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Abstract

This paper provides a set of methods for quantifying the robustness of treatment
effects estimated using the unconfoundedness assumption. Specifically, we estimate
and do inference on bounds on various treatment effect parameters, like the average
treatment effect (ATE) and the average effect of treatment on the treated (ATT),
under nonparametric relaxations of the unconfoundedness assumption indexed by a
scalar sensitivity parameter c. These relaxations allow for limited selection on un-
observables, depending on the value of c. For large enough c, these bounds equal
the no assumptions bounds. Using a non-standard bootstrap method, we show how
to construct confidence bands for these bound functions which are uniform over all
values of c. We illustrate these methods with an empirical application to the Na-
tional Supported Work Demonstration program. We implement these methods in
the companion Stata module tesensitivity for easy use in practice.
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1 Introduction

A core goal of causal inference is to identify and estimate effects of a treatment variable

on an outcome variable. A common assumption used to identify such effects is unconfound-

edness, which says that potential outcomes are independent of treatment conditional on

covariates. This assumption is also known as conditional independence, selection on observ-

ables, ignorability, or exogenous selection; see Imbens (2004) for a survey. This assumption

is not refutable, meaning that the observational data alone cannot tell us whether it is true.

Nonetheless, empirical researchers may wonder: How important is this assumption in their

analyses? Put differently: How sensitive are their results to unconfoundedness failures?

A large literature on sensitivity analysis has developed to answer this question. More-

over, researchers widely acknowledge that answering this question is an important step in

empirical research. For example, in their figure 1, Caliendo and Kopeinig (2008) describe

the workflow of a standard analysis using selection on observables. Their fifth and final

step in this workflow is to perform sensitivity analysis to the unconfoundedness assump-

tion. Imbens and Wooldridge (2009, section 6.2), Imbens and Rubin (2015, chapter 22),

and Athey and Imbens (2017) all recommend that researchers conduct sensitivity analyses

to assess the importance of non-refutable identifying assumptions. In particular, Athey

and Imbens (2017) describe these methods as “a systematic way of doing the sensitivity

analyses that are routinely done in empirical work, but often in an unsystematic way.”

Most of the existing approaches to assessing unconfoundedness rely on strong auxiliary

assumptions, however. For example, they often assume that all unobserved confounding

arises due to a single unobserved variable whose distribution is parametrically specified, like

a binary or normal distribution (e.g., Rosenbaum and Rubin 1983, Imbens 2003, Ichino,

Mealli, and Nannicini 2008). They also often rely on linear models or parametric functional

forms (e.g., Robins, Rotnitzky, and Scharfstein 2000, Altonji, Elder, and Taber 2005, 2008,
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Hosman, Hansen, and Holland 2010, Krauth 2016, Oster 2019, and Cinelli and Hazlett

2020). These assumptions—which are not needed for identification of the baseline model

when unconfoundedness holds—raise a new question: Are the findings of these sensitivity

analyses themselves sensitive to these extra auxiliary assumptions?

In this paper, we provide a set of tools for assessing the sensitivity of the unconfounded-

ness assumption which do not rely on strong auxiliary assumptions. We do this by studying

nonparametric relaxations of the unconfoundedness assumption with binary treatments.

Specifically, we build on the identification results of Masten and Poirier (2018), who con-

sider a class of assumptions called conditional c-dependence. This class measures relaxations

of conditional independence by a single scalar parameter c ∈ [0, 1]. This parameter c is the

largest difference between the propensity score and the probability of treatment conditional

on covariates and an unobserved potential outcome. Hence it has a straightforward inter-

pretation as a deviation from conditional independence, as measured in probability units.

For any positive c, conditional independence only partially holds, and so we cannot learn

the exact value of our treatment effect parameters, like the average treatment effect (ATE)

or the average effect of treatment on the treated (ATT). Instead, we only get bounds.

Masten and Poirier (2018) derive closed-form expressions for these bounds as a function of

c. Setting c = 0 yields the baseline model where unconfoundedness holds. Setting c = 1

yields the other extreme where no assumptions on selection are made, and hence gives the

no assumption bounds as in Manski (1990). The bounds are monotonic in c, so that small

values of c give narrow bounds while larger values of c give wider bounds. Just how wide

these bounds are—and hence how sensitive one’s results are—depends on the data.

While Masten and Poirier (2018) studied identification of treatment effects under non-

parametric relaxations of unconfoundedness, they did not study estimation or inference.

We do that in this paper. First we propose sample analog estimators of the bounds on

the conditional quantile treatment effect (CQTE), the conditional average treatment effect
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(CATE), the ATE, and the ATT. We do this using flexible parametric first step estimators

of the propensity score and the conditional quantile function of the observed outcomes

given treatment and covariates. Although such parametric restrictions are not required for

our identification theory, the analysis of inference is complicated and non-standard even

with these parametric first step estimators. Note that our approach of using nonparamet-

ric identification results paired with flexible parametric estimators is analogous to what is

commonly done in the baseline model which imposes unconfoundedness: Identification is

shown nonparametrically but many commonly used estimators are based on flexible para-

metric first step estimators. For example, see chapter 13 in Imbens and Rubin (2015). In

appendix H we use simulations to show that these parametric estimators can perform well

even under misspecification. Finally, note that the parametric assumptions we impose are

testable.

Our bound estimators are non-smooth functionals. This implies that usual delta method

arguments do not apply and the nonparametric bootstrap is inconsistent. We therefore

derive their asymptotic distributions and show consistency of a non-standard bootstrap

by using more recent methods as in Fang and Santos (2019). We show how to construct

confidence bands for the bound functions which are uniform over all values of c ∈ [0, 1].

We also provide a sufficient condition on the propensity score and the distribution of the

covariates under which we can do inference using the standard nonparametric bootstrap.

Finally, in section 6, we use our results to study the effects of a well known supported

work program: the National Supported Work (NSW) demonstration project. Our findings

suggest that the program does not pass a cost-benefit analysis, even if we allow for a large

amount of selection on unobservables. Using the techniques developed in this paper, and

implemented in accompanying Stata module tesensitivity, researchers can quantify the

robustness of treatment effects estimated using the unconfoundedness assumption.
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Related Literature

We conclude this section with a brief literature review. As mentioned earlier, there is a

large existing literature that studies how to relax unconfoundedness. Here we discuss the

most closely related work and several recent papers.

The sensitivity analysis in Ichino et al. (2008) is nonparametric, but requires that all

variables are discretely distributed. In contrast, we allow for continuous outcomes, covari-

ates, and unobservables. Moreover, unlike us, they do not provide any formal results for

doing estimation or inference. Another important and early approach was developed by

Rosenbaum starting in the 1980’s (Rosenbaum 1984, 1987, 1988, 1991, 1995, among many

others). He proposed a sensitivity analysis for unconfoundedness which does not rely on

a parametric model for outcomes or treatment assignment probabilities. He does design

based inference for a finite set of units (also called randomization inference; see chapter 5

of Imbens and Rubin 2015 for an overview). This approach to inference is conceptually dis-

tinct from the approach we use based on repeated sampling from a large super-population.

For this reason, we view these different approaches to inference in sensitivity analyses as

complementary. Recent work on sensitivity analysis following Rosenbaum’s tradition in-

cludes Fogarty and Small (2016), Fogarty, Shi, Mikkelsen, and Small (2017), Rosenbaum

(2018), and Fogarty (2020). Kallus, Mao, and Zhou (2019) study bounds on CATE under

the same nonparametric relaxations defined by Rosenbaum, but instead using a super-

population approach. They propose sample analog kernel estimators based on an implicit

characterization of the identified set using extrema. They show consistency of these esti-

mators, but they do not provide any inference results. As we discuss later, this is a key

distinction because inference in this setting is non-standard. Masten and Poirier (2020)

also used c-dependence to relax unconfoundedness. Their focus was substantially different

from the current paper since they do not do inference on parameter bound functions, as we
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do in this paper. In particular, they do not provide any formal results for estimation and

inference on the ATE or ATT bound functions. However, in their appendix they sketched

some related inference results, but only under two very strong assumptions: First, they

require all covariates to be discrete. Second, they assume that the sensitivity parameter is

smaller than the propensity score for all values of the covariates. This assumption rarely

holds in practice; in fact, it can never hold if some covariate values drive the propensity

score to zero or one. In contrast, our results are valid for all values of the sensitivity pa-

rameters as well as for continuous covariates and hence can be used to study the impact

of any magnitude of selection on unobservables on one’s baseline findings. Finally, a few

recent papers provide methods for assessing omitted variable bias in linear models. This

includes Oster (2019) and Cinelli and Hazlett (2020). Their results are restricted to esti-

mands which can be written as OLS coefficients while our analysis is instead based on the

nonparametric selection on observables framework.

2 Population Bounds on Treatment Effects

In this section we briefly review the population model from the previous literature that

our estimation and inference results in sections 3–5 use. We first summarize standard results

on point identification of treatment effects under unconfoundedness. We then describe how

we relax unconfoundedness. Finally, we review the bounds on treatment effects derived

by Masten and Poirier (2018) when unconfoundedness is relaxed. We provide additional

discussion and intuition for these bounds in appendix A.

Model and Baseline Point Identification Results

We use the standard potential outcomes model. Let X ∈ {0, 1} be an observed binary

treatment. Let Y1 and Y0 denote the unobserved potential outcomes. The observed outcome

is Y = XY1 + (1−X)Y0. Let W ∈ RdW denote a vector of observed covariates, which may

be discrete, continuous, or mixed. Let W = supp(W ) denote the support of W . Let
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p1|w = P(X = 1 | W = w) denote the propensity score and let p0|w = P(X = 0 | W = w).

It is well known that the conditional distributions of potential outcomes Y1 | W and

Y0 | W are point identified under the following two assumptions:

Unconfoundedness: X ⊥⊥ Y1 | W and X ⊥⊥ Y0 | W .

Overlap: p1|w ∈ (0, 1) for all w ∈ W .

Consequently, any functional of the distributions of Y1 | W and Y0 | W is also point

identified. We focus on two leading examples: The average treatment effect, ATE =

E(Y1 − Y0) and the average treatment effect for the treated, ATT = E(Y1 − Y0 | X = 1).

We also consider the conditional quantile treatment effects CQTE(τ | w) = QY1|W (τ | w)−

QY0|W (τ | w) and the conditional average treatment effect CATE(w) = E(Y1−Y0 | W = w).

Sensitivity Analysis: Relaxing Unconfoundedness

The overlap assumption is refutable and hence can be directly verified from the data.

The unconfoundedness assumption, however, is not refutable. Consequently, like much

of the literature reviewed in section 1, we perform a sensitivity analysis. This entails

replacing unconfoundedness with a weaker assumption and investigating how this changes

the conclusions we can draw about our parameter of interest. Specifically, we define the

following class of assumptions, called conditional c-dependence (Masten and Poirier 2018):

Definition 1. Let x ∈ {0, 1}. Let w ∈ W . Let c be a scalar between 0 and 1. Say X is

conditionally c-dependent with Yx given W if for all w ∈ W the following equation holds:

sup
yx∈supp(Yx|W=w)

|P(X = 1 | Yx = yx,W = w)− P(X = 1 | W = w)| ≤ c. (1)

When c = 0, conditional c-dependence is equivalent to X ⊥⊥ Yx | W . For c > 0,

however, we allow for violations of unconfoundedness by allowing the unknown conditional

probability P(X = 1 | Yx = yx,W = w) to differ from the propensity score P(X = 1 |

W = w) by at most c. Thus we actually allow for some selection on unobservables, since
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treatment assignment may depend on Yx, but in a constrained manner. For sufficiently large

c, however, conditional c-dependence imposes no constraints on the relationship between

Yx and X. This happens when c ≥ C where C = supw∈W max{p1|w, p0|w}. When c ∈ (0, C),

conditional c-dependence imposes some constraints on treatment assignment, but it does

not require conditional independence to hold exactly. For this reason, we call it a conditional

partial independence assumption. Thus our sensitivity analysis replaces unconfoundedness

with conditional c-dependence of X with Y1 and Y0 given W .

Treatment Effect Bounds

By relaxing conditional independence our main parameters of interest—ATE and ATT—

are no longer point identified. Instead they are partially identified: We can bound them

from above and from below. As c gets close to zero, however, these bounds collapse to a

point. The goal of a sensitivity analysis is to understand how the shape and width of these

bounds change as c varies from 0 to 1.

These bounds were derived in Masten and Poirier (2018), which we summarize here.

We provide more details and intuition in appendix A. Although that paper studied both

continuous and binary outcomes, here we only summarize the results for continuous Yx.

These bounds were derived under the assumption that Yx | X,W has a continuous and

strictly increasing cdf, that the support of Yx | X,W is an interval independent of X, and

that p1|w ∈ (0, 1). Assumption A1 in that paper formally states this assumption; we also

restate it in our appendix A for convenience. All of our parameters of interest can be

written in terms of bounds on the quantile regressions QYx|W (τ | w) where τ ∈ (0, 1) is the

quantile index and w ∈ W . Under the conditional partial independence assumption stated

above and some regularity conditions,

[Qc

Yx|W
(τ | w), Qc

Yx|W (τ | w)] =
[︁
QY |X,W

(︁
t(τ, px|w) | x,w

)︁
, QY |X,W

(︁
t(τ, px|w) | x,w

)︁]︁
(2)
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are sharp bounds on this quantile regression, uniformly in τ , x, and w, where

t(τ, px|w) = min

{︃
τ +

c

px|w
min{τ, 1− τ}, τ

px|w
, 1

}︃
t(τ, px|w) = max

{︃
τ − c

px|w
min{τ, 1− τ}, τ − 1

px|w
+ 1, 0

}︃
.

Taking differences of these bounds for x = 1 and x = 0 yields sharp bounds on the

conditional quantile treatment effect CQTE(τ | w), uniformly in τ and w:

[︁
CQTEc(τ | w),CQTE

c
(τ | w)

]︁
≡
[︂
Qc

Y1|W
(τ | w)−Q

c

Y0|W (τ | w), Qc

Y1|W (τ | w)−Qc

Y0|W
(τ | w)

]︂
.

Integrating these bounds over τ yields sharp bounds on CATE(w), uniformly in w:

[︁
CATEc(w),CATE

c
(w)
]︁
≡
[︃∫︂ 1

0

CQTEc(τ | w) dτ,
∫︂ 1

0

CQTE
c
(τ | w) dτ

]︃
.

Further integrating over the marginal distribution of W yields sharp bounds on ATE:

[︁
ATEc,ATE

c]︁ ≡ [︂E(︁CATEc(W )
)︁
, E
(︁
CATE

c
(W )

)︁]︂
.

Note that these bounds are always finite for sufficiently small c, but potentially infinite

when Yx is unbounded and c is sufficiently large. To obtain bounds on ATT, let Ec
x(w) =∫︁ 1

0
Qc

Yx|W
(τ | w) dτ and E

c

x(w) =
∫︁ 1

0
Q

c

Yx|W (τ | w) dτ denote bounds on E(Yx | W = w).

Averaging these over the marginal distribution of W yields bounds on E(Yx), denoted by

Ec
x = E

(︁
Ec

x(W )
)︁
and E

c

x = E
(︁
E

c

x(W )
)︁
. This yields the following bounds on ATT:[︄

E(Y | X = 1)− E
c

0 − p0E(Y | X = 0)

p1
, E(Y | X = 1)− Ec

0 − p0E(Y | X = 0)

p1

]︄
(3)

where px = P(X = x) for x ∈ {0, 1}. Finally, note that all of these bounds are sharp.

Breakdown Points

So far we have discussed sharp bounds on various parameters of interest as a function of

the sensitivity parameter c. In addition to the bounds themselves, it is common to analyze

breakdown points for various conclusions of interest; see Oster (2019) for a prominent
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application. For example, suppose that under the baseline model (c = 0) we find that

ATE > 0. We then ask: How much can we relax unconfoundedness while still being able

to conclude that the ATE is nonnegative? To answer this question, define the breakdown

point for the conclusion that the ATE is nonnegative as

cbp = sup{c ∈ [0, 1] :
[︁
ATEc,ATE

c]︁ ⊆ [0,∞)}. (4)

This number is a scalar measure of the robustness of the conclusion that ATE is positive

to relaxations of the key identifying assumption of unconfoundedness. We analyze them in

our empirical application in section 6.

Interpreting Conditional c-Dependence

We conclude this section by giving some suggestions for how to interpret conditional

c-dependence in practice. In particular, what values of c are large? What values are small?

This interpretation and calibration of c is important because its true value is completely

unidentified and therefore is unknown. Here we summarize and extend the discussion in

Masten and Poirier (2018). We illustrate these interpretations in our empirical analysis in

section 6.

Let Wk denote a component of W and let W−k denote its other components. Denote the

propensity score by p1|W (w−k, wk) = P(X = 1 | W = (w−k, wk)). Let p1|W−k
(w−k) = P(X =

1 | W−k = w−k) denote the leave-out-variable-k propensity score. This is the proportion of

the population who are treated, conditional on only W−k. Consider the random variable

∆k = |p1|W (W−k,Wk)− p1|W−k
(W−k)|.

This difference is a measure of the impact on the propensity score of adding Wk, given

that we already included W−k. Conditional c-dependence is defined by a similar difference,

except there we add the unobservable Yx given that we already included W . So c reflects

the additional impact of an unobservable on treatment while ∆k captures the additional
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impact of an observable on treatment. Following Altonji et al. (2005) and Oster (2019),

among others, we consider calibrating the magnitude of selection on unobservables using

measures of selection on observables. Hence we suggest using the distribution of ∆k to

calibrate values of c. For example, you could first consider the upper bound on its support,

c̄k = max supp(∆k), and then the 90th, 75th, and 50th quantiles of ∆k. You may also

find it useful to plot an estimate of the density of ∆k. All of these reference values can

be compared to the breakdown point cbp for a specific conclusion of interest. Specifically,

if cbp is larger than the chosen reference value, then the conclusion of interest could be

considered robust. In contrast, if cbp is smaller than the chosen reference value, then the

conclusion of interest could be considered sensitive. You may also want to see where cbp

lies relative to the distribution of ∆k. This can be done by computing F∆k
(cbp).

While this can be done for all covariates k, it may be helpful to restrict attention

to covariates that have a sufficiently large impact on the baseline point estimates. For

example, suppose we are interested in the ATE. Let ATE−k denote the ATE estimand

obtained in the baseline selection on observables model using only the covariates W−k. Let

ATE denote the ATE estimand obtained in the baseline model using all the covariates.

Then
⃓⃓⃓
ATE−ATE−k

ATE

⃓⃓⃓
denotes the effect of omitting covariate k on the ATE point estimand,

as a percentage of the baseline estimand that uses all covariates in W . You may want

to restrict attention to covariates k for which this ratio is relatively large. We illustrate

this approach in our empirical analysis in section 6. Note that we recommend examining

ATE−k primarily as a supplement to ∆k, to obtain a potentially less conservative definition

of robustness; percentage changes in ATE that occur from omitting covariate k are not on

the same scale as c and hence cannot be used to calibrate c by themselves.
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3 Estimation

In the previous section we assumed the entire population distribution of (Y,X,W ) was

known. In practice we only have a finite sample {(Yi, Xi,Wi)}ni=1 from this distribution.

In this section we explain how to use this finite sample data to estimate the population

bounds of section 2. We give the corresponding asymptotic theory in section 4 where we

obtain the joint limiting distribution of treatment effects bounds.

As shown in section 2, all of our bounds can be constructed from the distribution

of (Y,X,W ) and the bounds on QYx|W given in equation (2). These bounds on QYx|W ,

in turn, depend on just two features of the data: (a) the conditional quantile function

QY |X,W (τ | x,w), and (b), the propensity score p1|w = P(X = 1 | W = w). In both

cases, we can use parametric, semiparametric, or nonparametric estimation methods. In

this paper we focus on flexible parametric approaches. Even in this case the asymptotic

distribution theory is non-standard and quite complicated.

In section 3.1 we describe our first step estimators of these two functions. Given these

estimators, we then construct sample analog estimates of our bound functions in a second

step. We describe these estimators in section 3.2.

3.1 First Step Estimation

We estimate QY |X,W by a linear quantile regression of Y on flexible functions of (X,W )

that we denote by q(X,W ) ∈ Rdq . For example, q(x,w) could be (1, x, w), (1, x, w, x · w),

or could contain additional interactions between the treatment indicator X and functions

of the covariates W . For τ ∈ (0, 1), let ˆ︁QY |X,W (τ | x,w) = q(x,w)′ˆ︁γ(τ) where ˆ︁γ(τ) are the

estimated coefficients from a linear quantile regression of Y on q(X,W ) at the quantile τ .

We estimate the propensity score by maximum likelihood. In particular, specify the

parametric model p1|w = F (r(w)′β0) where F is a known cdf, r(w) is a known vector

function, and β0 is an unknown constant vector. The functions r(w) could simply be

12



(1, w) or may contain functions of w, like squared or interaction terms. For notational

simplicity, we will assume throughout the paper that r(w) = w. This specification for the

propensity score includes the probit and logit estimators as special cases. Those estimators

are commonly used in the literature; e.g., see chapter 13 of Imbens and Rubin (2015).

We let ˆ︁p1|w = F (w′ˆ︁β) denote our propensity score estimator, where ˆ︁β is the maximum

likelihood estimator of β0.

3.2 Second Step Estimation of the Bound Functions

Given the first step estimators from section 3.1, we obtain the following sample analog

estimators of the CQTE bound functions defined in equation (2):(︂ˆ︁Qc

Yx|W (τ | w), ˆ︁Qc

Yx|W
(τ | w)

)︂
=
(︂ ˆ︁QY |X,W (t(τ, ˆ︁px|w) | x,w), ˆ︁QY |X,W (t(τ, ˆ︁px|w) | x,w))︂ .

As discussed in section 2, averaging these over τ ∈ (0, 1) yields sample analog estimates

of bounds on CATE(w), which we can then use to get bounds on ATE. This approach

requires estimation of extremal quantiles, however—estimation for τ ’s close to 0 or 1. This

is well known to be a delicate problem (see Chernozhukov, Fernández-Val, and Kaji 2017)

since extremal quantiles are effectively estimated by a small fraction of observations and

thus converge in distribution at nonstandard rates. So in this paper we use a common

solution: Fixed trimming of the extremal quantiles. We do this by modifying the quantile

bound estimators to ensure that the argument of ˆ︁QY |X,W (· | x,w) lies in [ε, 1− ε] for some

fixed and known ε ∈ (0, 0.5). Specifically, this yields the trimmed estimators of the two

quantile bounds:

ˆ︁Qc

Yx|W (τ | w) = ˆ︁QY |X,W

(︁
max{min{t(τ, ˆ︁px|w), 1− ε}, ε} | x,w

)︁
, (5)

ˆ︁Qc

Yx|W
(τ | w) = ˆ︁QY |X,W

(︁
max{min{t(τ, ˆ︁px|w), 1− ε}, ε} | x,w

)︁
. (6)

We use these estimators for the rest of the paper. Common choices of ε are 0.05 or 0.01. In

our asymptotic analysis we hold ε fixed with sample size. In principle we could generalize
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the results to allow ε → 0 as n → ∞, but this would complicate the analysis of inference,

which is already non-standard for other reasons. Since we fix ε throughout, we omit ε from

the notation for brevity, except when necessary.

We estimate the CQTE bounds by taking differences of the quantile bound estimators:[︃
ˆ︂CQTE

c
(τ | w), ˆ︂CQTE

c

(τ | w)
]︃
≡
[︂ˆ︁Qc

Y1|W
(τ | w)− ˆ︁Qc

Y0|W (τ | w), ˆ︁Qc

Y1|W (τ | w)− ˆ︁Qc

Y0|W
(τ | w)

]︂
.

Since our CATE bounds are simply the integral of the CQTE bounds over all the quantiles

τ , we can estimate them by[︃
ˆ︂CATE

c
(w), ˆ︂CATE

c

(w)

]︃
≡
[︃∫︂ 1

0

ˆ︂CQTE
c
(τ | w) dτ,

∫︂ 1

0

ˆ︂CQTE
c

(τ | w) dτ
]︃
. (7)

A second integration over w with respect to the marginal distribution of W yields bounds

on ATE. Like much of the literature, we use the empirical distribution of W to estimate

the marginal distribution of W . This yields the following estimator of our ATE bounds:[︃
ˆ︁ATE

c
,ˆ︁ATE

c
]︃
=

[︄
1

n

n∑︂
i=1

ˆ︂CATE
c
(Wi),

1

n

n∑︂
i=1

ˆ︂CATE
c

(Wi)

]︄
.

In appendix B, we show that these bounds approximately collapse to a standard regression

adjustment estimator of the ATE when c = 0. Next consider the estimation of the ATT

bounds. Let

ˆ︁Ec

0 =
1

n

n∑︂
i=1

∫︂ 1

0

ˆ︁Qc

Y0
(τ | Wi) dτ and ˆ︁Ec

0 =
1

n

n∑︂
i=1

∫︂ 1

0

ˆ︁Qc

Y0
(τ | Wi) dτ.

For x ∈ {0, 1} let ˆ︁E(Y | X = x) =
∑︁n

i=1 Yi1(Xi=x)∑︁n
i=1 1(Xi=x)

and ˆ︁px = 1
n

∑︁n
i=1 1(Xi = x). We can

then estimate the ATT bounds by replacing the population quantities in (3) with their

estimators that we just defined.

For c = 0, our estimated upper and lower bounds are equal and give point estimates

of the various parameters of interest. For c > 0, our bounds have positive width. To use

these bounds in a sensitivity analysis, we recommend producing the following plot: select

a grid {c1, . . . , cK} ⊆ [0, 1] of values for c. Compute our bound estimates on this grid and
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plot them against these values of c. Then compute and plot confidence bands for these

bound estimates against c as well; we describe how to compute these bands in section 5.

We illustrate all of these steps in our empirical analysis in section 6.

4 Asymptotic Theory

In this section we provide results on the consistency and limiting distributions of the

estimators we described in section 3. We leave a full discussion of the technical details and

assumptions to appendix D. In section 5 we show how to use these results to do inference

based on a non-standard bootstrap.

4.1 Convergence of the First Step Estimators

Our first step estimators are standard in the literature. Hence we only briefly review the

main assumptions and results for these estimators. Throughout this paper we assume that

we observe a random sample from the distribution of (Y,X,W ). We assume the propensity

score and quantile regression functions are correctly specified: i.e., p1|w = F (w′β0) and that

QY |X,W (τ | x,w) = q(x,w)′γ0(τ) for τ ∈ [ε, 1− ε]. We study the role of this assumption in

a simulation study in appendix H. Under assumptions stated in appendix D, both ˆ︁β and

ˆ︁γ(τ) converge in distribution at the
√
n-rate to a Gaussian distribution. Moreover, the

convergence of ˆ︁γ(τ) to γ0(τ) is uniform over τ ∈ [ε, 1− ε].

4.2 Convergence of the Second Step Estimators

Next we consider the limiting distribution of our various second step estimators.

The CATE Bounds

Let ˆ︁θ = (ˆ︁β, ˆ︁γ(·)) denote the first step estimators and let θ0 = (β0, γ0(·)). The CATE

bound estimators of equation (7) can be written as[︃
ˆ︂CATE

c
(w), ˆ︂CATE

c

(w)

]︃
≡
[︂
Γ2(1, w,

ˆ︁θ)− Γ2(0, w, ˆ︁θ), Γ2(1, w, ˆ︁θ)− Γ2(0, w,
ˆ︁θ)]︂
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for known mappings (Γ2,Γ2) defined in appendix D. Let the trimmed population CATE

bounds be given by their population counterpart

[︁
CATEc

ε(w),CATE
c

ε(w)
]︁
=
[︁
Γ2(1, w, θ0)− Γ2(0, w, θ0), Γ2(1, w, θ0)− Γ2(0, w, θ0)

]︁
.

The mappings (Γ2,Γ2) are generally not Hadamard differentiable in θ because they

depend on the minimum and maximum functions. Hence we cannot apply the functional

delta method to establish a Gaussian limiting distribution for these estimated bounds. They

are, however, Hadamard directionally differentiable (HDD); see definition 1 in appendix D.

It turns out that this weaker version of differentiability is sufficient to establish their (non-

Gaussian) limiting distribution.

As a technical assumption, we restrict the complexity of the space the quantile regression

coefficients γ0(·) lie in. Assumption 5 in appendix D imposes that γ0(·) lies in a Hölder

ball. We can then establish the limiting distribution of the CATE bound estimates.

Proposition 1 (CATE convergence). Fix w ∈ W , c ∈ [0, 1]. Suppose A1–A5 hold. Then

√
n

(︃
ˆ︂CATE

c

(w)− CATE
c

ε(w), ˆ︂CATE
c
(w)− CATEc

ε(w)

)︃
d−→ ZCATE(w),

where ZCATE(w) is a random vector in R2 whose distribution is characterized in the proof.

In the statement of this result we deferred the full characterization of ZCATE(w) to the

proof. To get a brief idea of what it looks like, however, consider the first component.

It is Z
(1)
CATE(w) = Γ

′
2,θ0

(1, w,Z1) − Γ′
2,θ0

(0, w,Z1) where Γ
′
2,θ0

(x,w,Z1) is the Hadamard

directional derivative of Γ2 evaluated at Z1, the limiting distribution of the first step esti-

mators. See page 35 of the appendix for the expression for Γ
′
2,θ0

. Likewise, Γ′
2,θ0

(x,w,Z1)

is the Hadamard directional derivative of Γ2 evaluated at Z1. Although Z1 is Gaussian,

the HDDs are continuous but generally nonlinear functionals. Hence the distribution of

ZCATE(w) is generally non-Gaussian. In section 5 we show how to use a non-standard boot-

strap to approximate its distribution. In special cases, the limiting distribution is Gaussian.

16



This can be the case for the ATE and ATT bound estimates as well. In appendix I we

provide sufficient conditions under which standard bootstrap inference is also valid.

The ATE Bounds

Next we derive the limiting distribution of our ATE bound estimators. Let Γ3(x, θ) =∫︁
W Γ2(x,w, θ) dFW (w) and Γ3(x, θ) =

∫︁
W Γ2(x,w, θ) dFW (w). Then

[ATEc
ε,ATE

c

ε] =
[︁
Γ3(1, θ0)− Γ3(0, θ0), Γ3(1, θ0)− Γ3(0, θ0)

]︁
are the trimmed population ATE bounds. We estimate them by

[︃
ˆ︁ATE

c
,ˆ︁ATE

c
]︃
. Adding a

regularity assumption on the propensity score F (w′β) (see assumption 6 in appendix D),

we can now establish the limiting distribution of the ATE bound estimates.

Theorem 1 (ATE convergence). Suppose A1–A6 hold. Then

√
n

(︃
ˆ︁ATE

c

− ATE
c

ε,ˆ︁ATE
c
− ATEc

ε

)︃
d−→ ZATE,

where ZATE is a random vector in R2 whose distribution is characterized in the proof.

Like the CATE bound estimators, the limiting distribution of the ATE bound estimators

is non-Gaussian.

The ATT Bounds

Finally we study the limiting properties of our ATT bound estimators. Our trimmed

population ATT bounds are estimated by

[ˆ︁ATT
c
, ˆ︁ATT

c

] =

[︄ˆ︁E(Y | X = 1)−
ˆ︁Ec

0 − ˆ︁p0ˆ︁E(Y | X = 0)ˆ︁p1 , ˆ︁E(Y | X = 1)−
ˆ︁Ec

0 − ˆ︁p0ˆ︁E(Y | X = 0)ˆ︁p1
]︄
.

Proposition 2 (ATT convergence). Suppose the assumptions of Theorem 1 hold. Suppose

further that var(Y 1(X = x)) < ∞ for each x ∈ {0, 1}. Then

√
n

(︃
ˆ︁ATT

c

− ATT
c

ε, ˆ︁ATT
c
− ATTc

ε

)︃
d−→ ZATT,

where ZATT is a random vector in R2 whose distribution is characterized in the proof.
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Similarly to ZCATE and ZATE, the asymptotic distribution of our ATT bound estimators

is a linear combination of Gaussian and non-Gaussian random variables.

5 Bootstrap Inference

We now show how to conduct inference on our bounds for CATE, ATE, and ATT.

Earlier we noted that these bounds are generally not ordinary Hadamard differentiable

mappings of the underlying parameters θ0. By Corollary 3.1 in Fang and Santos (2019),

this implies that standard bootstrap approaches cannot be used for these bounds. We

instead use the non-standard bootstrap approach developed by Fang and Santos (2019).

For brevity we focus on ATE and ATT in this section. We provide analogous results for

CQTE and CATE in lemmas S3 and S4 in appendix G. In appendix I we discuss one special

case where standard bootstrap inference is also valid. In this section we conduct inference

on the identified set, or bound functions, because sensitivity analyses ask how the identified

set changes as c changes, rather than focusing on a single identified set or parameter. For

inference on the parameter itself, our results will be valid but potentially conservative. For

any fixed c, our results in section 4 can likely be used to do more powerful inference on the

parameters themselves, although we do not develop this here.

5.1 Inference on Potential Outcome Means

The bounds for ATE and ATT can be written in terms of bounds on E(Yx). In this

section we describe how to do inference on bounds for these means. We then use these

results to do inference on our ATE bounds in the next subsection. Recall that our bounds

on E(Yx) can be written as a functional of θ. This functional is Hadamard directionally

differentiable in θ, but it is generally not ordinary Hadamard differentiable. Theorem 3.1 of

Fang and Santos (2019) shows how to do bootstrap inference by consistently estimating the

Hadamard directional derivative (HDD). This can be done by using analytical estimators or

by using a numerical derivative as described in Hong and Li (2018). Here we use analytical
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estimates of the HDD. This approach explicitly uses the functional form of the HDD to

estimate it. It allows us to avoid picking the numerical derivative step size, although other

tuning parameters are used to estimate the HDDs analytically.

Setup

We first define some general notation. Let Zi = (Yi, Xi,Wi) and Zn = {Z1, . . . , Zn}.

Let ϑ0 denote a parameter and let ˆ︁ϑ be an estimator of ϑ0 based on the data Zn. Let A∗
n

denote
√
n(ˆ︁ϑ∗− ˆ︁ϑ) where ˆ︁ϑ∗ is a draw from the nonparametric bootstrap distribution of ˆ︁ϑ.

Suppose A is the tight limiting process of
√
n(ˆ︁ϑ − ϑ0). Denote bootstrap consistency by

A∗
n

P
⇝ A where

P
⇝ denotes weak convergence in probability, conditional on the data Zn.

Weak convergence in probability conditional on Zn is defined as

sup
h∈BL1

|E[h(A∗
n) | Zn]− E[h(A)]| = op(1)

where BL1 denotes the set of Lipschitz functions into R with Lipschitz constant no greater

than 1. We leave the domain of these functions and its associated norm implicit.

We focus on the choices ϑ0 = θ0 and ˆ︁ϑ = ˆ︁θ. For these choices, let Z∗
n =

√
n(ˆ︁θ∗− ˆ︁θ). Let

Z1 denote the limiting distribution of
√
n(ˆ︁θ− θ0); see Lemma S1 in appendix D. Theorem

3.6.1 of van der Vaart and Wellner (1996) implies that Z∗
n

P
⇝ Z1. Our parameters of

interest are all functionals of θ0. In particular, in section 4 we showed that
√
n(Γ(ˆ︁θ) −

Γ(θ0))
d−→ Γ′

θ0
(Z1) for a variety of functionals Γ. To do inference on these functionals, we

therefore want to estimate the distribution of Γ′
θ0
(Z1). Fang and Santos (2019) show that

ˆ︁Γ′
θ0
(Z∗

n)
P
⇝ Γ′

θ0
(Z1), where ˆ︁Γ′

θ0
is an estimator of the Hadamard directional derivative Γ′

θ0

satisfying their regularity conditions. In this section we construct such estimators ˆ︁Γ′
θ0

and

show that they can be used in this bootstrap. We focus specific functionals, described

below, which represent upper and lower bound functions. For different indices j ≥ 1, we

gather these bounds into a vector Γj = (Γj,Γj).
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Main Result

Next, consider the asymptotic expansion in equation (S2) on page 11 of the appendix.

As we will show, the second term in this expansion can be approximated using standard

bootstrap approaches and replacing θ0 by ˆ︁θ. The first term requires estimating the HDDs

Γ
′
3,θ0

and Γ′
3,θ0

. The formulas for our estimators of these HDDs are long, and so we describe

them in appendix E. Denote these estimators by ˆ︁Γ′

3,θ0
and ˆ︁Γ′

3,θ0
. They require choosing

two scalar tuning parameters, κn and ηn. κn is a slackness parameter and ηn is a step

size parameter used to compute numerical derivatives of ˆ︁γ(·). Although not used in our

proof, the asymptotic independence of the two components implies that approximating

their respective marginal distributions is sufficient to obtain their joint distribution.

As we just mentioned, we will use the standard nonparametric bootstrap to approximate

the second term of equation (S2) in appendix D. To formalize this, let G∗
n denote the

nonparametric bootstrap empirical process:

G∗
n =

1√
n

n∑︂
i=1

(Mn,i − 1)δZi

where (Mn,1, . . . ,Mn,n) are multinomially distributed with parameters (1/n, . . . , 1/n) inde-

pendently of Zn, and where δZi
is a distribution which assigns probability one to the value

Zi ∈ R2+dW . Then for any function g,

G∗
ng(Z) =

√
n

(︄
1

n

n∑︂
i=1

g(Z∗
i )− g(Z)

)︄
where Z∗

i , i = 1, . . . , n are drawn independently with replacement from {Z1, . . . , Zn} and

g(Z) = 1
n

∑︁n
i=1 g(Zi). In particular, we will study the asymptotic distribution of

G∗
nΓ2(x,W, ˆ︁θ) = √

n

(︄
1

n

n∑︂
i=1

Γ2(x,W
∗
i ,
ˆ︁θ)− 1

n

n∑︂
i=1

Γ2(x,Wi, ˆ︁θ))︄ .

The following proposition is our main bootstrap consistency result.

Proposition 3 (Analytical Bootstrap for Means of Yx). Suppose the assumptions of The-
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orem 1 hold. Let κn → 0, nκ2
n → ∞, ηn → 0, and nη2n → ∞ as n → ∞. Then

ˆ︁Γ′
3,θ0

(x,
√
n(ˆ︁θ∗ − ˆ︁θ)) +G∗

nΓ2(x,W, ˆ︁θ) P
⇝ Z4(x),

where Z4(·) is the limiting process of the expression given in equation (S2) in appendix D,

as characterized in the proof.

This result shows how to use the bootstrap to approximate the joint limiting distribu-

tion of upper and lower bounds of E(Yx), x ∈ {0, 1}. As we show in section 5.2 below,

these approximations can be used to conduct pointwise or uniform-in-c inference on the

ATE bounds. As part of the proof, we show that ˆ︁Γ′
3,θ0

(x,
√
n(ˆ︁θ∗ − ˆ︁θ)) weakly converges

in probability conditional on the data to Γ′
3,θ0

(x,Z1), a non-Gaussian vector which reflects

the sample variation in the first step estimators. We also show weak convergence in prob-

ability conditional on the data of G∗
nΓ2(x,W, ˆ︁θ) to GΓ2(x,W, θ0) ∼ N (0, var(Γ2(x,W, θ0)),

a bivariate Gaussian vector which reflects the variation of the CATE bounds over W .

This variation can be approximated using the standard nonparametric bootstrap. Hence

the bounds’ limiting distribution is approximated by a combination of standard and non-

standard bootstraps. Note that the two bootstrap distributions can be computed from

a unique sequence of draws Z∗
i and so has the same computational burden as a single

bootstrap.

5.2 Inference on the ATE Bounds

Next we show how to use Proposition 3 to do inference on our ATE bounds, [ATEc
ε,ATE

c

ε].

In this section we consider inference pointwise in c. We construct confidence bands that

are uniform over c in appendix F.

An immediate corollary of Proposition 3 is

√
n

⎛⎜⎝ˆ︁ATE
c,∗

− ˆ︁ATE
c

ˆ︁ATE
c,∗

− ˆ︁ATE
c

⎞⎟⎠ (8)
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=

⎛⎜⎝
(︂ˆ︁Γ′

3,θ0
(1,

√
n(ˆ︁θ∗ − ˆ︁θ)) +G∗

nΓ2(1,W, ˆ︁θ))︂− (︂ˆ︁Γ′
3,θ0

(0,
√
n(ˆ︁θ∗ − ˆ︁θ)) +G∗

nΓ2(0,W, ˆ︁θ))︂(︂ˆ︁Γ′
3,θ0

(1,
√
n(ˆ︁θ∗ − ˆ︁θ)) +G∗

nΓ2(1,W, ˆ︁θ))︂− (︂ˆ︁Γ′

3,θ0
(0,

√
n(ˆ︁θ∗ − ˆ︁θ)) +G∗

nΓ2(0,W, ˆ︁θ))︂
⎞⎟⎠

P
⇝ ZATE.

Thus we can also use this specific bootstrap to approximate the asymptotic distribution of

our ATE bounds estimators. Given this result, we can construct a 100(1−α)% confidence

set for the ATE identified set under c-dependence as follows. Let

CIcATE(1− α) =

[︄
ˆ︁ATE

c
−
ˆ︁dα√
n
, ˆ︁ATE

c

+
ˆ︁dα√
n

]︄

where ˆ︁dα = inf

{︃
z ∈ R : P

(︃
√
n(ˆ︁ATE

c,∗
− ˆ︁ATE

c
) ≤ −z,

√
n(ˆ︁ATE

c,∗
− ˆ︁ATE

c

) ≥ z | Zn

)︃
≥ 1− α

}︃
.

Here we consider a symmetric interval for simplicity, but our results can also be used to

construct asymmetric intervals. The probability in the expression for ˆ︁dα can be approxi-

mated by taking a large number of bootstrap draws according to equation (8). Proposition

3 then implies that

lim inf
n→∞

P
(︂
CIcATE(1− α) ⊇ [ATEc

ε,ATE
c

ε]
)︂
≥ 1− α.

Let dα = inf
{︂
z ∈ R : P

(︂
Z

(2)
ATE ≤ −z,Z

(1)
ATE ≥ z

)︂
≥ 1− α

}︂
. If P(Z(2)

ATE ≤ −z,Z
(1)
ATE ≥ z)

is continuous and strictly increasing in a neighborhood of dα, Corollary 3.2 in Fang and

Santos (2015) yields ˆ︁dα = dα + op(1) and hence

lim
n→∞

P
(︂
CIcATE(1− α) ⊇ [ATEc

ε,ATE
c

ε]
)︂
= 1− α.

We show the analogous result for the CQTE, CATE, and ATT bounds in appendix G.

6 Illustration: Costs and Benefits of Supported Work

In this section we illustrate our methods using data on the National Supported Work

(NSW) demonstration project (MDRC 1980) studied by LaLonde (1986). Since this is

a highly studied and well-known program, we only briefly summarize it here. See, for
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example, Heckman, LaLonde, and Smith (1999) for further details. We use LaLonde’s data

as reconstructed by Dehejia and Wahba (1999).

The NSW demonstration project randomly assigned participants to either receive a

guaranteed job for 9 to 18 months along with frequent counselor meetings (treatment group)

or to be left in the labor market by themselves (control group). We use the Dehejia and

Wahba (1999) sample, which are all males in LaLonde’s NSW dataset and where earnings

are observed in 1974, 1975, and 1978. This dataset has 445 people: 185 in the treatment

group and 260 in the control group. Like Imbens (2003), we use this experimental sample

primarily as an illustration; in experiments where treatment was truly randomized it is not

necessary to assess sensitivity to unconfoundedness. Our results may be useful for assessing

the impact of randomization failure in experiments, but that is not our focus here.

In addition to this experimental sample, we construct a sample using observational

data. This sample combines the 185 people in the NSW treatment group with 2490 people

in a control group constructed from the Panel Study of Income Dynamics (PSID). This

control group, called PSID-1 by LaLonde, consists of all male household heads observed in

all years between 1975 and 1978 who were less than 55 years old and who did not classify

themselves as retired. We further drop observations with earnings above $5,000 in 1974,

1975, or both. This leaves 148 treated units (out of 185) and 242 untreated units (out of

2490). This observational sample was also considered by Imbens (2003).

The outcome of interest is earnings in 1978. There are also nine covariates: Earnings in

1974, earnings in 1975, years of education, age, indicators for race (Black, Hispanic, other),

an indicator for marriage, an indicator for having a high school degree, and an indicator

for treatment. All earnings variables are measured in 1982 dollars. Table S2 in appendix

J, which closely follows table 1 of Imbens (2003), provides summary statistics.
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Table 1: Baseline treatment effect estimates (in 1982 dollars).

ATE ATT Sample size
Experimental dataset 1633 1738 445

(650) (689)

Observational dataset 3337 4001 390
(769) (762)

Standard errors in parentheses.

Baseline Estimates

Table 1 shows the baseline point estimates of both ATE and ATT under the uncon-

foundedness assumption in the two samples we consider. These estimates are all computed

by inverse probability weighting (IPW) using a parametric logit propensity score estimator.

We do not consider other estimators, since our goal is to illustrate sensitivity to identifying

assumptions, rather than finite sample sensitivity to the choice of estimator.

Assessing unconfoundedness

Is unconfoundedness reasonable in this setting? There are at least three reasons to

question it. First, as discussed in section 6 of Heckman et al. (1999), in observational data

economic theory typically suggests that prospective job training participants will select into

training based on some objective function that is related to their potential outcomes. This

behavior creates a classic selection bias problem that would violate unconfoundedness.

Second, we can examine balance in the observed covariates. From table S2 we see that

almost all of the observed covariates are highly unbalanced across the observational control

group and the treatment group. For example, the treated units are much less likely to

be married (19% vs 78%), are 13 years younger on average, have one year less education

on average, are much more likely to be Black (84% vs 27%), and had more than twice

as much earnings in 1974 and 1975. These findings do not violate unconfoundedness, as

it is designed to allow for imbalances in the observed covariates. However, it is perhaps
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implausible to think that the unobserved potential outcomes are perfectly balanced across

the two groups, even after adjusting for covariates, when we see such extreme imbalances

in the observed covariates.

Third, in this dataset, we can directly check unconfoundedness because we also have

experimental data. Indeed, this was part of the original motivation for LaLonde’s (1986)

study. From table 1 we see that the baseline point estimates are substantially different,

suggesting that unconfoundedness does not hold. One caveat to this interpretation, which

has been studied extensively in the literature following LaLonde (1986) (e.g., Dehejia and

Wahba 1999), is that this comparison conflates nonparametric unconfoundedness with the

parametric functional forms used in estimation. Regardless, in most observational studies

we do not have experimental data. Instead, the evidence we have presented here that

unconfoundedness is unlikely to hold exactly motivates the importance of formal sensitivity

analyses. We perform that analysis next.

Relaxing Unconfoundedness

Figure 1 shows our main sensitivity analysis results. These are estimated treatment

effect bounds under c-dependence, along with corresponding pointwise confidence bands,

as described in sections 2–5. The left plot shows bounds on ATE while the right plot shows

bounds on ATT. The solid lines are bounds for the observational dataset while the dashed

lines are bounds for the experimental dataset. The light dotted lines are confidence bands

for the observational dataset while the light dashed-dotted lines are confidence bands for the

experimental dataset. These bands are constructed to have nominal 95% coverage probabil-

ity pointwise in c based on our non-standard bootstrap results in section 5. For the tuning

parameters we use ε = 0.05, and the rule of thumb choice ηn = κn = min{0.05n−1/3, 0.05}

that we discuss in appendix H. For each dataset, the point estimates took 16 seconds

to compute while the confidence bands took 1.5 hours to compute using 12 cores with
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Figure 1: Sensitivity of ATE (left) and ATT (right) estimates to relaxations of the selection
on observables assumption. The solid lines are bounds computed using the observational
dataset while the dashed lines are bounds computed using the experimental dataset. The
light dotted lines are confidence bands for the observational dataset while the light dashed-
dotted lines are confidence bands for the experimental dataset.

B = 1000 bootstrap draws.

For both datasets, at c = 0 the bounds collapse to the baseline point estimate. When

c > 0, we allow for some selection on unobservables. Comparing the shape of the bounds for

both datasets we see that the experimental data are substantially more robust to relaxations

from the baseline assumptions than the observational data. Specifically, for most values

of c the bounds for the experimental data are substantially tighter than the bounds for

the observational data. Even the no assumptions bounds (c = 1) are tighter for the

experimental data than for the observational data.

A second way to measure robustness uses breakdown points. Masten and Poirier (2020)

discuss these in detail and give additional references. In the current context, the breakdown

point is simply the largest value of c such that we can no longer draw a specific conclusion

about some parameter. Specifically, in the next two subsections we consider two conclu-

sions: The conclusion that ATE is nonnegative, and the conclusion that ATT is less than

the per participant program cost.
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Sign Change Breakdown Points for ATE

The baseline ATE estimate is positive. If unconfoundedness fails, however, it could be

that the true ATE is negative. So in this section we ask: How much do we need to relax

unconfoundedness before the data and assumptions are consistent with a negative ATE?

If this breakdown point is large, meaning that we need a strong amount of unobserved

selection to flip the sign of ATE, then researchers can be more confident in their conclusion

that the true ATE is positive. In the experimental dataset, the estimated breakdown point

is 0.082. This is the value of c such that the lower bound function in figure 1 intersects

the horizontal axis. For all c ≤ 0.082, the estimated identified sets for ATE only contain

nonnegative values. For c > 0.082, the estimated identified sets contain both positive and

negative values. Hence, for such relaxations of unconfoundedness, we cannot be sure that

the average treatment effect is positive.

For the observational dataset, the estimated breakdown point for the conclusion that

ATE is nonnegative is 0.037. This is less than half the breakdown point for the experi-

mental dataset. Hence again we see that conclusions about ATE from the experimental

dataset are substantially more robust than the observational dataset. The same conclusion

holds for ATT: The point estimates in both datasets suggest that it is positive. But how

robust is that conclusion? The estimated breakdown point for the conclusion that ATT is

nonnegative in the experimental data is 0.123 while it is 0.049 for the observational dataset.

By this measure, the conclusion that ATT is positive is more than twice as robust using

the experimental data compared to the observational data.

Thus far we have compared the robustness of results obtained from the experimental

data with results obtained from the observational data. Next we discuss whether either

of these results is robust in an absolute sense. To do this, we use the leave-out-variable k

propensity score analysis discussed in section 2.
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Table 2: Variation in leave-out-variable-k propensity scores, experimental data.

p50 p75 p90 c̄k
Earnings in 1975 0.001 0.004 0.008 0.053

Black 0.007 0.009 0.014 0.082

Positive earnings in 1974 0.002 0.010 0.018 0.034

Education 0.012 0.022 0.031 0.087

Married 0.006 0.012 0.032 0.042

Age 0.015 0.024 0.034 0.099

Earnings in 1974 0.002 0.011 0.035 0.209

Positive earnings in 1975 0.013 0.017 0.062 0.082

Hispanic 0.007 0.017 0.099 0.124

First consider table 2, which uses data from the experimental sample. For each variable

k, listed in the rows of this table, we compute four summary statistics from the estimated

distribution of ∆k = |p1|W (W−k,Wk) − p1|W−k
(W−k)|. Specifically, we estimate the 50th,

75th, and 90th percentiles of ∆k, along with the maximum observed value, denoted c̄k.

As discussed in section 2, these quantities tell us about the marginal impact of covariate

k on treatment assignment. c-dependence constrains the maximum value of the marginal

impact of the unobserved potential outcome on treatment assignment, above and beyond

the observed covariates. Thus the values in table 2 can help us calibrate c. Specifically,

we will compare the breakdown point to the values in this table. These values could be

interpreted as upper bounds on the magnitude of selection on unobservables that we might

think is present. Thus, for a given reference value from this table, if the breakdown point

is larger than the reference value, we could consider the conclusion of interest to be robust

to failure of unconfoundedness. In contrast, if the breakdown point is smaller than the

reference value, we could consider the conclusion of interest to be sensitive to failure of

unconfoundedness.

Recall that the estimated breakdown point for the conclusion that ATE is nonnegative

is 0.082. This is larger than three of the c̄k values and on the same order of magnitude as

four more. If we look at a less stringent comparison, the 90th percentile, we see that the
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Figure 2: Kernel density estimate of ∆k, the absolute difference between propensity score
and leave-out-variable k propensity score, for k = Hispanic indicator, in the experimental
dataset.

estimated breakdown point is now larger than all but one of the rows, corresponding to

the indicator for Hispanic. We now examine this variable more closely. Figure 2 plots the

density ∆k for k = Hispanic indicator. Here we see that there is a small proportion of mass

who have values larger than 0.082, but most people have values well below the breakdown

point. Next suppose we weaken the criterion even more by considering the 75th percentile

column in table 2. The breakdown point is larger than all values in this column.

The leave-out-variable k propensity score analysis focuses on the relationship between

observed covariates and treatment assignment. It does not use data on outcomes. A less

conservative analysis is to only worry about covariates k which have large values in table

2 and which also affect our outcomes in some way. Specifically, we next consider leave-

out-variable k IPW estimates of ATE under the baseline unconfoundedness assumption.

Table 3 shows the effect of leaving out a single variable on the ATE point estimates for

both datasets. Continue to consider just the experimental dataset. Here we first see that

omitting any covariate at most changes the point estimate by 5.4%. Moreover, recall the

main variable we were concerned about before: the indicator for Hispanic. Omitting this

variable only changes the ATE point estimate by 1.5%. Therefore, following the discussion

on page 11, it may be reasonable to omit this variable when using the values in table 2

29



Table 3: Magnitude of the effect of omitting a single variable on ATE point estimates (as
a percentage of the baseline estimate).

Experimental dataset Observational dataset
Earnings in 1975 0.07 0.02

Married 0.21 14.27

Positive earnings in 1974 1.35 10.20

Hispanic 1.51 1.01

Black 2.91 14.11

Positive earnings in 1975 3.32 0.64

Age 3.36 6.49

Earnings in 1974 3.90 0.34

Education 5.39 1.84

to calibrate the magnitude of the breakdown point. Using this less conservative definition

of robustness, the estimated breakdown point is now larger than all of the remaining 90th

percentiles in table 2, suggesting that the conclusion is robust.

Overall, the leave-out-variable k analysis suggests that, on an absolute scale, the con-

clusion that ATE is nonnegative using the experimental data is quite robust. A similar

analysis applies to conclusions about ATT.

Next consider the observational data. Table 4 shows the leave-out-variable k propensity

score analysis. Recall that the estimated breakdown point for the conclusion that ATE is

nonnegative in the observational dataset is 0.037. By any of these measures the conclusion

that ATE is nonnegative is not robust. Suppose we only consider variables which also

substantially change the point estimates, as shown in table 3. Even then we still find

that the results are sensitive. For example, the indicator for Black changes the ATE point

estimate by 14% and also has substantial marginal impact on the propensity score, with

its 50th percentile in table 4 about 1.5 times as large as the estimated ATE breakdown

point. Thus, using these as absolute measures of robustness, we find that the conclusion

that ATE is positive using the observational data is not robust.

In contrast, Imbens (2003) found that the same observational dataset yields relatively
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Table 4: Variation in leave-out-variable-k propensity scores, observational data.

p50 p75 p90 c̄k
Earnings in 1974 0.000 0.001 0.009 0.065

Hispanic 0.003 0.011 0.024 0.214

Education 0.006 0.017 0.042 0.127

Earnings in 1975 0.002 0.010 0.057 0.276

Positive earnings in 1975 0.007 0.019 0.076 0.295

Positive earnings in 1974 0.012 0.028 0.099 0.423

Married 0.028 0.079 0.172 0.314

Age 0.035 0.093 0.205 0.508

Black 0.053 0.143 0.266 0.477

robust results. Imbens’ analysis relied importantly on fully parametric assumptions about

the joint distribution of the observables and unobservables. In particular, he assumed

outcomes were normally distributed, that treatment effects are homogeneous, and that any

selection on unobservables arises due to an omitted binary variable. Our identification

analysis does not require any of these assumptions. As discussed in section 3, we do

impose some parametric assumptions to simplify estimation, but even these assumptions

are substantially weaker than those used by Imbens. Since we are making weaker auxiliary

assumptions, it is not surprising that our analysis shows the findings to be more sensitive

than the analysis in Imbens (2003). However, even with these weaker assumptions, our

analysis shows that the experimental dataset results are robust. So for that dataset our

conclusion matches Imbens’ who also found that the experimental dataset results are robust.

Can Selection Help the Program Pass a Cost-Benefit Analysis?

In the previous subsection we studied the sensitivity of the conclusion that the ATE is

nonnegative. In practice, however, this is not necessarily the most policy relevant conclu-

sion. For example, Heckman and Smith (1998, section 3) give a model where the socially

optimal decision whether to continue a small scale program or to shut it down can be com-

puted by comparing the ATT with the program’s per participant cost. In this subsection
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we show how our sensitivity analysis can be used in these kinds of cost-benefit analyses.

Specifically, we consider the conclusion that the ATT is less than the per participant pro-

gram cost. Under the model in Heckman and Smith (1998), the program should be shut

down when this conclusion holds.

Chapter 8 of MDRC (1980) reports NSW per participant program costs. For males,

total costs ranges between $4,637 and $5,218 (tables 8-2, 8-3, and 8-4) in 1976 dollars.

Our treatment effect estimates are in 1982 dollars. Adjusting these reported costs to 1982

dollars (CPI-U series) gives a range of $7,865 to $8,850.

First consider the experimental dataset. The conclusion of interest holds for the baseline

estimate: The ATT of $1,738 is far less than the per participant cost. Suppose, however,

that a supporter of the program claims that this baseline estimate is implausible due to

selection on unobservables. How strong does selection on unobservables need to be to allow

for the possibility that the program is cost effective? Formally, what is the smallest c such

that the identified set for ATT includes values that are larger than the per participant cost?

If we look at the bounds’ point estimates, there are no values of c under which the program

is cost effective. Accounting for sampling uncertainty by examining the confidence bands,

we need c to be at least about 0.5 before it is possible that the program is cost effective. As

we argued earlier, these are very large values, so it is unlikely that selection on unobservables

is this strong.

Next consider the observational dataset. Here again the conclusion of interest holds for

the baseline estimate: The ATT of $4,001 is smaller than the per participant cost. Next

consider the breakdown point for this conclusion. Since the bounds for the observational

dataset are larger than those for the experimental dataset, we need less selection on un-

observables to allow for possibly large values of the ATT. Despite this, there are still no

values of c under which the program is cost effective, based on the bounds’ point estimates.

This is largely because the uncertainty due to the impact of selection on unobservables
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is asymmetric in this example: The lower bound varies much faster in c than the upper

bound does. Hence conclusions about the largest possible value of the ATT are more robust

to relaxations of unconfoundedness than conclusions about the smallest possible value of

the ATT. If we account for sampling uncertainty by examining the confidence bands, then

we need c to be at least about 0.08 before the confidence intervals contain ATT values

larger than the per participant costs. This is a relatively large value, although it is smaller

than a decent number of the leave-out-variable k propensity score values in table 4. That,

however, likely just reflects the large amount of sampling uncertainty in this data.

Overall, our findings suggest that the program does not pass a cost-benefit analysis,

even if we allow for a large amount of selection on unobservables. Hence the conclusion

that the ATT is less than the per participant cost—and so the program should be shut

down—is quite robust to failures of unconfoundedness.

Finally, note that our analysis here is primarily illustrative. A more comprehensive

cost-benefit analysis would require examining many other program outcomes besides just

short run post-program earnings. For example, see the analysis in chapter 8 of MDRC

(1980) and section 10 of Heckman et al. (1999). Note, however, that given data on these

additional outcomes, our methods could then be used to analyze the sensitivity of total

program impacts to failures of unconfoundedness.

7 Conclusion

Identification, estimation, and inference on treatment effects under unconfoundedness

has been widely studied and applied. This approach uses two assumptions: unconfounded-

ness and overlap. The overlap assumption is refutable, and many tools have been developed

for checking this assumption in practice. In this paper, we provide a suite of tools for as-

sessing the unconfoundedness assumption. There are two key distinctions between our

results and the previous literature. First, we begin from fully nonparametric bounds. In

33



contrast, most of the previous literature that takes a super-population perspective relies

on parametric assumptions for their identification analysis. Second, we provide tools for

inference. This is important because, just like baseline estimators, sensitivity analyses are

also subject to sampling uncertainty.
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