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Abstract

We study a simple geometric model for local transformations of bipartite graphs.
The state consists of a choice of a vector at each white vertex made in such a way
that the vectors neighboring each black vertex satisfy a linear relation. The evolution
for different choices of the graph coincides with many notable dynamical systems
including the pentagram map, Q-nets, and discrete Darboux maps. On the other hand,
for plabic graphs we prove unique extendability of a configuration from the boundary
to the interior, an elegant illustration of the fact that Postnikov’s boundary measurement
map is invertible. In all cases there is a cluster algebra operating in the background,
resolving the open question for Q-nets of whether such a structure exists.
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1 Introduction

The dynamics of local transformations on weighted networks play a central role in a
number of settings within algebra, combinatorics, and mathematical physics. In the
context of the dimer model on a torus, these local moves give rise to the discrete cluster
integrable systems of Goncharov and Kenyon [17]. Meanwhile, for plabic graphs in
a disk, Postnikov transformations relate different parametrizations of positroid cells
[31] which in turn define a stratification of the totally non-negative Grassmannian.

The dimer model also manifests itself in many geometrically defined dynamical
systems. We focus on projective geometry and draw our initial motivation from the
pentagram map. The pentagram map was defined by Schwartz [34] and related in [15]
to coefficient-type cluster algebra dynamics [11]. Gekhtman, Shapiro, Tabachnikov,
and Vainshtein [13, 14] placed the pentagram map and certain generalizations in the
context of weighted networks and derived a more conceptual take on the integrability
property first proven by Ovsienko, Schwartz, and Tabachnikov [30]. Although con-
siderable work in various directions of the subject has been undertaken, most relevant
to our work is a further generalization termed Y -meshes [16].

We propose a simple but versatile geometric model for the space of edge weights
of any bipartite graph modulo gauge equivalence, with applications to the fields of
both geometric dynamics and plabic graphs. The induced dynamics of local transfor-
mations provides an analog of the pentagram map for every planar bipartite graph and
includes as special cases generalized pentagram maps, Q-nets, and discrete Darboux
maps. This common generalization resolves a long standing question [16, Remark 1.5]
of how the pentagram map and Q-nets relate. Moreover, our systems come with clus-
ter dynamics, which is new in the Q-net case and should be of interest to discrete
differential geometers. Lastly, in the setting of plabic graphs we define a geometric
version of the boundary measurement map and its inverse. In this language, prop-
erties of the boundary measurement map imply the unique solvability of a certain
family of geometric realization problems. The geometric model story runs parallel
to the classical one of planar weighted bipartite graphs, with the concepts of gauge
transformations, local transformations and face variables of the latter bearing simple
geometric interpretations (see Sects.2 and 3.2) in the former.

1.1 Overview of main definitions and results

Our main object of study is a certain collection of geometric data, which we term a
vector-relation configuration, associated to a bipartite graph. Roughly speaking, such
a configuration consists of a choice of vector (from some fixed vector space) associated
to each white vertex of the graph, with the property that the set of vectors neighboring
each black vertex satisfy a linear relation. The exact requirements vary a bit based on
the context and are described in Definitions 2.1 and 6.4.

In the case of a planar bipartite graph, we additionally define evolution equations of
vector-relation configurations under local transformations. In parallel with the dynam-
ics of edge-weighted graphs, these operations preserve a notion of gauge equivalence.
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In fact, we will show (Proposition 3.2) that these two stories are in some sense equiv-
alent to each other. At least locally, it is possible to go back and forth between edge
weights and vector-relation configurations (with some genericity assumptions) in a
manner that commutes with local transformations. As a result, we can import much of
the theory of the dimer model to our setting. For instance we get face weights, which
are simple to define geometrically in terms of multi-ratios (Proposition 3.7) and which
satisfy simple, rational evolution equations.

For roughly the second half of the paper, we focus our attention on plabic graphs
in a disk. We assume all boundary vertices are white, meaning that a vector-relation
configuration on such a graph includes a vector at each boundary vertex. Although
local transformations are also of interest in this case, we focus on global questions
concerning the space of all configurations given fixed G. The main result, which in
isolation is rather striking, is that a configuration is uniquely determined up to gauge
by its boundary vectors.

To state this result more precisely and give relevant context, we recall that each
plabic graph gives rise to a combinatorial object called a positroid and a geometric
object called a positroid variety. Let G be a plabic graph. We will let M denote the
associated positroid and I, the associated positroid variety. A fundamental object
in this area is the boundary measurement map which takes as input an edge-weighting
of G and outputs a point of IT,.

Theorem 1.1 Fix a plabic graph G.

(1) Given a vector-relation configuration on G, the matrix A = [v; - - - v,] whose
columns are the boundary vectors of the configuration lies in the positroid variety
I pq.

(2) Suppose G is reduced. There is a dense subset Tg C Il aq such that for A € Tg,
the columns vy, ..., v, of A can be extended to a vector-relation configuration
on G that is unique up to gauge at internal vertices. In particular, each internal
vector is determined up to scale.

The definition of a vector-relation configuration on a plabic graph is given in Def-
inition 6.4. We review the definition of reducedness for plabic graphs in Sect.6.1,
which contains background on various aspects of positroid theory. Also, note that we
mostly assume boundary vertices in plabic graphs have degree 1, but in certain exam-
ples such as the following it is convenient to allow larger degree. Our main results
can be generalized to this situation, but it makes some definitions and arguments more
cumbersome.

Example 1.2 Consider the plabic graph G in Fig. 1. The associated positroid variety is
the full Grassmannian Gr3 ¢. As such, Theorem 1.1 asserts that the boundary vectors
v1,...v6 € C3 of a configuration can be chosen generically and the last vector u is
determined by them up to scale.

Indeed suppose vy, ...vs € C> are given and consider the possibilities for the
internal vector u. The lower black vertex forces u, vi, vy to be dependent while the
top black vertex forces u, vs4, v5 to be dependent. If the v; are generic then # must lie
on the line of intersection of the planes (v1, v2) and (v4, vs5). Hence u is determined
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Fig.1 A plabic graph
corresponding to the open cell in V4 U5
Gr(3,6)

V3 Ve

U2 U1

up to scale. The other two black vertices have degree 4. It is always possible to find a
linear relation among 4 vectors in C3, so there are no added conditions imposed on u.

1.2 Relation to previous work

Our model of vector-relation configurations has substantial precedent in the literature.
In fact, a main selling point of our specific formulation is that it is versatile enough to
tie into previously studied ideas in a variety of areas. We outline some of the relevant
previous work here for the interested reader’s convenience.

In the plabic graph setting, Lam’s relation space [27, Sect. 14] is in a sense dual to
our model. Let G be a plabic graph and suppose we have vectors v,, € C* at white
vertices satisfying relations

Z Kpwvyw =0
w

indexed by black vertices. Our approach is to consider the boundary vectors [v; - - - vy, ]
as making up a point in Gry_,. The relation space is the dual point of Gr,_ ,, that
is, the kernel of [v; - - - v,]. More directly, one takes in the n-dimensional space of
linear combinations of vy, ..., v, the subspace consisting of valid relations. Note that
the coefficients K, alone determine the relation space, so the v, are replaced with
formal variables. In light of this connection, our Proposition 7.3 is equivalent to [27,
Theorem 14.6] except that we give explicit rules for the signs.

Another geometric model on plabic graphs is provided by Postnikov [32]. He asso-
ciates a point of a small Grassmannian Gr; 3 or Gry 3 to each vertex. His setup has
the advantage that there is a natural duality between the black and white vertices.
We should also note that both [27, Sect. 14] and [32] are attempts to put on more
mathematical footing the on-shell diagrams of physics [4].
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It should be no surprise to experts that vector-relation configurations on plabic
graphs have a close connection to the boundary measurement map, see Sect. 7. Taking
this connection as given, Theorem 1.1 can be derived from corresponding properties
of the boundary measurement map, the most difficult of which were proven by Muller
and Speyer [29]. We take a different path, proving Theorem 1.1 directly to highlight
some of the strengths of our model. For instance, the analog for us of the inverse
of the boundary measurement map is a novel reconstruction map which has a very
pleasant geometric description. This all said, we do make extensive use of a number
of combinatorial and geometric results that are proven in the earlier sections of [29].

In the case of the dimer model on the torus, Kenyon and Okounkov [22] associate
a section of a certain line bundle to each white vertex of a bipartite graph. It is easy to
see that said sections satisfy linear relations in such a way as to give a configuration
(in an infinite dimensional space). Fock [10] shows how to recover this data from the
line bundle. He constructs on each vertex of one color (black with his conventions) a
one dimensional space defined by a certain intersection of spaces living on zigzags.
Our reconstruction map for plabic graphs as defined by (6.5) is entirely analogous.

As already mentioned, Gekhtman et al. [13, 14] were the first to describe the pen-
tagram map (and generalizations) in terms of dynamics on networks. It is easy in
retrospect to see all of the ideas of vector-relation configurations in these papers. For
instance, the authors identify the edge weights as coefficients of linear relations among
lifts of the points of the polygon. Such coefficients also appear as the a, b-coordinates
of Ovsienko et al. [30]. Similarly, in the study of Q-nets [5] an important role is played
by the relation among the four coplanar points living at the vertices of each primitive
square.

Finally, we note that there are many other geometric models on planar bipartite
graphs compatible with the dimer model on the torus, for instance T-graphs [24],
Miquel dynamics on circle patterns [3, 21], and Clifford dynamics [26]. The interplay
between the various models is considered in [2]. That paper also includes descriptions
of both Q-nets and discrete Darboux maps in terms of cluster dynamics which differ
from those in the present paper.

1.3 Structure of the paper

The remainder of this paper is organized as follows. We begin in Sect. 2 by reviewing
the dynamics of local transformations and providing the main definitions for vector-
relation configurations. Section3 covers the basic properties of our vector-relation
model as well as a slight modification with the ambient vector space replaced by its
projectivization. In Sect. 4 we illustrate how to incorporate several previously studied
systems into our framework. In Sect.5 we identify what sorts of vector-relation con-
figurations arise from resistor and Ising networks. We tackle the plabic graph case in
Sect. 6, building the general theory and proving Theorem 1.1. We relate our model
with the boundary measurement map in Sect. 7. Finally, Sect. 8 examines the geometry
of the space of configurations on a plabic graph.
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Fig.2 Local transformations applied to a graph

2 Background and main definitions

We first recall the classical setting of weighted bipartite planar graphs and their
transformations, before introducing our geometric model of vector-relation config-
urations on bipartite planar graphs and the corresponding transformations on such
configurations.

Let G be a planar bipartite graph with nonzero edge weights. A gauge transforma-
tion at a given vertex multiplies the weights of all edges incident to that vertex by a
common scalar. A local transformation modifies a small portion of G in the manner
indicated in one of the pictures in Fig. 2. There are two types of local transformations:

e The top of Fig.2 depicts urban renewal. The new edge weights are

a , b , c , d
= =—— ((=—, d=——. 2.1
ac + bd ac + bd ac + bd ac + bd

/

This transformation is only defined if ac 4+ bd # 0.

e The bottom of Fig. 2 depicts degree two vertex addition. A vertex is split into two
vertices of the same color connected by a new degree two vertex of the opposite
color. The move depends on a choice of a partition of the neighbors of the original
vertex into two cyclically consecutive blocks of size k and /. The figure depicts
addition of a degree two black vertex, but the same move is allowed with all colors
reversed producing a degree two white vertex instead.

It is common to consider the space of edge-weightings of G modulo gauge equiv-
alence, and it is easy to see that local transformations are well-defined on this level.

W Birkhauser
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Both types of local moves can be performed in either direction, where going from
right to left requires first applying gauges to make the indicated edge weights equal
to 1. The second local transformation when applied from right to left is called degree
two vertex removal.

The last bit of background we need are the basics of Kasteleyn theory, see [20] for
a more detailed exposition. For a planar bipartite graph G = (B U W, E), call a map
e : E — {£1} a set of Kasteleyn signs if

e Each 4k-gon face of G has an odd number of —1’s on its boundary, while
e Each (4k 4 2)-gon face of G has an even number of —1’s on its boundary.

If G is finite then a set of such signs always exists, and any two choices of Kasteleyn
signs differ by a gauge transformation. If a general edge-weighting of G is given,
the associated Kasteleyn matrix K is defined as follows. It has rows and columns
indexed by B and W respectively. If b € B and w € W, then Ky, equals the sum
over all edges between them of the weights of these edges multiplied by the Kasteleyn
signs of the edges. In particular K, = O if there is no edge between b and w. The
Kasteleyn matrix K of a planar bipartite G plays an important role in the study of the
dimer model on G: the partition function is given by | det K| and the correlations are
computed using minors of K ~! [20].
We now introduce a geometric model associated to every bipartite planar graph.

Definition 2.1 Let G be a planar bipartite graph with vertex set BU W. For b € B
let N(b) € W denote its set of neighbors. Fix a vector space V. A vector-relation
configuration on G consists of choices of

e A nonzero vector vy, € V for each w € W and
e A non-trivial linear relation R, among the vectors {v,, : w € N(b)} for each
b e B.

In particular, each set {v,, : w € N(b)} must be linearly dependent.

By a linear relation we mean a formal linear combination of vectors that evaluates
to zero on {v,, : w € N(b)}. For technical reasons it is best to allow G to have
multiple edges in which case the N (b) are understood to be multisets and a given
vector can appear multiple times in a given relation. We often ignore this possibility,
either implicitly or by assuming G to be reduced (a certain condition that implies it
lacks multiple edges). A useful way to deal with multiple edges is to use the classical
reduction rule of collapsing parallel edges and adding their weights.

Definition 2.2 Consider a vector-relation configuration on a graph G as above and
suppose A # 0. The gauge transformation by A at a black vertex b € B scales
the relation R; by A (and keeps all other vectors and relations the same). The gauge
transformation by A atawhite vertex w € W scales vy, by 1/ and scales the coefficient
of vy, by X in each relation in which it appears to compensate. Two vector-relation
configurations are called gauge equivalent if they are related by a sequence of gauge
transformations.

We now wish to define dynamics with the same combinatorics as local transfor-
mations for weighted bipartite graphs, but operating on our vector and relation data

) Birkhauser
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Ry U1 R} vy

(e} o
) > /
V2 Ry V2 R

Fig.3 The vector-relation version of urban renewal

rather than on edge weights. If R isarelation among vectors {u1, ..., uk, vy, ..., vy}let
R|y,...u; denote the linear combination of u1, . . ., uy appearing in R. This combination
may be formal or not depending on context. For instance, as formal linear combina-
tions we have R|,,...u; + Ry, ..., = R while as vectors we have R|,....; +Rly;..y =0
since R evaluates to 0.

First consider urban renewal, as pictured in Fig.3. We need to define the vectors
and relations at the new vertices. Let u1 = Ry|y,v, and uz = R3|y,»,. Note that u
and u, are both given as linear combinations of vy, vy, so if the coefficient matrix is
nonsingular we can formally solve for each v; in terms of 1 and u>. Moving the u ;
terms to the other side we get a linear relation S; among v;, u1, and u; fori = 1,2.1In
short, the u;, v; and S; are consistent with being part of a vector-relation configuration
on the new graph. As a final step R; is modified to reflect that a linear combination of
v1, v2 has been replaced by 1u; and similarly with R;. Explicitly, these new relations
are

R; = (Ri — Rilu, ) + lu;.

Note that if the matrix mentioned above is singular then urban renewal is not defined
on the configuration.

Next consider degree two vertex addition, as pictured in Fig. 4. First suppose we are
adding a degree two black vertex. It is natural to set the new vectors equal to each other
and to the old vector, i.e. v = w = u. We then get arelation T = 1v — lw. The nearby
relations do not need to be modified at all. On the other hand, suppose we are adding
a degree two white vertex. Choose as the new vector w = R|,;...; = —Rly,...,;. We
get the relation § by starting with R and replacing R|,,..., with —1w. Similarly T is
obtained from R by replacing Ry, ...,, with 1w.

As with classical local transformations, these operations preserve gauge equivalence
and can be run in both directions. Thus, gauge equivalence classes of vector-relation
configurations will serve as our main object of study.

W Birkhauser
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Ry

Ry,

uy

U

Fig.4 The vector-relation version of degree two vertex addition

3 Vector-relation configurations

In this section we develop the theory of vector-relation configurations on general planar
bipartite graphs as in Definitions 2.1 and 2.2. To that end, let G = (BU W, E) be a
planar bipartite graph. We will denote a vector-relation configuration on G by (v, R)
(or sometimes just v for short) where v = (vy)ywew and R = (Rp)pep.

3.1 Constructing the edge weights

For b € Band w € W, let K}, denote the coefficient of v,, in Rp, understood to be
0if b, w are not adjacent in G. Performing local moves sometimes requires Kp,, # 0
for certain bw € E, so we add that assumption when needed. If G is finite then we
can view K as a | B|-by-| W| matrix. Gauge transformations correspond to multiplying
rows and/or columns of K by nonzero scalars.

The matrix K plays the part of the Kasteleyn matrix (see Sect. 2) in the dimer model.
Here the signs are already built into the entries of the matrix, and we need to remove
them to obtain the weights. Fix a choice of Kasteleyn signs &5, = +1 for bw € E.
Let wt(e) = &y Kpy for each edge e = bw of G. The wt(e) play the part of the
edge weights in the classical story of local transformations of the dimer model. As
previously mentioned, in the planar case any two choices of Kasteleyn signs are gauge
equivalent so the gauge class of the result depends only on the gauge class of (v, R).

Remark 3.1 The data of a gauge class of non-zero edge weights is equivalent to what
Goncharov and Kenyon refer to as a trivialized line bundle with connection on G [17].

Proposition 3.2 Letr (v, R) be a vector-relation configuration on G. Apply a local
transformation to obtain a new configuration (v', R") on G'. Then the weight functions
associated to these two configurations are related by a classical local transformation
of the dimer model.

) Birkhauser
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Proof First suppose the operation is urban renewal, and adopt the notation of Fig. 3.
Suppose the initial relations are

R =5U1+EI)2+---
Ry =bvy +Cva+ -
so by definition u; = dv; + d vy and up = bv 1 + Cvp. We assume when doing urban

renewal that the vy, v, can be recovered from uy, us, i.e. that ¢ — bd # 0. In this
case,

cul —du2
V| = ———~~
ac —bd
—buy + auy
V= ———
ac — bd

The new relations are

S1=v; +?u1 +c7/u2
Sr=uvy+ 5’141 +5/u2

where

~

—a ~ b ~ —c ~ d

=, b =—e, (=——==, d = ——=. 3.1
ac — bd ac — bd ac — bd ac — bd

Leta,b,c,d,a’, b, c’,d be the edge weights obtained by multiplying the asso-
ciated coefficients by Kasteleyn signs. The notation has been chosen so that these
weights correspond to edges in the manner indicated in Fig. 2. On the left is a quadri-
lateral face which should have an odd number of —1’s. Applying gauge we can assume
specifically a = —d, b = —b, ¢ = —C, and d = d. It is consistent on the right to
have the edge labeled b’ be negatlve, all other pictured edges positive, and all edges
outside the picture keeping their original signs. Sowe puta’ =d’, b’ = —b', ¢/ =7,
andd =d. Applying this substitution to (3.1) verifies that the edge weights evolve
according to (2.1), as desired.

Now suppose the transformation is degree 2 vertex addition. There is a natural
injection from edges of G to edges of G’, and the definitions are such that coefficients
living on these edges are all unchanged. Fixing Kasteleyn signs on G, we can get valid
signs on G’ by keeping the signs of all old edges and giving the two new edges opposite
signs from each other. If the new vertex is black (see top of Fig.4), the opposite signs
are reflected in the new relation 7 = 1v — lw. If instead it is white (bottom of Fig. 4)
we have that the new vector w appears with coefficient —1 in S and +1 in T, so again
the signs are opposite. In both cases, the unsigned weights of both new edges equal 1
in agreement with the bottom of Fig. 2. O

Note that the map from vector-relation configurations to edge weightings on G has
only been defined in the one direction. Before moving on to applications, we briefly

W Birkhauser
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discuss the reverse problem. Suppose a planar bipartite graph G = (BUW, E) is given
with edge weights. Applying Kasteleyn signs we obtain formal relations. One approach
to getting the vectors is to start with | W| independent vectors and quotient the ambient
space by these relations. The resulting configuration is the most general with these edge
weights in the sense that any other will be a projection of it. In particular, assuming
highest possible dimension the configuration is unique up to linear isomorphism. We
explore this construction in the plabic graph case in Sect. 6.

A more difficult matter is the existence of a configuration for given edge weights. A
fundamental family of examples comes from taking G to be balanced (same number
of white and black vertices) on a torus. In this case, the construction from the previous
paragraph applied to generic edge weights would produce a trivial configuration with
all vectors equals to 0. A partial remedy would be to allow twisted configurations in the
spirit of twisted polygons in the theory of the pentagram map, which is the approach
developed in [1].

3.2 The face weights

For a non-zero edge weighting on G, the basic gauge invariant functions are the
monodromies around closed cycles. The monodromy of a cycle is the product of edge
weights along the cycle taken alternately to the power 1 and —1. We can pull these
quantities back to get gauge invariant functions of vector-relation configurations.

We focus on the case of the monodromy around a single face F of G. Sup-
pose F is a 2m-gon and that the vertices on its boundary in clockwise order are
wi, b1, ..., Wy, by. The face weight of the face F of a vector-relation configuration
is

YF — (_l)m—l Kblwl Kb2w2 e Kbmwm

. 3.2)
Kb1w2 Kb2w3 e Kbmwl

The sign accounts for the product of Kasteleyn signs around the face. In other words,
we have arranged it so that this face weight equals the one defined in terms of edge
weights in the corresponding weighted graph.

Proposition 3.3 Under an urban renewal move, the face weights of a vector-relation
configuration evolve as in Fig. 5. The face weights are unchanged by degree 2 vertex
addition/removal.

Proof The formulas follow from the case of classical local transformations, for which
they are standard, see e.g. [17, Theorem 4.7]. O

To simplify some formulas, we introduce a vector associated to each black vertex b
of a given face F. Suppose w and w’ are the neighbors of b around F. Given a vector
relation configuration we define v(F, b) = Rp|yw = KpwVw + Kpy vy . The vy, and
v(F, b) for w and b around F contain the data needed to calculate Y. Moreover, if
F is a quadrilateral and b, b’ its black vertices, then the two new vectors arising from
urban renewal at F are v(F, b) and v(F, b').

) Birkhauser



9 Page 12 of 55 N. Affolter, M. Glick, P. Pylyavskyy, S. Ramassamy

Y
O Yi(1+Y) O

Yy Y Y,

Y3

Fig.5 The evolution equation for face weights

3.3 Projective dynamics

By placing an additional assumption on our configurations, we can obtain an elegant
model for the gauge classes in terms of projective geometry. Recall a set of vectors
is called a circuit if it is linearly dependent but each of its proper subsets is linearly
independent. Say that a vector-relation configuration is a circuit configuration if each
set {vy : w € N(b)} is a circuit for b € B. For each w € W, let P, equal the span of
vy, considered as a point in the projective space P(V).

Proposition 3.4 The gauge class of a circuit configuration is uniquely determined by
the configurations of points Py, € P(V) forw € W.

Proof Suppose two circuit configurations both give rise to the points P,,. Then the
vectors agree up to scale, so we can gauge to get the vectors vy, to agree exactly. It
remains to show that for each b € B the relations R;, and R; on {vy, : w € N(b)} of
the two configurations agree up to scale. If not one could find a linear combination
of R, and Rl/, with a zero coefficient and a nonzero coefficient, violating the circuit
condition around b. O

As usual, we take an affine chart to visualize P(V) as an affine space of dimension
one less than V. From this point of view, a circuit of size d consists of d points
contained in a d — 2 dimensional space with each proper subset in general position
(e.g. 4 points on a plane of which no 3 are collinear).

We next describe how local transformations look on the level of the points P,,. For
F aface of G and w1, b, w; three consecutive vertices on the boundary of F, define

P(F,b) = (Py;, Pu,) N ({Py 1 w € N(b) \ {wr, wa}}) (3.3)

where (-) denotes the affine span of a set of points. If b has degree d then by the
preceding discussion the right hand side is a transverse intersection inside a d — 2
space of a line and a d — 3 space. So P(F, w) is indeed a point.

Proposition 3.5 Suppose we have a circuit configuration on G consisting of points Py,
and that F is a quadrilateral face with vertices w1, wy and by, by each having degree
atleast 3. If P(F, by) # P(F, by), then

W Birkhauser
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o Urban renewal of the configuration is defined at F,

e The result of urban renewal is a circuit configuration, and

e Urban renewal at F constructs the point P(F, b;) at the new white vertex closer
tob; fori =1,2.

Proof First, we show that P(F, by) is the class of v(F, by) in projective space (and
similarly for P(F, by) and v(F, by)). Indeed, v(F, by) is by definition the linear
combination of vy, and v, appearing in R;,. Applying R;,, one can equivalently
express v(F, by) as alinear combination of {v,, : w € N(b1) \ {w1, wa}}. We get that
v(F, by) is on the intersection of two subspaces in a way that exactly projectivizes to
the formula (3.3) (note the circuit condition implies that v(F, b1) # 0).

Now, since the v(F, b;) projectivize to distinct points, they must be linearly inde-
pendent. These vectors play the role of u1, u in Fig. 3 and their being independent is
equivalent to the non-degeneracy condition needed to perform urban renewal. It also
follows that the P(F, b;) are the projectivizations of the new vectors produced by
urban renewal. All that remains is to prove the second assertion.

The circuit condition in the original graph implies that all coefficients of all relations
at black vertices are nonzero. Moreover, we know v,,, and v,,, are independent, e.g.
by the circuit condition at b1 together with the fact that b1 has degree at least 3. Now,
urban renewal produces two new black vertices (the ones labeled S; in Fig.3), and
modifies the neighborhood of two others (the ones labeled R). First consider a new
black vertex, say the one adjacent to the vectors v(F, by), v(F, by), and vy, . We have
already argued that the first two are independent. Recall that v(F, b1) = Ry, |Uw1 Vu,
and by the facts at the beginning of this paragraph is independent of v,,,. Similarly
v(F, by) and vy, are linearly independent. So the circuit condition holds at this vertex.

Lastly consider one of the black vertices with a modified neighborhood, say the
one originally called b1. The set of vectors at neighboring vertices is the same after
urban renewal as before except that v,, and v,, have been removed, and v(F, by)
has been added. Were there a linear dependence among a proper subset of these
vectors introduced, it would have to include v(F, b1). However, v(F, by) is a linear
combination of vy, and v,,,, so this would imply a dependence in the original graph
contradicting the circuit condition there. O

Proposition 3.6 Suppose we have a circuit configuration on G consisting of points
Py,,. Consider a degree 2 vertex addition move from G to G'. If the added degree 2
vertex b is black then the point P at the white vertex of G that got split is placed
at both neighbors of b in G'. If the added degree 2 vertex w is white, let Py, ..., P
and Q1, ..., Qp be the points at the neighbors of the black vertex of G that got split,
following the template of the bottom of Fig.4. Then the new point that gets placed at
w is

(P1,..., P)N{01,..., Q).

In both cases, we still have a circuit configuration on G'.

Proof The black degree 2 vertex addition case follows directly from the definitions.
The proof in the white case follows the same approach as the proof of Proposition 3.5.
O
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The circuit condition is preserved by the removal of a degree 2 black vertex, since
the neighborhood of each remaining black vertex did not get changed. Note however
that in general, the circuit condition is not preserved by the removal of a degree 2
white vertex. This is the case for example if the two black vertices adjacent to the
degree 2 white vertex have degrees dj < dimV + 1 and d < dimV + 1, with
d; + d> > dim V + 4. Nevertheless, in all the examples we will consider in Sect. 4,
the circuit condition will be preserved even by removals of degree 2 white vertices,
provided we start with a generic configuration, see Remark 4.1.

To sum up, for each planar bipartite graph G we have a projective geometric dynam-
ical system dictated by the corresponding dimer model. The state of the system is given
by a choice of a point in projective space at each white vertex so that the points neigh-
boring each black vertex form a circuit. The points (and the graph) evolve under
local transformations, the most interesting of which is urban renewal as described by
Proposition 3.5 and formula (3.3).

We will see that many systems, some in the pentagram map family some not, fit in
this framework. For each such system we get for free the set of face weights Yr and
their corresponding evolution equations as in Proposition 3.3. These variables are easy
to define in a projectively natural way. Suppose points Py, ..., P in an affine chart
are given with the triples { Py, P>, P3}, {P3, Pa, Ps}, ..., { P2x—1, Pk, P1} all collinear.
The multi-ratio (called a cross ratio for k = 2 and a triple ratio for k = 3) of the
points is

P - P P3—P4‘ ‘P2k71 — Py

[Pr,.... Pyl = ‘
P, — Py Py — Ps Py — P,

Each individual fraction involves 3 points on a line and is interpreted as a ratio of signed
distances. Itis well-known that this ratio is independent of the chart and invariant under
projective transformations, see e.g. [5, Theorem 9.11].

Proposition 3.7 Suppose we have a circuit configuration on G consisting of points P,.

Let F be a face with boundary cycle wi, by, wa, by, ..., Wy, by, in clockwise order.
In terms of the points Py, the face weight of F equals

_ -1
Yp = (="' [Pu,, P(F,by), Py, P(F,b3), ..., Py,. P(F.by)] .
Proof By definition we have lifts v, of P, and v(F, b;) of P(F, b;) such that
U(Fa bl) = Kb,-wi Vu; + Kbiwi+1 Vwiyq -

Applying gauge we can assume all 2m of these vectors lie in some affine hyperplane.
Then applying a linear functional with constant value 1 on said hyperplane to the
previous yields

I = Kpw; + Kpjwyy, -
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As such the above can be rewritten
Kb,'w,ur] (U(F, bl) - vwlur]) = Kb,-w,- (Uw,- - U(F, bl)) M
Viewing the P’s as points on the hyperplane this shows

P(Fvbl) - Pw[+1 _ Kbiw,'
Pw,- - P(Fabl) Kb,-w,-_H ’

Multiplying across all i produces the reciprocal of the multi-ratio on the left and the
defining expression (3.2) for the face weights on the right. O

4 Examples

In this section, we consider several projective geometric systems from the literature,
and explain how they fit in our framework. For each we identify the appropriate
bipartite graph as well as the sequence of local transformations realizing the system.
In some cases we also explicitly work out the associated dynamics on the face weights.

Remark 4.1 In order to work on the level of projective geometry, all configurations in
this Section are assumed to be circuit configurations. Moreover, each individual system
is only defined for a subset of such configurations. Indeed, every urban renewal move
requires a certain non-degeneracy condition, see Proposition 3.5. Furthermore, for
all these examples, the removal of degree 2 white vertices will preserve the circuit
condition only if one requires a genericity assumption on the starting configuration.
One nice application of defining a system this way is one can obtain a large family of
inputs for which all iterates are guaranteed to be defined, namely those with generic
positive edge weights.

Remark 4.2 The examples in this Section all take place on infinite bipartite graphs
in the plane. In some we assume the points of the configuration are biperiodic with
respect to some lattice in the plane. One can just as well impose as boundary conditions
that the face weights be biperiodic, but not the points themselves. This choice lines
up with the dimer model on the torus, and one in principle can use [17] to prove a
lot about such systems (Liouville integrability, spectral curve, combinatorial formulas
for conserved quantities,...). Such an approach has been implemented in [1] for some
dynamics on spaces of polygons phrased in terms of vector-relation configurations.
Another approach to integrability was proposed by Gekhtman, Shapiro, Tabachnikov,
and Vainshtein [14] for pentagram maps; the connection with the approach of [17]
was recently explained in [18]. For other examples below, the biperiodic face weights
condition gives special cases that to our knowledge have not been rigorously studied.

4.1 The pentagram family

Example 4.3 The Laplace-Darboux system [7] operates on a 2-dimensional array of
points in P for which the points of each primitive square are coplanar. It is convenient
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Pa Py

Fig. 6 The local transformations which, when followed by degree 2 vertex removals, realize Laplace-
Darboux dynamics

to index the points as P; ; fori, j € Z withi + j even. The centers of the squares are
then (i, j) with i 4+ j odd so the condition is

Pi j—1, Pi—1,j, Piy1,j, P; j+1 coplanar for i + j odd. “.1)
The system produces a new array of points Q; ;j fori + j odd defined by
Qi,j =P j—1, Piy1,j) N (Pi—1,j, Pi j+1).

To state Laplace-Darboux dynamics in our language take the infinite square grid
graph G = (Z?, E), which is bipartite with white vertices being those (i, j) with
i + j even. Place the points P; ; above at the white vertices. For each black vertex
(i, j) with i + j odd, the circuit condition says that the 4 neighboring points should
be coplanar, which is precisely (4.1).

To evolve the system, perform urban renewal at each face whose upper left corner
is black. Figure 6 shows a local picture. Taking F, b as in the picture, one of the new
points is

P(F,b) = (P20, P3,1) N (P11, P22) = Q2.1.

Eliminating all degree 2 vertices in the resulting picture recovers the square lattice
except with the colors of vertices reversed. The surviving points are precisely the

0,

Example 4.4 The pentagram map takes as input a polygon in P? with vertices A; for
i € Z and outputs the polygon with vertices

Bi = (Ai—1, Air1) N{A;, Ai12).
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Fig.7 A portion of the bipartite As Ag
graph whose vector-relation (e} @ O ®
dynamics coincide with the
pentagram map
Ay
[ o) 3 0 As
F
Ay©O ® 0 ®
’ As
® O @ O
A, Az

This operation can be seen as a reduction of Laplace-Darboux dynamics. Indeed, one
can check that letting

Pij = Aiy3j)/2, | + j even
Qi.j = B(i+3j-1)/2, i + j odd

gives an input—output pair for Laplace-Darboux. Note that P; ; = P;_3 j+1 and
moreover if A is a closed n-gon meaning A;, = A; then P; j = Pi12, ;.

As the bipartite graph for Laplace-Darboux was the square grid on Z?, the correct
choice for the pentagram map is the quotient of this graph by the lattice generated
by (-3, 1) and (2n, 0). This is a bipartite graph on a torus. Point A; labels (the class
of) the vertex (2i, 0). The relations are of the form “A;_1, A;, Aj+1, Aj4+2 coplanar”
which explains why the whole configuration must be in a plane. Finally, the local
transformations take the same form as for Laplace-Darboux.

The face weights of a polygon are precisely the y-parameters as defined in [15].
As an example, Fig. 7 gives a portion of the bipartite graph. Applying Proposition 3.7,
the variable at the face labeled F is

Yr = —[A3, (A3, Ag) N (A1, A2), Ag, (A3, Ag) N (As, Ag)] L.

Although this algebraic formulation of the pentagram map was known [15], there
may be other insights to be gained from the vector-relation perspective. For instance,
if nearby vertices of a polygon come together it creates a singularity for the pentagram
map dynamics. Keeping track of the coefficients of the relation satisfied by the points
as they come together would be one way to try to control the behavior through the
singularity.

Example 4.5 Different ways of putting the square grid graph on the torus produce
different interesting systems. The higher pentagram map of Gekhtman et al. [13] is
obtained by working in RP4 and identifying (i, j) with (i —d — 1, j +d — 1). Indeed,
the (—i, i) form a set of representatives of the white vertices. Placing a point P; at each
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Fig.8 One step of a system that produces a pentagram spiral (left) along with the associated bipartite graph
(right)

(—i, i), the neighbors of a given black vertex are labeled by P;, Piy1, Pitd, Pi+d+1-
The condition that such four-tuples be coplanar is called the corrugated property and
the sequence of moves from Example 4.3 produces points

(P;, Piya) N (Pit1, Pivav1)

as in the higher pentagram map.

Example 4.6 The left of Fig.8 depicts one step of a certain pentagram spiral system
[35]. The input is a seed consisting of five points Ay, ..., A5 with As lying on the
line through A and A4. The output is a new seed A, ..., Ag with Ag = (A, A3) N
(A, As). If iterated the result is a polygonal curve that spirals inwards indefinitely.

The right of Fig. 8 shows a bipartite graph whose vector-relation dynamics captures
this system. As with the pentagram map on hexagons, the vertex set of the graph G
is Z2 modded out by the lattice generated by (—3, 1) and (12, 0). However, G does
not include all of the edges from the square grid. The figure shows exactly one copy
of each edge and each black vertex, while the repeats among white vertices help to
visualize how the picture repeats when lifted to Z2.

Place points A; for i = 1,...,6 at the white vertices. There are three degree
4 black vertices which give conditions that {A1, A>, A3z, Aa}, {A2, A3, A4, As}, and
{A3, A4, As, Ag}are coplanar. As such, all six points are on acommon plane. There are
also three degree 3 black vertices implying that the triples {A1, A4, As}, {A1, A3z, As},
and {A», As, Ag} are collinear. These match the defining conditions of the six points
in the left picture. In short, being a configuration on G is equivalent to being a union
of two consecutive seeds of the pentagram spiral.

We give a quick description of how to realize spiral dynamics. There is a quadrilat-
eral face of G containing white vertices 1 and 3. Urban renewal at this face followed by
adegree 2 vertex removal will produce a graph isomorphicto G. The points As, . . ., Ag
will remain and there will also be a new point A7 = (A1, A3) N (A3, Aa), which is
the next point on the spiral. So the dynamics on the graph are equivalent to the spiral
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Fig.9 The bipartite graph By Cs B,
corresponding to the rabbit map.
The figure continues infinitely
up and down, while the left and
right sides are identified as per
the labeling

BQ Bb

B4 B8

map, with the only discrepancy being that the former keeps track of six consecutive
points at each time instead of five.

The graph G is a special case of the dual graph to a Gale-Robinson quiver, see [19].
It is likely that every sufficiently large such graph models some combinatorial type of
pentagram spiral.

Example 4.7 The second and third authors [16] defined a family of dynamical systems
that iteratively build up certain maps from Z? to a projective space termed Y -meshes.
Rather than give the full definition, we focus on a single illustrative example.

The rabbit map acts on the space of triples A, B, C of polygons in P* satisfying
the conditions

Ai_1, Bit1, C; collinear
Ai+1, Bi, C; collinear
A,‘_l, Bi—ls B,'_H, C,‘+1 coplanar

for all i € Z. The map takes (A, B, C) to (B, C, D) where
D; = (Ai-1, Bi+1) N (Bi-1, Ci+1)

for all i. The vector-relation formulation of the rabbit map is given in Fig. 9. The black
vertices correspond exactly to the conditions listed above. Propagation is carried out
by applying urban renewal for each i at the square face containing both A;_; and
Bit1.

In general, a Y-mesh is a map (i, j) — P; j from 77 to a projective space such
that each translate of a fixed 4 element subset of Z? maps to a quadruple of collinear
points. For instance, the rabbit map is invertible and a Y-mesh can be built from one
of its orbits. Begin with P; o = A;, P;,1 = B;, P;» = C; foralli € Z, and fill out the
rest by performing the map in both directions, e.g. P; 3 = D;. In this example, each
quadruple P;_1 j, Piy1,j+1, Pi j+2, P;, j+3 ends up being collinear.

We strongly suspect that every system from [16] is a special case of vector-relation
dynamics. More precisely, we showed in the former that each such system is modeled
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algebraically by local transformations on a certain bipartite graph, and at least in
examples the geometric dynamics can be seen to line up as well.

The vector-relation perspective represents a significant improvement in our under-
standing of Y-meshes. As an example, in the original formulation only the cross ratio
y-variables are easy to describe and the others require a messy case by case analysis
[16, Sect. 13]. Now we get a uniform description of all y-variables via Proposition 3.7.
For instance, the hexagon in Fig.9 containing A3z, C», B3 has weight

yr = [A3, By, Ca, Ay, B3, (A3, B3) N (Bs, Cs5)] '

A central question that is open in general is what minimum collections of points
determine the Y-mesh and what relations they satisfy (see [16, Sect. 8] for many
examples including the rabbit case). There is hope that these questions have answers
in terms of graph theoretic properties of G. A result of this flavor in a different context
is given in Proposition 6.10.

4.2 Q-nets

Discrete conjugate nets, or Q-nets were introduced by Doliwa-Santini [8]; we fol-
low the exposition of Bobenko-Suris [5]. We shall specifically be concerned with
3-dimensional Q-nets, defined as follows.

Definition 4.8 [5, Definition 2.1] Amap f : Z3 — R? is a 3-dimensional Q-net in R
if for every u € 73 and for every pair of indices i, j € {1, 2, 3}, points f(u), f(u +
e;), f(u+tej), f(u+e;+e;) are coplanar (where ey, e;, e3 are the generators of Z3).

While a Q-net is a static object, it is often convenient to think of it in a dynamical
way as follows. For u = (i, j, k) let |u| =i 4+ j + k. A generation of vertices of a
Q-netis the set of all f(u) where |u| = ¢. Let us denote f; such z-th generation. Then
knowing f; and f;1 one can construct the next generation f;4, as follows. Consider
an elementary cube consisting of eight points f(z+¢1e1+¢e2e2+¢€3e3), where each g;
iseither Oor 1. Assume |u| = t— 1. Then using the six points that belong to f;, f;41 one
can construct three planes that have to contain f(u+ej+e2+e3) € fi42. Intersecting
those planes we generically get the unique candidate for f(u + e1 + e2 + €3).

The problem of parametrization of Q-nets, i.e. defining certain geometric quantities
and giving formulas for how they evolve from generation to generation, is discussed
in [5]. The first such description goes back to the original work [8]. Our construc-
tion suggests a new way to parametrize 3-dimensional Q-nets. Furthermore, since
our parameters are cross-ratios of quadruples of points, it is natural to view it as
parametrizing projective Q-nets, i.e. Q-nets considered up to projective equivalence.

Consider three consecutive generations f;, fi+1, fi+2 of a O-net f. Their vertices
and the edges that connect them can be conveniently visualized as a lozenge tiling dual
to the Kagome lattice, see Fig. 10. Vertices of each lozenge map into vertices of a face
of one of the elementary cubes of a Q-net, and thus are coplanar. Thus, the geometry
of the three generations of points is captured by the bipartite graph we get by placing
a white vertex at each vertex of the lozenge tiling, and a black vertex at each face, see
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Fig. 11 The gentrification sequence of moves. For convenience, each black vertex is labeled by the affine
hull of the points at neighboring white vertices

Fig. 10. The set of points of this configuration is sufficient initial data to determine
the whole Q-net. In fact, the rest of the Q-net is obtained via local transformations,
which by an inductive argument boils down to the following.

Proposition 4.9 The sequence of square moves shown in Fig. 11 realizes geometrically
a step of time evolution of the Q-net transitioning from vertex D to vertex D' of one
of the elementary cubes.

Proof We verify the sequence of square moves using Proposition 3.5 on each step.
For example, points G and H are formed by intersecting line C D with affine spans
of the rest of white points surrounding respectively a’ and b/, i.e. with lines BA" and
AB'.Here E=C'D'NAB,F =C'D'NBA’,G=A'BNCD,H =AB'NCD,
a = (AB'D'C’) (the affine hull of these 4 points, which is a plane by the definition of
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Q-net), b = (A’BC'D'),c = (B'CA'D'),e = AB', f =C'D',g = A'B,h = CD,
a = (A'BDC),b' = (AB'CD), ¢ = (ADBC'). a)

Remark 4.10 This sequence of square moves has appeared in [21, Fig. 8], without the
current geometric interpretation, and under the name of star-triangle move. Here we
introduce the name gentrification to emphasize its similar, but not coinciding nature
with superurban renewal of [23], see below.

Denote by Q; j « the vertex of the Q-net with coordinates i, j, k. Let Qi ik be
the edge connecting Q; ; x with Q; 1 ;  (thinking of the first coordinate as the x-
direction). Define Qy and QZ ik similarly. By the previous discussion, 3 successive
generations f7, f,+1, f,+2 of the Q net are the points of an associated circuit configu-
ration. Each face of the bipartite graph corresponds to an edge of the lozenge tiling, see
the right of Fig. 10. Following our recipe from Proposition 3.7 (we omit the details),
we get formulas for the associated face weights. They are

—1
X _ . X X . . x x
Yije=— [Qw,k’ Qi ik NQijik Qitljks Qi jx N Qi,j,k+1:|

fori+ j+k=t,

- -1
X — .. X X . R X X
Yiik=— [Qw,k: Qi ik N Qi k-1 Qivljks Qi j i N Qi,jfl,k]

fori+ j+k = t+1, as well as two more copies of these formulas with the superscripts
replaced by y or z, and all subscripts cyclically shifted to the right by 1 or 2 spots
respectively. To sum up:

Proposition 4.11 The collection of face weights, also known as the Y-seed, corre-
sponding to the above setup is

HY;jj,k:iJerrk:t}u[i*jj,k:i+j+k=t+l}.

Proposition 4.12 The variables Y evolve according to the following formulas (and
their cyclic shifts):

-1 1+Y?‘jk+Y”kY”k

~

Y iiam = (Yi,j,k> T4y, 17
ij,

ljk jk

v 1+Y+1,k1+Yl+1,k1Yz+1,jk1
+1,j—Lk%i+1,j—1,k
1+Y Yok

v AN G

i+1,j,k = Yitl,jk

l+1] 1k+ l+1] 1,k

foralli+ j+k=t.

Proof One simply follows Y-variable dynamics of the associated cluster algebra,
whose quiver is shown in Fig. 12. O
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Fig. 12 Q-net quiver

Remark 4.13 There is of course also X-variable cluster dynamics associated with
gentrification. It is given by

X

X z y y z X z X y
X ik Xi e aXi et T XX o Xi e T XX ja Xk

x _
i j+Lk+1 — y z
Xi,j,kXi,j,k

It is not clear if the X-variables have any geometric meaning in terms of Q-nets
however.

Remark 4.14 Several cluster algebra descriptions of geometric systems, including Q-
nets and discrete Darboux maps, were found independently in [2]. A common situation
that in particular holds for Q-nets is that there are two distinct sets of geometric
quantities that each evolve according to the (coefficient type) dynamics of the same
quiver. One of the goals of [2] is to better understand this phenomenon.

4.3 Discrete Darboux maps

Discrete Darboux maps were introduced by Schief [33]; we follow the exposition of
Bobenko-Suris [5, Exercise 2.8, 2.9]. We identify the set of edges of a 3-dimensional
cubic lattice with Z3 x {x, y, z} in that each edge is in bijection with a node of 73 and
one of the three positive directions x, y, z in which the edge points from that node.

Definition 4.15 [5, Definition2.1] Amap f : 73 x {x,y,z} — R3 is a 3-dimensional
discrete Darboux map if for every face of the cubic lattice the images of its edges are
collinear. In other words,

X y X y :
fi,j,k’fi,j,k’ fi,j+1,k’ fi+1,j,k are collinear,

X Z X Z -
fi,j,k’fi,j,k’ fi,j,k-s—l’fi+1,j,k are collinear,

¥ ¥ ;
Iijx ffj’k, ff’jH’k, J7 j k41 are collinear.
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Fig. 13 The bipartite graph of a
discrete Darboux map

Remark 4.16 In Schief’s definition [33] the function takes values on faces of a cubic
lattice, notedges. However, as Schief himself observes in loc. cit. the two are equivalent
since one can consider a dual cubic lattice with vertices corresponding to elementary
cubes of the original one.

One can think of discrete Darboux maps in a dynamical way in a similar fashion
to Q-nets. Define the generation of an edge in 73 x {x,y, z} as the sum of its three
coordinates. Then it is easy to see, as pointed out in [5, Exercice 2.8], that each gener-

ation determines the next one uniquely. For example, ff+ 1Lj+1k is the intersection of

the line connecting f7, | ik o fiy i with the line connecting f;*; | t0 £ ;-

The fact that six points f,:‘;rl’j!k, fﬁrl,j’k, Fivie [ £ k410 and flf’j’kﬂ lie
in one plane is a necessary condition that is easily seen to self-propagate.

The geometry of a discrete Darboux map is captured by the bipartite graph in
Fig. 13. Here on each edge of the lozenge tiling we place a white vertex signifying a
point. To force the four points on the sides of a single lozenge to lie on one line we
introduce two black vertices inside. It is clear that if the two triples of points lie on
one line, then so do all four points. Figure 13 should be compared for example with

[23, Figure 7].

Proposition 4.17 The sequence of square moves shown in Fig. 14 realizes geometri-
cally a step of time evolution of the discrete Darboux map transitioning from vertices
G, H, K tovertices L, M, N of the elementary hexahedron.

Proof We verify the sequence of square moves using Proposition 3.5 on each step. O

Remark 4.18 This sequence of square moves has appeared in [23, Fig. 6], without the
current geometric interpretation, under the name of superurban renewal.

W Birkhauser



Vector-relation configurations and plabic graphs Page 250f55 9

Fig. 14 Superurban renewal

Proposition 3.7 suggests we introduce the following variables, one for each region
in Fig. 13. For the variables associated with lozenges we get

-1
Xy __ X y X y
Yijk - [fijk’ fi+1,j,k’ fi,j+1,k’ fijk] ’

and similar formulas for other pairs of indices. The variables associated with vertices
of lozenges come in three flavors, as there are three generations of them present in the
picture.

. -1
mn __ X y y Z Z X ; ; —
ijk = I:fijk’ Jivvjue Jijeo Jijrrue Jijeo fi,j,k+1] cfori+j+k=t
mid __ X X 4 Z Yy y X X
ijk =~ I:fijk’fi,j‘kfl’fi,j,k—l’ Jisivrk—r Jijio Jizijao Jicijoo Jicjasn
Z Z )7 v _1 . .
Tijio B j—vie Jij—1eo f’+1,j—1,k] cforitj+k=r+1
-1
out __ X y y Z Z X
ijk —[ ifl,j,k’fi—l,j—l,k’fi,j—l,k’fi,j—l,k—l’fi,j,k—l’fifl,j,kfl] ;
fori+j+k=1t+2.

The quiver is shown in Fig. 15. The Y -s evolve according to the Y -dynamics formulas
of the associated cluster algebra. The formulas are too long to be written here.

Remark 4.19 The X-variable dynamics associated with this quiver and sequence of
mutations has appeared in [23, Lemma 2.3], see the formulas given there.
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Fig. 15 Discrete Darboux map
quiver

Remark 4.20 The notions of Q-nets and discrete Darboux maps are related by pro-
jective duality. As such, it is interesting that we get distinct quivers for these two
systems. A general notion of projective duality for vector-relation configurations is
developed in [2], capturing in particular the projective duality between Q-nets and
discrete Darboux maps.

5 Geometric configurations for resistor networks and the Ising model

Goncharov and Kenyon [17] give a recipe to go from a resistor network given by
an arbitrary weighted graph to a collection of edge weights on an associated bipar-
tite graph. There is an analogous recipe starting from the Ising model on a graph
[9, 12, 21]. In the case that the initial graph is a triangular grid, these constructions
produce the same bipartite graphs discussed above for Q-nets (right of Fig. 10) and
discrete Darboux maps (Fig. 13), respectively. It turns out that the edge-weightings
coming respectively from resistor networks and the Ising model represent very nat-
ural subfamilies of these geometric configurations, namely discrete Koenigs net and
discrete CKP maps. In this section we present these two examples of vector-relation
configurations providing a link between physics and geometry.

A resistor network is a plane graph G = (V, E) with each edge assigned a positive
real weight interpreted as its conductance (i.e. reciprocal of resistance). Suppose we
draw the dual graph G* = (V*, E*) superimposed over a drawing of G. The resulting
picture can be interpreted as a bipartite graph I" whose white vertex setis V U V* and
whose black vertices are the intersection points of dual edge pairs e € E, ¢* € E*.
Each edge of both G and G* is subdivided in two, and all of the resulting half edges
together comprise the edge set of I'. Assign each half of an edge in E the same weight
as the original edge, and assign each half of an edge in E* a weight of 1. Figure 16
illustrates the construction starting from a portion of the triangular grid graph G.
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C2 C3

C1

Fig. 16 Constructing a bipartite graph from a resistor network. The unlabeled internal edges on the right
have weight 1

Let G = (V, E) be the graph given by an infinite triangular grid and let " be
the associated bipartite graph. Comparing Figs. 10 and 16, we see that vector relation
configurations on I' give three generations of a Q-net. By Proposition 3.2, we can
introduce signs to the weights coming from G to get such a configuration.

Proposition 5.1 Suppose (Q; k) is a Q-net constructed from a resistor network
as above. Then it is in fact a discrete Koenigs net, meaning that the points Q; ; i,

Qi+1,j+1,k: Qi+l,j,k+l: and Qi,j+1,k+1 are coplanar for alli, j, k € Z.

Proof The graph in Fig. 17 shows a small piece of I". Consider each edge to have a
negative sign if there is a stroke drawn through it and a positive sign otherwise. This
picture can be tiled to cover the plane and define signs on all edges of I'. The result
satisfies the Kasteleyn condition: all faces are quadrilateral and each has either one
or three negative edges on its boundary. As such, the edge weights coming from G
multiplied by these signs give the relations of our vector-relation configuration.

The relations at the three black vertices in Fig. 17 can now be read off as

u+ciwy —u;p —crwy =0
u—+cowr —uy—cowz3 =0 5.1
u+czw3y —u3z —czw; =0

Dividing relation i by ¢; and summing we obtain

1 1 1 1 1 1
—+—+—)u——uy — —uy — —u3z =0.
C1 () Cc3 Cl c2 c3

Therefore the projectivizations of u, u1, uz, us all lie in a plane. These four points are
precisely Qi j k» Qi+1,j+1,k> Qi+1,j k+1> Qi j+1,k+1 forsomei, j, k. The relationship
between the dynamics of resistor networks and the dimer model [17] guarantees that
this property is preserved under the sequence of moves described in Sect.4.2. The
equivalence of the coplanarity condition to other definitions of Koenigs nets is given
in [5, Theorem 2.29]. O
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Fig.17 A small part of a w3
vector-relation configuration
coming from a resistor network

Uy

Remark 5.2 The relations of (5.1) can be rearranged to be instances of the discrete
Moutard equation on the vectors at the white vertices. This description gives another
path via [5, Theorem 2.32] to conclude that the Q-net is a discrete Koenigs net.

Remark 5.3 Let G = (V, E) be a resistor network with weight function c¢. A discrete
harmonic function is a function f on V, say with values in a vector space, satisfying
the condition

Y ) (f) = f@) =0

v

for all v € V. The harmonic condition is equivalent to the existence of a second
function g on V* satisfying

gw) — gw') = cV)(f(v) — fF(V))

for each dual edge pair vv’ € E, ww’ € E* (a convention needs to be fixed for the
direction of the crossing of the edges), see e.g. [21, Sect. 6]. If G is the hexagonal
grid, so G* is the dual triangular grid, the above precisely means that f and g together
define valid vectors for the associated vector-relation configuration on G. The picture
is as in Fig. 17 except with the non-trivial weights ¢; moved to the other half of the
edges. Some care with signs would be needed to extend this idea to other graphs.

We next consider the Ising model. We follow the approach of Galashin and
Pylyavskyy [12]. Figure 18 gives an example of a bipartite graph arising from an
Ising network. Each unlabeled edge has weight 1 and the s;, ¢; are certain positive
reals satisfying ci2 + si2 = 1. Roughly speaking, the construction replaces each edge
of the original graph with a copy of the Gr, 4 plabic graph of Fig.22. In the case of
Fig. 18, the original graph consisted of a single triangle whose ith edge passes through
both new edges marked s;.

Proposition 5.4 Consider a circuit configuration in R3 of the graph in Fig. 18 with
A, B, ... € P2 the projectivizations of the points as indicated. Then the six points
A,B,C,D,E,F lieona conic.

W Birkhauser



Vector-relation configurations and plabic graphs Page29of 55 9

Fig. 18 A bipartite graph coming from the Ising model

Proof Let Y be the face weight of the hexagonal face and let ¥; fori = 1, 2, 3 be the
weights of the quadrilateral faces. On the one hand, these can be computed in terms
of the edge weights

Y =cicacs
Y; siz ! 1
l’ = —-—=" = —= —
cl.2 c?

from which we get
Y21+ ¥+ ) (1 4+ ¥3) = 1.
Meanwhile, by Proposition 3.7

Y=[G,B,H,D K, F]!

Y, =—[F,G,K,E]”" 1+Y, =[F,K,E,G]
Y2 =—[G,A, B, HI™' 1+Y,=[G,B, H,A]
Y3=—[H,C,D,K]”" 14+Y3=[H,D,K,C]

SO
[G7B7H7D’K7F]2:[F7K’E’G][G’B7H’A][H’D7K?C]'

Every factor occurring in [G, B, H, D, K, F] appears once in the right hand side, and
when canceled out, what remains is a triple ratio [G, E, K, C, H, A]. Therefore

(G.B,H,D,K,F]=[G,E,K,C,H, Al
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The relative position of the points is as in the top left of Fig. 14 and it follows from
Carnot’s Theorem [6] that A, B, C, D, E, F lie on a conic. O

Now suppose we begin with an infinite triangular grid. The associated bipartite
graph is the one in Fig. 13 whose configurations correspond to discrete Darboux maps.
What we have shown is that, in the notation of Definition 4.15, a Darboux map arising
from the Ising model has the property that for all i, j, k the points

y 4 X Z X y
fi+l,j,k’ fi-&-l,j,k’ fi,j+l,k’ fi,j-s—l,k’ fi,j,k+]’ fi,j,k+1

lie on a conic. This reduction of Darboux maps has been studied by Schief under the
name discrete CKP maps [33].

Proposition 5.5 Any discrete Darboux map arising from the Ising model on an infinite
triangular grid is in fact a discrete CKP map.

6 Configurations on plabic graphs

We now consider the plabic graph case, including the main definition in this setting
(Sect.6.2) and the proof of Theorem 1.1 (Sects.6.3—6.5). An alternate point of view
for this story in terms of the boundary measurement map will be given in Sect. 7. For
a quicker summary of how these pieces fit together see Remark 6.5.

6.1 Background on positroid varieties

The proof of Theorem 1.1 utilizes a significant amount of the theory of positroid
varieties. We begin by reviewing the relevant material, generally following [29] and
[27].

A plabic graph is afinite planar graph G = (BUW, E) embedded in a disk with the
vertices all colored black or white. We assume throughout that G is in fact bipartite,
that all of its boundary vertices are colored white, and that each boundary vertex has
degree 1 or 0. An almost perfect matching of G is a matching that uses all internal
vertices (and some boundary vertices). Assume always that G has at least one almost
perfect matching.

Remark 6.1 The most common formulation these days [27, 29] is to assume that G is
bipartite with the boundary vertices being uncolored and all having degree 1. Starting
from such a graph, one can use degree 2 vertex addition where needed on boundary
edges to get each boundary vertex adjacent to a black vertex. At that point, bound-
ary vertices can be colored white to adhere to our conventions. The exception is if
the original graph has a degree 1 white vertex attached to the boundary. The above
procedure would produce a graph that is not reduced, a condition we will eventually
require. For us, an isolated boundary vertex models this situation.

Fix for the moment a plabic graph G = (BU W, E). Let M = |B|, N = |W|,
and let n be the number of boundary vertices. As all boundary vertices are white that
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leaves N — n internal white vertices. Number the elements of B and W respectively
1 through M and 1 through N in such a way that the boundary (white) vertices are
numbered 1 through » in clockwise order. Let k = N — M. Each almost perfect
matching uses all M black vertices and all N — n internal white vertices. As such it
mustuse M — (N —n) = n—k boundary vertices, from which we conclude 0 < k < n,
with the interesting case being 0 < k < n.

The totally nonnegative Grassmannian is the set of A € Gr(k, n) for which the
Pliicker coordinate A;(A) is real and nonnegative for all J. The matroid of any
A € Gr(k,n) is

M=1{J:As(A) £0}.

A positroid is a set of k-element subsets of {1, ..., n} that arises as the matroid of a
point in the totally nonnegative Grassmannian. We also denote a positroid by M even
though this is a more restrictive notion than a matroid.

Let M be a positroid. For j = 1, ..., n, consider the column order j < j + 1 <

-<n <1< < j—1 LetI; be the lexicographically minimal element of
M relative to this order. The collection of sets (I, ..., I,) is called the Grassmann
necklace of M. The positroids index a decomposition of the complex Grassmannian
by open positroid varieties 1 ,, defined as intersections of cyclic shifts of Schubert
cells encoded by (I, ..., I,). The positroid variety T1 p4 is defined to be the Zariski
closure of IT% ;. In order to give quicker definitions, we fall back on the literature.

Theorem 6.2 (Knutson-Lam—Speyer [25]) The positroid variety TIpq is a closed
irreducible variety defined in the Grassmannian by

My ={AeGriy: Aj(A) =0forall J ¢ M}.

Taking this result as given we can define 1§  as the set of A € T4 whose Pliicker
coordinates A I (A) coming from the Grassmann necklace are all nonzero.

Let G = (B U W, E) be a plabic graph. Following our conventions, all boundary
vertices are white. An almost perfect matching is a matching in G that uses all internal
vertices. Hence it is a matching of B with W \ J for some J C {1, ..., n} (identified
with the boundary vertices) satisfying |J| = k. The positroid of G, denoted Mg is
the set of J that arise this way as the unused vertices of an almost perfect matching.

The boundary measurement map is a function that takes as input a set of nonzero
edge weights on G and outputs a point A € I1 ., where M = M. If wt: E — C*
is the weight function then A is defined by its Pliicker coordinates via

Aj(A) = Z ]_[ wt(e) 6.1)

T eEem

where the sum is over matchings 7 of B with W\ J. The result is unchanged by gauge
transformations at internal vertices. The boundary measurement map plays a key role
in the study of the nonnegative Grassmannian as it proves that the individual strata
therein are cells.
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The situation is more complicated in the complex case as the boundary measurement
map is not surjective. Its image, which will play a key role for us, was identified by
Muller and Speyer [29]. First, they define a remarkable isomorphism 7 : TT5 , — IT5
called the right twist. Suppose A = [v; ---v,] and T(A) = [vﬁ -+ - v ]. We do not give
the full definition of the twist, but instead state a key property (that defines the v; up
to scale). Specifically for each j, v;. is orthogonal to v; for all i € I; \ {j}.

The last piece of technology we need, both in relation to the boundary measurement
map and for other purposes, is the notion of zigzag paths in G. A zigzag path is a path
of G that turns maximally left (respectively right) at each white (respectively black)
vertex and either starts and ends at the boundary or is an internal cycle. Each directed
edge can be extended to a zigzag path, so there are two zigzag paths through each
edge. Define an intersection of two zigzags to be such an edge that they traverse in
opposite directions. Say that G is reduced if

e Each zigzag path starts and ends at the boundary,

e Each zigzag of length greater than two has no self intersections

e No pair of distinct zigzags have a pair of intersections that they encounter in the
same order.

If G is reduced then there are exactly n zigzags, one starting at each boundary
vertex. Call j the number of the zigzag starting at vertex j. A zigzag that does not self
intersect divides the disk into two regions. For F a face of G, let Sr denote the set of
Jj for which F lies to the left of zigzag number j. There are two corner cases. If j is
attached to a degree 1 black vertex b then zigzag j goes from j to b and back to j. In
this event all faces are considered to be to the right of the zigzag. On the other hand,
if j is an isolated boundary vertex then zigzag j is an empty path that all faces are
considered to lie to the left of. With these conventions one can show that all Sg have
size k.

Theorem 6.3 (Muller-Speyer [29], Theorem 7.1) The image of the boundary
measurement map is the set of A € I1% , whose twist A" = 1(A) satisfies

Asp(A) #0

Jfor all faces F of G. This set is dense in I1, ; and in fact the coordinates As,, (A)
give it the structure of an algebraic torus.

6.2 The boundary restriction map

Theorem 1.1 should be understood with respect to a modified definition of vector-
relation configurations specifically catered to plabic graphs. In this section, we first
provide this definition, then we reformulate Theorem 1.1 to clarify the connection
with the various notions described in Sect.6.1.

Let G = (BUW, E) be a plabic graph with all the notation of Sect. 6.1. In defining
a vector-relation configuration on G, we will see the natural ambient dimension is
k = N — M. As such, we simply fix as our vector space V = CK. It is also natural
to allow boundary vectors to be zero, and to add some genericity assumptions. In
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the following, let K;; denote the coefficient of the vector v; in relation R; where
l<i<Mandl1<j<N.

Definition 6.4 A vector-relation configuration on a plabic graph G is a choice of
vector vy, € V = Ck for each w € W and a non-trivial linear relation Rj, among the
neighboring vectors of each b € B such that

e The vector v, at each internal white vertex w is nonzero,
e The boundary vectors vy, ..., v, span V, and
e The M x N matrix K = (K;;) is full rank.

Two configurations are called gauge equivalent if they are related by a sequence of
gauge transformations, in the sense of Definition 2.2, at internal vertices.

Let Ci denote the space of gauge equivalence classes of vector-relation configura-
tions on G modulo the action of G L (C).If (v, R) € Cg thenby assumption vy, ..., vy,
span V = Ck. The v; are defined up to a common change of basis so A = [vy - - - v,]
is a well-defined point of Gry ,,. We use ® to denote the map ® : Cg — Gry, taking
(v, R) to A, and we call ® the boundary restriction map.

In this language, Theorem 1.1 asserts that ® maps C¢ into IT x4 and that generic
points in this positroid variety have unique preimages. We nextidentify aset 7g C IT5
whose elements are sufficiently generic for this purpose. Specifically, let

T = {A € IS : Asr)(A”) # 0 for all faces F of G} (6.2)

where A’ = t(A) is the result of applying the right twist to A.

Remark 6.5 Note that T is precisely the image of the boundary measurement map,
as demonstrated by Muller and Speyer [29] and reviewed in Theorem 6.3. In fact,
the boundary restriction map and the boundary measurement map are very closely
related, a connection we explore in Sect.7. Once that is done many of our results
follow from analogous ones in [29]. We focus first on presenting a derivation of
Theorem 1.1 which uses neither the connection between the boundary restriction map
and the boundary measurement map nor Theorem 6.3. We will however make extensive
use of background material developed in [29], specifically in Sects. 2—6 and Appendix
B of that paper. After proving Theorem 1.1, we provide a proof of Theorem 7.8 (a
stronger version of Theorem 1.1), which does make use of Theorem 6.3.

As an example, we prove without appealing to Theorem 6.3 that T < Il is
dense. It suffices to show Tg is dense in ITf ; since the latter is dense in ITpq. By
(6.2), we have a collection of open conditions and it remains to show that each is
satisfiable, i.e. that no Ag(r) (A’) is uniformly zero on Hj\/l' Let F be a face of G. By
[29, Theorem 5.3], there is an almost perfect matching of G avoiding the set S(F') of
boundary vertices. Hence, applying the boundary measurement map (see (6.1)) to any
choice of positive edge weights gives a point A’ € IT5, , with Asry(A") # 0. By [29,
Corollary 6.8] the twist is invertible on ITf ; and we can recover A.
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6.3 ldentifying the target

We begin with the first part of Theorem 1.1, namely that the positroid variety IT a4
can be taken to be the target of the boundary restriction map ®.

Lemma 6.6 Let v € Cg. There is a surjective linear map ¢ : CN — 'V with kernel
equalto the row spantow (K ) such that each vy, € V ismappedto by the corresponding
coordinate vector e,, € CV.

Proof We can define a linear map ¢ via ¢(ey,) = vy, forallw € W. As vy, ..., v, span
V, this map is surjective. Any given row of K is indexed by some b € B, and equals
> w Kbwew. As such it gets mapped to ), K, vy, Which equals zero by relation Rj.
So row(K) C ker(¢). But

dimrow(K) = M
since K is full rank and
dimker(p) =N —dim(V) =N —-k=M

since ¢ is surjective so ker(¢) = row(K). ]

The previous establishes that a configuration in this setting is completely determined
by K. More precisely, say two vector-relation configurations on the same graph are
isomorphic if

e There is an isomorphism of their ambient spaces that identifies corresponding (at
the same white vertex) vectors, and
e The corresponding (at the same black vertex) relations are equal.

Then, K determines a configuration in the ambient space CcN /row(K) as above whose
vectors are projections of the coordinate vectors and which is isomorphic to any other
configuration giving rise to K.

Lemma 6.7 Letv € Cg and let S = {wy, ..., wr} C W. Then
det[vy, - vy ] = EAAW\s(K)

where ) is a nonzero scalar not depending on S and A j denotes the determinant of a
submatrix consisting of all rows and a specified set J of columns of a matrix.

Proof By Lemma 6.6, v is isomorphic to the configuration of the projections of coor-
dinate vectors in U = C /row(K). Viewing elements of U as equivalence classes of
row vectors in CV, there is a well-defined, multilinear, alternating map

ui
(ui,...,ux) e Uk >det| * | eC.

u
K

W Birkhauser



Vector-relation configurations and plabic graphs Page350f55 9

Applied to ey, . .., ey, the result equals £Aw\ s(K) (if S is in increasing order the
sign is determined by the parity of (w; — 1) 4 - - - 4+ (wx — k)). Pulling back via the
isomorphism, this map corresponds to some nonzero multiple of the determinant and
in particular gives the desired formula for det[vy,, - - - vy, ]. O

Corollary 6.8 Letv € Cg and A = ®(v). Let J = {j1, ..., jxkywith1 < j; < --- <
Jix < n. Then the Pliicker coordinates of A are

Aj(A) = Ay (K) (6.3)

with the sign determined by the parity of (j1 — 1) + - - - + (jx — k).

Proof A representing matrix for A is [v]---v,], and we can compute its minors
using Lemma 6.7. The Pliicker coordinates are only defined up to multiplication by a
common constant so we can ignore the A’s. O

Unfolding (6.3), we have

Aj(A) ==+ sen(h) [ | Ko.rw
f

beB

where the sum is over bijections f from B to W \ J and sgn( f) is defined by thinking
of f as a permutation (we assumed linear orders on B and W, and the latter restricts
to a linear order on W \ J). In fact K3, = 0 unless bw is an edge, so we only get a
nonzero term if the set of bf (b) forms an almost perfect matching of G avoiding the
vertex set J. So we can rewrite the formula as

Aj(A) =% sen(m) [] Kow. (6.4)

bwern
the sum being over such almost perfect matchings .
Proposition 6.9 If v € Cg then ©(v) € TIpq.

Proof Let J C {1,...,n} with |J| = k and suppose J ¢ M. By definition of M
there is no almost perfect matching of G avoiding J. Therefore the sum in (6.4) is
empty and we get A ; (D (v)) = 0. So ®(v) satisfies the defining equations of 1. O

The last result identifies linear dependent sets of size k among the boundary vectors.
The result generalizes easily.

Proposition 6.10 Let v € Cg and let S € W be any set of white vertices. Suppose
there is no matching of B with a subset of W disjoint from S. Then the vectors vy, for
w € S are linearly dependent.

Proof First suppose |S| = k. Then the v,, for w € § form a square matrix whose
determinant can be calculated using Lemma 6.7. There is no matching of B with W\§
so the right hand side is zero and the vectors are dependent. If |S| < k then we can
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augment S arbitrarily to get a set of size k satisfying the same hypotheses and hence
corresponding to a dependent set. In other words {v,, : w € S} cannot be extended in
the configuration to a basis of V. All vectors together span V so it follows that the set
is dependent. O

Remark 6.11 Restricting to the |S| = k case, one might hope for the stronger statement
that {v,, : w € S} is a basis if and only if there is a matching of B with W \ S. The
if direction only holds for generic v € Cg. In the generic case, the matroid of the
vectors of v is dual to the so-called transversal matroid of the bipartite graph G. This
result is very similar to one of Lindstrom [28]. The similarity comes as no surprise as
Lindstrom’s famed lemma, which he introduced in that paper, is an essential ingredient
in the boundary measurement map.

6.4 The reconstruction map

In this subsection, we begin to prove the second part of Theorem 1.1. Specifically, we
define a map W on a dense subset of I o4 which will turn out to be a right inverse of ®.
As W has the effect of reconstructing the entire configuration from just the boundary
vectors, we term it the reconstruction map. We temporarily add an assumption on G
that there is no isolated boundary vertex and no boundary vertex attached to a vertex
of degree 1. Since G is reduced this condition is equivalent to saying M has a basis
containing j and one excluding j for each j = 1, ..., n. It follows that j € I; and
J & I,

It is convenient at this point to introduce an alternate representation of zigzag paths
known as strands. A strand is obtained from a zigzag by taking each turn of the
zigzag and replacing it with an arc connecting the midpoints of two edges involved.
Based on the zigzag rules, the arc appears to go clockwise around a white vertex and
counterclockwise around a black vertex. The strand is obtained by combining all arcs
of azigzag as well as small pieces at the beginning and end to connect it to the boundary
of the disk. The strands together form an alternating strand diagram, one example of
which is given in Fig. 19. Note that strand number i begins slightly clockwise relative
to boundary vertex i. An intersection of zigzags as defined previously translates to an
intersection in the usual sense of strands.

Each region of an alternating strand diagram has boundary oriented clockwise,
counterclockwise, or in an alternating manner, and the region corresponds respectively
to a white vertex, black vertex, or face of G. Use the notations Sy, S, and Sf to denote
the set of strands that the region in the strand diagram associated to w, b, or F lies to
the left of. For F a face, this definition agrees with the previously given zigzag one.

Remark 6.12 To avoid strands altogether, one could define S,, and S, in terms of the
face labels via S, = NpSF and S, = UrSF where both formulas range over all faces
containing the vertex in question.

Proposition 6.13 Let F be a face of G, b € B, and w € W.

o |Spl =k |Swl=k—1 and|Sp| =k + 1.
o If b and w are on the boundary of F then Sy, C S C Sp.
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Fig. 19 The alternating strand diagram for a plabic graph (left) and the associated labeling by sets of the
faces and vertices of the graph (right)

Proof 1t is standard that each Sg has size k. If w is a white vertex of F then there
is a zigzag through w that enters and exits along the boundary of F and turns left at
w. The corresponding strand divides the regions corresponding to F and w with the
region corresponding to F on the left. Therefore S, equals S less that one strand. In
particular S, € SF with |S,| = k — 1. A similar argument applies to black vertices.

]

We begin to construct the inverse of the boundary restriction map on 7 as defined
in (6.2). Fix A € Tg C I1 4 and in fact fix a particular matrix representative so that
the columns v{,...,v, of Aalllivein V = Ck. Let H i € V denote the linear span
of {v; :i € I; \ {j}}. For each w € W, define

Ly= () Hj. (6.5)

J€Sw

Recall in the following that v} denotes column j of the right twist of A.

Lemma 6.14

(1) Each Hj is a hyperplane with orthogonal complement spanned by v}.

(2) The k hyperplanes of the set {H; : j € Sf} are in general position for each face
F.

(3) Each L, is a line.

Proof

(1) Since A € Tg C val we know that AIj(A) # 0 so the v; withi € I; form a
basis of V. We know that j € I; so H; is a span of all but one of these vectors and
is hence a hyperplane. The twist is defined in such a way that v; is nonzero and

orthogonal to each v; fori € I; \ {j}, so v;. is the orthogonal complement of H;.
(2) Itis equivalent to say that the orthogonal vectors v} for j € SF form abasis of V.
This holds true since, by definition of 7 in (6.2), Ag, (A") # 0.
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(3) By Proposition 6.13, for every w, | S,,| = k—1.So L, is anintersectionin V = Ck
of k — 1 hyperplanes in general position and is hence a line.

]

Proposition 6.15 Let b € B and choose nonzero vectors vy, € L, for each neighbor
w of b. Then these vy, satisfy a unique linear relation up to scale, and this relation
has all coefficients nonzero.

Proof Suppose b has degree d and let ji, ..., j; be the numbers of the strands around
b in counterclockwise order. For i = 1, ...d there is a face F; separated from b by
strand j;. There is an edge shared by F;_; and F; (indices modulo d) whose endpoints
are b and some w;. Then wy, ..., wy are the neighbors of b and we have

o Sk =S\ {ih
° Sw,- = Sb\{ji—17ji}'

Let S =S, \ {j1,..., ja}. Thenforeachi, S C §,, so
Vy; € Lwl- C NaesH,.

Also, S € Sp, so the hyperplanes in this intersection are in general position. As
|S| = k + 1 — d we have that N,cs H, has dimension d — 1. Therefore the d vectors
Uy, in this space must satisfy a relation.

Now suppose c{ vy, + - - - + cqvy, = 0 is a non-trivial relation. Note that j; € Sy,
foralli =3,...,d,so vy, € Hj forthesei.On the other hand, v,, ¢ Hj, because
otherwise we would have v,,, € H, foralla € Sy, U {j1} = SF, which would imply
vy, = 0. A similar argument shows vy, ¢ Hj . Therefore, we can apply a linear
functional vanishing at Hj, (e.g. the dot product with v’.l) to the above relation and
precisely the first two terms survive. It follows that ¢; and c¢; are either both zero or
both nonzero and have a prescribed ratio. The same is true by symmetry for each pair
of consecutive coefficients. We cannot have all ¢; = 0 so the ¢; are all nonzero and
are unique up to multiplication by a common factor. O

Proposition 6.16 Let A € Tg. Then there exists a unique configuration (v,R) € Cg
such that ®(v,R) = A and vy, € Ly, for all w € W. This configuration has the
property that the set of vectors neighboring each black vertex is a circuit.

Proof Let v; equal column j of A. First we show v; € L; holds for these eventual
boundary vectors. Consider the boundary face F of G containing the boundary segment
between j and j + 1. By [29, Proposition 4.3], Sr equals the set 7; in the so-called
reverse Grassmann necklace of M. The strand separating face F' from white vertex j
is in fact strand number j so S; = I; \ {j}. Here §; is shorthand for S,,;, where w;
is the jth boundary white vertex. To prove v; € L; it is equivalent to show that v;
is orthogonal to v} for each i € I;\{;}. This fact is part of the characterization of the
inverse of the right twist (also known as the left twist) provided by Muller and Speyer
[29].

To extend to a configuration with the desired properties, each internal v,, is deter-
mined up to scale since L,, is a line. Fixing a nonzero v,, for each w, we get by
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Proposition 6.15 that the associated relations R;, are also determined up to scale. In
short, the whole configuration is determined up to gauge at internal vertices, giving
us the uniqueness. Also by Proposition 6.15, the relations have nonzero coefficients
which gives us the circuit condition.

It remains to show that the vectors and relations (v, R) as above comprise a valid
configuration on G. The only property not clear at this point is that the Kasteleyn
matrix K is full rank. As already mentioned, all coefficients Kj,, with bw € E are
nonzero. By the general theory, there is a unique almost perfect matching of B with
W\ I (one reference is [29, Proposition 5.13] and we also describe a construction of
this matching later on). Therefore the polynomial Ay j, (K) of the coefficients is in
fact a monomial and hence nonzero. O

We now have our definition of the reconstruction map ¥ : Tg — Cg, namely it
maps A to the configuration given by Proposition 6.16. Clearly ® o W is the identity.
In plainer terms we have existence of an extension of generic A € ITa4 to a full
configuration. In principle, there could be other extensions with vy, ¢ L,, for some
w, a possibility we rule out in the next subsection.

Example 6.17 Consider the plabic graph G in Fig. 19. As discussed in Example 1.2, G
corresponds to the uniform matroid in Gr3 ¢, and it follows that I; = {j, j +1, j +2}
with indices modulo 6. Given A = [v; - - - vg] then, H; = (v;+1, vi+2). The unique
internal white vertex w has S, = {3, 6}, so

Ly = H3 N Hg = (v4, vs5) N (v1, v2).

Hence our general recipe reproduces the result argued in Example 1.2.

6.5 Uniqueness

Fix A € Tg. We now know ®(W(A)) = A. On the other hand, suppose (v, R) € Cg
and that ®(v, R) = A. We want to show (v, R) = W(A) in order to establish that
preimages are unique. In light of Proposition 6.16, it is sufficient to show vy, € Ly,
for all internal white vertices w. The proof is in a sense recursive, utilizing a certain
acyclic orientation on G.

A perfect orientation on G is an orientation with the property that each internal
white vertex has a unique incoming edge and each (internal) black vertex has a unique
outgoing edge. Given such an orientation, the set of edges oriented from black to
white always gives an almost perfect matching. We focus on one particular perfect
orientation which we denote O and which is defined as follows. Each edge of G is part
of two zigzags that traverse it in opposite directions. Declare each edge to be oriented
in the direction of its smaller numbered zigzag.

Let = be the almost perfect matching associated with O. More directly, an edge
is in 7 if and only if the smaller numbered zigzag through the edge traverses it from
black to white. It is easy to see that  is among the extremal matchings defined by
Muller and Speyer [29] in terms of downstream/upstream wedges. Specifically, 7 is
the set of edges e for which the face of G containing the boundary segment from z to
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1 lies in the upstream wedge of e. We stick with our characterization of O and 7, but
make use of some previously established combinatorial properties.

Proposition 6.18 ([29, Theorem 5.3 and Corollary B.7]) The orientation O on G
defined above has the following properties:

(1) It is a perfect orientation.

(2) The corresponding matching w uses precisely the boundary vertices {1, ..., n}\ 1.
(3) The matching uses exactly m — 1 edges from each internal 2m-gon face.

(4) The orientation is acyclic.

Proof The first three parts amount to a special case of [29, Theorem 5.3]. The last
one follows quickly from the cited corollary, which states that 7 is the unique almost
perfect matching using its set of boundary vertices. Indeed, suppose for the sake of
contradiction that the orientation had an oriented cycle. Half of the edges of the cycle,
namely those going from black to white, appear in 7. Another matching is obtained
by taking out all of these edges and including the other half of the edges of the cycle.
The result is another almost perfect matching using the same boundary vertices, a
contradiction. O

Corollary 6.19 Suppose (v,R) € Cg and that {v; : j € I} is a basis for V. Then
Kpw # 0 for each edge bw in the matching .

Proof By Corollary 6.8, we know Aw\j (K) # 0. As mentioned in the proof of
Proposition 6.18, 7 is the unique matching of W\ ; with B. As such the determinant
equals (up to sign) the product of the weights K, of the edges of the matching.
Therefore each such weight must be nonzero. O

Proposition 6.20 Suppose (v,R) € Cg and that {v; : j € I} is a basis for V. Recall
H\ is the span of the vectors vj for j € Iy \ {1}. If w is a white vertex and there is no
oriented (relative to O) path from boundary vertex 1 to w then v,, € H.

Proof Let b be the black vertex such that bw is the unique edge incident to and directed
towards w. By Corollary 6.19, Kpy, 7 0. As D"+ Kpyyvyy = 0, we have that v, lies
in the span of the v, for w’ the other neighbors of b. Note that all edges w’b with
w’ # w are oriented towards b so there is a length 2 path from each w’ to w. We
can apply the same argument recursively to each w’. Since the orientation is acyclic
the end result is that vy, lies in the span of those v; with j a source (i.e. j € Iy) for
which there exists a path from j to w. By assumption there is no such path from 1 so
vy € Hj as desired. O

Lemma 6.21 Let w be any white vertex, internal or boundary. If w lies strictly left of
the zigzag starting at 1 then there is no oriented path from 1 to w in the orientation

0.
Proof First note that every edge of zigzag 1 is oriented in the direction of zigzag 1. In

other words, zigzag 1 is an oriented path. We claim there is no oriented edge starting
weakly right of the zigzag and ending strictly left of the zigzag. The proof is case by
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case depending on the start vertex of the edge. If the edge starts strictly right of the
zigzag then it must end weakly right of the zigzag (otherwise it would cross it and
break planarity). If the edge starts on the zigzag at a black vertex b then it must be
the unique edge oriented away from b. We know that this edge is part of the zigzag
so it ends on the zigzag. Lastly, suppose our given edge starts at a white vertex w
on the zigzag. The zigzag locally looks like b, w, b’ where b’ is reached by turning
maximally left at w. As such, all the edges incident to w lie weakly to the right of the
zigzag. O

Combining Proposition 6.20 and Lemma 6.21, we have that v,, lies on H; if w
is strictly left of the zigzag starting at 1. By cyclic symmetry the statement from the
previous sentence holds with 1 replaced by any start vertex j (note that to give a direct
proof one would use a different perfect orientation for each j). We are now ready to
prove the uniqueness result.

Proposition 6.22 Let (v, R) € Cg and suppose A = O(v) € Tg. Then (v,R) =
W(A).

Proof Suppose A = ®(v) € Tg. Then A is in the open positroid variety so the set
of columns of A corresponding to /; is a basis of V for all j. Fix w € W internal.
For each j € S,, we have the assumptions of Proposition 6.20 (with 1 replaced by j),
so vy, € Hj. Therefore vy, € L. By Proposition 6.16, (v, R) is in fact the same as
W(A). O

Proof (Proof of Theorem 1.1) Part 1 was proven in Proposition 6.9. For part 2, we
showed existence of an extension of A to ¥ (A) in Proposition 6.16 and uniqueness of
this extension in Proposition 6.22.

We have assumed at various points that G has no isolated boundary vertex and
no boundary vertex attached to a degree 1 vertex. We briefly describe modifications
needed to handle these cases. First suppose j is an isolated boundary vertex of G.
One can consider the strand of j to be a simple arc disjoint from G starting at a point
clockwise from j and ending at a point counterclockwise from j. All definitions and
proofs go through.

Now suppose j is attached to a degree 1 vertex b. The strand for j loops around b
and self-intersects before returning to the boundary, causing a few problems including
in the definition of the reconstruction map. It is consistent to have all other S, Sy, Sy
omit j, but there is no clear definition for §; and S. That said, j is part of every almost
perfect matching so it is part of no basis of M. Hence any A € I1 4 has jth column
v; = 0. As such, we can define W(A) to have v; = 0 and R, = 1v;, and define all
other vectors and relations in a manner independent of the index j. Elsewhere, the
orientation we define is ambiguous regarding how to orient the edge jb. In fact it must
be oriented towards j to get a perfect orientation, and this choice does not cause any
other issues. O
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Fig. 20 Example illustrating the terminology for different types of faces of a plabic graph. Here faces i
through iv are internal and faces v through x are external with face x being the infinite face

7 Connection to the boundary measurement map

The boundary measurement map and boundary restriction maps are both functions
landing in ITa4. The input to the former is given by a collection of nonzero edge
weights on G. The input to the latter is a vector-relation configuration v on G. However,
we have seen (paragraph after Lemma 6.6) that v is determined up to isomorphism
by the matrix K whose potentially nonzero entries are in bijection with edges of G.
We will see that applying the boundary measurement map to a set of edge weights
is the same as applying the boundary restriction map to K with entries equal to the
edge weights multiplied by certain signs. This fact explains why the formulas (6.1)
and (6.4) take the same form and only differ in the signs of the individual terms. To
rectify these equations, we introduce a version of Kasteleyn signs for plabic graphs.

7.1 Kasteleyn signs for plabic graphs

Let G be a plabic graph as above. By a face of G, we mean a connected component of
the complement of the graph in the disk in which it is embedded. A face is internal if
its boundary is a closed walk in G and external otherwise. The boundary of an external
face is an interlacing collection of walks in G and segments of the boundary of the
disk. There is a unique external face including the boundary segment of the disk from
n to 1. We call this face the infinite face and all other faces finite faces. See Fig. 20 for
an example of this terminology.

Let &5, = %1 for each edge bw of G. Say these constitute a choice of Kasteleyn
signs if

e The product of the signs along the boundary of each internal 2m-gon face is
(=1)"=1 and
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e The product of the signs along the walk(s) on the boundary of each finite external
face is (—1)"12~1 where a is the number of said walk(s) and 2m is the total
number of edges along them.

Several notes are in order. Each walk on the boundary of an external face starts and
ends at a boundary vertex and hence has even length as we assume boundary vertices
are white. No assumption is made about the product of the signs around the infinite
face. Lastly, the most common case is that G is connected. In that event each finite
external face is cut out by a single (a = 1) path from i to i 4+ 1 and the second condition
becomes that the product of signs along this path is (—1)" where 2m is its length.

Remark 7.1 One reference for Kasteleyn signs on plabic graphs is a short note of
Speyer [36]. He does not directly identify the conditions above. Instead he defines the
signs implicitly so that a certain result (along the lines of our Proposition 7.3) holds
and then proves that such signs exist with a topological argument.

Proposition 7.2 A choice of Kasteleyn signs on G exists.

Proof Extend G to a new graph G by adding a single black vertex by, and n edges
connecting bo, to the boundary vertices 1, ..., n. Then G can be embedded in a
sphere and the faces of G in the standard sense biject in a natural way with the faces
of G as defined above. Consider the faces of G finite or infinite as dictated by this
bijection. By ordinary Kasteleyn theory signs can be chosen on the edges of G so
that each finite 2m-gon face has a product of signs equal to (—1)”~!. This property
is preserved by gauge transformations wherein all signs adjacent to a given vertex are
flipped. Applying gauge as needed at vertices 1 through n we can assume that all signs
of edges adjacent to b, are positive. Restricting the signs to the subgraph G yields
precisely the right properties. O

7.2 The translation

We are ready to precisely state the procedure that translates between the boundary
restriction and boundary measurement maps.

Proposition 7.3 Let v € Cg and suppose that all coefficients Ky, for bw € E are
nonzero. Define wt : E — C* by wt(bw) = ey Kpw for a fixed choice of Kasteleyn
signs. Then ®(v) equals the output of the boundary measurement map applied to this
weight function.

Proof Substitute Kp,, = ep,yWt(bw) into (6.4). Let ¢, = +1 as per the sign in the
front of the summation, which as previously mentioned is based on the parity of
(G1—D+---+4 (jx — k). So given J and a matching 7 of B with W \ J, the sign of
the corresponding term is

eysgn(m) 1_[ Epw- (7.1)

bwen

To match (6.1) we need to show all these signs are equal (it is okay if they are all
negative as the Pliicker coordinates are only defined up to a common multiple) as J

) Birkhauser



9 Page44of 55 N. Affolter, M. Glick, P. Pylyavskyy, S. Ramassamy

and 7 vary. For two matchings with the same J this property is standard for Kasteleyn
theory. One possible reference is [20, Theorem 2], and in fact we will follow the same
outline in our proof of the general case.

We will compare the signs from (7.1) corresponding to the pair Jq, r; and the pair
J2, ma. The disjoint union of the edges of 7; and 72 gives a multigraph for which
each internal vertex has degree 2 and each boundary vertex has degree O, 1, or 2. Each
component (not counting isolated boundary vertices) is a doubled edge, a cycle, or
a path starting and ending at the boundary. Each path and cycle alternates between
edges of 1 and 5. Starting from 771 one can flip along such a component by switching
to the other half of the edges to obtain a matching with greater overlap with >. By
induction it suffices to consider the case when 7| and m; are related by a single flip.
As already mentioned, the case of flipping a cycle in the graph is classical, so we focus
on the path case.

Suppose 71 and m; are related by a flip of a path from i to j withi < j. Without
loss of generality, > contains the edge of the path incident to i. It follows that J, =
Ji1\{i} U {j}. Therefore

€ j—i
—= = (=D’ (7.2)
&

We next consider the signs of the matchings. To make comparison easier, pass to the
graph G from the proof of Proposition 7.2. Extend the matchings to 7| = 71 U {ibso}
and 7y = 73 U {jboo}. Both are matchings of B U {boo} with W\(J1 N J). They are
related by a flip in G about a cycle consisting of the original path from i to j along
with the edges from i and j to by It follows that sgn(>) = (—1)"sgn(7;) where
2m is the number of edges of this cycle. Now consider 71 as an M x M permutation
matrix with columns indexed by W \ J;. Then 7| is obtained by adding a row to the
end corresponding to b, adding a column in the appropriate place corresponding to
i, and putting a 1 where the new row and column intersect. The columns right of the
new one are indexed by {i + 1,..., N} \ Ji, so

sen(@) = (=DM lggn(ry).
By a similar argument

sgn(7p) = (= DI N lgon (7).
Putting the pieces together

sgn(m) _ —pyn G N (13)
sgn(71)

using the fact that J; and J;, agree beyond j.

The last consideration is the sign coming from the weights on the edges where
and m; differ, i.e. along the path from i to j. As in the previous paragraph we complete
this to a cycle of length 2m passing through b,. This addition has no effect on signs
because, as in the proof of Proposition 7.2 we take all edges adjacent to b to have
sign +1. We have a cycle in G, a graph with ordinary Kasteleyn signs, so by [20,
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Lemma 1] the signs around it come to (—1)”’"” where [ is the number of vertices
properly inside the cycle, “inside” referring to the component that does not include
the infinite face. By our conventions, this inside region includes the boundary vertices
i+1,...,j—1andnot the others. Restricted to this region, the matching 71 includes
all vertices other than {i 4+ 1, ..., j — 1} N J;. The vertices covered by ; come in
pairs so / has the same parity as [{i + 1, ..., j — 1} N J1|. Therefore

HHEHZ Ebw — (_1)1+m+|{i+1,...,j71}f'1]1|. (74)

l_[mem Ebw

Multiplying (7.2), (7.3), and (7.4), we get that the ratio of the signs of the two terms
is governed by the parity of

dm+j—i+ i+l \J+ i+, ..., =110l

whichequals 2m + j —i 4+ j —i = 2(m + j — i) (using that j ¢ J;). This number
is even so the terms have the same sign as desired. O

7.3 Geometric interpretation of edge weights

The reconstruction map allows to construct a gauge class of vector relation configura-
tions on a plabic graph from a suitable point in the Grassmannian. One could then fix a
representative of the gauge class and a choice of Kasteleyn signs to determine the edge
weights, obtaining the preimage of the original point under the boundary measure-
ment map. The edge weights are not unique, but in this subsection we describe how to
calculate one valid set of edge weights directly. Our method uses an efficient recursive
formulation of the boundary measurement map. We assume for this subsection that all
edge weights are positive reals. Note that the problem of recovering the edge weights
was solved previously for Le-diagrams by Talaska [37] and in general by Muller and
Speyer [29] (the latter also allowing for complex weights).

Assume throughout that G is oriented using the perfect orientation O from Sect. 6.5.
The set of sources of this orientation is /1. Suppose positive real edge weights are given
on G. Fix a basis {v; : i € I} of R¥. For any non-source white vertex w, define vy,
as follows. Let b be its unique neighbor such that ¢ = bw is directed towards w. All
other neighbors w’ of b are such that bw’ is directed towards b. Let

~ 1 —
"= Zwt(bw’)vw/. (1.5)

As the orientation is acyclic, this is a sensible recursive definition.
Now let

o = (—1)INN2 =1
andv; =o;v;forj=1,...,n.Let A =[v]---v,].
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Fig. 21 A plabic graph with an acyclic perfect orientation (left) and a configuration that results from the
associated sequence of convex combinations (right)

Proposition 7.4 The point A € Gry, agrees with the output of the boundary
measurement map applied to the weighted graph.

Proof sketch There is a solution to the defining recurrence of the v, expressing each
such vector as

Uy = E M;yv;

iel

where M;,, is the sum of weights of paths from i to w with respect to a certain notion
of weight. The matrix [v] - - - U,] nearly agrees with Postnikov’s original definition
(which is made simpler in this case since our orientation is acyclic) of the boundary
measurement map [31]. The discrepancy is that Postnikov multiplies each entry by a
sign ((—1)* in his notation where s depends on i and j). Our approach of multiplying
column j by o; produces the same point of the Grassmannian. We choose to omit the
details of Postnikov’s original construction and of the equivalence with our choice of
signs. O

Now, the vy, are the vectors of a vector-relation configuration with the (7.5) being
the relations. Using acyclicity again, we can apply gauges at internal vertices so that
the sum of the weights of incoming edges to each internal vertex equals 1. In the
notation above, e is the unique incoming edge to w so if w is internal then wt(e) = 1
and the coefficients in (7.5) sum to 1. So v,, is a convex combination of the v/, in this
case. This is our motivation to choose this representative of the gauge class.

Example 7.5 Figure21 shows a plabic graph G for Grze. As I} = {1,2,3} only
0y = —1 so we can suppress the ~’s in the U; except for j = 2. Let u be the vector at
the interior white vertex. Let vy, U2, v3 be any basis of R3. Following the arrows we
construct

u=a +a
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1 ~

v4 = — (b1v2 + bav3 + b3u)
by
1

vs = — (c1v4 + cou)
o
1

v = — (d1v1 + davs + dsu)
do

The output of the boundary measurement map is [vjvs - - - vg] where vy = —75.

If we allow gauge at boundary vertices, which corresponds to modding out by the
torus action on the Grassmannian, we can additionally arrange by = cp = dp = 1.
Each vector is constructed as a convex combination of its predecessors with coefficients
given by the edge weights. It is easier to draw the picture in the projective plane
replacing the vectors vy, 72, ... vg, u with points Py, Ps, ..., Pg, QN(see the right of
Fig.21). The points are constructed in the same way: start with Py, P, P3, pick Q on
segment Pj P, pick Py in triangle AP, P30, pick Ps on segment P,Q, and pick Pg
in AP PsQ.

The above all concerns the forward boundary measurement map. Going in the other
direction, let A = [v; - - - v,] € GRg, be totally positive, meaning that all its Plucker
coordinates are positive. Consider the problem of reconstructing the positive edge
weights. Let A = [3 ---,] € I15  where U; = o;v; for o; as before. Finally, let
V= 1//(Z) where the gauge class is chosen recursively so that each v, for w internal
is a convex combination of the Uy, for w’ two steps upstream from w.

Proposition 7.6 Define edge weights on G as follows. Given b € B, let w be the target
of the unique edge e directed away from b. Below let w’ range over the other neighbors

of b.

e Suppose w is internal. Then put wt(e) = 1 and let the wt(bw') be the barycentric
coordinates of Uy, with respect to the Vyy.

e Suppose w is on the boundary. Then put wt(e) = A where A is chosen so that M vy,
is a convex combination of the V. Let the wt(bw’) be the associated barycentric
coordinates of \v,.

Then, this edge weighting is a representative of the inverse of the boundary
measurement map applied to A.

The proof is immediate as we are just undoing the boundary measurement map as
described in this section. The recipe for the edge weights is purely geometric: form
and intersect some hyperplanes (as in the definition of W), do some projections, and
take some barycentric coordinates.

Example 7.7 Continue with G as in Fig.21 and Example 7.5. Let A = [v] ---vg] €
Gr3,6 with all minors positive. Consider the problem of determining the edge weights
aj and a;.

Let 7, = —v;. As discussed in previous examples, the internal vector u satisfies

u € (vy, v2) N (v4, vs).
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Positivity will ensure that # can be scaled to be a convex combination of v; and V5.
Then, ay, ap are the corresponding barycentric coordinates.

Alternately, a direct formula for aj, a> can be derived as follows. There is a
determinantal identity

[v2v4v5|v1 — |V1V4V5|v2 = —|V1V2V5|V4 + [V V2V VS
giving a vector on the desired line (vy, v2) N (v4, v5). We want a convex combination
ajv] + a0y = ajv; — axvy
so we scale down to get

[v2v405] [viv4vs|
a) = , ay = .
[v1v4V5] + [V2V4V5] [viv4vs| + [vav4vs5]

These values are positive when the minors of A are positive as expected.

7.4 The circuit condition

We conclude this section with a discussion of configurations v € Cg satisfying the
circuit condition at each black vertex.

Define C;; C Cg to be the set of configurations (up to gauge and G Ly action)
with all coefficients of all relations nonzero. The statement of Proposition 7.3 can be
summarized by saying there is an identification of C¢; with the set of gauge classes of
nonzero weights on G such that ®|ce agrees with the boundary measurement map.
We now give a slightly stronger formulation of Theorem 1.1.

Theorem 7.8 Let G be a reduced plabic graph.

(1) The image of ® is contained in 1 4.
(2) The restriction of ® to Cg, is an isomorphism with its image Tg.
(3) C& =@~ (To).

Proof The first part is a restatement of the first part of Theorem 1.1. From the second
part of Theorem 1.1 we have that each A € T has a unique preimage under .
More precisely, we know by Proposition 6.16 that the preimage W (A) has nonzero
coefficients in all its relations, i,e, W(A) € Cg;. All that remains for both the second
and third parts of the current theorem is to show that ®(Cg;) € Tg. As ® has the same
image as the boundary measurement map, the previous follows from Theorem 6.3. O

Proposition 7.9 Let (v, R) € Cg. Then (v, R) € Cg, if and only if the v, neighboring
each b € B are a circuit.

Proof Any non-trivial linear relation on the elements of a circuit must have nonzero
coefficients, so the if direction is easy. On the other hand, if v € C2, then by The-
orem 7.8 we have ®(v) € Tg so v = W(P(v)) satisfies the circuit condition by
Proposition 6.16. O
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8 Structure of the space Cg

Let G be a plabic graph with all of the conventions and notation of Sect.6. We
have defined C; as the set of vector-relation configurations on G modulo gauge
transformations at internal vertices and the action of G Ly (C). We now consider the
algebraic-geometric structure both of Cg and of the function ® : C¢ — ITpq. We
know Tg C I is dense, and by Theorem 7.8 the difference of these sets is mapped
to by Cg\C¢;. The main result of this Section is that Cg is a smooth algebraic variety.
Unfortunately, the map & is not always surjective, but we will see that it does resolve
singularities of the positroid variety in some cases.

First, consider a configuration v € Cg. We will describe explicitly a bijection
between aneighborhood of v and an open subset of an affine variety. Since the boundary
vectors vy, ..., v, span V, there must be a basis {v; : j € I} among them. Acting by
G Ly we can arrange for this to equal the standard basis in order. Next, each internal
vector vy, is nonzero so we can pick one of its nonzero entries and apply a gauge so
that the entry equals 1. Finally, by Lemma 6.7 we know that

Aw\1(K) #0.

It follows that there is an almost perfect matching of B with W\ I with all Kj,, along
the matching nonzero. Apply gauge at the black vertices to scale all these Ky, to 1.

We have exhausted the allowable operations, so the collection of remaining variables
gives a well-defined map to affine space. Specifically, the coordinates are the entries
of the boundary vectors v; with j ¢ I, each entry of each internal vector v, except
the one scaled to 1, and all the K}, for edges bw not in the matching. The map to
affine space is injective and it is easy to describe the image. For each b € B the vector
relation Zw Kpywvy = 0 amounts to k quadratic relations in the variables. The only
other condition is that the matrix K has full rank. Restricting the chart a bit, we can
replace the full-rank condition with the single inequality Aw\;(K) # 0 which as
already mentioned holds for v.

Example 8.1 The graph G in Fig.22 is one of the standard plabic graphs for the open
cell in Gry 4. Suppose a point v € Cg is given such that {vy, v3} is a basis of C2%, v
appears non-trivially in the relation on vy, v3, v4, and v4 appears non-trivially in the
relation on vy, vz, v4. The normalization described above produces the configuration
in the figure where the edge variables indicate the coefficients of the relations. From
the vector relations vy +avs 4+ bvs = 0 and cv; + dvy 4+ va = 0 we obtain the system

X2+ bxg =0
y2+a+bys=0
c+dxr+x4=0
dy +y4 =0
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vy =

Fig.22 One chart on Cg with G { T4 }
Ya

a plabic graph corresponding to
Gry 4

The Kasteleyn matrix is

01 a b

c d 0 1|
Taking the columns not in our basis we want Ax4(K) = 1 —bd # 0. The image of the
chart is defined in affine space C® by the four equations above and this one inequality.

In fact, a more efficient chart is obtained by taking just a, b, c, d as coordinates.
The other variables can be reconstructed as

bc c
Xy = =—
1 —bd 1 —bd
. a . ad
2T " T 1

and as before we assume 1 — bd # 0. The image of the chart is an open subset of C*,
so in particular it is smooth.

Theorem 8.2 The space Cg of configurations on any reduced plabic graph G is smooth.

The images of the charts defined above have lots of defining equations which make
analysis somewhat difficult. Generalizing Example 8.1, we introduce more intricate
charts which have the advantage of landing in open subsets of affine space. The atlas
that results is indexed by certain subgraphs of G.

Say a subgraph F = (BU W, E’)of G = (BU W, E) is a system in G if

e F isa forest,

e Each component of F includes exactly one boundary vertex of G, and

e Each component of F either contains exactly one edge or has the property that all
of its black vertices have degree 2.

We choose the name because F' has the appearance of a system of rivers connecting
various points on an island to the surrounding ocean.
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Proposition8.3 Let F = (BU W, E’) be a system in G. Suppose a configuration
v € Cg has the property that Kp,, # 0 for all bw € E'. Then there is a unique
representative of the gauge class of vV so that Kpy, = 1 for all bw € E'.

Proof There is a unique simple path in F from each internal vertex to the boundary.
Define a partial order on the set of internal vertices via a < a’ if a lies on the path
from a’ to the boundary. Go through the internal vertices in a manner consistent with
this order. At each a apply gauge to set equal to 1 the coefficient at the first edge on the
path from a to the boundary. Each Kj,, will be set to 1 after the gauge at whichever
of b or w is larger in the order, and it will remain unchanged thereafter. It is easy to
see that all choices for this gauge were forced, so the outcome is unique. O

We now have a rational map ¢r : Cg — CIE\E'l The map takes as input a
configuration v, performs the gauge described in Proposition 8.3, and outputs the
remaining coefficients Kj,, for bw ¢ E’. On the other hand, given a point in ¢ €
CIE\E'l we can construct a matrix K by setting

1, ifbwekE
Kpw = { cpw, ifbwe E\E’
0, otherwise

As explained in the paragraph following Lemma 6.6, an element of Cg is determined
by its Kasteleyn matrix so we can recover v. Therefore ¢ is injective.

Proposition 8.4 The image of ¢F is dense in CIE\E'I,

Proof Given ¢ € C/E\E'l we can construct K as above and then use Lemma 6.6 to
build a configuration v in C" /row(K). The only difficulty would be if v violated one
of the conditions in the definition of Cg, each of which is easily seen to be stated in
terms of an inequality. Specifically we need

e K is full rank, i.e. some Ag(K) # 0,

e the boundary vectors vy, ..., v, span V (equivalently some subset of them is a
basis), i.e. some Ay y(K) #0with J C {1,...,n}, and

o for all w internal vy, is nonzero (equivalently v,, is part of a basis with other vectors
of v),i.e. some Ag(K) # 0 with w ¢ S.

O

Everything so far has only used the first two conditions of a system, namely that
it is a forest with exactly one boundary vertex per component. The next result, which
identifies the origin of each chart, clarifies the significance of the third condition.

Proposition 8.5 The origin 0 € CIE\E'l is in the image of . It represents a config-
uration where certain k boundary vectors form a basis, the other boundary vectors
are 0, and each internal vector is proportional to the boundary vector in the same
component.
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Proof First note each single edge component of F is balanced as it has 1 black and 1
white vertex. Meanwhile, every other component has exactly one more white vertex
than black. Indeed the number of edges of the component is one less than the number
of vertices (since it is a tree) and twice the number of black vertices (since each
black vertex has degree 2). So the number of non-single edge components must equal
N — M = k. Let J be the set of boundary vertices of these components.

Let F; be the component of F' containing boundary vertex j. Fix j € J and w a
white vertex of F;. Then there is a unique matching in F; of all vertices other than w.
Indeed, each white vertex is paired with its neighbor on the unique path in F; from
it to w and each black vertex b is paired with the one of its two neighbors not on the
path from b to w. Letting j vary, we get a characterization of every matching of B
into W (using only edges of F):

e Foreach j € J, the matching restricted to F; equals the matching described above
excluding w for some white vertex w of Fj,
e Foreach j ¢ J, the matching must include the single edge of F;.

Let 7 be the matching where we choose to exclude the boundary vertex j of F; for
each j € J. Then m is an almost perfect matching involving the white vertices W \ J.
Similarly, let w € W be any internal vertex. Then w is in F; for some j € J. Define
1T, to be the matching that excludes w as well as the boundary vertices of J other than
Jj. Then my, is a matching of B with W \ § where S = (J\{j}) U {w}.

Consider the point 0 € C/E\E 'l which corresponds to the zero—one matrix K with
Kpy = 1 precisely for bw € E’. The matchings 7 and m,, witness the conditions
from Proposition 8.4 for this point to be in the image of ¢r. Consider the associated
configuration v. If j € {1,...,n}\ J then j is part of a single edge component. The
black vertex of this component gives the relation v; = 0. It follows that the v; for
J € J must be a basis. Each internal black vertex gives a relation u + u’ = 0 among
its two neighbor vectors in F. By induction, all vectors in a given component of F are
proportional to each other. O

Proof of Theorem 8.2 Let v € Ci. We will construct a system F so that ¢ is defined
at v. As such we get an identification of a neighborhood of v with an open set in affine
space proving that Cg is smooth at v.

Let J € {I,...,n} be such that {v; : j € J} is a basis of V. Then there is an
almost perfect matching 7w of B with W \ J such that K, # 0 for all bw € 7. We
will start from the graph F = (B U W, ) and add edges one at a time maintaining
the properties

e F'is a forest

Each component of F includes at most one boundary vertex

e Each non-single edge component of F is connected to the boundary and has all
its black vertices degree 2

e Each edge of F has a nonzero coefficient Kp,,

until all vertices are connected to the boundary. The result will be a system F with ¢F
defined at v.

Suppose we are at a stage where not all vertices of F are connected to the boundary.
There are never isolated black vertices, so there must be a white vertex w not connected

W Birkhauser



Vector-relation configurations and plabic graphs Page 53 of 55 9

Fig.23 An example of a coordinate chart on Cg coming from a system in G

to the boundary. Since vy, # 0, it can be swapped into {v; : j € J} so that the result
is still a basis. Suppose j € J is such that v; is the vector that got swapped out. Then
there is a matching 7’ of B that avoids the white vertices (J\{;j}) U {w} and that has
all edge variables nonzero. The disjoint union of 7 and 7’ has degree < 2 at each
vertex and degree 1 at only w and j. As such it contains a path from w to j which we
consider oriented in that direction. Let e be the first edge of this path whose target is
connected to the boundary in F. Then the source of e is not connected to the boundary
in F, so e is not in F and in particular e is not in 7. Therefore e is in 7z’ from which it
follows that e goes from black to white. Adding e to F' merges a single edge internal
component to a boundary-connected component along a black vertex of the former.
All the properties listed above are easily verified.

As it is always possible to find an additional edge, the above process does not
terminate until all vertices are connected to a boundary. It follows at that point that
is a system as desired. O

Combining with results from the previous section, we have that ® : C¢ — Tl
maps a smooth variety to the positroid variety and restricts to an isomorphism from Cg,
to T¢. It would be interesting to characterize the image of C under ®. As suggested
by the referee, a possible candidate could be the union of several Deodhar strata [38],
which are a refinement of positroid strata and are indexed by weighted networks resem-
bling the coordinate charts associated to our systems. Although @ is not surjective, it
can resolve certain singularities of T4 as the next example illustrates.

Example 8.6 Consider the plabic graph G in Fig.23. The four edges of a system F
have been labeled with 1’s and the other three edges assigned coordinates a, b, c. We
have that J = {3, 4} are the boundary vertices of the non-single edge components of
F so we can take v3, v4 as a basis. It is then possible to determine the vectors at the
other three white vertices. In these coordinates, the map ® takes the form

c 1 0

3 b
(@.b.c)eC '_)|:ab ac 0 1

] € Mpm € Grag.
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The target IT ¢ of ® in this case is a Schubert variety defined in Gr, 4 by the single
equation A1y = 0. This variety has a unique singular point given in matrix form by

0010
ASi“g:[o 0 0 1}

If A = [v1 v2 v3 V4] # Asing then vy, v2 are dependent but not both zero, so they span
a line. The rightmost two black vertices in the plabic graph force the vector u at the
internal white vertex to lie on this line. One can check, then, that the three relations of
a configuration are always determined up to scale. So A has a unique preimage in Cg.

On the other hand, let A = Agjng. Then v; = v = 0 and the internal vector
u € C? becomes arbitrary. As we only consider u up to scale, we have a P! worth of
preimages. This is the standard picture of the blowup of a variety at a point. Alternately,
we can analyze the situation in coordinates. Restricting to the above chart we get a set
{(a,0,0) : a € C} of preimages of A. The last preimage, corresponding to the point
at infinity in P!, lies outside the chart.
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