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Summary There are many kinds of exogeneity assumptions. How should researchers
choose among them? When exogeneity is imposed on an unobservable like a potential
outcome, we argue that the form of exogeneity should be chosen based on the kind of
selection on unobservables it allows. Consequently, researchers can assess the plausi-
bility of any exogeneity assumption by studying the distributions of treatment given
the unobservables that are consistent with that assumption. We use this approach to
study two common exogeneity assumptions: quantile and mean independence. We show
that both assumptions require a kind of non-monotonic relationship between treatment
and the potential outcomes. We discuss how to assess the plausibility of this kind of
treatment selection. We also show how to define a new and weaker version of quantile
independence that allows for monotonic selection on unobservables. We then show the
implications of the choice of exogeneity assumption for identification. We apply these
results in an empirical illustration of the effect of child soldiering on wages.

Keywords: Selection on Unobservables, Nonparametric Identification, Treatment Ef-
fects, Partial Identification, Sensitivity Analysis

1. INTRODUCTION

Exogeneity is a critical assumption in much structural or causal empirical work. In gen-
eral, exogeneity refers to assumptions on the statistical dependence between an observable
term and an unobservable term.1 There are many such assumptions, however, including
zero correlation, median independence, and full statistical independence. The choice of a
formal definition of exogeneity is not innocuous. Different definitions have different sub-
stantive interpretations and different implications for identification, rates of convergence,
asymptotic distributions, efficiency bounds, and overidentification.
In the context of potential outcome models, there has been debate over the appro-

priate choice of exogeneity assumption. Heckman, Ichimura, and Todd (1998) assume
potential outcomes are mean independent of treatment, conditional on covariates. They
justify this focus on mean independence by arguing that “conditional independence as-
sumptions...are far stronger than the mean-independence conditions typically invoked
by economists” (page 262). Imbens (2004, page 8) agrees that “this [mean indepen-
dence] assumption is unquestionably weaker [than full independence]”, but argues that
“in practice it is rare that a convincing case is made for the weaker [mean independence]

1Throughout this paper we use ‘exogeneity’ in the same sense as the treatment effects literature; for
example, see Imbens (2004). This is related to but distinct from the Cowles Commission definition of an
exogenous variable as a variable that is determined outside of the model under consideration. See the
discussion in Hendry and Morgan (1995, pages 74–75), Imbens (1997, page 93), and Heckman (2000,
footnote 11).
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assumption 2.3 without the case being equally strong for the stronger [full independence
assumption].” The justification he provides is that “the weaker assumption is intrinsically
tied to functional-form assumptions, and as a result one cannot identify average effects
on transformations of the original outcome (such as logarithms) without the stronger
assumption.”

In this paper, we contribute to this debate as follows: We recommend that researchers
focus directly on the substantive economic interpretation of the assumption, and the
plausibility of its restrictions, rather than assess assumptions based on what they can be
used to identify (as in the functional form dependency critique of mean independence)
or on mathematical orderings of what implies what (as in the observation that statisti-
cal independence implies mean independence, but not vice versa). Specifically, we focus
on two of the most common forms of exogeneity assumptions used, quantile indepen-
dence and mean independence. We provide several results to help researchers assess the
economic plausibility of these exogeneity assumptions. First, in section 2, we provide a
brief informal discussion of the motivations for making exogeneity assumptions. There
we note that exogeneity assumptions are typically made on structural unobservables,
variables that satisfy some kind of policy or treatment invariance property, like potential
outcomes or unobserved ability. In this case, the form of exogeneity depends on the form
of treatment selection. Consequently, the plausibility of any exogeneity assumption can
be assessed by examining the distributions of treatment given the unobservables that are
consistent with that assumption.

Next, in section 3, we characterize these distributions of treatment given the unobserv-
ables that are consistent with either quantile independence or mean independence. This
characterization shows that both quantile independence and mean independence require
specific kinds of non-monotonic treatment selection. Specifically, we define the latent
propensity score as the probability of treatment conditional on a potential outcome. We
say there is monotonic selection on unobservables if this function is monotonic. This hap-
pens when, for example, units with larger values of potential outcomes are more likely
to get treated. Our characterization result shows that this kind of treatment selection is
incompatible with quantile and mean independence.

In section 4.1 we show how to modify the quantile independence assumption to create
a new, weaker exogeneity assumption which allows for more plausible forms of treatment
selection, including monotonic selection on unobservables. We call this assumption U-
independence. In section 4.2 we derive identified sets for the average effect of treatment
for the treated (ATT) and the quantile treatment effect for the treated (QTT) param-
eters under both quantile independence and U-independence. These identified sets have
a simple, closed form characterization, which makes them easy to use in practice. By
comparing these identified sets we show that the identifying power of quantile indepen-
dence comes from the fact that it only allows for a restrictive kind of non-monotonic
selection on unobservables. In section 5 we examine these differences in an empirical
illustration of the effects of child soldiering on wages based on unconfoundedness. We
show that the baseline results are generally robust under quantile independence relax-
ations of unconfoundedness, but not under U-independence relaxations. This difference
highlights both the practical importance of choosing exogeneity assumptions and how
our approach can help researchers make this choice. Finally, in section 6 we use a Roy
model to further illustrate how researchers can assess the plausibility of non-monotonic
selection on unobservables.
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2. CHOOSING EXOGENEITY ASSUMPTIONS

There are many different kinds of exogeneity assumptions available to researchers. Manski
(1988) and Powell (1994) catalog some of the most common forms, including zero cor-
relation, mean independence, quantile independence, conditional symmetry, statistical
independence, and a variety of index conditions. Other kinds of exogeneity assumptions
have since been defined, including mean monotonicity (e.g., Manski and Pepper 2000,
2009, chapter 2 of Manski 2003), approximate mean independence (Manski 2003, section
9.4), stochastic dominance assumptions (e.g., Blundell, Gosling, Ichimura, and Meghir
2007), quantile uncorrelation (Komarova, Severini, and Tamer 2012), and partial statis-
tical independence (e.g., Rosenbaum and Rubin 1983, Rosenbaum 1995, 2002, Imbens
2003, Masten and Poirier 2018), among many others. How should researchers choose
among these many options? In this section we discuss one approach to answering this
question.
The answer depends on whether the exogeneity assumption is made on a structural un-

observable or a reduced form unobservable. This distinction goes back to the earliest work
on simultaneous equation models in econometrics (see Hausman 1983 for a survey) but
has been used in recent work as well (e.g. Blundell and Matzkin 2014). Structural unob-
servables are variables that satisfy some kind of policy or treatment invariance property,
like potential outcomes, unobserved ability, or preferences. Reduced form unobservables
are functions of the structural unobservables, and possibly other variables in the model,
like realized treatment. Since quantile independence is often imposed on the relationship
between treatment variables and structural unobservables, we focus on that case. We
briefly discuss exogeneity assumptions for reduced form unobservables in appendix A,
along with some additional background and examples.
LetX denote the observed, realized treatment, and let Yx be a potential outcome where

x is a logically possible value of treatment. Since, by definition, potential outcomes have
a meaning and interpretation that does not depend on the realized treatment X, any
stochastic dependence between them must reflect some form of treatment selection on
Yx. That is, it must reflect some form of selection on unobservables, which is described
by the distribution of X | Yx. Many exogeneity assumptions, such as quantile indepen-
dence and mean independence, are defined as constraints on the distribution of Yx | X.
Consequently, to assess the plausibility of these assumptions, we recommend examining
the set of distributions of X | Yx that are consistent with the given constraint on the
distribution of Yx | X. This allows researchers to use the large literature on treatment
selection to assess the plausibility of various exogeneity assumptions (see Heckman and
Vytlacil 2007a,b and Abbring and Heckman 2007 for a comprehensive survey). Note that
this discussion and recommendation extend to more general structural or causal models
where one is considering exogeneity assumptions between a structural unobservable U
and an observed variable X; U = Yx is the specific case we focus on here.

Descriptive Analysis and Causal Models Before proceeding, it is important to empha-
size the scope of the process we just described: We are interested in assumptions about
the dependence structure between observable and unobservable variables in causal mod-
els. This does not include research whose end goal is a description of the joint distribution
of observed random variables, and which does not aim to make causal statements. Such
descriptive research studies the relationship between observed variables. For example,
suppose Y is an observed outcome and X is an observed covariate. We might define E
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to be the residual from a linear projection of Y onto (1, X). We can then ask about the
statistical relationship between E and X: It satisfies zero correlation by construction, but
not necessarily other restrictions like mean independence or statistical independence. In
this case, however, the joint distribution of (E,X) is always point identified. Hence, at the
population level, the precise relationship between these variables is always known. Conse-
quently, there is no need to make or choose assumptions about the stochastic relationship
between E and X. In contrast, in causal models, exogeneity assumptions typically have
substantial identifying power for causal effects or structural parameters.

3. CHARACTERIZING EXOGENEITY ASSUMPTIONS

In this section, we present our main characterization results. We provide results for two
of the most common exogeneity assumptions: quantile independence and mean indepen-
dence. We focus on binary treatments throughout the paper; we generalize our results to
multi-valued discrete and continuous treatments in appendix S1. All of our results also
hold if one conditions on an additional vector of observed covariates, as is typically the
case in empirical applications, but we omit these for simplicity.

3.1. The Potential Outcomes Model

Let X ∈ {0, 1} be a binary treatment variable. Let (Y1, Y0) denote unobserved potential
outcomes. We observe the scalar outcome variable

Y = XY1 + (1−X)Y0. (3.1)

Let px = P(X = x) for x ∈ {0, 1}. We impose the following assumption on the joint
distribution of (Y1, Y0, X).

Assumption 3.1. For each x, x′ ∈ {0, 1}:

1 Yx | X = x′ has a strictly increasing and continuous distribution function on its
support, supp(Yx | X = x′).

2 supp(Yx | X = x′) = supp(Yx) = [y
x
, yx] where −∞ ≤ y

x
< yx ≤ ∞.

3 px > 0.

Via assumption 3.1.1, we restrict attention to continuously distributed potential out-
comes. Assumption 3.1.2 states that the unconditional and conditional supports of Yx

are equal, and are a possibly infinite closed interval. We maintain assumption 3.1.2 for
simplicity, but it can be relaxed using similar derivations as in Masten and Poirier (2016).
Assumption 3.1.3 is an overlap assumption.
In potential outcome models, statistical independence between potential outcomes and

treatment is sometimes assumed:

Yx ⊥⊥X. (3.2)

This assumption, equivalent to random assignment of treatment, can be made for x = 0,
x = 1, or both. When this assumption is made conditional on covariates, it is often
called unconfoundedness. As discussed in section 2, however, there are many other kinds
of exogeneity assumptions available in the literature, which are all weaker than full sta-
tistical independence. The purpose of this paper is to help researchers choose between
these different kinds of exogeneity assumptions. To that end, in the next two subsections
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we provide characterization results that can help researchers assess the plausibility of
these exogeneity assumptions. We then study the identifying power of these different
assumptions in section 4.

3.2. A Class of Quantile Independence Assumptions

Quantile independence of the potential outcome Yx from X at quantile τ holds if

QYx|X(τ | 0) = QYx|X(τ | 1). (3.3)

This assumption is often imposed at a single quantile. For example, imposing (3.3) at
τ = 0.5 yields median independence. If this holds for all τ ∈ (0, 1), then Yx and X are sta-
tistically independent. Therefore quantile independence is a relaxation of independence.
It is often more natural to work with cdfs, an inverse of the quantile function.2 Say Yx

is τ -cdf independent of X if

FYx|X(τ | 0) = FYx|X(τ | 1). (3.4)

Note that Yx is quantile independent of X at quantile τ if and only if Yx is QYx(τ)-cdf
independent of X for continuously distributed Yx. This motivates the following defini-
tion.3

Definition 3.1. Let T be a subset of R. Say Yx is T -independent of X if the cdf inde-
pendence condition (3.4) holds for all τ ∈ T .

With binary treatments, the dependence structure between X and the potential out-
come Yx is fully characterized by the function

p(yx) = P(X = 1 | Yx = yx),

which we call the latent propensity score. Full statistical independence of Yx and X, or
T -independence with T = [y

x
, yx], is equivalent to this latent propensity score being

constant:

p(yx) = P(X = 1)

for almost all yx ∈ supp(Yx). Analogously, T -independence for T ⊊ [y
x
, yx] is weaker than

full independence, and thus partially restricts the shape of p(yx). The following theorem
characterizes the set of latent propensity scores consistent with T -independence.

Theorem 3.1. (Average value characterization) Suppose assumption 3.1.1 holds.
Then Yx is T -independent of X if and only if

E
(︁
p(Yx) | Yx ∈ (t1, t2)

)︁
= P(X = 1) (3.5)

for all t1, t2 ∈ T ∪ {y
x
, yx} with t1 < t2.

The proof, along with all others, is in appendix S3. Theorem 3.1 says that T -independence

2For example, see assumption QI on page 731 of Manski (1988) or equation (1.7) on page 2452 of
Powell (1994). Definitions using cdfs and those using quantiles directly (e.g., via equation (3.3)) are often
equivalent. Throughout this paper we use “quantile independence” to mean the cdf-based definition, as
is common in the literature.
3See Belloni et al. (2017) and Zhu et al. (2018) for similar generalizations of quantile independence.
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Figure 1. Various latent propensity scores consistent with T = {0.5}-independence, when
P(X = 1) = 0.5.

holds if and only if for every interval with endpoints in T ∪ {y
x
, yx} the average latent

propensity score over Yx ∈ (t1, t2) equals the overall average of the latent propensity score,
which is P(X = 1). Also note that E(p(Yx) | Yx ∈ (t1, t2)) = P(X = 1 | Yx ∈ (t1, t2)).
To illustrate theorem 3.1, suppose T = {0.5} and P(X = 1) = 0.5. Further suppose that

Yx is uniformly distributed on [0, 1] to simplify the figures. Here we have a single nontrivial
cdf independence condition: median independence. Figure 1 plots three different latent
propensity scores which are consistent with T -independence under this choice of T ; that
is, which are consistent with median independence. This figure illustrates several features
of such latent propensity scores: The value of p(yx) may vary over the entire range [0, 1]. p
does not need to be symmetric about yx = 0.5, nor does it need to be continuous. It does
need to satisfy equation (3.5) over the intervals (t1, t2) = (0, 0.5) and (t1, t2) = (0.5, 1).
Finally, as suggested by the pictures, p must actually be nonmonotonic; we show this in
corollary 3.1 next.

Corollary 3.1. Suppose assumption 3.1.1 holds. Suppose the latent propensity score p
is weakly monotonic and not constant on (y

x
, yx). Then, for all τ ∈ (y

x
, yx), Yx is not

τ -cdf independent of X.

Corollary 3.1 shows that any quantile independence assumption rules out all types
of monotonic selection on unobservables, except for the trivially monotonic constant
p(yx) = P(X = 1) implied by full statistical independence.
Next we show that imposing multiple quantile independence conditions imposes further

non-monotonicity. Say that a function f changes direction at least K times if there exists
a partition of its domain into K intervals such that f is not monotonic on each interval.

Corollary 3.2. Suppose assumption 3.1.1 holds. Suppose Yx is T -independent of X.
Suppose there exists a version of p without removable discontinuities. Partition (y

x
, yx)

by the sets Y1 = (t0, t1), Yk = [tk−1, tk) for k = 2, . . . ,K with t0 = y
x
, tK = yx, and

such that for each k there is a τk ∈ T ∩ Yk. Suppose p is not constant over each set Yk,
k = 1, . . . ,K. Then p changes direction at least K times.

This result says that such latent propensity scores must oscillate up and down at least
K times (we assume p does not have removable discontinuities to rule out trivial direction
changes). For example, as in figure 1, suppose we continue to have P(X = 1) = 0.5
and Yx ∼ Unif[0, 1] but we add a few more isolated τ ’s to T . Figure 2 shows several
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Figure 2. Some latent propensity scores consistent with T -independence when P(X =
1) = 0.5. Left: T = {0.25, 0.5, 0.75}. Right: T = {0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875}.

latent propensity scores consistent with T -independence when T has several isolated
elements. Consider the figure on the left, with T = {0.25, 0.5, 0.75}. Partition (0, 1) =
(0, 0.4) ∪ [0.4, 0.6) ∪ [0.6, 1). Then p is not monotonic over each partition set, and each
partition set contains one element of T : 0.25 ∈ (0, 0.4), 0.5 ∈ [0.4, 0.6), and 0.75 ∈ [0.6, 1).
There are K = 3 partition sets, and hence the corollary says p must change direction at
least 3 times. We see this in the figure since there are 3 interior local extrema. A similar
analysis holds for the figure on the right. Overall, these triangular and sawtooth latent
propensity scores illustrate the oscillation required by corollary 3.2.
We document one more feature: As long as there is some interval that is not in T then

there is a latent propensity score that takes the most extreme values possible, 0 and 1.

Corollary 3.3. Suppose assumptions 3.1.1 and 3.1.3 hold. Suppose [y
x
, yx]\T contains

a non-degenerate interval. Then there exists a latent propensity score which is consistent
with T -independence of Yx from X and for which the sets

{yx ∈ [y
x
, yx] : p(yx) = 0} and {yx ∈ [y

x
, yx] : p(yx) = 1}

have positive Lebesgue measure.

Consequently, T -independence allows for a kind of extreme imbalance, where there is
a positive mass of potential outcome values that only appear in the treatment group and
another positive mass of potential outcome values that only appear in the control group.

3.3. Characterizing Mean Independence

Mean independence is another commonly used exogeneity assumption. For example,
Heckman et al. (1998) assume potential outcomes are mean independent of treatments,
conditional on covariates. As in the previous section, we characterize the constraints this
assumption places on the conditional distribution of X given Yx.

Definition 3.2. Say Yx is mean independent of X if E(Yx | X = 0) = E(Yx | X = 1).
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From definition 3.2 and Bayes’ rule, it immediately follows that

E
(︃

Yx

E(Yx)
p(Yx)

)︃
= P(X = 1), (3.6)

assuming E(Yx) ̸= 0. Theorem 3.1 showed that quantile independence constrains the
unweighted average value of the latent propensity score over certain subintervals of its
domain. In contrast, equation (3.6) shows that mean independence constrains a weighted
average value of the latent propensity score over its entire domain. Equation (3.6) can be
extended to multi-valued and continuous X as in our analysis of quantile independence
in appendix S1; we omit this extension for brevity.
Although mean independence imposes a different constraint on the latent propensity

score than quantile independence, it also requires non-constant latent propensity scores
to be non-monotonic.

Proposition 3.1. Suppose assumption 3.1.1 holds. Suppose E(|Yx|) < ∞. Suppose the
latent propensity score p is weakly monotonic and not constant on the interior of its
domain. Then Yx is not mean independent of X.

Hence mean independence rules out all types of monotonic selection, except for the
trivially monotonic constant p(yx) = P(X = 1) implied by full statistical independence.

3.4. Discussion

To place these results in context, consider the case where X is an indicator for completing
college and Y0 denotes a person’s earnings if they do not complete college. X is often
thought to be endogenous due to its relationship with ability, which is captured by Y0. In
this example, p(y0) is the proportion of people who complete college, among those with a
fixed level of non-graduate earnings. Corollary 3.1 states that any quantile independence
condition rules out nonconstant, weakly monotonic selection on unobservables. Similarly,
proposition 3.1 implies that mean independence rules out this monotonic selection on
unobservables. They would thus rule out that the proportion who attend college is weakly
increasing in the level of non-graduate earnings, unless we assume that college attendance
and non-graduate earnings are statistically independent, in which case p(y0) is constant.
Corollary 3.2 would require the probability of attending college to oscillate (or be

constant) to accommodate multiple quantile independence conditions. For example, if
K quantile independence conditions hold, there must exist K non-graduate earnings
thresholds where the effect of non-graduate earnings on college attendance changes sign.
Alternatively, college attendance can again be statistically independent of non-graduate
earnings. We discuss the plausibility of these oscillations in the context of a Roy model
in section 6.
Corollary 3.3 characterizes another feature of the latent propensity scores allowed by

quantile independence. In our returns to schooling example, a finite number of quantile
independence restrictions allow for a strictly positive proportion of people with non-
graduate earnings levels for which nobody attends college (p(y0) = 0), and for which
everyone attends college (p(y0) = 1). Depending on the context, the existence of these two
groups may or may not appear plausible. If it appears implausible, using an assumption
that allows for their existence is unnecessarily conservative compared to an assumption
that rules out their existence. Since ruling out their existence is a stronger assumption,
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it would result in weakly narrower identified sets compared to the overly conservative set
obtained under quantile independence alone. To rule out their existence, one could add a
constraint such as p(y0) ∈ [c1, c2] for prespecified 0 < c1 ≤ c2 < 1 and derive the identified
set for the relevant parameter under quantile independence and this added constraint.
Throughout this paper, we emphasize this approach of tailoring exogeneity conditions
to the likely and unlikely features of the treatment selection function p(y0) in the given
application. Precisely finding the assumption that best captures the nonexistence of those
groups is beyond the scope of this paper, however, since it is application dependent.

4. THE IDENTIFYING POWER OF DIFFERENT EXOGENEITY ASSUMPTIONS

In this section we study the implications of the choice of exogeneity assumption for
identification. Our first result in section 3 shows that quantile independence imposes
a constraint on the average value of a latent propensity score. We use this character-
ization to motivate an assumption weaker than quantile independence, which we call
U-independence. The difference between these two assumptions is that quantile indepen-
dence imposes some additional average value constraints on p(yx) that U-independence
does not. In particular, U-independence allows for monotonic selection on unobservables.
Hence the difference between identified sets obtained under these two assumptions is a
measure of the identifying power of these additional average value constraints, which
are the features of quantile independence that require the latent propensity score to
be non-monotonic. Unlike quantile independence, it is not clear to us how to naturally
weaken mean independence to allow for monotonic latent propensity scores while still
retaining an interpretable assumption with identifying power. For that reason, in this
section we only study identification under quantile independence and its weaker version,
U-independence.
We focus on two parameters: The average treatment effect for the treated,

ATT = E(Y1 − Y0 | X = 1)

= E(Y | X = 1)− E(Y0 | X = 1),

and the quantile treatment effect for the treated,

QTT(q) = QY1|X(q | 1)−QY0|X(q | 1)
= QY |X(q | 1)−QY0|X(q | 1),

for q ∈ (0, 1). To analyze treatment on the treated parameters, we only need to make
assumptions on the relationship between Y0 and X. Our analysis can easily be extended
to parameters like ATE by imposing T - or U-independence between Y1 and X as well as
between Y0 and X.

Under statistical independence Y0 ⊥⊥X, both the ATT and QTT are point identified.
Under T - or U-independence, however, they are generally partially identified. We derive
identified sets for ATT and QTT under both classes of exogeneity assumptions in this
section. These sets have simple explicit expressions which make them easy to use in
practice. In section 5 we compare these identified sets in an empirical application. In this
application, the estimated identified sets are substantially larger under U-independence,
implying that the additional average value constraints inherent in T -independence have
substantial identifying power.
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4.1. Weakening Quantile Independence

Throughout this section, we focus on the case where T is an interval. In this case, we
show that latent propensity scores consistent with T -independence have two features:
(a) they are flat on T and (b) they are non-monotonic outside the flat regions, such that
the average value constraint (3.5) is satisfied. We use this finding to motivate a weaker
assumption which retains feature (a) but drops feature (b). We call this assumption
U-independence. This new weaker assumption has two uses: First, we can use it as a
tool for understanding quantile independence. Specifically, by comparing identified sets
under quantile independence and under the weaker U-independence we will learn the
identifying power of the average value constraints on the latent propensity score. Second,
U-independence can be used by itself as a method for relaxing statistical independence
and performing sensitivity analysis. We illustrate both of these uses below and in our
empirical analysis of section 5.
We begin with the following corollary to theorem 3.1.

Corollary 4.1. Suppose assumption 3.1 holds for Y0. Suppose Y0 is T -independent
from X with T = [a, b] ⊆ [y

0
, y0]. Then

P(X = 1 | Y0 = y0) = P(X = 1) (4.7)

for almost all y0 ∈ T .

Corollary 4.1 shows that T -independence requires the latent propensity score to be
constant on T and equal to the overall unconditional probability of being treated. The
first property—that the latent propensity score is flat on T —means that random assign-
ment holds within the subpopulation of units whose untreated outcomes are in the set
T ; that is, X ⊥⊥ Y0 | {Y0 ∈ T }. Corollary 4.1 can be generalized to allow T to be a finite
union of intervals, but we omit this for brevity.
This corollary motivates the following definition.

Definition 4.1. Let U ⊆ [y
x
, yx] be an interval. Say that Yx is U-independent of X if

P(X = 1 | Yx = yx) = P(X = 1) for almost all yx ∈ U .

Importantly, unlike T -independence, U-independence allows for monotonic selection on
unobservables. Corollary 4.1 shows that T -independence implies U-independence with
U = T . The converse does not hold since T -independence requires additional average
value constraints to hold, by theorem 3.1. In particular, U-independence implies the
average value constraint

E(p(Yx) | Yx ∈ (t1, t2)) = P(X = 1) (3.5)

for all t1, t2 ∈ U , because it requires that p(u) is constant on U . But T -independence
also requires that (3.5) holds for choices of t1 and t2 in U ∪ {y

x
, yx}. That is, t1 and

t2 can equal the end points y
x
or yx. Hence it imposes an average value constraint

outside of the set U . For example, figure 3 shows two latent propensity scores. One
satisfies T -independence, but the other only satisfies U-independence. Finally, note that
U-independence is a nontrivial assumption only when P(Yx ∈ U) > 0. Conversely, T -
independence is nontrivial even when T is a singleton.
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Figure 3. Let T = U = [0.25, 0.75] and P(X = 1) = 0.5. Also normalize Y0 to be uniform
on (0, 1) for simplicity. This figure shows a latent propensity score consistent with both
T - and U-independence on the left and a latent propensity score consistent with U-, but
not T -independence on the right.

4.2. The Identified Sets For ATT and QTT(q)

In this subsection we derive sharp bounds on the ATT and QTT(q) under both T - and
U-independence. To do so, it suffices to derive bounds on QY0|X(q | 1).
We show the validity of the following bounds in proposition 4.1 below. Let T = U =

[QY0(a), QY0(b)] for 0 < a ≤ b < 1. The T -independence bounds are then defined by

Q
T
Y0|X(τ | 1) =

⎧⎪⎨⎪⎩
QY |X(a | 0) for τ ∈ (0, a]

QY |X(τ | 0) for τ ∈ (a, b]

QY |X(1 | 0) for τ ∈ (b, 1)

and

QT
Y0|X

(τ | 1) =

⎧⎪⎨⎪⎩
QY |X(0 | 0) for τ ∈ (0, a]

QY |X(τ | 0) for τ ∈ (a, b]

QY |X(b | 0) for τ ∈ (b, 1).

We let QY |X(0 | x) = y
x
and QY |X(1 | x) = yx. For U-independence, there are two cases.

First consider the lower bound. Recall that px = P(X = x). If (1− (b− a))p1 ≤ a,

QU
Y0|X

(τ | 1) =

⎧⎨⎩QY |X(0 | 0) for τ ∈ (0, 1− (b− a)]

QY |X

(︃
τ +

b− 1

p0
| 0

)︃
for τ ∈ (1− (b− a), 1).

If (1− (b− a))p1 ≥ a,

QU
Y0|X

(τ | 1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

QY |X(0 | 0) for τ ∈
(︃
0,

a

p1

]︃
QY |X

(︃
τ − a

p1
| 0

)︃
for τ ∈

(︃
a

p1
,
a

p1
+ b− a

]︃
QY |X(b− a | 0) for τ ∈

(︃
a

p1
+ b− a, 1

)︃
.
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Next consider the upper bound. If (1− (b− a))p0 ≤ a,

Q
U
Y0|X(τ | 1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

QY |X(1− (b− a) | 0) for τ ∈
(︃
0, 1− (b− a)− 1− b

p1

]︃
QY |X

(︃
τ +

1− b

p1
| 0

)︃
for τ ∈

(︃
1− (b− a)− 1− b

p1
, 1− 1− b

p1

]︃
QY |X(1 | 0) for τ ∈

(︃
1− 1− b

p1
, 1

)︃
.

If (1− (b− a))p0 ≥ a,

Q
U
Y0|X(τ | 1) =

⎧⎨⎩QY |X

(︃
τ +

a

p0
| 0

)︃
for τ ∈ (0, b− a]

QY |X(1 | 0) for τ ∈ (b− a, 1).

Proposition 4.1. Let assumption 3.1 hold. Suppose Y0 is T -independent of X with
T = [QY0

(a), QY0
(b)], 0 < a ≤ b < 1. Suppose the joint distribution of (Y,X) is known.

Let q ∈ (0, 1). Then

QY0|X(q | 1) ∈
[︂
QT

Y0|X
(q | 1), QT

Y0|X(q | 1)
]︂
. (4.8)

Moreover, the interior of the set in equation (4.8) equals the interior of the identified
set. Finally, the proposition also holds if we replace T with U .

T -independence of Y0 from X with T = [QY0
(a), QY0

(b)] is equivalent to the quantile
independence assumptions QY0|X(τ | x) = QY0

(τ) for all τ ∈ [a, b], by assumption 3.1.
The bounds (4.8) are also sharp for the function QY0|X(· | 1) in a sense similar to that
used in proposition S3.1 in the appendix; we omit the formal statement for brevity. This
functional sharpness delivers the following result.

Corollary 4.2. Suppose the assumptions of proposition 4.1 hold. Let E(|Y0|) < ∞.
Then E(Y0 | X = 1) lies in the set[︂

ET (Y0 | X = 1), ET
(Y0 | X = 1)

]︂
≡

[︃∫︂ 1

0

QT
Y0|X

(q | 1) dq,
∫︂ 1

0

Q
T
Y0|X(q | 1) dq

]︃
.

Moreover, the interior of this set equals the interior of the identified set for E(Y0 | X = 1).
Finally, the corollary also holds if we replace T with U .

By proposition 4.1 we have that T -independence implies that QTT(q) lies in the set[︂
QY |X(q | 1)−Q

T
Y0|X(q | 1), QY |X(q | 1)−QT

Y0|X
(q | 1)

]︂
and that the interior of this set equals the interior of the identified set for QTT(q). Like-
wise for U-independence. If q ∈ T , then QTT(q) is point identified under T -independence;
this follows immediately from our bound expressions above. This result—that a sin-
gle quantile independence condition can be sufficient for point identifying a treatment
effect—was shown by Chesher (2003). A similar result holds in the instrumental variables
model of Chernozhukov and Hansen (2005) and the LATE model of Imbens and Angrist
(1994). See the discussion around assumption 4 in section 1.4.3 of Melly and Wüthrich
(2017).
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By corollary 4.2 we have that T -independence implies that the ATT lies in the set[︂
E(Y | X = 1)− ET

(Y0 | X = 1), E(Y | X = 1)− ET (Y0 | X = 1)
]︂

and that the interior of this set equals the interior of the identified set for the ATT.
Likewise for U-independence. Furthermore, in appendix S2 we show that these ATT
bounds have simple analytical expressions, obtained from integrating our closed form
expressions for the bounds on QY0|X(q | 1).

Remarks on Estimation and Inference

The bounds on QTT(τ) and ATT depend on the data through two of its features: the
conditional quantile function QY |X(τ | x) for (τ, x) ∈ [0, 1] × {0, 1} and the marginal
probability of treatment p1. This is the case under both T - and U-independence. One
can estimate these bounds using a variety of sample analog estimators. For example,
we can estimate p1 using the sample frequency of treatment. Similarly, for τ ∈ (0, 1),
QY |X(τ | x) can be estimated using sample quantiles or by inverting a possibly smoothed
estimator of the conditional cdf of Y | X. These estimators have well known asymptotic
properties. However, these bounds depend on QY |X(τ | x) for τ = 0 and τ = 1 as well.
These quantiles can be estimated using methods for extremal quantiles: see Chernozhukov
(2005) and Chernozhukov et al. (2017) for example, and they generally have non-standard
asymptotic behavior.
When a vector of covariates W is observed, estimators of QY |X,W and P(X = x |

W = w) must be obtained for all w in the support of W . These can be estimated
nonparametrically, or under flexible parametric assumptions as well: see Masten et al.
(2020) for example. We leave a full analysis of estimation and inference under these
relaxations of independence for future research.

5. EMPIRICAL ILLUSTRATION:
THE EFFECT OF CHILD SOLDIERING ON WAGES

In this section we use our results to study the impact of relaxing the unconfoundedness
assumption in an empirical study of the effects of child soldiering on wages. We do this us-
ing both the T - and U-independence relaxations of statistical independence. We find that
the identified sets are substantially larger under U-independence. This implies that the
average value constraints imposed by T -independence have substantial identifying power;
recall that these constraints are the features of quantile independence that require the
latent propensity score to be non-monotonic. In particular, the baseline empirical results
are generally quite robust under the T -independence relaxation of unconfoundedness,
but not under U-independence. This difference highlights the importance of the choice of
exogeneity assumptions in practice, and how researchers can use their beliefs about the
form of latent selection to assist in this choice.

Background

By collecting extensive survey data, Blattman and Annan (2010) study the impact of
child abductions during a twenty year war in Uganda, where “an unpopular rebel group
has forcibly recruited tens of thousands of youth” (page 882). Although they consider a
variety of outcome variables, we focus on the impact of abduction on later life wages.
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The main identification problem is that selection into military service is typically non-
random. They argue, however, that forced recruitment in Uganda led to conditional
random assignment of military service. They condition on two variables: (1) Prewar
household size, because larger households were less likely to be raided by small bands
of rebels, and (2) Year of birth, because abduction levels varied over time, so that some
youth ages were more likely to be abducted than others. Hence their identification strat-
egy is based on unconfoundedness, conditioning on these two variables. Although their
qualitative evidence supporting unconfoundedness is compelling, this assumption is still
nonrefutable. We therefore use our results to assess the sensitivity of relaxing uncon-
foundedness on their empirical conclusions.

Sample Definition

The data comes from phase 1 of SWAY, the Survey of War Affected Youth in northern
Uganda (see Annan et al. 2006 for details of the original data collection; we use the version
of this data from Masten and Poirier 2020a,b). This phase has 1216 males born between
1975 and 1991. We look at the subsample of units who (1) have wage data available and
(2) earned positive wages. This leaves us with 448 observations. Let Y denote log wage.
We define treatment X to be an indicator that the person was not abducted. We include
the two covariates discussed above, age when surveyed and household size in 1996. We
omit other covariates for simplicity.
Age has 17 support points, household size has 21 support points, and treatment has

2 support points. Hence there are 714 total conditioning variable cells, relative to our
sample size of 448 observations. To ensure that our conditional quantile estimators are
reasonably smooth in the quantile index, we collapse these conditioning variables into 8
cells. Specifically, we replace age with a binary indicator of whether one is above or below
the median age. Likewise, we replace household size with a binary indicator of whether
one lived in a household with above or below median household size. This gives 8 total
conditioning variable cells, with approximately 55 observations each.

Baseline Analysis

First we present estimates of conditional average treatment effects for the treated (CATT)
and conditional quantile treatment effects for the treated (CQTTs), under the uncon-
foundedness assumption. For brevity we focus on the covariate cell w = (age, household
size) = (above median, above median). This group has the largest baseline effects of
treatment, meaning that being abducted lowered their later life wages by the largest
amount. Specifically, our estimate of the CATT for this group is 0.57. Our CQTT esti-
mates are 0.67 for τ = 0.25, 0.54 for τ = 0.5, and 0.56 for τ = 0.75. Note that our sample
size is small, with 121 observations in this cell. We omit standard errors here because the
purpose of this section is to illustrate the methods developed in our paper.

Sensitivity Analysis

To check the robustness of these baseline point estimates to failure of unconfoundedness,
we estimate identified sets for the CATT and CQTT using our results from section 4.
To highlight the importance of the choice of relaxation, we consider sets T = U . In this
case, corollary 4.1 shows that T -independence implies U-independence. Hence identified
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Figure 4. Estimated identified sets for various parameters of interest, for U = T = [δ, 1−δ]
with δ ∈ [0, 0.5]. Solid: U-independence. Dashed: T -independence. The horizontal axis
shows values of δ. All parameters are conditional on the covariate cell w = (age, household
size) = (above median, above median).

sets using T -independence must necessarily be weakly contained within identified sets
using only U-independence. We explore the magnitude of this difference in the data. Since
T -independence is simply U-independence combined with some additional average value
constraints, the difference between these identified sets tells us the identifying power of
these additional average value constraints.
Specifically, we use the choice T = U = [δ, 1 − δ] for δ ∈ [0, 0.5]. For δ = 0, this

choice corresponds to full conditional independence Y0 ⊥⊥X | W = w under both classes
of assumptions. For δ = 0.5, this choice corresponds to median independence for T -
independence, and no assumptions for U-independence. Values of δ between 0 and 0.5
yield conditional partial independence between Y0 and X for both classes of assumptions.
Figure 4 shows estimated identified sets for both CATT and CQTT(τ) as δ varies

from 0 to 0.5, and for τ ∈ {0.25, 0.5, 0.75}. These are sample analog estimates, whereˆ︁QY |X,W (· | x,w) is estimated by inverting a kernel based estimate of FY |X,W (· | x,w).
First consider the plot on the top left, which shows the estimated CQTT(0.5) bounds. The
dashed lines are the identified sets under T -independence. Since median independence of
Y0 from X conditional on W = w is sufficient to point identify the conditional median
QY0|X,W (0.5 | 1, w), median independence is also sufficient to point identify the CQTT
at 0.5. Hence the identified set is a singleton for all δ ∈ [0, 0.5]. This singleton equals 0.54,
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the baseline estimate. Next consider the solid lines. These are the estimated identified
sets under U-independence. When δ = 0.5, U-independence does not impose any con-
straints on the model, and hence we obtain the no assumption bounds, which are quite
wide: [−3.42, 3.43]. If we decrease δ by a small amount, thus making the U-independence
constraint nontrivial, the estimated identified set does not change. In fact, we can im-
pose random assignment for about the middle 50% of units (i.e., U = [0.25, 0.75], or
δ = 0.25) and still we only obtain the no assumption bounds. Consequently, for intervals
T ⊆ [0.25, 0.75], the point identifying power of T -independence is due solely to the con-
straint it imposes on the average value of the latent propensity score outside the interval
T , rather than the constraint that random assignment holds for units in the middle of
the distribution of Y0.
Next define

δUbp(τ) = sup{δ ∈ [0, 0.5] : LBU (τ, δ) ≥ 0}

where LBU (τ, δ) is the lower bound of the identified set for CQTT(τ) under U-independence
with U = [δ, 1 − δ]. Define δTbp(τ) analogously. This value δUbp(τ) is a breakdown point:
It is the largest amount we can relax full independence while still being able to conclude
that the treatment effect is nonnegative. For τ = 0.5, the estimated breakdown point
for CQTT(0.5) is 0.103. Thus we can allow randomization to fail for about 20.6% of
units while still being able to conclude that CQTT(0.5) is nonnegative. In contrast, as
mentioned above, the breakdown point for T -independence is always 0.5.
Next consider the lower two plots of figure 4. These plots show estimated identified sets

for CQTT(0.25) on the left and CQTT(0.75) on the right. There are two main differences
between these plots and that of CQTT(0.5): First, the U-independence upper and lower
bounds are not symmetric. Nonetheless, the qualitative robustness conclusions are simi-
lar. For example, ˆ︁δUbp(0.25) is 0.122 and ˆ︁δUbp(0.75) is 0.071. So conclusions about smaller
quantiles are slightly more robust than conclusions about larger quantiles. Second, the
T -independence identified sets are no longer always singletons. In particular, we obtain
non-singleton bounds when δ > 0.25. However, conclusions under the T -independence
relaxation are substantially more robust than conclusions under the U-independence re-
laxation. Specifically, ˆ︁δTbp(0.25) is 0.437. This is about 3.5 times as large as ˆ︁δUbp(0.25).
Similarly, ˆ︁δTbp(0.75) is 0.25. This is also about 3.5 times as large as ˆ︁δUbp(0.75).

Finally consider the plot on the top right of figure 4, which shows estimated identified
sets for CATT. First consider the T -independence relaxation, the dashed lines. The
CATT is no longer point identified under median independence, or any set T ⊊ (0, 1)
of quantile independence conditions; that is, the CATT is partially identified for all
δ > 0. Nonetheless, even median independence alone has substantial identifying power:
For δ = 0.5, the estimated identified set under median independence is [−1.36, 2.06],
whereas the no assumption bounds are [−3.42, 3.43]. Thus the width of the bounds has
been cut in half. For δ > 0, U-independence has non-trivial identifying power, as shown
in the solid lines. However, comparing the length of these bounds to the length to the
T -independence bounds, we see that imposing the average value constraint outside the
interval [δ, 1 − δ] again has substantial identifying power: the T -independence bounds
are anywhere from 50% (δ = 0.5) to almost 100% (arbitrarily small δ) smaller than the
U-independence bounds. That is, the difference in lengths increases as we get closer to
independence (as δ gets smaller). Thus conclusions about CATT are substantially more
sensitive to small deviations from independence which do not impose the average value
constraint outside the interval [δ, 1−δ], compared with small deviations which do impose
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that constraint. A second way to see this is to compare the breakdown points under the
two relaxations. Define

δUbp = sup{δ ∈ [0, 0.5] : LBU (δ) ≥ 0}

where LBU (δ) is the lower bound of the identified set for CATT under U-independence
with U = [δ, 1 − δ]. Define δTbp analogously. As shown in the plots above, ˆ︁δUbp = 0.063

while ˆ︁δTbp = 0.222. Thus the breakdown point under T -independence is again about 3.5
times as large as the breakdown point under U-independence.

Empirical Conclusions

In this section we used our identification results to study the robustness of conclusions
about CATT and CQTTs to failures of unconfoundedness. Our baseline point estimates
suggest that child abduction and forced military service has a negative effect on later life
wages, for those children who were older when they were abducted and who came from
larger households. This holds both on average (from the CATT) and across the distribu-
tion of treatment effects (as seen in the CQTTs). We then asked: How sensitive are these
conclusions to failures of unconfoundedness? We saw that using the T -independence re-
laxation, these conclusions are generally robust to large relaxations of unconfoundedness.
However, using the U-independence relaxation, these conclusions appear much more sen-
sitive. As we earlier discussed, the difference arises from the additional average value
constraints that T -independence imposes. Those constraints are the features of quantile
independence that require the latent propensity score to be non-monotonic. Thus it is
critical to assess the plausibility of those additional constraints when deciding between
these two forms of exogeneity assumptions to use for assessing sensitivity.
In this empirical context, a monotonic latent propensity score arises when youths who

have larger potential earnings when they’re abducted (larger Y0) are more likely to be
abducted. If youths are targeted for abduction because of their innate or pre-existing
skills, which would generally lead to large Y0, then this would be a form of monotonic
selection that would not be allowed for by the T -independence relaxation, but would be
allowed for by the U-independence relaxation. So if we are concerned that unconfound-
edness fails due to this kind of non-random selection, then U-independence is a more
appropriate choice for assessing sensitivity than T -independence. Given this choice, the
baseline results still hold under mild relaxations of unconfoundedness, since we saw that
U-independence breakdown points were generally around δ = 0.1. But the baseline results
no longer hold for larger relaxations; in this case, the data are inconclusive.

6. THE TREATMENT SELECTION IMPLICATIONS OF A ROY MODEL

As we emphasized, there is a direct mapping between exogeneity assumptions and the
allowed forms of treatment selection. At one extreme, full independence assumes no
selection at all of X on Yx, and therefore p(yx) is constant. On the other hand, weaker
exogeneity assumptions allow for a class of deviations that one wishes to be robust
against. Since this class is often not explicitly specified, we refer to such deviations
as latent selection models. Our main results in section 3 characterize the set of latent
selection models allowed by quantile and mean independence restrictions.
In this section, we consider a class of Roy models and examine the relationship between

their implied treatment selection functions and the exogeneity assumptions of section 3.



18 Masten and Poirier

We discuss different assumptions on the economic primitives which lead these models to
be either consistent or inconsistent with quantile or mean independence restrictions. We
only consider single-agent models, but similar analyses can likely be done for multi-agent
models.
Suppose we are again interested in identifying the average treatment effect for the

treated parameter

ATT = E(Y1 − Y0 | X = 1)

= E(Y | X = 1)− E(Y0 | X = 1).

As in section 4, its identification depends on our assumptions about the stochastic rela-
tionship between X and Y0. Suppose agents choose treatment to maximize their outcome:

X = 1(∆ > 0) (6.9)

where ∆ ≡ Y1 −Y0 is the unit level treatment effect. This is the classical Roy model (see
Heckman and Vytlacil 2007a). This assumption specifies how treatment X relates to Y0.
Specifically, consider the latent propensity score

p(y0) ≡ P(X = 1 | Y0 = y0)

= P(∆ > 0 | Y0 = y0).

The second line follows by our Roy model treatment choice assumption. Thus the shape of
p depends on the joint distribution of (Y1, Y0) or, equivalently, of (∆, Y0). We classify these
distributions into two possible cases, based on a concept called regression dependence,
which dates back to Tukey (1958) and Lehmann (1966), who give the following definition.

Definition 6.1. Say X is positively [negatively] regression dependent on U if P(X >
x | U = u) is weakly increasing [decreasing] in u, for all x ∈ R. Say X is regression
dependent on U if it is either positively or negatively regression dependent on U .

Regression dependence is also known as stochastic monotonicity, since it is equivalent
to the set of cdfs {FX|U (· | u) : u ∈ supp(U)} being either increasing or decreasing in
the first order stochastic dominance ordering. We give additional background on this
definition in appendix S1.1.

1 First suppose (Y1, Y0) is such that ∆ is regression dependent on Y0. This implies
that p is monotonic. Corollary 3.1 and proposition 3.1 therefore imply that no mean
or quantile independence conditions of Y0 on X can hold unless X⊥⊥Y0. This occurs
when X is degenerate, as when treatment effects ∆ are constant, or more generally
when ∆⊥⊥Y0. In particular, any mean or quantile independence condition of Y0 on
X rules out the bivariate normal distribution for (∆, Y0) or (Y1, Y0), again unless
X ⊥⊥ Y0.

2 Next suppose (Y1, Y0) is such that ∆ is not regression dependent on Y0. For example,
let ∆ = µ(Y0)−ε where µ is a deterministic function and ε ∼ N (0, 1), ε⊥⊥Y0. Then

p(y0) = P(X = 1 | Y0 = y0) = Φ[µ(y0)],

where Φ is the standard normal cdf. If µ is non-monotonic then p will also be
non-monotonic. For this joint distribution of potential outcomes, the unit level
treatment effects ∆ conditional on the baseline outcome Y0 = y0 are distributed
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N (µ(y0), 1). Hence non-monotonicity of µ implies that the mean of this distribution
of treatment effects is not monotonic. For instance, suppose the outcome is earnings
and treatment is completing college. Let

µ(y0) > 0 if y0 ∈ (α, β)

µ(y0) ≤ 0 if y0 ∈ (−∞, α] ∪ [β,∞)

for −∞ < α < β < ∞. Then people with sufficiently small or sufficiently large
earnings when they do not complete college do not benefit from completing college,
on average. People with moderate earnings when they do not complete college, on
the other hand, do typically benefit from completing college. This kind of joint
distribution of potential outcomes combined with the Roy model assumption (6.9)
on treatment selection produces non-monotonic latent propensity scores.

We just gave one example joint distribution of (Y1, Y0) where regression dependence
fails. More generally, theorem 5.2.10 on page 196 of Nelsen (2006) characterizes the
set of copulas for which ∆ is regression dependent on Y0, when both are continu-
ously distributed. This result therefore also tells us the set of copulas where ∆ is
not regression dependent on Y0. Among these copulas, T -independence (or, analo-
gously, mean independence) of Y0 from X will specify a further subset of allowed
dependence structures. The precise set is given by all copulas which lead to latent
propensity scores that satisfy the average value constraint.

Which of these cases is plausible depends on the specific application at hand.

7. CONCLUSION

In this paper we gave several results to help researchers assess the plausibility of quantile
and mean independence assumptions on structural unobservables like potential outcomes.
Keep in mind, however, that when doing identification analysis it is not necessary to
choose a single exogeneity assumption. For example, researchers may want to consider
a variety of exogeneity assumptions in this step, as part of a sensitivity analysis. We
illustrated this in sections 4 and 5. The choice of which exogeneity assumptions to consider
is still determined by considering the kinds of treatment selection we want to allow for,
as discussed in section 2. Conversely, there may be situations where researchers do not
find it plausible to impose any kind of exogeneity assumption. In this case we often can
still learn something about the parameters of interest, as in the classical no assumption
bounds of Manski (1990). In this paper we focused on the case where the researcher
does want to impose some kind of exogeneity assumption, however. In this case, we
hope that our results can help researchers better select the most appropriate exogeneity
assumptions for their settings.
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APPENDIX A: STRUCTURAL AND REDUCED FORM UNOBSERVABLES

The approach we recommend in section 2 begins by distinguishing between two kinds of
unobservables: (1) Structural unobservables and (2) Reduced form unobservables. In this
appendix we discuss a specific example to clarify the distinction between these two vari-
ables. We also use this example to discuss the difference between exogeneity assumptions
involving reduced form unobservables and those involving structural unobservables.

Example: The Binary Response Random Coefficients Model Let X be a scalar observed
random variable. Let Y ∗(x) denote a latent potential outcome for x ∈ R. Let

Y (x) = 1[Y ∗(x) ≥ 0]

denote the usual potential outcomes. Let Y = Y (X) denote the observed outcome.
Suppose latent potential outcomes satisfy the linear random coefficient model

Y ∗(x) = A+Bx, (A.1)

where A and B are structural unobserved random variables. Suppose we impose the
following constraint on the tails of A, B, and X.

Assumption A.1. E(A), E(B), and E(X) exist and are finite.

In this model, (A,B) are structural unobservables. An exogeneity assumption about
the relationship between (A,B) andX is therefore a statement about treatment selection:
How does assigned treatment depend on these structural unobservables? This is the kind
of exogeneity assumption we focus on in this paper. In this appendix, however, we will
discuss a second kind of exogeneity condition, which constrains the relationship between
treatment and a reduced form unobservable. This is a derived exogeneity condition: It
is not directly imposed but rather is a consequence of a choice of (1) an exogeneity
assumption involving the structural unobservables and (2) the functional form of the
reduced form unobservables.
To illustrate this kind of derived exogeneity condition, we’ll assume treatment is ran-

domly assigned.

Assumption A.2. (A,B)⊥⊥X.

Next write the equation for realized latent potential outcomes as

Y ∗(X) = E(A) + E(B)X +
(︁
[A− E(A)] + [B − E(B)]X

)︁
≡ E(A) + E(B)X + V. (A.2)

V is a reduced form unobservable. It is a function of the structural unobservables (A,B)
as well as the realized treatment X. Consequently, it is not invariant to changes in the
distribution of X. The coefficients E(A) and E(B) in equation (A.2) do have structural
interpretations, however.
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By definition, V depends on X, and so typically V is not independent of X. Nonethe-
less, we can derive some restrictions on the distribution of V | X. Specifically, suppose
we also make the following assumption.

Assumption A.3. Y ∗(x) is symmetrically distributed about E[Y ∗(x)] for all x ∈ supp(X).

Under this additional assumption, Manski (1975, page 220) showed the following result;
also see Manski (1977, pages 247–249) and Fox (2007, pages 1007–1008).

Proposition A.1. Suppose assumptions A.1, A.2, and A.3 hold. Then P(V ≤ 0 | X =
x) = P(V ≤ 0) = 0.5 for all x ∈ supp(X). That is, V is median independent of X.

Thus we have derived a median independence restriction on the reduced form unob-
servable V as a consequence of (1) the definition of V and (2) the exogeneity assumption
about the relationship between X and the structural unobservables.

Discussion In this example there are two kinds of unobservables: The structural unob-
servables (A,B) and the reduced form unobservable V . We made an exogeneity assump-
tion about the relationship between (A,B) and X based on our beliefs about treatment
assignment. We then derived an exogeneity condition on the relationship between the
reduced form unobservable V and X. More generally, for researchers interested in choos-
ing an exogeneity assumption that relates treatment to reduced form unobservables, our
recommendation is that this assumption be derived from a more primitive exogeneity
assumption about the structural unobservables, as in the example. The analysis in sec-
tions 2–6 of our paper can then be used to assess the plausibility of these more primitive
exogeneity assumptions.
Researchers may sometimes prefer to make an exogeneity assumption on the reduced

form unobservable directly, without directly deriving it from a more primitive model like
we did above. There are a few concerns with this approach, however:

1 As Angrist (2001) argues, we often care about parameters like average structural
functions (ASFs) and average treatment effects (ATEs). In nonseparable models like
the example above, however, the ASF depends on the distribution of the structural
unobservables. In particular, for that example,

ASF(x) = E[Y (x)]

= PA,B(A+Bx ≥ 0)

̸= PV (E(A) + E(B)x+ V ≥ 0).

The true ASF does not generally equal the parameter that you would compute if you
worked with equation (A.2), but incorrectly treated V as a structural unobservable
in an ASF calculation. Thus, in nonseparable models, it is generally not possible
to avoid working with structural unobservables if we are interested in ASFs and
ATEs.

For example, among many other derivations, Torgovitsky (2019) computes identi-
fied sets for ASFs and ATEs in a binary response model with constant coefficients
and median independence. For these identified sets to have the correct interpreta-
tion, the unobservable V in his model must be structural, rather than a reduced
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form. Consequently, the fact that we are only imposing median independence of
these unobservables from treatment implies that we are concerned with a particu-
lar kind of non-random treatment assignment. Our results in section 3 characterize
the kind of non-random treatment assignment consistent with median independence
assumptions.

2 If we only work with the reduced form unobservables, then we might be ignoring a
lot of useful information. Consider the example again: Relative to the assumption
that V is median independent of X, the stronger assumptions A.2 and A.3 have po-
tentially different implications for falsification, identification, rates of convergence,
and efficiency. For example, in the model we know that the ASF is point identified:

E[Y (x)] = P(Y = 1 | X = x).

But if we only impose median independence of V from X then the ASF is generally
only partially identified.

For these reasons, we recommend working directly with the structural unobservables.
This does not require that researchers make strong assumptions like statistical indepen-
dence on these structural unobservables, however. Instead, they can use the methods
discussed in this paper to think about the form of exogeneity they want to impose on
the relationship between the structural unobservables and the treatment variables.
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