω(Q) + #»ρ −

#»

δ (Q, n))

�(ωw) = (ω(P), Q, #»s
ω(P),Q + #»ρ +

#»

δ (P, n))

In particular, if �(w) = (P, P, #»ρ ) then �(ωwω
−1) = (ω(P), ω(P), #»ρ ).

Proof. By Lemma 5.4, it is enough to argue the following:

�(wω
−1) = (P, ω(Q), #»s P,Q + #»ρ − #»ι (Q, n)),

�(ωw) = (ω(P), Q, #»s P,Q + #»ρ + #»ι (P, n)).
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Asymptotic Hecke Algebras 16067

This follows from the definition of the altitude of a stream. Indeed, if we compare the

process of applying the AMBC to w and ωw, they are identical up to the ω of residues

modulo n, except there is a unique forward step of the AMBC when the block diagonal

D(b) of exactly one ball b increases by 1 in the shifted version. It is exactly the step t

such that n̄ ∈ Pt. Similar consideration works for wω
−1. �

We finish with an example.

Example 5.6. Let n = 9 and w = [−1, 3, 10, −5, 14, −3, 18, 7, 2]. Then �(w) =

(P, Q, #»s P,Q + #»ρ ), where P, Q, #»s P,Q are as in the Example 2.1, and #»ρ = (0, 1, 2). Then

ωw = [0, 4, 11, −4, 15, −2, 19, 8, 3] and �(ωw) = (ω(P), Q, #»s P,Q +
#»

ρ′), where
#»

ρ′ = (0, 1, 3) =

#»ρ + (0, 0, 1) = #»ρ + ι(P, 9), and ω(P) = . One checks that #»s
ω(P),Q = (0, −2, 0), in

agreement with Proposition 5.5.

5.2 Knuth moves and star operations

Until the end of this section, we assume n ≥ 3.

For w ∈ S̃n and i ∈ Z such that either w(i − 1) or w(i + 2) is between w(i) and

w(i + 1), we define the right star operation w �→ w∗ for ∗ ∼ i where w∗ is obtained from

w by exchanging w(i + kn) and w(i + 1 + kn) for each k ∈ Z. We similarly define the

left star operation w �→ ∗w for ∗ ∼ i to be w �→ ((w−1)∗)−1 if w−1 satisfies the above

condition. We also call them Knuth moves as it is an affine analogue of the usual Knuth

moves for Sn.

Definition 5.7. Let n ≥ 3. For a tabloid T and 1 ≤ i ≤ n, suppose that the rows of T

containing i and i + 1 are different. Let S be the tabloid obtained from T by exchanging

i and i + 1. If they satisfy either

{τ(T) ∩ {i, i + 1}, τ(S) ∩ {i, i + 1}} = {{i}, {i + 1}} or

{τ(T) ∩ {i − 1, i}, τ(S) ∩ {i − 1, i}} = {{i − 1}, {i}},

then we say that T∗ is well defined for ∗ ∼ i and define T∗ := S.

Note that T∗ is well defined then (T∗)∗ is also well defined and (T∗)∗ = T. More-

over, by [6, Proposition 3.6], we have L(w) = τ(P(w)) and R(w) = τ(Q(w)). This implies
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16068 D. Kim and P. Pylyavskyy

that for i ∈ Z, Q(w)∗ (resp. P(w)∗) is well defined for ∗ ∼ i if and only if w∗ (resp. ∗w)

is well defined for ∗ ∼ i. Now [6, Theorem 3.11] provides the following description of

how star operations changes the result of AMBC. Suppose that �(w) = (P, Q, #»ρ ) for some

w ∈ S̃n. If ∗ �∼ n, then we have

�(w∗) = (P, Q∗, #»ρ ) and �(∗w) = (P∗, Q, #»ρ )

whenever w∗, ∗w are well defined. If ∗ ∼ n, then we have

�(w∗) = (P, Q∗, #»ρ + #»ι (Q, 1) − #»ι (Q, n)) and �(∗w) = (P∗, Q, #»ρ − #»ι (P, 1) + #»ι (P, n))

whenever w∗, ∗w are well defined.

Now we discuss how the star operation affects symmetrized offset constants.

Lemma 5.8. For n ≥ 3, let T be a tabloid of shape λ � n such that T∗ is well defined

for ∗ ∼ i. If i �= n, then lchj(T) = lchj(T
∗) for any j. Now suppose that i = n, 1 ∈ Ts, and

n ∈ Tt.

(a) If |t − s| ≥ 2, then lchj(T
∗) = lchj(T) if j �∈ {s − 1, s, t − 1, t} and

• if λs = λs+1, then lchs(T
∗) = lchs(T) + 1.

• if λs−1 = λs, then lchs−1(T∗) = lchs−1(T) − 1.

• if λt = λt+1, then lcht(T
∗) = lcht(T) − 1.

• if λt−1 = λt, then lcht−1(T∗) = lcht−1(T) + 1.

(b) If t = s + 1, then either 2 ∈ Tt or n − 1 ∈ Ts. In this case lchj(T
∗) = lchj(T) if

j �∈ {s − 1, s = t − 1, t} and

• if λs−1 = λs, then lchs−1(T∗) = lchs−1(T) − 1.

• if λs = λs+1(= λt), then lchs(T
∗) = lchs(T) + 2.

• if λt = λt+1, then lcht(T
∗) = lcht(T) − 1.

(c) If s = t + 1, then either 2 ∈ Ts or n − 1 ∈ Tt. In this case, lchj(T
∗) = lchj(T) if

j �∈ {t − 1, t = s − 1, s} and

• If λt−1 = λt, then lcht−1(T∗) = lcht−1(T) + 1.

• If λt = λt+1(= λs), then lchs−1(T∗) = lchs−1(T) − 2.

• If λs = λs+1, then lchs(T
∗) = lchs(T) + 1.

Proof. Let us 1st assume that ∗ ∼ i �= n and suppose that i ∈ Tt and i + 1 ∈ Ts. Then

s �= t, and if |s − t| ≥ 2 then it is clear that lchj(T
∗) = lchj(T) for any j. Thus, it remains
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Asymptotic Hecke Algebras 16069

to check the case when |s − t| = 1, that is, t = s + 1 or s = t + 1. But since T∗∗ = T, by

symmetry it suffices to show the case when t = s + 1, which we assume from now on.

It is still clear that lchj(T
∗) = lchj(T) if j �= s. Thus, we only need to show that

lchs(T
∗) = lchs(T) when λs = λs+1. Since in this case we have i ∈ τ(T∗) − τ(T), for

the star operation to be well defined, we should have either i + 2 ∈ Tt = Ts+1 so that

i + 1 ∈ τ(T) − τ(T∗) or i − 1 ∈ Ts = Tt−1 so that i − 1 ∈ τ(T) − τ(T∗).

Here we only deal with the case when i + 2 ∈ Tt = Ts+1, but the other case

can also be similarly proved. We take activation orderings on Ts and T∗
s , which are

the same as the standard activation ordering except that i + 1 ∈ Ts and i ∈ T∗
s are

the smallest element in each row. Then i + 1 ∈ Ts is matched to i + 2 ∈ Ts+1 and

i ∈ T∗
s is matched to i + 1 ∈ T∗

s+1. Furthermore, the matchings between Ts and Ts+1

are the same as those between T∗
s and T∗

s+1 except one; there exists j such that j ∈ Ts

is matched to i ∈ Ts+1 and j ∈ T∗
s is matched to i + 2 ∈ T∗

s+1. However, this does not

affect the local charge since j �= i + 1, that is, either j < i or i + 2 < j. Thus, we

have lchs(T
∗) = lchs(T).

It remains to consider the case when ∗ ∼ n. We assume that 1 ∈ Ts and n ∈ Tt,

and first suppose that |t − s| ≥ 2. It is still clear that lchj(T
∗) = lchj(T) if j �∈ {s − 1, s,

t − 1, t}. Now if λs = λs+1, then we choose activation orderings on Ts and T∗
s , which are

the same as the standard activation ordering except that n ∈ T∗
s becomes the smallest

element. Then it is clear that the star operation preserves matchings between (Ts, Ts+1)

and (T∗
s , T∗

s+1), and 1 ∈ Ts does not contribute to the charge but n ∈ T∗
s always does.

Thus, it follows that lchs(T
∗) = lchs(T) + 1.

On the other hand, if λs−1 = λs, then we take the standard activation ordering on

both Ts−1 and T∗
s−1. Then it is also clear that the star operation is matching preserving,

but the element k ∈ Ts−1 that is matched to 1 contributes to the charge whereas

k ∈ T∗
s−1 that is necessarily matched to n does not. In other words, we have lchs−1(T∗) =

lchs−1(T) − 1. Now the statements about the local charges on t-th and (t − 1)-th row

follow from applying this argument to T∗.

If |t − s| = 1, then it suffices to consider the case when t = s + 1 because the

other case is proved by switching T and T∗. Now if t = s + 1, that is, if 1 ∈ Ts and

n ∈ Ts+1, then clearly lchj(T
∗) = lchj(T) when j �∈ {s − 1, s, s + 1}. First, suppose that

λs−1 = λs. If we pose the standard activation ordering on both Ts−1 and T∗
s−1, then the

star operation is matching preserving. Also, there exists 2 ≤ k ≤ n−1 such that k ∈ Ts−1

is matched to 1 ∈ Ts but k ∈ T∗
s−1 is matched to n ∈ T∗

s . Thus, it is clear that lchs−1(T∗) =

lchs−1(T) − 1. Now when λs+1 = λs+2, then similar argument applies and one can show

that lchs+1(T∗) = lchs+1(T) − 1.
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16070 D. Kim and P. Pylyavskyy

This time we assume that λs = λs+1 and prove that lchs(T
∗) = lchs(T) + 2. Note

that either 2 ∈ Ts+1 or n − 1 ∈ Ts for the star operation to be well defined for ∗ ∼ n.

Here we only discuss the case when 2 ∈ Ts+1, but the other case is proved similarly. We

choose the activation ordering of Ts and T∗
s to be the standard one except that n ∈ T∗

s

becomes the smallest element. Then 1 ∈ Ts is matched to 2 ∈ Ts+1, whereas n ∈ T∗
s is

matched to 1 ∈ T∗
s+1. Besides these matchings, there is no difference between Ts and T∗

s ,

whereas T∗
s+1 is obtained from Ts+1 by replacing n with 2. This causes the local charge

of T∗ at row s to be bigger by 1 than that of T. Together with considering the matching

(1, 2) in T and (n, 1) in T∗, we see that lchs(T
∗) = lchs(T) + 2 as desired. �

Lemma 5.9. For n ≥ 3, let T, P, Q be tabloids of shape λ � n such that T∗ is well defined

for ∗ ∼ i. If i �= n, then we have #»s P,T =
#»s P,T∗ and #»s T,Q =

#»s T∗,Q. If i = n, then we have

#»s P,T∗ =
#»s P,T + #»ι (T, 1) − #»ι (T, n) −

#»

δ (T, 1) +
#»

δ (T, n) and

#»s T∗,Q =
#»s T,Q − #»ι (T, 1) + #»ι (T, n) +

#»

δ (T, 1) −
#»

δ (T, n).

Proof. It follows from Lemma 5.8 and [6, Theorem 5.10]. �

Proposition 5.10. For n ≥ 3, suppose that w ∈ S̃n satisfies �(w) = (P, Q, #»s P,Q + #»ρ ) for

some tabloids P, Q of shape λ � n and revλ(
#»ρ ) ∈ Dom(Fλ).

1) If Q∗ is well defined for ∗ ∼ i �= n, then �(w∗) = (P, Q∗, #»s P,Q∗ + #»ρ ). Similarly,

if P∗ is well defined for ∗ ∼ i �= n, then �(∗w) = (P∗, Q, #»s P∗,Q + #»ρ ).

2) If Q∗ is well defined for ∗ ∼ n, then �(w∗) = (P, Q∗, #»s P,Q∗ + #»ρ +
#»

δ (Q, 1) −
#»

δ (Q, n)). Similarly, if P∗ is well defined for ∗ ∼ n, then �(∗w) =

(P∗, Q, #»s P∗,Q + #»ρ −
#»

δ (P, 1) +
#»

δ (P, n)).

In particular, if �(w) = (P, P, #»ρ ) for some P such that P∗ is well defined, then �(∗w∗) =

(P∗, P∗, #»ρ ). (Here ∗w∗ = (∗w)∗ = ∗(w∗).)

Proof. By symmetry, it suffices only to prove the statements for w∗ when Q∗ is well

defined. If ∗ ∼ i �= n, then by [6, Theorem 3.11] we have �(w∗) = (P, Q∗, #»s P,Q + #»ρ ) =

(P, Q∗, #»s P,Q∗ + #»ρ ). Now if ∗ ∼ n, then again by [6, Theorem 3.11] we have

�(w∗) = (P, Q∗, #»s P,Q + #»ρ + #»ι (Q, 1) − #»ι (Q, n))

= (P, Q∗, #»s P,Q∗ + #»ρ +
#»

δ (Q, 1) −
#»

δ (Q, n))

by Lemma 5.9. �
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Asymptotic Hecke Algebras 16071

Example 5.11. Let n = 9 and w = [−1, 3, 10, −5, 14, −3, 18, 7, 2] as in the Example 5.6.

Recall that �(w) = (P, Q, #»s P,Q + #»ρ ), where P, Q, #»s P,Q are as in the Example 2.1, and

#»ρ = (0, 1, 2). For ∗ ∼ 9̄, we have w∗ = [−7, 3, 10, −5, 14, −3, 18, 7, 8]. Then one checks that

�(w∗) = (P, Q∗, (0, 0, 0)). Since for P = and Q∗ = we have #»s P,Q∗ = (0, −1, −2),

the claim of Proposition 5.10 reduces to

(0, 0, 0) = (0, −1, −2) + (0, 1, 2) +
#»

δ (Q, 1) −
#»

δ (Q, 9).

The latter is true since
#»

δ (Q, 1) =
#»

δ (Q, 9) = (0, 0, 0).

6 Distinguished Involutions

Here we study distinguished involutions defined in [17]. Originally, we say that w ∈ S̃n

is a distinguished involution if its Coxeter length equals a(w)+2 deg Pid,w, where a(w) is

the value of Lusztig’s a-function and Pid,w is the Kazhdan–Lusztig polynomial attached

to (id, w). However, this definition is equivalent that tw is the unit element in J�−1∩�

where � is the left cell containing w, see 2.1. Recall that D is the set of such elements in

S̃n. The main result in this section is as follows.

Theorem 6.1. Suppose that w ∈ S̃n. Then w ∈ D if and only if �(w) = (T, T, 0) for

some T.

Its proof consists of the following three lemmas.

Lemma 6.2. Let �1, �2, �3, �4 be left cells of S̃n contained in the same two-sided cell.

Then,

(a) �−1
1 ∩ �3 can be obtained from �−1

2 ∩ �4 by applying (left and right) star

operations and (left and right) multiplication by ω.

(b) �1 can be obtained from �2 by applying right star operations and right

multiplication by ω.

(c) �−1
1 ∩ �1 can be obtained from �−1

2 ∩ �2 by applying the map w �→ ∗w∗

(where the left and right star operations correspond to the same i for some

1 ≤ i ≤ n) and conjugation by ω.

Proof. It is a reformulation of [30, Lemma 2.2.1, Corollary 2.2.2, Proposition 2.2.3]

based on the result of [25]. Also note that (b) follows from (a) and (c) follows from (b). �
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16072 D. Kim and P. Pylyavskyy

Lemma 6.3. If w ∈ D, then ∗w∗ ∈ D (where the left and right star operations

correspond to the same i for some 1 ≤ i ≤ n) and ωwω
−1 ∈ D.

Proof. It directly follows from [30, Proposition 1.4.6]. �

Lemma 6.4. D ∩ Sn consists of all the involutions in Sn. In particular, wλ
0 ∈ D.

Proof. This follows from [17, Corollary 1.9(d)] and the fact that every involution in Sn

is distinguished. �

Proof of Theorem 6.1. By Lemma 6.2(c) and Lemma 6.3, any distinguished involution

can be obtained from another one in the same two-sided cell by applying w �→ ∗w∗

and w �→ ωwω
−1 several times. Therefore, by Propositions 5.5 and 5.10, it suffices

to show that �(w) = (T, T, 0) for at least one distinguished involution in each two-

sided cell. Now the result follows from the fact that wλ
0 ∈ cλ ∩ D by Lemma 6.4 and

�(wλ
0) = (Tan

λ , Tan
λ , 0) by Lemma 3.3. �

Example 6.5. Let n = 9 and consider the tabloid T = . Applying

the reverse AMBC construction to (T, T, 0) we get the distinguished involution

[−3, 5, 3, 7, 2, 10, 4, 8, 9] ∈ S̃9.

7 Structure of Asymptotic Hecke Algebras Attached to Two-Sided Cells

Let c = cλ for some λ � n and recall the definition of #»ε : (Tan
λ )−1 ∩ Tan

λ → Dom(Fλ) in

Section 4. A conjecture of Lusztig [19], proved by Xi [30] for G = GLn, states that there

exists an isomorphism between Jcλ
and Matχ×χ (R(Fλ)) where χ = n!

λ1!λ2!··· . Furthermore,

it restricts to an isomorphism J(�an
λ )−1∩�an

λ
� R(Fλ), which maps tw to V( #»ε (w)).

One problem of Xi’s construction is that the isomorphism Jcλ
� Matχ×χ (R(Fλ))

is not canonical; it depends on the choice of the identification of each left cell in cλ with

�can
λ using star operations and multiplication by ω. Here we propose a more canonical

construction of such an isomorphism using AMBC.

Definition 7.1. For an element w ∈ S̃n such that �(w) = (P, Q, #»ρ ), we denote

tw by t(P, Q, #»ρ ). (Here #»ρ is always dominant with respect to (P, Q).) Also we define

tP,Q := t(P, Q, #»s P,Q).

Our claim is that there exists an isomorphism such that tP,Q corresponds to an

“elementary matrix”. The main result of this section is the following theorem.
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Asymptotic Hecke Algebras 16073

Theorem 7.2. Let us label the left cells in c = cλ by �1, �2, . . . , �χ . Then there exists

an algebra isomorphism ϒ = ϒλ : Jc → Matχ×χ (R(Fλ)) such that if w ∈ �−1
i ∩ �j and

�(w) = (P, Q, #»s P,Q + #»ρ ), then ϒ(tw) is the matrix whose (i, j)-entry is V(revλ(
#»ρ )) and

other entries are zero.

It is clear that ϒ gives a well-defined isomorphism of abelian groups. Therefore,

the theorem is true if for any #»ρ , #»ρ ′ ∈ revλ(Dom(Fλ)) we have

t(P, Q, #»s P,Q + #»ρ ) · t(Q′, R, #»s Q′,R + #»ρ ′) = δQ,Q′

∑

#»ρ ′′

mρ,ρ′,ρ′′ t(P, R, #»s P,R + #»ρ ′′),

where V(revλ(
#»ρ )) ⊗ V(revλ(

#»ρ ′)) �
⊕

#»ρ ′′ V(revλ(
#»ρ ′′))⊕mρ,ρ′,ρ′′ . This equation holds when

Q �= Q′ by [17, Corollary 1.9]. Thus, we may assume that Q = Q′, that is, we only need to

show that

t(P, Q, #»s P,Q + #»ρ ) · t(Q, R, #»s Q,R + #»ρ ′) =
∑

#»ρ ′′

mρ,ρ′,ρ′′ t(P, R, #»s P,R + #»ρ ′′). (1)

Example 7.3. Let n = 9 and w = [−1, 3, 10, −5, 14, −3, 18, 7, 2]. Then �(w) =

(P, Q, #»s P,Q + #»ρ ), where P = , Q = , #»s P,Q = (0, −2, −1), and #»ρ = (0, 1, 2).

Let w′ = [−6, 2, −4, 15, 18, −2, 8, 22, 10]. Then �(w′) = (Q, R, #»s Q,R +
#»

ρ′), where R = ,

#»s Q,R = (0, 1, −1), and
#»

ρ′ = (0, 0, 2). Tensoring GL3 representations with highest weights

(2, 1, 0) and (2, 0, 0) we get

V(2, 1, 0) ⊗ V(2, 0, 0) = V(4, 1, 0) ⊕ V(3, 2, 0) ⊕ V(3, 1, 1) ⊕ V(2, 2, 1).

Taking into account that #»s P,R = (0, −1, −2) and applying inverse AMBC, we conclude

that

tw · tw′ = t[−7,3,−5,18,19,−3,7,23,8] + t[−7,7,−5,14,18,−3,8,19,12] + t[−5,3,−3,14,18,2,7,19,8]

+ t[−5,7,−3,10,14,2,8,18,12].

For example, (0, −1, −2) + (0, 1, 4) = (0, 0, 2) and �−1((P, R, (0, 0, 2))) = [−7, 3, −5, 18, 19,

−3, 7, 23, 8]. On the other hand, tw′ · tw = 0 since R �= P.
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The rest of this section is devoted to the proof of Equation (1). We start with the

following lemma.

Lemma 7.4. For some u, v ∈ S̃n, suppose that tutv =
∑

w∈S̃n
γu,v,w−1 tw.

(1) If v∗ is well defined for some ∗ ∼ i, then w∗ is also well defined when

γu,v,w−1 �= 0, and we have tutv∗ =
∑

w∈S̃n
γu,v,w−1 tw∗ .

(2) If ∗u is well defined for some ∗ ∼ i, then ∗w is also well defined when

γu,v,w−1 �= 0, and we have t∗utv =
∑

w∈S̃n
γu,v,w−1 t∗w.

(3) Suppose that tutv �= 0. Then for some ∗ ∼ i, u∗ is well defined if and only if

∗v is well defined. In this case, we have tu∗ t∗v =
∑

w∈S̃n
γu,v,w−1 tw.

(4) For any i, j, k ∈ Z, we have t
ω

iuω
−j t

ω
jvω

−k =
∑

w∈S̃n
γu,v,w−1 t

ω
iwω

−k .

Proof. The 1st three statements follows from [30, Theorem 1.6.2]. The last one follows

from the fact that t
ωw = t

ω
tw, twω

= twt
ω

, and t
ω

−1 = t−1
ω

. �

Now suppose that one of #»ρ , #»ρ ′ ∈ revλ(Dom(Fλ)) is determinantal. Then we know

that

V(revλ(
#»ρ )) ⊗ V(revλ(

#»ρ ′)) � V(revλ(
#»ρ ) + revλ(

#»ρ ′)).

Here we prove (1) in an analogous situation.

Lemma 7.5. Suppose that one of #»ρ , #»ρ ′ ∈ revλ(Dom(Fλ)) is determinantal. Then

t(P, Q, #»s P,Q + #»ρ ) · t(Q, R, #»s Q,R + #»ρ ′) = t(P, R, #»s P,R + #»ρ + #»ρ ′).

In particular, we have tP,QtQ,R = tP,R.

Proof. For tabloids P, Q, R of the same shape we denote by P(P, Q, R) the statement

that the equation above is true for the triple (P, Q, R) and any #»ρ , #»ρ ′ such that one of

#»ρ , #»ρ ′ is determinantal. The proof of this lemma consists of three steps.

(1) P(T, T, T) holds for any tabloid T. We already know that P(Tan
λ , Tan

λ , Tan
λ )

holds by Theorem 4.2 and [30, Theorem 8.2.1]. Thus by Lemma 6.2, it suffices

to show that

P(T, T, T) ⇒ P(T∗, T∗, T∗),P(ω(T), ω(T), ω(T)),
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Asymptotic Hecke Algebras 16075

where T∗ is well defined for some ∗ ∼ i. This follows from Proposition 5.5,

Proposition 5.10, and Lemma 7.4.

(2) P(T, T, T ′) holds for any tabloid T and T ′ of the same shape. We know that it

holds when T = T ′ by the 1st step. Thus again by Lemma 6.2, it suffices to

show that

P(T, T, T ′) ⇒ P(T, T, T ′∗),P(T, T, ω(T ′)).

where T ′∗ is well defined for some ∗ ∼ i. We again use Proposition 5.5,

Proposition 5.10, and Lemma 7.4. First of all, if ∗ �∼ n, then from

t(T, T, #»ρ ) · t(T, T ′, #»s T,T ′ + #»ρ ′) = t(T, T ′, #»s T,T ′ + #»ρ + #»ρ ′)

we have

t(T, T, #»ρ ) · t(T, T ′∗, #»s T,T ′∗ + #»ρ ′) = t(T, T ′∗, #»s T,T ′∗ + #»ρ + #»ρ ′)

thus P(T, T, T ′∗) holds. Now if ∗ ∼ n, then we have

t(T, T, #»ρ ) · t(T, T ′∗, #»s T,T ′∗ + #»ρ ′ +
#»

δ (T ′, 1) −
#»

δ (T ′, n))

= t(T, T ′∗, #»s T,T ′∗ + #»ρ + #»ρ ′ +
#»

δ (T ′, 1) −
#»

δ (T ′, n)).

Thus, if we replace #»ρ ′ by #»ρ ′ −
#»

δ (T ′, 1)+
#»

δ (T ′, n), then we see that P(T, T, T ′∗)

also holds in this case. Note that
#»

δ (T ′, 1) and
#»

δ (T ′, n) are determinantal;

thus, one of #»ρ , #»ρ ′ is determinantal if and only if one of #»ρ , #»ρ ′ −
#»

δ (T ′, 1) +
#»

δ (T ′, n) is determinantal. Finally, we also have

t(T, T, #»ρ ) · t(T, ω(T ′), #»s T,ω(T ′) + #»ρ ′ −
#»

δ (T ′, n)) = t(T, ω(T ′), #»s T,ω(T ′) + #»ρ

+ #»ρ ′ −
#»

δ (T ′, n)).

Thus, if we replace #»ρ ′ by #»ρ ′ +
#»

δ (T ′, n), then it follows that P(T, T, ω(T ′))

holds.

(3) P(P, Q, R) holds for any tabloids P, Q, R of the same shape. Similarly to

above, it suffices to show that

P(P, Q, R) ⇒ P(P, Q∗, R),P(P, ω(Q), R),
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16076 D. Kim and P. Pylyavskyy

where Q∗ is well defined for some ∗ ∼ i. We again use Proposition 5.5,

Proposition 5.10, and Lemma 7.4. If ∗ �∼ n, then from

t(P, Q, #»s P,Q + #»ρ ) · t(Q, R, #»s Q,R + #»ρ ′) = t(P, R, #»s P,R + #»ρ + #»ρ ′)

we have

t(P, Q∗, #»s P,Q∗ + #»ρ ) · t(Q∗, R, #»s Q∗,R + #»ρ ′) = t(P, R, #»s P,R + #»ρ + #»ρ ′),

which implies P(P, Q∗, R). On the other hand, if ∗ ∼ n, then we have

t(P, Q∗, #»s P,Q∗ + #»ρ +
#»

δ (Q, 1) −
#»

δ (Q, n)) · t(Q∗, R, #»s Q∗,R + #»ρ ′ −
#»

δ (Q, 1) +
#»

δ (Q, n))

= t(P, R, #»s P,R + #»ρ + #»ρ ′).

Thus, by replacing #»ρ and #»ρ ′ with #»ρ −
#»

δ (Q, 1) +
#»

δ (Q, n) and #»ρ ′ +
#»

δ (Q, 1) −
#»

δ (Q, n), respectively, we see that P(P, Q∗, R) holds. Finally, we also have

t(P, ω(Q), #»s P,ω(Q) + #»ρ −
#»

δ (Q, n)) · t(ω(Q), R, #»s
ω(Q),R + #»ρ ′ +

#»

δ (Q, n))

= t(P, R, #»s P,R + #»ρ + #»ρ ′).

Thus, by replacing #»ρ and #»ρ ′ with #»ρ +
#»

δ (Q, n) and #»ρ ′ −
#»

δ (Q, n), respectively,

we see that P(P, ω(Q), R) holds.

The lemma is proved. �

Now we prove (1) in the case when P = Q = R without any restriction on #»ρ or #»ρ ′.

Lemma 7.6. For any tabloid T we have

t(T, T, #»ρ ) · t(T, T, #»ρ ′) =
∑

#»ρ ′′

mρ,ρ′,ρ′′ t(T, T, #»ρ ′′)

where V(revλ(
#»ρ )) ⊗ V(revλ(

#»ρ ′)) �
⊕

#»ρ ′′ V(revλ(
#»ρ ′′))⊕mρ,ρ′,ρ′′ .

Proof. By Theorems 4.2 and [30, Theorem 8.2.1], at least we know that the statement

holds when T = Tan. Now it follows from Proposition 5.5, Proposition 5.10, and

Lemma 7.4. �
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Proof of Theorem 7.2. Here we prove that equation (1) holds. By Lemma 7.5, we have

t(P, Q, #»s P,Q + #»ρ ) · t(Q, R, #»s Q,R + #»ρ ′)

= t(P, P, #»ρ ) · t(P, Q, #»s P,Q) · t(Q, Q, #»ρ ′) · t(Q, R, #»s Q,R)

= t(P, P, #»ρ ) · t(P, Q, #»s P,Q + #»ρ ′) · t(Q, R, #»s Q,R)

= t(P, P, #»ρ ) · t(P, P, #»ρ ′) · t(P, Q, #»s P,Q) · t(Q, R, #»s Q,R)

= t(P, P, #»ρ ) · t(P, P, #»ρ ′) · t(P, R, #»s P,R)

which is the same as

∑

#»ρ ′′

mρ,ρ′,ρ′′ t(P, P, #»ρ ′′) · t(P, R, #»s P,R)

by Lemma 7.6. Again by Lemma 7.5 it is equal to

∑

#»ρ ′′

mρ,ρ′,ρ′′ t(P, R, #»s P,R + #»ρ ′′),

which is what we want to prove. �

8 Equality of Two Lusztig–Vogan Bijections

Let G be a reductive group over C. Lusztig [19] defined a conjectural bijection between

Dom(G) and

O := {(N, ρ) | N ∈ N , #»ρ ∈ Dom(FN)}/G,

where FN is the reductive part of the stabilizer ZG(N) of an element N ∈ N of the

nilpotent cone and the quotient by G is with respect to adjoint action on LieG. Later,

a similar bijection was also independently conjectured by Vogan [28]. We call such a

correspondence the Lusztig–Vogan bijection.

In this section, we focus on the case when G = GLn(C). Then we may and

shall identify O with
⊔

λ�n Dom(Fλ). Let us describe some properties of this bijection

as described in [17, 10.8]. Suppose that � : Dom(GLn) → O =
⊔

λ�n Dom(Fλ) is such a

bijection. We regard Dom(GLn) as a subset of S̃n by identifying #»μ = (μ1, μ2, . . . , μn) with

w #»μ := [nμ1 + 1, nμ2 + 2, . . . , nμn + n] ∈ S̃n. Then we have a decomposition of S̃n into
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16078 D. Kim and P. Pylyavskyy

double Sn cosets

S̃n =
⊔

#»μ∈Dom(GLn)

Snw #»μSn.

In particular, there exists an one-to-one correspondence between Dom(GLn) and double

Sn-cosets of S̃n, that is, Dom(GLn) � Sn\S̃n/Sn. Indeed, by acting on an element of S̃n

by Sn on the right we can order the residues modulo n in the window in natural order,

while acting by Sn on the left we can then order the μi in the dominant order. It is clear

that in both cases the choice of an appropriate element of Sn exists and is unique.

Recall that S̃nf is defined to be the set of minimal length elements in each left

Sn-coset. We define f S̃nf := (S̃nf )
−1 ∩ S̃nf , that is, the set of minimal length elements

in each double Sn-coset. Then clearly we have a bijection between f S̃nf and double Sn-

cosets in S̃n, that is, f S̃nf � Sn\S̃n/Sn. On the other hand, from the result of Section 3,

we have f S̃nf =
⊔

λ�n(�can
λ )−1 ∩ �can

λ . Therefore, we have a chain of bijections

�̃ :
⊔

λ�n

(�can
λ )−1 ∩ �can

λ = f S̃nf → Sn\S̃n/Sn → Dom(GLn)
�
−→

⊔

λ�n

Dom(Fλ).

Now [17, 10.8] asserts that �̃ should satisfy that �̃((�can
λ )−1 ∩ �can

λ ) = Dom(Fλ), and

furthermore it induces an algebra isomorphism

J(�can
λ )−1∩�can

λ
� R(Fλ) : tw �→ V(�̃(w)).

We already have one candidate deduced from the result of Section 7. Indeed,

recall that there is an algebra isomorphism ϒλ : Jc → Matχ×χ (R(Fλ)), which restricts

to an isomorphism ϒλ : J(�can
λ )−1∩�can

λ
→ R(Fλ). It sends tw for w ∈ (�can

λ )−1 ∩ �can
λ to

revλ(
#»ρ (w)) ∈ Dom(Fλ). Let us define

�̃1 :
⊔

λ�n

(�can
λ )−1 ∩ �can

λ →
⊔

λ�n

Dom(Fλ)

to be the disjoint union of such bijections. Then it is clear that �̃1 satisfies the properties

of �̃ above. In other words, the composition

�1 : Dom(GLn) � Sn\S̃n/Sn �
⊔

λ�n

(�can
λ )−1 ∩ �can

λ

�̃1
−→

⊔

λ�n

Dom(Fλ) = O

is a Lusztig–Vogan bijection.
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There is another realization of such a bijection studied by Achar, Bezrukavnikov,

Ostrik, and Rush. First of all, for a reductive group G over C, Ostrik [22] estab-

lished such a bijection using a G × C
×-equivariant K-theory of the nilpotent

cone of LieG. Also, Bezrukavnikov defined two bijections in terms of a bounded

derived category of G-equivariant coherent sheaves on the nilpotent cone of

LieG [3] and a tensor category attached to each two-sided cell in the affine

Weyl group of G [4]. Later, it is proved that they are indeed the same as one

another [5].

For G = GLn(C), Achar also described such a bijection in a combinatorial way

[1] and proved that this bijection is the same as the one defined by Bezrukavnikov and

Ostrik [2]. Later, his method is simplified by Rush [23, 24]. From now on, we denote this

bijection by �2 : Dom(GLn(C)) → O.

Note that the bijection �̃2 :
⊔

λ�n(�can
λ )−1 ∩ �can

λ →
⊔

λ�n Dom(Fλ) induced from

�2 satisfies the properties that �̃ above possesses. Indeed, �̃2 is derived from the

equivalence of two tensor categories Rep(Zc) → A
f
c as in [5, 1.7]. (Here Zc is the stabilizer

of a nilpotent element N ∈ LieGLn(C) whose orbit corresponds to the two-sided cell

c.) If we take the K-theory of this equivalence, then we have an algebra isomorphism

R(Fc) � R(Zc) → J(�can
c )−1∩�can

c
, which sends #»ρ = �̃2(w) to tw for w ∈ (�can

c )−1 ∩ �can
c ,

from which the claim follows. (Since Fc is the reductive part of Zc, we may identify R(Fc)

and R(Zc) canonically.)

We claim that these two realizations of the Lusztig–Vogan bijection coincide,

that is,

Theorem 8.1. We have �1 = �2, or equivalently �̃1 = �̃2.

Let us show how this can be used to compute Lusztig–Vogan bijection in

practice.

Example 8.2. Let n = 7 and take a dominant weight #»μ = (5, 1, 1, 1, −2, −2, −2) ∈

Dom(GL7). Then w #»μ = [36, 9, 10, 11, −9, −8, −7]. Rearranging this window in

increasing order, we find the element [−9, −8, −7, 9, 10, 11, 36] ∈ f S̃7f in the same

double S7-coset S7\S̃7/S7 as w #»μ . Applying to it the AMBC construction, we get

(T, T, (−2, 1, 3)), where T = is a canonical tableau, as expected. We conclude

that the Lusztig–Vogan bijection maps #»μ = (5, 1, 1, 1, −2, −2, −2) to the pair (λ, #»ρ ),

where λ = (3, 3, 1) is the shape of T and revλ(
#»ρ ) = (1, −2, 3) ∈ Dom(Fλ). (Note

that #»s T,T = 0.)
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16080 D. Kim and P. Pylyavskyy

Example 8.3. Let n = 7. Take a nilpotent orbit corresponding to λ = (2, 2, 1, 1, 1)

and let #»ρ = (0, 0, 1, 0, −1) ∈ Dom(Fλ). We wish to apply the inverse Lusztig–

Vogan bijection to the pair (λ, #»ρ ). We have Tcan
(2,2,1,1,1)

= , and applying the

inverse AMBC construction to the triple (Tcan
(2,2,1,1,1)

, Tcan
(2,2,1,1,1)

, (0, 0, −1, 0, 1)), we get

[−28, −8, −2, 4, 10, 16, 36] ∈ f S̃7f . Rearranging this window in the order increasing

modulo 7, we get w = [36, 16, 10, 4, −2, −8, −28]. This happens to be w #»μ for

#»μ = (5, 2, 1, 0, −1, −2, −5) ∈ Dom(GL7), which is the desired answer.

9 Proof of Theorem 8.1

This section is devoted to the proof of Theorem 8.1. We start with the following lemma.

Lemma 9.1. For λ = (1m12m2 · · · ) � n, we identify Dom(Fλ) =
∏

i≥1 Dom(GLmi
) and

define #»ρ λ(r, s) = (ρi)i≥1 ∈ Dom(Fλ) where each ρi ∈ Dom(GLmi
) is set to be ρi = 0 if i �= r

and ρr = (s, 0, . . . , 0). Set

Yλ := {0} �
{

#»ρ λ(r, s) ∈ Dom(Fλ) | r ∈ λ, s ≥ 1
}

.

If �−1
1 and �−1

2 coincide on
⊔

λ�n Yλ ⊂ O, then �1 = �2.

Proof. Let �m to be the ring of symmetric Laurent polynomials of m variables. Then

�m = Z[e1, e2, . . . , em−1, e±1
m ] where ea =

∑
i1<i2<···<ia

xi1
xi2

· · · xia
are elementary symmet-

ric functions. Thus, an algebra endomorphism of �m stabilizing e1, e2, . . . , em−1, em

is the identity on �m. Since Z[e1, e2, . . . , em−1, em] = Z[h1, h2, . . . , hm−1, hm] where

ha =
∑

i1≤i2≤···≤ia
xi1

xi2
· · · xia

are complete homogeneous symmetric functions, an

algebra endomorphism of �m stabilizing h1, h2, . . . , hm−1, hm is also the identity

on �m.

Since there exists a ring isomorphism R(GLm) � �m, which sends V(s, 0, 0, . . .)

to hs (see e.g., [27, Chapter 7: Appendix 2]), if we identify R(Fλ) with
∏

i≥1 R(GLmi
) �

∏
i≥1 �mi

, then an algebra endomorphism of R(Fλ) stabilizing each element in Yλ is the

identity. Now the lemma follows from the fact that R(Fλ) → R(Fλ) : V( #»ρ ) �→ V((�2 ◦

�−1
1 )( #»ρ )) is an algebra automorphism by the argument in the previous section. �

Remark. Indeed, the proof is still valid if we replace Yλ by
{

#»ρ λ(r, s) ∈ Dom(Fλ) | r ∈ λ,

1 ≤ s ≤ mr

}
.
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Asymptotic Hecke Algebras 16081

For a partition λ, we define Wλ(0) be the Young tableau of shape λ whose i-th

column is filled with λ′
i − 1, λ′

i − 3, . . . , 3 − λ′
i, 1 − λ′

i from top to bottom. For example, we

have

Also, when i ∈ λ we define the Young tableau Wλ(r, s) of shape λ as follows. The entries

of Wλ(r, s) are the same as those of Wλ(0) except (1, i)-entries for 1 ≤ i ≤ r. Let us write

ai, bi to be the (1, i)-th entry of Wλ(0) and Wλ(r, s), respectively, for 1 ≤ i ≤ r. Then bi are

uniquely determined by the following conditions.

• ai ≤ bi for 1 ≤ i ≤ r.

• b1 ≥ b2 ≥ · · · ≥ br.

•
∑r

i=1 bi = s +
∑r

i=1 ai.

•
∑r

i=1 b2
i is the minimum among the choice of bi satisfying the properties

above.

For example, we have

(Note that only (1,1)- and (1,2)-entries are different.)

We define #»μλ(0) (resp. #»μλ(r, s)) to be a dominant weight of GLn consist-

ing of entries of Wλ(0) (resp. Wλ(r, s)). For example, we have #»μ(3,3,2,2,1)(0) =

(4, 3, 2, 1, 1, 0, −1, −1, −2, −3, −4) and #»μ(3,3,2,2,1)(2, 5) = (6, 6, 2, 1, 1, 0, −1, −1, −2, −3, −4).

Lemma 9.2. �2( #»μλ(0)) = 0 and �2( #»μλ(r, s)) = #»ρ λ(r, s).

Proof. We briefly review some properties of �2 following [23]. For λ � n and

1 ≤ j ≤ λ1, it is clear that
∑

i≥j mi = λ′
j. Thus, we may consider a standard block
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diagonal embedding ζj :
∏

i≥j GLmi
→ GLλ′

j
. Let ζ =

∏
j ζj :=

∏
1≤j≤λ1

(
∏

i≥j GLmi
→ GLλ′

j
)

be a product of such morphisms. On the other hand, we also define ξi : GLmi
→ (GLmi

)i to

be the diagonal embedding, and let ξ =
∏

i∈λ ξi :
∏

i∈λ(GLmi
→ (GLmi

)i) be their product.

Then since
∏

i∈λ(GLmi
)i =

∏
i∈λ(

∏
i≥j GLmi

) =
∏

1≤j≤λ1
(
∏

i≥j GLmi
), the composition ζ ◦ ξ :

∏
i∈λ GLmi

→
∏

1≤j≤λ1
GLλ′

j
is well defined. If we let Lλ to be

∏
1≤j≤λ1

GLλ′
j
, then ζ ◦ ξ

defines a morphism Fλ �
∏

i∈λ GLmi
→ Lλ. For example, if λ = (4, 4, 2, 1, 1), then

ζ ◦ ξ : GL2 × GL1 × GL2 → GL5 × GL3 × GL2 × GL2 is defined by

(A, B, C) �→

⎛
⎜⎜⎝

⎛
⎜⎜⎝

A 0 0

0 B 0

0 0 C

⎞
⎟⎟⎠ ,

(
A 0

0 B

)
, A, A

⎞
⎟⎟⎠ .

Let us investigate (ζ ◦ ξ)∗ : R(Lλ) → R(Fλ) in terms of Laurent symmetric

functions. Recall that R(GLm) � �m where �m is the ring of symmetric Laurent

polynomials of m variables. Therefore, we may identify R(Fλ) with
⊗

i �(
#»x i) where

�(
#»x i) is the ring of Laurent symmetric functions with variables #»x i = (xi1, xi2, . . . , ximi

).

Similarly, we identify R(Lλ) with
⊗

j �(
#»y j) where �(

#»y j) is the ring of Laurent symmetric

functions with variables #»y j = (yj1, yj2, . . . , yjλ′
j
). Then direct calculation shows that

(ζ ◦ ξ)∗ maps f (
#»y j) ∈

⊗
j �(

#»y j) to f (
#»x ≥j) where #»x ≥j is the union of #»x i for i ≥ j.

Furthermore, if P ∈
⊗

j �(
#»y j) is homogeneous in ∪j

#»y j, then the image (ζ ◦ ξ)∗(P) is also

homogeneous in ∪i
#»x i and (ζ ◦ ξ)∗ is degree preserving. For example, if λ = (4, 4, 2, 1, 1),

then

(ζ ◦ ξ)∗(f (y21, y22, y23)) = f (x11, x12, x21).

Now suppose that we are given #»ρ ∈ Dom(Fλ). For #»ν ∈ Dom(GLn), defined

#»ν ′ ∈ Dom(Lλ) which satisfies the following conditions.

(a) As multisets, #»ν is the same as the union of parts in #»ν ′.

(b) Let �λ ∈ Dom(Lλ) be the half sum of positive roots of Lλ. Then #»ν ′ − 2�λ is

dominant.

(c) Let V( #»ν ′ − 2�λ) be the irreducible representation of Lλ of highest weight

#»ν ′ − 2�λ. Then V( #»ρ ) appears as an irreducible constituent of (ζ ◦ ξ)∗(V( #»ν ′ −

2�λ)), that is, the restriction of V( #»ν ′ − 2�λ) to Fλ under ζ ◦ ξ .

Let X #»ρ = { #»ν ∈ Dom(GLn) | such #»ν ′ exists}. Then according to [2] and [23], we have that

�2( #»μ) = #»ρ if and only if #»μ ∈ X #»ρ and || #»μ|| = min{|| #»ν || | #»ν ∈ X #»ρ }. Also in this case #»μ ′ is

uniquely determined.
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We set #»μ ′ = #»α + 2�λ where #»α = (αj)1≤j≤λ1
is such that αj = (αj1, αj2, . . . , αjλ′

j
) ∈

Dom(GLλ′
j
). Thus, we have αj1 ≥ αj2 ≥ · · · ≥ αjλ′

j
by (b). Under the identification

R(Fλ) �
⊗

i �(
#»x i) and R(Lλ) �

⊗
j �(

#»y j), the irreducible representation V( #»α ) ∈ R(Lλ)

corresponds to
∏

j sαj
(
#»y j) ∈

⊗
j �(

#»y j) where sαj
is the Schur function corresponding to

αj. Therefore, (ζ ◦ ξ)∗V( #»α ) ∈ R(Fλ) is identified with
∏

j sαj
(
#»x ≥j) ∈

⊗
i �(

#»x i).

We first suppose that �2( #»μ) = 0. Then (c) implies that
∏

j sαj
(
#»x ≥j) ∈

⊗
i �(

#»x i) has

a nonzero constant term. Let b be the smallest part in λ, then we have a factorization
∏

j sαj
(
#»x ≥j) =

∏
j≤b sαj

(
#»x ≥j)

∏
j>b sαj

(
#»x ≥j). Note that the variables #»x b does not appear in

∏
j>b sαj

(
#»x ≥j). Thus for

∏
j sαj

(
#»x ≥j) to have a constant term, we also have that #»x b does

not appear in
∏

j≤b sαj
(
#»x ≥j). Now direct calculation shows that it is only possible when

there exists βj ∈ Z for 1 ≤ j ≤ b such that αj = (βj, βj, . . . , βj) and
∑b

j=1 βj = 0. Then
∏

j≤b sαj
(
#»x ≥j) = 1 and

∏
j sαj

(
#»x ≥j) =

∏
j>b sαj

(
#»x ≥j).

We iterate the above argument by enlarging b to cover all the parts in λ and

conclude that there exists βj ∈ Z for 1 ≤ j ≤ λ1 such that αj = (βj, βj, . . . , βj) for all j and
∑k

j=1 βj = 0 whenever k ∈ λ. In this case, we have
∏

j sαj
(
#»x ≥j) = 1, thus the assumption

is satisfied. On the other hand, if we let (�λ)j be the component of �λ corresponding to

GLλ′
j
, then from the definition we have

2(�λ)j = (λ′
j − 1, λ′

j − 3, . . . , 3 − λ′
j, 1 − λ′

j).

Therefore, in order to find #»μ, we need to minimize

∑

j

((βj + λ′
j − 1)2 + (βj + λ′

j − 3)2 + · · · + (βj + 1 − λ′
j)

2)

subject to the condition
∑k

j=1 βj = 0 whenever k ∈ λ. Now it is easy to show that the

minimum is achieved when #»α = 0, that is, #»μ = 2�λ. Thus, it follows that #»μ = #»μλ(0) by

the definition of Wλ(0).

We proceed to the case when �2( #»μ) = #»ρ λ(r, s) and argue similarly to above. The

condition (c) implies that
〈∏

j sαj
(
#»x ≥j), ss(

#»x r)
〉

�= 0 where 〈 〉 is the pairing on
⊗

k �(
#»x k)

induced from the standard bilinear form on the ring of (Laurent) symmetric functions.

In this case, it is not hard to show that there exists βj ∈ Z for 1 ≤ j ≤ λ1 and γj ∈ N for

1 ≤ j ≤ r such that

αj =

⎧
⎨
⎩

(βj + γj, βj, . . . , βj) if 1 ≤ j ≤ r,

(βj, βj, . . . , βj) if r < j ≤ λ1,
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16084 D. Kim and P. Pylyavskyy

∑k
j=1 βj = 0 whenever k ∈ λ, and

∑r
j=1 γj = s. Now in order to find #»μ, we need to minimize

∑

1≤j≤r

((βj + γj + λ′
j − 1)2 + (βj + λ′

j − 3)2 + · · · + (βj + 1 − λ′
j)

2)

+
∑

r<j≤λ1

((βj + λ′
j − 1)2 + (βj + λ′

j − 3)2 + · · · + (βj + 1 − λ′
j)

2)

subject to the condition that
∑k

j=1 βj = 0 whenever k ∈ λ and
∑r

j=1 γj = s.

It is again easy to show that βj = 0 for each j; thus, it suffices to minimize
∑

1≤j≤r(γj + λ′
j − 1)2. Also it follows that #»α + 2�λ is obtained from #»μλ(0) by replacing

λ′
1 − 1, λ′

2 − 1, . . . , λ′
r − 1 with γ1 + λ′

1 − 1, γ2 + λ′
2 − 1, . . . , γr + λ′

r − 1. Now it is clear that

{b1, b2, . . . , br} = {γ1 + λ′
1 − 1, γ2 + λ′

2 − 1, . . . , γr + λ′
r − 1} by considering the defining

conditions of bi. (Recall that bi is the (1, i)-entry of Wλ(r, s).) Thus, it follows that

#»μ = #»μλ(r, s) as desired. �

By Lemmas 9.1 and 9.2, in order to prove Theorem 8.1, it suffices to show that

�1( #»μλ(0)) = 0 and �1( #»μλ(r, s)) = #»ρ λ(r, s). We analyze this condition more directly in

terms of AMBC.

Lemma 9.3. Suppose that we are given λ � n, #»μ = (μ1, μ2, . . . , μn) ∈ Dom(GLn), and

#»ρ ∈ Dom(Fλ). Then the following are equivalent:

(1) �1( #»μ) = #»ρ .

(2) If w = 
(Tcan
λ , Tcan

λ , revλ(
#»ρ )), then w and w #»μ are in the same double

Sn-coset.

(3) If w = 
(Tcan
λ , Tcan

λ , revλ(
#»ρ )), then {w(1), w(2), . . . , w(n)} = {nμ1 + 1, nμ2 +

2, . . . , nμn + n}.

(4) Let w = 
(Tcan
λ , Tcan

λ , revλ(
#»ρ )) and R ⊂ Bw be a set of representatives in

each translation class by (n, n). (For example, we may take R = {(x, w(x)) |

x ∈ [1, n]}.) Then {D(x) | x ∈ R} = #»μ as multisets, where D(x) is the block

diagonal defined in 2.3.

Proof. (1) and (2) are equivalent by the definition of �1. Now if (3) holds, then since

w #»μ = [nμ1 + 1, nμ2 + 2, . . . , nμn + n], there exists σ ∈ Sn such that w #»μ σ = w. Thus,

(2) holds. Now let us assume (2). Then w ∈ (�can
λ )−1 ∩ �can

λ ; thus, it is of the minimal

length in its double Sn-coset. On the other hand, it is easy to show that w #»μ is of the

minimal length in its right Sn-coset. Thus, there exists σ ∈ Sn such that w #»μ σ = w,
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which implies that {w(1), w(2), . . . , w(n)} = {w #»μ (1), w #»μ (2), . . . , w #»μ (n)}. As w #»μ = [nμ1 +

1, nμ2 + 2, . . . , nμn + n], (3) holds.

If we assume (3), then (4) clearly holds. Now we assume (4). Let #»μ ′ =

(μ′
1, μ′

2, . . . , μ′
n) ∈ Dom(GLn) be such that w and w #»μ ′ are in the same double Sn-coset,

which always exists by the bijection Dom(GLn) � Sn\S̃n/Sn �
⊔

λ�n(�can
λ )−1 ∩ �can

λ . As

(2) implies (3), we have {w(1), w(2), . . . , w(n)} = {nμ′
1 + 1, nμ′

2 + 2, . . . , nμ′
n + n}. But

then {D(i, w(i)) | i ∈ [1, n]} = #»μ ′ as multisets, thus #»μ = #»μ ′ by assumption and thus

(3) holds. �

Therefore, in order to prove Theorem 8.1, it suffices to find a set of representa-

tive R ⊂ Bw in each translation class by (n, n) such that

{D(x) | x ∈ R} =

⎧
⎨
⎩

#»μλ(r, s) when w = 
(Tcan
λ , Tcan

λ , revλ(
#»ρ λ(r, s))),

#»μλ(0) when w = 
(Tcan
λ , Tcan

λ , 0).

From now on, we proceed by induction on the number of rows in λ. We first

consider one-row case, that is, λ = (n). For s ≥ 0, there exist a, b ∈ N such that 0 ≤ b < n

and s = an + b. Then #»μλ(n, s) (when s > 0) consists of b numbers of (a + 1)s and (n − b)

numbers of as. Thus by Lemma 9.3 it suffices to show that

{w(1), w(2), . . . , w(n)} = {(a + 1)n + i | 1 ≤ i ≤ b} � {an + i | b < i ≤ n}

= {s + 1, s + 2, . . . , s + n}

where w = 
(Tcan
λ , Tcan

λ , (s)). But this is obvious because w = ω
s in this case.

Now suppose that we are given λ � n such that l(λ) ≥ 2 and assume that

Theorem 8.1 is true for partitions of < l(λ) parts. We set w = 
(Tcan
λ , Tcan

λ , revλ(
#»ρ ))

for #»ρ = #»ρ λ(r, s) or #»ρ = 0 and let #»μ ∈ Dom(GLn) such that �1( #»μ) = #»ρ . Also we let

n′ := n − λ1, λ̃ := (λ2, λ3, . . .) � n′ and w′ := fw(w). Then there exists #»ρ ′ ∈ Dom(Fλ̃)

such that w′ = 
(Tcan
λ̃

, Tcan
λ̃

, #»ρ ′) as a partial permutation. Indeed, #»ρ ′ is defined such

that revλ̃(
#»ρ ′) is obtained by removing the 1st entry from revλ(

#»ρ ). Thus in particular we

have

#»ρ ′ =

⎧
⎨
⎩

#»ρ λ̃(r, s) if #»ρ = #»ρ λ(r, s) where r �= λ1 or r = λ1 = λ2,

0 otherwise.
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16086 D. Kim and P. Pylyavskyy

Let #»μ ′ ∈ Dom(GLn′) such that �1( #»μ ′) = #»ρ ′. Then by induction assumption, #»μ ′ = #»μ λ̃(0) if

#»ρ ′ = 0 and #»μ ′ = #»μ λ̃(r, s) if #»ρ ′ = #»ρ λ̃(r, s). Also, for some r > 0 we have

st(w) =

⎧
⎨
⎩
sts({n

′ + 1, n′ + 2, . . . , n}, {n′ + 1, n′ + 2, . . . , n}) if #»ρ = #»ρ λ(λ1, s) and λ1 > λ2,

st0({n′ + 1, n′ + 2, . . . , n}, {n′ + 1, n′ + 2, . . . , n}) otherwise.

(See 2.3 for the definition of st(w). Also, sta(A, B) is a stream of altitude a yielding a

bijection from A + nZ to B + nZ. See [7, Section 3.4] for more details.)

Case 1. Let us first consider the case when r = λ1 > λ2, st(w) = sts({n
′ + 1,

n′ +2, . . . , n}, {n′ +1, n′ +2, . . . , n}) for some s ≥ 0, and #»ρ ′ = 0. We know that Theorem 8.1

holds when #»ρ = 0 since �−1
1 (0) = �−1

2 (0); see Lemma 9.1 and the following remark. We

prove the statement by induction on s, increasing it by 1.

Consider the tableau Wλ(λ1, s) and define its W-channel as follows. It is a subset

of boxes such that (1) its intersection with each column has exactly one box; (2) there

exists k ∈ Z such that the content of each box in it is either k or k + 1; (3) the boxes in

the right columns are not lower than the boxes in the left columns.

Example 9.4. Two W-channels of the tableau W(4,3,2,2,1)(0) are shown below:

Lemma 9.5. Each Wλ(λ1, s) has either one or two W-channels.

Proof. Let k be the filling of the single box in the leftmost column among those of

size 1 (which is possible as we assume that λ1 > λ2). By definition of Wλ(λ1, s), we know

k is non-negative, since bi ≥ ai = 0 if i is the index of the column of size 1. It is clear

that any W-channel must contain this k, and therefore it can only be filled with either

k-s and k + 1-s, or with k and k − 1. Furthermore, for each of those two choices there

is at most one W-channel filled with them, this is because no two entries in the same

column of Wλ(λ1, s) are consecutive integers. What remains to argue is that at least one

of those two W-channels does exist.
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Assume that i is the smallest column index such that bi = k. First we suppose

that we can find one of the entries k − 1, k, k + 1 in the column i − 1 below the 1st row. If

it is k − 1, then we can find either k or k − 1 in each column to the left of it. If it is k or

k + 1, we can find either k or k + 1 in each column to the left of it. Assume now that all

entries below the 1st row in column i − 1 are at most k − 2. This means that ai−1 ≤ k. If

we had bi−1 ≥ k + 2, we could reduce bi−1 by 1 and increase bi by 1 while decreasing the

sum of squares of b-s. Thus, bi−1 = k + 1. Let j be the smallest column index such that

bj = k + 1. Then if we can find an entry equal to k or k + 1 below the 1st row in column

j − 1, we can proceed to find such entry in each next column to the left. If not, we know

that aj−1 ≤ k + 1. On the other hand, by assumption bj−1 ≥ k + 2. Reducing bj−1 by 1 and

increasing bi by 1 decreases the sum of squares of b’s, which is a contradiction. This

completes the proof. �

Let w = 
(Tcan
λ , Tcan

λ , revλ(
#»ρ λ(λ1, s))) and assume that the entries of Wλ(λ1, s)

coincide with the multiset {D(x, w(x)) | x ∈ [1, n]}. (This holds for 
(Tcan
λ , Tcan

λ , 0) as

observed in Lemma 9.3, which is the base case for our induction step.)

Lemma 9.6. Suppose the situation above. Then there is an one-to-one correspondence

between channels of w and W-channels of Wλ(λ1, s) so that the multiset {D(b) | b ∈

C ∩ [1, n] × Z} is equal to the entries of the W-channel corresponding to the channel C.

Proof. Throughout the proof, we are using the fact that w lies in both left and right

canonical cells, that is, w(1) < w(2) < · · · < w(n) and w−1(1) < w−1(2) < · · · < w−1(n).

Then from the condition it easily follows that if C is a stream of w then there exists

k ∈ Z such that D(b) ∈ {k, k + 1} for any b ∈ C. Moreover, for any k ∈ Z the set {(x, w(x)) |

D(x, w(x)) ∈ {k, k + 1}} is always a stream of w by similar reason. Thus, it is indeed a

channel of w if and only if k and k + 1 together appear in Wλ(λ1, s) exactly λ1 times.

This is equivalent to the existence of a W-channel of entries in {k, k+1}. Thus, the result

follows. �

We proceed with the step of induction. Let us increase s by 1. By [7, Theorem

16.9], this results in a shift of size 1 of the most northeast channel of the indexing river.

(See [7, Definition 13.9] for the definition of the shift of a stream, [7, Definition 3.18] for

a river, and [7, Definition 16.6] for an indexing river.) In our situation, since λ1 > λ2 we

only have one river of w and thus it is equal to the set of all channels of w. When there is

only one channel, then it will automatically the most northeast channel and we set k ∈ Z

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/1

8
/1

6
0
5
1
/6

3
2
5
4
1
4
 b

y
 A

p
p
lie

d
 M

a
te

ria
ls

 u
s
e
r o

n
 2

9
 J

u
ly

 2
0
2
4



16088 D. Kim and P. Pylyavskyy

so that the set of entries of the corresponding W-channel are either {k} or {k, k + 1}. If

there are two of them, the most northeast one corresponds to the W-channel of entries

in {k, k + 1} if the other one corresponds to that of entries {k, k − 1} for some k ∈ Z.

Remark. Theorem 16.9 of [7] is stated in the generality when the streams have the

same flow as the width of the Shi poset. This is equivalent to λ1 = λ2. We are interested

in the case when λ1 > λ2. The proof of all statement in [7, Section 16.1] however extends

verbatim to this generality as well.

It is easy to see that the multiset of block diagonals D(x) as we vary x over

equivalence classes in the most northeast channel changes so that we get one less of

D(x) = k and one more of D(x) = k + 1. Note that by construction the smallest entry in

the 1st row belongs to all (i.e., one or two) W-channels. Thus, it follows that k is indeed

the smallest entry in the 1st row.

We now argue that the same change happens to the total content of Wλ(λ1, s)

as we increase s by 1, that is, Wλ(λ1, s + 1) is obtained from Wλ(λ1, s) by increasing

the smallest entry of the 1st row by 1. Indeed, keeping in mind that we are trying to

minimize
∑

b2
i conditioned on knowing

∑
bi and the fact that bi ≥ ai ≥ 0, it is not hard

to check that first, one is indeed related to the other by a single increase of an entry by

1, and second, it has to be the smallest entry. This completes the step of induction.

Example 9.7. The following illustrates how the W-channels change as we start with

s = 0 and increase it until s = 5 for W(4,3,3,3,1)(4, s). In each step, the union of all boxes

belonging to some W-channel is described as follows.
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Case 2. It remains to consider the case when st(w) = st0({n′ + 1, n′ + 2, . . . , n}, {n′ + 1,

n′ + 2, . . . , n}) and #»ρ ′ = #»ρ λ̃(r, s) for some r and s. Here we define some ad hoc notations;

for an integer vector #»ν and i ∈ Z, we define #»ν (i) to be the number of i in #»ν . Also let

#»ν (≥i) =
∑

j≥i
#»ν (j) and define #»ν (>i), #»ν (≤i), and #»ν (<i) similarly. We start with the following

lemma.

Lemma 9.8. Let #»μ λ̃(0), #»μ λ̃(r, s) be as before. Here #»μ ′ can be any of #»μ λ̃(0) or #»μ λ̃(r, s).

(1) For k ∈ Z, we have #»μ ′(k) + #»μ ′(k+1) ≤ λ2.

(2) For k ∈ Z, we have #»μ λ̃(0)(k) = #»μ λ̃(0)(−k).

(3) For k < 0, we have #»μ λ̃(r, s)(k) = #»μ λ̃(0)(k).

(4) #»μ λ̃(r, s)(≥0) = #»μ λ̃(0)(≥0).

(5) #»μ λ̃(r, s)(0) ≤ #»μ λ̃(0)(0).

(6) #»μ ′(>0) ≥ #»μ ′(<0) or equivalently #»μ ′(≥0) ≥ #»μ ′(≤0).

(7) For k > 0, we have #»μ ′(≥0) − #»μ ′(<−k) ≤ kλ2.

Proof. (1) holds since each column of Wλ̃(0) and Wλ̃(r, s) does not contain any two

consecutive integers. (2) is obvious. (3) is also straightforward since the negative entries

of Wλ̃(0) and Wλ̃(r, s) are the same. (4) follows immediately from (3). (5) follows from

the description of Wλ̃(r, s). (6) holds because of (2), (4), and (5). For (7), by (3) and (4) it

suffices to prove the inequality when #»μ ′ = #»μ λ̃(0). But #»μ λ̃(0)(≥0) = #»μ λ̃(0)(≤0) by (2), thus

the result follows from (1). �

Suppose that the window notation of w′ is given by

[c1, c2, . . . , c #»μ ′(<0) , b #»μ ′(0) , . . . , b2, b1, a #»μ ′(>0) , . . . , a2, a1, ∅, ∅, . . . , ∅].

In particular, we have

c1 < c2 < · · · < c #»μ ′(<0) < b #»μ ′(0) < · · · < b2 < b1 < a #»μ ′(>0) < · · · < a2 < a1.

Furthermore, it is clear that

#»μ ′ =

(⌈a1

n

⌉
− 1,

⌈a2

n

⌉
− 1, . . . ,

⌈
a #»μ ′(>0)

n

⌉
− 1,

⌈
b1

n

⌉
− 1,

⌈
b2

n

⌉
− 1, . . . ,

⌈
b #»μ ′(0)

n

⌉
− 1,

⌈
c #»μ ′(<0)

n

⌉
− 1, . . . ,

⌈c2

n

⌉
− 1,

⌈c1

n

⌉
− 1

)
.
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16090 D. Kim and P. Pylyavskyy

It follows that
⌈ai

n

⌉
≥ 2,

⌈
bi
n

⌉
= 1, and

⌈ ci
n

⌉
≤ 0 for any ai, bi, ci.

Example 9.9. Let n = 11, λ = (4, 3, 3, 1), and #»ρ ′ = (0, 2, 0) = #»ρ (3,3,1)(3, 2). Then

w′ = [−15, −6, −5, 4, 23, 24, 25, ∅, ∅, ∅, ∅].

Thus, we have

a1 = 25, a2 = 24, a3 = 23, b1 = 4, c3 = −5, c2 = −6, c1 = −15,

#»μ ′ = (2, 2, 2, 0, −1, −1, −2) = #»μ(3,3,1)(3, 2).

Indeed, W(3,3,1)(3, 2) is given by

The following lemma will turn out to be useful later on.

Lemma 9.10. Let k ∈ Z>0.

(1) For 1 ≤ i ≤ #»μ ′(>0) and k ∈ Z>0,
⌈ai

n

⌉
− 1 ≤ k if and only if i > #»μ ′(>k).

(2) For 1 ≤ i ≤ #»μ ′(<0) and k ∈ Z>0, 1 −
⌈ ci

n

⌉
≤ k if and only if i > #»μ ′(<−k).

(3) For any 1 ≤ i ≤ j ≤ #»μ ′(<0), we have 2
⌊

j−i
λ2

⌋
≤
⌈

cj

n

⌉
−
⌈ ci

n

⌉
.

Proof. (1) and (2) follow from the description of #»μ ′ above. (3) is equivalent to that

if j − i ≥ kλ2 for some k ∈ N then
⌈

cj

n

⌉
−
⌈ ci

n

⌉
≥ 2k. This is easily obtained from

Lemma 9.8(1). �

We define (recall that n′ = n − λ1)

Ai = (n′ + 1 − i, ai) for 1 ≤ i ≤ #»μ ′(>0),

Bi = ( #»μ ′(≤0) + 1 − i, bi) for 1 ≤ i ≤ #»μ ′(0),

Ci =
(
(1 −

⌈ci

n

⌉
)n + i, (1 −

⌈ci

n

⌉
)n + ci

)
for 1 ≤ i ≤ #»μ ′(<0).
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Asymptotic Hecke Algebras 16091

Then it is immediate that

Ai, Bi, Ci ∈ Bw′ ∩
(
{(a, b) ∈ Z

2 | a ≥ 1, b ≥ 1} − {(a, b) ∈ Z
2 | a ≥ n′ + 1, b ≥ n′ + 1}

)

and that {Ai | 1 ≤ i ≤ #»μ ′(>0)} � {Bi | 1 ≤ i ≤ #»μ ′(0)} � {Ci | 1 ≤ i ≤ #»μ ′(<0)} contains exactly

one representative in each translation class by (n, n) in Bw′ . Also, we have

A1 <NW A2 <NW · · · <NW A #»μ ′(>0) <NW B1,

C1 <NW C2 <NW · · · <NW C #»μ ′(<0) <NW B1,

B1 <NW B2 <NW · · · <NW B #»μ ′(0).

However, Ai and Cj are not comparable with respect to northwest ordering.

Example 9.11. When w′ = [−15, −6, −5, 4, 23, 24, 25, ∅, ∅, ∅, ∅] as above, we have

A1 = (7, 25), A2 = (6, 24), A3 = (5, 23), B1 = (4, 4), C3 = (13, 5), C2 = (14, 6), C1 = (23, 7).

Thus, A1 <NW A2 <NW A3 <NW B1 and C1 <NW C2 <NW C3 <NW B1. However, any of Ai

and Cj are not comparable.

In order to proceed the backward AMBC, it is necessary to calculate the

backward numbering d
bk,st(w)

w′ as in [7, Section 4.2]. For this, first we fix a proper

numbering of st(w) such that st(w)(−1) = (0, 0), that is, (0, 0) is labeled -1. Also we define

the numbering d on Ai, Bi, and Ci by

d(Ai) = −i, d(Bi) = −( #»μ ′(>0) + i), d(Ci) = −i

and extend to the whole of Bw′ by periodicity, that is, if b ∈ Bw′ , then d(b + k(n, n)) =

d(b) + kλ1. Note that this is the largest monotone numbering on {Ai}i ∪ {Bi}i ∪ {Ci}i,

which respects ≤NW subject to the condition that d(A1) = d(C1) = −1. (Recall that

#»μ ′(>0) ≥ #»μ ′(<0) by Lemma 9.8.)

Example 9.12. When w′ = [−15, −6, −5, 4, 23, 24, 25, ∅, ∅, ∅, ∅] as above, d is defined by

d(A1) = d(C1) = −1, d(A2) = d(C2) = −2, d(A3) = d(C3) = −3, d(B1) = −4.

Lemma 9.13. Let d be the numbering of Bw′ defined above. Then d = d
bk,st(w)

w′ .
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16092 D. Kim and P. Pylyavskyy

Proof. Suppose otherwise. Then from the construction of backward numbering, there

exist b, b′ ∈ Bw′ such that b <NW b′ and d(b) ≥ d(b′). Without loss of generality, we may

assume that b is one of Ai, Bi, or Ci. We consider each case in the following.

(a) Suppose that b = Ai for some 1 ≤ i ≤ #»μ ′(>0). In particular, d(b) = −i.

• If b′ = Aj + k(n, n) for some 1 ≤ j ≤ #»μ ′(>0) and k ∈ Z, then

we have d(b′) = −j + kλ1 ≤ −i, that is, k ≤
j−i
λ1

. Comparing the

y-coordinates, we also have aj + kn > ai, that is, k >
ai−aj

n . It follows

that
ai−aj

j−i
< n

λ1
< 1. But this is impossible since (a1, a2, . . .) is a strictly

decreasing sequence.

• b′ = Bj + k(n, n) for some 1 ≤ j ≤ #»μ ′(0) and k ∈ Z. This case we have

d(b′) = −( #»μ ′(>0) + j) + kλ1 ≤ −i, that is, k ≤
#»μ ′(>0)+j−i

λ1
. Comparing

the y-coordinates, we also have bj + kn > ai, that is, k >
ai−bj

n .

It follows that
ai−bj

#»μ ′(>0)+j−i
< n

λ1
< 1. This is again impossible since

(a1, a2, . . . , a #»μ ′(>0) , b1, b2, . . .) is strictly decreasing.

• b′ = Cj + k(n, n) for some 1 ≤ j ≤ #»μ ′(<0) and k ∈ Z. This case we

have d(b′) = −j + kλ1 ≤ −i. Comparing the y-coordinates, we also have

(1 −
⌈

cj

n

⌉
)n + cj + kn > ai, that is, k >

ai−cj

n − 1 +
⌈

cj

n

⌉
≥

ai
n − 1. Thus,

⌈ai
n

⌉
− 1 ≤ k, which implies i > #»μ ′(>k) by Lemma 9.10. Thus, we have

#»μ ′(>0) ≥ j ≥ kλ1 + i > kλ1 + #»μ ′(>k) ≥ #»μ ′(≥0) by Lemma 9.8 (as λ1 ≥ λ2),

which is not possible.

(b) Suppose that b = Bi for some 1 ≤ i ≤ #»μ ′(0). In particular, d(b) = −( #»μ ′(>0) + i).

• If b′ = Aj +k(n, n) for some 1 ≤ j ≤ #»μ ′(>0) and k ∈ Z, then we have d(b′) =

−j + kλ1 ≤ −( #»μ ′(>0) + i), that is, kλ1 ≤ j − i − #»μ ′(>0) ≤ −i < 0. However,

comparing the x-coordinates we have #»μ ′(≤0) + 1 − j < kn + (n′ + 1 − i),

that is, kn > #»μ ′(≤0) − j + i − n′ = #»μ ′(>0) − j + i ≥ i > 0. This is impossible.

• b′ = Bj + k(n, n) for some 1 ≤ j ≤ #»μ ′(0) and k ∈ Z. This case we have

d(b′) = −( #»μ ′(>0) + j) + kλ1 ≤ −( #»μ ′(>0) + j), that is, kλ1 ≤ j − i. Since

|j − i| < #»μ ′(0) ≤ λ2 ≤ λ1 by Lemma 9.8, it follows that k = 0. This is

impossible since it implies b′ = Bj.

• b′ = Cj + k(n, n) for some 1 ≤ j ≤ #»μ ′(<0) and k ∈ Z. This case we have

d(b′) = −j + kλ1 ≤ −( #»μ ′(>0) + i), that is, kλ1 ≤ j − i − #»μ ′(>0) ≤ −i < 0

since #»μ ′(<0) ≤ #»μ ′(>0) by Lemma 9.8. By looking at the y-coordinates, we

also have bi < (1 −
⌈

cj

n

⌉
)n + cj + kn, that is, kn > bi − cj − (1 −

⌈
cj

n

⌉
)n ≥

bi − n > −n, thus k > −1. This is again impossible.

(c) Suppose that b = Ci for some 1 ≤ i ≤ #»μ ′(<0). In particular, d(b) = −i.
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• If b′ = Aj + k(n, n) for some 1 ≤ j ≤ #»μ ′(>0) and k ∈ Z, then we have

d(b′) = −j + kλ1 ≤ −i. By looking at the x-coordinates, we also have

n′ + 1 − j + kn > (1 −
⌈ ci

n

⌉
)n + i, that is, k >

i+j−n′−1
n + 1 −

⌈ ci
n

⌉
> 1 +

⌈ ci
n

⌉
.

Thus by Lemma 9.10 it follows that i > #»μ ′(<−k). But then we have #»μ ′(≥0) ≥

#»μ ′(>0) ≥ j ≥ kλ1 + i > kλ1 + #»μ ′(<−k) but this is not possible by Lemma 9.8.

• b′ = Bj + k(n, n) for some 1 ≤ j ≤ #»μ ′(0) and k ∈ Z. This case we have

d(b′) = −( #»μ ′(>0) + j) + kλ1 ≤ −i. By looking at the x-coordinates, we

also have (1 −
⌈ ci

n

⌉
)n + i < #»μ ′(≤0) + 1 − j + kn, that is, k >

i+j− #»μ ′(≤0)−1
n +

1 −
⌈ ci

n

⌉
> 1 −

⌈ ci
n

⌉
. Thus, i > #»μ ′(<−k) by Lemma 9.10. Now we have

#»μ ′(≥0) ≥ j + #»μ ′(>0) ≥ kλ1 + i > kλ1 + #»μ ′(<−k) but this is not possible by

Lemma 9.8.

• b′ = Cj + k(n, n) for some 1 ≤ j ≤ #»μ ′(<0) and k ∈ Z. This case we have

d(b′) = −j+kλ1 ≤ −i, that is, k ≤
j−i
λ1

. By looking at the y-coordinates, we

also have (1−
⌈

cj

n

⌉
)n+cj +kn > (1−

⌈ ci
n

⌉
)n+ci, that is, k >

ci−cj

n +
⌈

cj

n

⌉
−

⌈ ci
n

⌉
> −1. Thus, k ≥ 0, and since k = 0 case is not possible we have

k ≥ 1. Also j ≥ i. This time we compare the x-coordinates and obtain

(1 −
⌈

cj

n

⌉
)n + j + kn > (1 −

⌈ ci
n

⌉
)n + i, that is, k >

i−j
n +

⌈
cj

n

⌉
−
⌈ ci

n

⌉
. Thus,

k ≥
⌈

cj

n

⌉
−
⌈ ci

n

⌉
as |i − j| < n. By Lemma 9.10, it implies that 2

⌊
j−i
λ1

⌋
≤

2
⌊

j−i
λ2

⌋
≤ k ≤

j−i
λ1

, which is true only when
j−i
λ1

< 1. This contradicts that

1 ≤ k ≤
j−i
λ1

.

We considered all the possible cases. The lemma is proved. �

We set R′ :=
⊔λ1

i=1 R′
i where R′

i = {b ∈ Bw′ | d(b) = −i}. Then it is clear that R′ is

the set of representatives in each translation class by (n, n) in Bw′ . Also for 1 ≤ i ≤ λ1

let Zi be the zigzag with the back corner-post at st(w)(−i) = (1− i, 1− i) and outer corner-

posts at the balls in R′
i. We set R :=

⊔λi

i=1 Ri where Ri = {inner corner-posts of Zi}. Then it

is also clear that R is the set of representatives in each translation class by (n, n) in Bw.

Our goal is to show that {D(b) | b ∈ R} is equal to #»μλ(0) or #»μλ(r, s), and by Lemma 9.3 it

implies Theorem 8.1.

For k ∈ Z and 1 ≤ i ≤ λ1, let us set

Ãk,i := Akλ1+i + k(n, n) if 1 ≤ kλ1 + i ≤ #»μ ′(>0),

B̃k,i := Bkλ1+i− #»μ ′(>0) + k(n, n) if 1 ≤ kλ1 + i − #»μ ′(>0) ≤ #»μ ′(0),

C̃k,i := Ckλ1+i + k(n, n) if 1 ≤ kλ1 + i ≤ #»μ ′(<0).
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16094 D. Kim and P. Pylyavskyy

Note that d(Ãk,i) = d(B̃k,i) = d(C̃k,i) = −i. Also let Ni =
⌊

#»μ ′(<0)−i
λ1

⌋
so that Niλ1 + i ≤

#»μ ′(<0) < (Ni + 1)λ1 + i. Since #»μ ′(≥0) − #»μ ′(<0) < λ1 by Lemma 9.8, (Ni + 2)λ1 + i > #»μ ′(≥0).

Now we consider the three possible cases below.

(a) Suppose that (Ni + 1)λ1 + i ≤ #»μ ′(>0). Then

R′
i = {Ãk,i | 1 ≤ k ≤ Ni + 1} � {C̃k,i | 1 ≤ k ≤ Ni}.

(b) Suppose that #»μ ′(>0) < (Ni + 1)λ1 + i ≤ #»μ ′(≥0). Then

R′
i = {Ãk,i | 1 ≤ k ≤ Ni} � {B̃Ni+1,i} � {C̃k,i | 1 ≤ k ≤ Ni}.

(c) Suppose that (Ni + 1)λ1 + i > #»μ ′(≥0). Then

R′
i = {Ãk,i | 1 ≤ k ≤ Ni} � {C̃k,i | 1 ≤ k ≤ Ni}.

Example 9.14. Suppose that n = 15, λ = (5, 4, 4, 2), and #»ρ ′ = (0, 4, 0). Thus,

w′ = 
(Tcan
(4,4,2), Tcan

(4,4,2), (0, 3, 0)) = [−21, −20, −8, −7, 5, 6, 32, 33, 34, 46, ∅, ∅, ∅, ∅, ∅].

Then

A1 = (10, 46), A2 = (9, 34), A3 = (8, 33), A4 = (7, 32), B1 = (6, 6), B2 = (5, 5),

C4 = (18, 7), C3 = (19, 8), C2 = (31, 9), C1 = (32, 10)

and d(Ai) = d(Ci) = −i, d(Bi) = −5 − i. Also,

Ã0,i = Ai for 1 ≤ i ≤ 4, C̃0,i = Ci for 1 ≤ i ≤ 4,

B̃1,1 = B2 + (15, 15) = (20, 20), B̃0,5 = B1 = (6, 6).

Thus, in particular d(Ã0,i) = d(C̃0,i) = −i for 1 ≤ i ≤ 4 and d(B̃1,1) = −1, d(B̃0,5) = −5.

Recall the process to calculate inner corner-posts of a zigzag from the back and

outer corner-posts. If a zigzag Z consists of the back corner-post (a0, b0) and outer

corner-posts (a1, b1), (a2, b2), . . . , (ar, br) such that a1 < a2 < · · · < ar, then the outer
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corner-posts of Z is given by

{(a0, b1), (a1, b2), . . . , (ar−1, br), (ar, b0)}.

We wish to apply this rule to each Zi for 1 ≤ i ≤ λ1. However, in fact it is

sufficient only to calculate the block diagonals {D(x) | x ∈ Zi} for each Zi for our purpose.

To this end, we simplify the argument by exploiting the notion of block diagonals.

Definition 9.15. For (x, y) ∈ Z
2, we define the n-block coordinate (or block coordi-

nate if there is no confusion) of (x, y) to be
(⌈

x
n

⌉
− 1,

⌈ y
n

⌉
− 1

)
and write

[
(x, y)

]
n

=
(⌈

x
n

⌉
− 1,

⌈ y
n

⌉
− 1

)
. For a subset A ⊂ Z

2, we define [A]n := {
[
b
]
n

| b ∈ A}. Note that if
[
b
]
n

= (x, y), then D(b) = y − x.

For 1 ≤ i ≤ λ1, direct calculation shows that
[
st(w)(−i)

]
n

= (−1, −1) and also

[
Ãk,i

]
n

=

(
k,

⌈
akλ1+i

n

⌉
+ k − 1

)
,

[
B̃k,i

]
n

= (k, k) ,
[
C̃k,i

]
n

=

(
k + 1 −

⌈
ckλ1+i

n

⌉
, k

)
.

Therefore,
[
R′

i

]
n

and {D(x) | x ∈ R′
i} for 1 ≤ i ≤ λ1 is given as follows.

(a) Suppose that (Ni + 1)λ1 + i ≤ #»μ ′(>0). Then

[
R′

i

]
n

=

{(
k,

⌈
akλ1+i

n

⌉
+ k − 1

)
| 1 ≤ k ≤ Ni + 1

}

�

{(
k + 1 −

⌈
ckλ1+i

n

⌉
, k

)
| 1 ≤ k ≤ Ni

}
,

{D(x) | x ∈ R′
i} =

{⌈
akλ1+i

n

⌉
− 1 | 1 ≤ k ≤ Ni + 1

}
�

{⌈
ckλ1+i

n

⌉
− 1 | 1 ≤ k ≤ Ni

}
.

(b) Suppose that #»μ ′(>0) < (Ni + 1)λ1 + i ≤ #»μ ′(≥0). Then

[
R′

i

]
n

=

{(
k,

⌈
akλ1+i

n

⌉
+ k − 1

)
| 1 ≤ k ≤ Ni

}
� {
(
Ni + 1, Ni + 1

)
}, =

�

{(
k + 1 −

⌈
ckλ1+i

n

⌉
, k

)
| 1 ≤ k ≤ Ni

}
,

{D(x) | x ∈ R′
i} =

{⌈
akλ1+i

n

⌉
−1 | 1 ≤ k ≤ Ni

}
� {0} �

{⌈
ckλ1+i

n

⌉
− 1 | 1≤ k ≤ Ni

}
.
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16096 D. Kim and P. Pylyavskyy

(c) Suppose that (Ni + 1)λ1 + i > #»μ ′(≥0). Then

[
R′

i

]
n

=

{(
k,

⌈
akλ1+i

n

⌉
+ k − 1

)
| 1 ≤ k ≤ Ni

}

�

{(
k + 1 −

⌈
ckλ1+i

n

⌉
, k

)
| 1 ≤ k ≤ Ni

}
,

{D(x) | x ∈ R′
i} =

{⌈
akλ1+i

n

⌉
− 1 | 1 ≤ k ≤ Ni

}
�

{⌈
ckλ1+i

n

⌉
− 1 | 1 ≤ k ≤ Ni

}
.

Now we calculate
[
Ri

]
n

for each 1 ≤ i ≤ λ1. Note that there are no two balls

b, b′ ∈ R′
i such that

[
b
]
n

and
[
b′
]
n

have the same x or y coordinate. Thus, to this end,

we may apply the usual backward AMBC process on {
[
(1 − i, 1 − i)

]
n
} ∪

[
Ri

]
n

directly; it

will give the same result as applying the backward AMBC process on {(1 − i, 1 − i)} ∪ Ri

and calculating the block coordinates of the result. Now direct calculation shows the

following.

(a) Suppose that (Ni + 1)λ1 + i ≤ #»μ ′(>0). Then

[
Ri

]
n

=

{(
k − 1,

⌈
akλ1+i

n

⌉
+ k − 1

)
| 1 ≤ k ≤ Ni + 1

}
� {
(
Ni + 1, Ni

)
}

�

{(
k + 1 −

⌈
ckλ1+i

n

⌉
, k − 1

)
| 1 ≤ k ≤ Ni

}
,

{D(x) | x ∈ Ri} =

{⌈
akλ1+i

n

⌉
|1≤ k ≤ Ni +1

}
� {−1} �

{⌈
ckλ1+i

n

⌉
−2 | 1 ≤ k ≤ Ni

}
.

(b) Suppose that #»μ ′(>0) < (Ni + 1)λ1 + i ≤ #»μ ′(≥0). Then

[
Ri

]
n

=

{(
k − 1,

⌈
akλ1+i

n

⌉
+ k − 1

)
| 1 ≤ k ≤ Ni

}

� {
(
Ni, Ni + 1

)
,
(
Ni + 1, Ni

)
}

�

{(
k + 1 −

⌈
ckλ1+i

n

⌉
, k − 1

)
| 1 ≤ k ≤ Ni

}
,

{D(x) | x ∈ Ri} =

{⌈
akλ1+i

n

⌉
| 1 ≤ k ≤ Ni

}
� {1, −1} �

{⌈
ckλ1+i

n

⌉
− 2 | 1 ≤ k ≤ Ni

}
.
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(c) Suppose that (Ni + 1)λ1 + i > #»μ ′(≥0). Then

[
Ri

]
n

=

{(
k,

⌈
akλ1+i

n

⌉
+ k − 1

)
| 1 ≤ k ≤ Ni

}
� {
(
Ni, Ni

)
}

�

{(
k + 1 −

⌈
ckλ1+i

n

⌉
, k

)
| 1 ≤ k ≤ Ni

}
,

{D(x) | x ∈ Ri} =

{⌈
akλ1+i

n

⌉
| 1 ≤ k ≤ Ni

}
� {0} �

{⌈
ckλ1+i

n

⌉
− 2 | 1 ≤ k ≤ Ni

}
.

Example 9.16. Recall the example above when n = 15, λ = (5, 4, 4, 2), #»ρ ′ = (0, 4, 0), and

w′ = 
(Tcan
(4,4,2), Tcan

(4,4,2), (0, 3, 0)) = [−21, −20, −8, −7, 5, 6, 32, 33, 34, 46, ∅, ∅, ∅, ∅, ∅].

We have

{st(w)(−1)} ∪ R′
1 = {(0, 0), Ã0,1, B̃1,1, C̃0,1} = {(0, 0), (10, 46), (20, 20), (32, 10)},

{st(w)(−2)} ∪ R′
2 = {(−1, −1), Ã0,2, C̃0,2} = {(−1, −1), (9, 34), (31, 9)},

{st(w)(−3)} ∪ R′
3 = {(−1, −1), Ã0,3, C̃0,3} = {(−2, −2), (8, 33), (19, 8)},

{st(w)(−4)} ∪ R′
4 = {(−1, −1), Ã0,4, C̃0,4} = {(−3, −3), (7, 32), (18, 7)},

{st(w)(−5)} ∪ R′
5 = {(−1, −1), B̃0,5} = {(−4, −4), (6, 6)}.

Therefore,

[
{st(w)(−1)} ∪ R′

1

]
n

= {(−1, −1), (0, 3), (1, 1), (2, 0)},

[
{st(w)(−2)} ∪ R′

2

]
n

= {(−1, −1), (0, 2), (2, 0)},

[
{st(w)(−3)} ∪ R′

3

]
n

= {(−1, −1), (0, 2), (1, 0)},

[
{st(w)(−4)} ∪ R′

4

]
n

= {(−1, −1), (0, 2), (1, 0)},

[
{st(w)(−5)} ∪ R′

5

]
n

= {(−1, −1), (0, 0)}.
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16098 D. Kim and P. Pylyavskyy

By applying the backward AMBC algorithm to each
[
R′

i

]
n

, we get

[
R1

]
n

= {(−1, 3), (0, 1), (1, 0), (2, −1)},

[
R2

]
n

= {(−1, 2), (0, 0), (2, −1)},

[
R3

]
n

= {(−1, 2), (0, 0), (1, −1)},

[
R4

]
n

= {(−1, 2), (0, 0), (1, −1)},

[
R5

]
n

= {(−1, 0), (0, −1)}.

Note that this is consistent with

R1 = {(0, 46), (10, 20), (20, 10), (32, 0)},

R2 = {(−1, 34), (9, 9), (31, −1)},

R3 = {(−2, 33), (8, 8), (19, −2)},

R4 = {(−3, 32), (7, 7), (18, −3)},

R5 = {(−4, 6), (6, −4)}.

Furthermore, we have

{D(x) | x ∈ R′
1} = {3, 0, −2}, {D(x) | x ∈ R′

2} = {2, −2},

{D(x) | x ∈ R′
3} = {D(x) | x ∈ R′

4} = {2, −1}, {D(x) | x ∈ R′
5} = {0}

and

{D(x) | x ∈ R′
1} = {4, 1, −1, −3}, {D(x) | x ∈ R′

2} = {3, 0, −3},

{D(x) | x ∈ R′
3} = {D(x) | x ∈ R′

4} = {3, −0, −2}, {D(x) | x ∈ R′
5} = {1, −1}.

From this calculation, we derive the relations between #»μ and #»μ ′. (Recall that

Ni =
⌊

#»μ ′(<0)−i
λ1

⌋
.)

• For j > 0, #»μ(j+1) = #»μ ′(j) and #»μ(−j−1) = #»μ ′(−j).

• #»μ(0) = #{i | 1 ≤ i ≤ λ1, (Ni + 1)λ1 + i > #»μ ′(≥0)}

• #»μ(1) = #{i | 1 ≤ i ≤ λ1, #»μ ′(>0) < (Ni + 1)λ1 + i ≤ #»μ ′(≥0)}

• #»μ(−1) = #{i | 1 ≤ i ≤ λ1, (Ni + 1)λ1 + i ≤ #»μ ′(≥0)}
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Now it is clear from the description that #»μ(1) = #»μ ′(≥0)− #»μ ′(>0) = #»μ ′(0). Also by Lemma 9.8,

#»μ(−1) = #»μ ′(≥0) − #»μ ′(<0) = #»μ λ̃(0)(≥0) − #»μ λ̃(0)(<0) = #»μ λ̃(0)(0) =
∑

k≥1

(−1)k−1λk.

Since
∑

j∈Z
#»μ(j) = λ1 +

∑
j∈Z

#»μ ′(j), it follows that #»μ(0) =
∑

k≥2(−1)kλk.

Now suppose that #»μ ′ = #»μ λ̃(0). Then it is easy to see that #»μλ(0)(j+1) =

#»μ λ̃(0)(j), #»μλ(0)(−j−1) = #»μ λ̃(0)(−j) for j ≥ 0 and #»μλ(0)(0) = #{i | 1 ≤ i ≤ λ1, λ′
i ∈ 2Z} =

∑
k≥2(−1)kλk. By comparing this with the relations between #»μ and #»μ ′, we conclude that

#»μ = #»μλ(0).

This time suppose that #»μ ′ = #»μ λ̃(r, s) where r ∈ λ̃. Then by Lemma 9.8 and the

argument above it is still true that #»μλ(s, r)(−j−1) = #»μ λ̃(s, r)(−j) for j > 0 and also

#»μλ(s, r)(−1) = #»μλ(0)(−1) = #{i | 1 ≤ i ≤ λ1, λ′
i − 1 ∈ 2Z} =

∑

k≥1

(−1)k−1λk

#»μλ(s, r)(0) = #»μλ(0)(0) = #{i | 1 ≤ i ≤ λ1, λ′
i ∈ 2Z} =

∑

k≥2

(−1)kλk.

(The 2nd equation holds since r ≤ λ2.) Also from the construction of Wλ̃(r, s) and Wλ(r, s),

it is also easy to show that #»μλ(s, r)(j+1) = #»μ λ̃(s, r)(j) for j > 0. Now it follows from
∑

j∈Z
#»μλ(r, s)(j) = λ1 +

∑
j∈Z

#»μ
(j)

λ̃
that #»μλ(s, r)(1) = #»μ λ̃(s, r)(0). But this also shows that

#»μ = #»μλ(s, r) by considering the relations between #»μ and #»μ ′.

This completes the proof of Theorem 8.1.

A Asymptotic Hecke Algebras for SLn and PGLn

So far, we discussed the extended affine symmetric group and its asymptotic Hecke

algebra. In terms of representation theory, it means that we only considered the affine

Weyl group of GLn. In this section, we observe how our result can be extended to simple

groups of type A, especially SLn and PGLn. For simplicity, we assume that GLn, SLn, and

PGLn are all defined over C.

A.1 G = SLn case

Note that ω
n ∈ S̃n is in the center of S̃n. The affine Weyl group of SLn can be identified

with S̃n/
〈
ω

n
〉
, and its two-sided cell (resp. left cell, resp. right cell) is given by the image

of such a cell of S̃n under the quotient map π : S̃n � S̃n/
〈
ω

n
〉
. In particular, its two-sided

cells are also parametrized by the partitions of n.
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16100 D. Kim and P. Pylyavskyy

Likewise, for a two-sided cell c of S̃n we define J SL
c := Jc/(ω

n − 1). Then it is

clear that this is an asymptotic Hecke algebra corresponding to SLn attached to the two-

sided cell π(c). Now the following theorem gives a structural description of J SL
c in terms

of Theorem 7.2.

Theorem A.1. For c = cλ, the isomorphism in Theorem 7.2 factors through

J SL
c � Matχ×χ (R(Fλ))/(ω

n − 1) � Matχ×χ (R(Fλ)/ 〈V(λ)〉),

where both Jc and Matχ×χ (R(Fλ)) are regarded as Z[ωn]-algebras and V(λ) is the

irreducible representation of Fλ of highest weight λ = (λ1, λ2, . . .) ∈ Dom(Fλ). In

particular, J SL
c is a matrix algebra.

Proof. The 1st isomorphism is obvious. The 2nd isomorphism follows from the

fact that if �(w) = (P, Q, #»ρ ), then �(ωn) = (P, Q, #»ρ + λ), which follows from

Proposition 5.5. �

Remark. A similar statement can also be found in [30, Section 8.4].

A.2 G = PGLn case

Consider the case when G = PGLn. Then its affine Weyl group is

Sn := {w ∈ S̃n |

n∑

i=1

w(i) = n(n + 1)/2},

that is, the (non-extended) affine symmetric group. For an integer sequence (a1, a2, . . .),

let us define |(a1, a2, . . .)| :=
∑

i ai. Then by [7, Theorem 10.3], we have

�(Sn) = {(P, Q, #»ρ ) ∈ 	dom | | #»ρ | = 0}.

Also its two-sided cell (resp. left cell, resp. right cell) is obtained from the intersection of

such a cell in S̃n with Sn. In particular, the two-sided cells of Sn are also parametrized

by the partitions of n.

Let J PGL
c ⊂ Jc be the asymptotic Hecke algebra corresponding to PGLn attached

to c∩Sn. In general, J PGL
c is no longer a matrix algebra; a counterexample is given in [30,

Section 8.3]. Here, we discuss a sufficient condition when J PGL
c is indeed isomorphic to

a matrix algebra.

Theorem A.2. Suppose that c = cλ. If gcd(λ′
1, λ′

2, . . .) = 1, then there exists a ring

isomorphism J PGL
c � Matχ×χ (R(F̃λ)) where F̃λ = Fλ/{cI | c ∈ C}.
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Asymptotic Hecke Algebras 16101

Proof. As gcd(λ′
1, λ′

2, . . .) = 1, by [6, Theorem 8.6] any tabloid T of shape λ can be

obtained from Tan
λ by successive star operations (without applying ω). Now for each

T ∈ RSYT(λ), we fix a series of such star operations. Then it induces a bijection φT :

�an
λ → �T defined by the composition of right star operations. Here, �T is the left cell

parametrized by T, that is, w ∈ �T if and only if Q(w) = T. Also note that star operations

stabilizes Sn ⊂ S̃n, which implies that it restricts to φT : �an
λ ∩ Sn → �T ∩ Sn.

Now for any tabloid T of shape λ, we define wT := φT(wλ
0) where wλ

0 is as in

Section 3. Then it follows that �(wT) = (Tan
λ , T, #»ρ T +

#»s Tan
λ ,T) for some #»ρ T = (ρ1, ρ2, . . .)

such that | #»ρ T | + |
#»s Tan

λ ,T | = 0. By similar argument to Lemma 7.5, we see that #»ρ T is

determinantal and twT
= t(Tan, Tan, #»ρ T)tTan,T . Note that t(Tan, Tan, #»ρ T) and tTan,T are not

in general contained in J PGL
c , but twT

is an element of J PGL
c .

For P, Q ∈ RSYT(λ), let us define t′P,Q := (twP
)−1twQ

∈ J PGL
c . Then it is clear that

t′P,Q = t(P, P, #»ρ Q − #»ρ P)tP,Q. As #»ρ Q − #»ρ P is determinantal, {t′P,Q | P, Q ∈ RSYT(λ)} also gives

a matrix basis of Jc, that is, we have an algebra isomorphism ϒ ′ : Jc → Matχ×χ (R(Fλ))

where ϒ ′(t′P,Q) is an elementary matrix for any P, Q ∈ RSYT(λ). (In general, ϒ ′ is different

from ϒ defined in Theorem 7.2 since #»ρ Q − #»ρ P needs not be zero.)

It remains to show that ϒ ′(J PGL
c ) = Matχ×χ (R(F̃λ)); here we identify R(F̃λ) with

the subring of R(Fλ) generated by V( #»μ) such that | #»μ| = 0. Recall that for any w ∈ Sn we

have �(w) = (P, Q, #»ρ ) such that | #»ρ | = 0. In particular,

tw = t(P, Q, #»ρ ) = t(P, P, #»ρ −
#»s P,Q)tP,Q

= t(P, P, #»ρ −
#»s P,Q + #»ρ P − #»ρ Q)t′P,Q

where

| #»ρ −
#»s P,Q + #»ρ P − #»ρ Q| = | #»ρ P| − | #»ρ Q| − |

#»s P,Q| = −|
#»s Tan

λ ,P| + |
#»s Tan

λ ,Q| − |
#»s P,Q| = 0

since #»s Tan
λ ,Q−

#»s Tan
λ ,P =

#»s P,Q. As ϒ ′(tw) is a matrix whose only nonzero entry corresponds

to V( #»ρ −
#»s P,Q + #»ρ P − #»ρ Q) ∈ R(F̃λ), we conclude that ϒ ′(J PGL

c ) ⊂ Matχ×χ (R(F̃λ)). The other

inclusion also follows in almost the same manner. �
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