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ith the explosion of studies on microbial communities, from the human micro-

biome to characterizing microbes in the ocean, in soil, and on plants, it is clear
that assemblages of microbes are an area of active research interest across the microbial
sciences. This focus on communities, on one hand, seems quite natural as most microbes,
perhaps outside of implant infections and a few extreme environments, live in a world
where they co-exist with myriad other microbes. In contrast, since the development of
Koch’s postulates in 1890 (a nice summary of Koch’s postulates and their history was
published recently [1]), focusing on infectious diseases, as well as efforts by Beijerinck
and Winogradsky to develop enrichment and isolation techniques, we have often viewed
the microbial world through the lens of single species.

The microbial species that have received the lion’s share of attention are often
referred to as “model systems,” maybe better called “model microbes” The best
studied model microbe is Escherichia coli, as highlighted in a recent article in the
Journal of Bacteriology (2). Other model organisms that have received a great deal
of attention include Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus,
Mpycobacterium tuberculosis, Streptococcus pneumoniae, Caulobacter crescentus, Candida
albicans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. More recently,
steady progress in the development of molecular genetic techniques has enabled
our ability to work with “non-traditional” model organisms such as various archaea,
sulfate-reducing bacteria, as well as photosynthetic, electrogenic, intestinal, marine
microbes, pathogenic fungi, parasites, and others. Thus, the foundation of the microbial
knowledge base on which we can build is becoming both broader and deeper.

This singular focus on model microbes has helped us make stunning advances in
understanding host-microbe interactions, fostered the discovery of antimicrobial agents,
been the backbone of clinical microbiology, and allowed us to probe the depths of
microbial biology. Indeed, a recently launched and ongoing collection of articles at JB
titled “History of Microbial Model Systems” celebrates how a variety of microbial model
organisms, typically studied in pure culture in the lab, have been key to enhancing our
understanding of the microbial world. A theme running through these articles is that
the models are studied via a variety of approaches to answer a spectrum of questions.
A more holistic appreciation of microbial systems can be gained by tackling questions
from different perspectives. Investigators from different disciplines—genetics, molecular
biology, structural, biophysics, mathematics, ecology, evolution, etc.—will bring to their
research very different viewpoints and tools. | would argue this is a good thing—when
all this information is brought together, we cannot help but have a broad and deep
appreciation and understanding of a microbe and its biology.

Within the pure-culture research framework of the past ~140 years, our picture
can be quite comprehensive for a given microbe, but we are left with an important
knowledge gap: how does the microbe relate to the others in its world? Here is where
thinking about microbial communities is the critical next step. However, before | talk
more about microbial communities, there is an important aside. | contend that before

April 2024 Volume 206 Issue 4

L)

Check for
updates

Address correspondence to George A. O'Toole,
georgeo@dartmouth.edu.

The author declares no conflict of interest.
See the funding table on p. 5.

The views expressed in this article do not necessarily
reflect the views of the journal or of ASM.

Published 26 March 2024
Copyright © 2024 American Society for
Microbiology. All Rights Reserved.

10.1128/jb.00073-24 1

Downloaded from https:/journals.asm.org/journal/jb on 22 July 2024 by 192.152.118.98.


https://journals.asm.org/topic/sss-taxonomy/jb-his-micro-mod-sys
https://crossmark.crossref.org/dialog/?doi=10.1128/jb.00073-24&domain=pdf&date_stamp=2024-03-26
https://doi.org/10.1128/jb.00073-24
https://doi.org/10.1128/ASMCopyrightv2

Editorial

we can understand how microbes interact, we need to know (at least a little) about the
biology of individual microbes in a community. That is, we must recognize the need for a
strong foundation, built by the study of model microbes, for any hope of understanding
microbial communities in all their beautiful complexity. Please keep in mind that as
you mine your favorite metagenomic data set, most every assigned function (predicted
or demonstrated) is derived from work done in a model microbe. Remember that the
biology you infer from an amplicon sequence variant (ASV) has likely emerged from the
study of a model microbe in pure culture. And every gene that is categorized as one with
a “hypothetical function” means that a model microbe has not yet helped reveal the role
of that gene product. So, it will never be “The Lab” or “The Real World,” any progress in
understanding microbial communities must be “The Lab” and “The Real World.”

So how do we balance a world (and research framework) of microbial communities
with the advantages of studying individual model microbes (Fig. 1)? | believe it is time to
consider this critical question. Right now, we are in the wild, wild west. Are we studying
microbial communities? Absolutely. Is there a rhyme or a reason for what communities
are studied and why? Well, the answer to this question is less apparent.

I am most familiar with the studies of the microbial communities in the airways of
persons with cystic fibrosis (CF; and thus, also have likely contributed to the current
confusion!). That is, in the context of CF, there have been many investigations of
interactions between two microbial species (P. aeruginosa and S. aureus, P. aeruginosa
and Streptococcus spp., P. aeruginosa and fungi, including C. albicans and Aspergillus
fumigatus [3-14]) and multi-microbe interactions (15-21)—I cite just a few such studies
here. These communities have been studied on agar plates and in liquid culture, under
aerobic and anaerobic conditions, and in lysogeny broth, tissue culture, and artificial
sputum medium. Most model communities are supported by a reasonable rationale and
have taught us important lessons. Unfortunately, it is sometimes difficult to compare the
apple to the orange model system (or perhaps the orchard to the grove?).

| propose that we, as a field, need to consider consolidating around “model com-
munities” that will serve the same function as “model microbes.” That is, investigators
start with the same microbes, medium, and growth conditions. One can compare those
findings to a published system (i.e., a benchmark) to make sure they can indeed replicate
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FIG1 From “The Lab” to “The Real World.” The diagram depicts the dynamic between working in single-species lab model organisms versus studying natural

environments. Specifically, how does one balance the ability to address detailed (causal) mechanism in less complex lab models (“The Lab”) versus the challenge

of moving beyond correlative inferences in complex natural environments (“The Real World”). “We Are Here?” indicates that the use of model microbial

communities in the lab could be a small step toward approaching the complexity of natural environments while being able to bring to bear the full kit of study

tools available in a lab setting.
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central findings, and if not, dig into why (the answers could turn out to be very
informative!). Once model community systems are developed and carefully described,
the same sort of rigorous, cross-disciplinary approaches that are used to study model
microbes in isolation can be applied. | predict such an approach will yield analogous
major advances in our understanding of microbial communities.

What should a model microbial community look like? | do not believe there is a
specific answer to this question—at least | will not venture one. Instead, | will offer some
thoughts about features, or perhaps requirements, that one should consider in a widely
adopted model community.

1.

Know your community. As highlighted by my colleague John LiPuma (personal
communication), before one can study a community in the lab, one must
understand as much as possible about the community in the real world. It is,
frankly, a near impossibility to achieve this goal on its face because one would
need to have a deep understanding of community structure and function, know
who is there, how much of each (absolute and relative abundance), where they
are, and what are they doing. Additionally, we would need a complete understand-
ing of the chemical environment, from oxygen availability to pH to the concen-
tration of micronutrients. Unfortunately, a key conundrum is one almost always
does not have such information—that is why we are studying the communities!
And we must keep in mind that model development will be an iterative process—
more information gained from studying the community is used to better refine
the model. However, there are some possible strategies to employ. For example,
we can start by picking systems for which there are already robust data sets—a
well-studied lake (Lake Mendota, for example [22]) or marine environment, a hot
spring in Yellowstone (23, 24), a simple community in acid mine drainage (25), a
plant microbial community, or infection site. For example, my lab’s choice of an
airway community in CF has built off literally hundreds of 16S rRNA gene amplicon
and metagenomic sequences (26-30). The oral cavity is another excellent example
of a community that has been studied deeply—arguably the earliest studied
microbiome (31-33). 1 am concerned where we stand now is a shallow under-
standing of many, many communities (i.e., via the easy road of DNA sequencing)
rather than diving deep into a limited set of communities.

. A functional output for the community. A functional output of any type provides

two key advantages. First, in building the model, one can associate community
composition/structure to functional outputs to measure how much variance in the
function is explained by one (or more) model communities for a given system.

So, the model community is linked to a real-world output we care about. Second,
once the community is built, these functional outputs can help us understand the
role of specific community members (or their gene products) or microbe-microbe
interactions in how the community works. | think, at the end of the day, “function”
can take many forms. For our recently developed CF airway infection model, we
used patient outcomes as the functional output in designing the community (15,
34). This patient outcome function is, however, not particularly useful in vitro,
where cellular viability and antibiotic tolerance can serve as alternative outputs.

In principle, functional outputs could include metabolite production, substrate
consumption, spatial structure, impact on the host, enhanced crop yield and/or
resilience, and more. It is important to note that for any functional output chosen,
we must recognize that because so many variables likely impact measures of
community function, such outputs are likely (hopelessly) confounded even with
the most rigorous analyses.

. Benchmarking the community. How can we tell whether our lab model most

accurately reflects the real world? Using benchmarks, such as the functional
outputs mentioned above, could be useful means to assess the relevance of
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an in vitro model to the real-world environment. Alternatively, recent studies

by Whiteley and colleagues have used an “accuracy score” framework (35, 36)
with transcriptional data to benchmark CF-relevant models for P. aeruginosa. For
communities, such an accuracy score framework should be expanded for the
multiple microbes and likely move beyond just using transcriptional data.

4. Balance complexity with feasibility. One goal of a model is to try to reflect
“reality.” As illustrated in Figure 1, there will be a balance to strike between
complexity and experimental tractability. One approach is to consider how to
simplify model systems. For example, if there are three organisms with similar
physiologies, it may be possible to include one as a stand-in for all three. The
ability to assess community function could help determine if reducing complexity
in this way is possible while minimizing the loss of information. The balance
between complexity and feasibility will, in part, be influenced by the specific
scientific question one seeks to answer.

5. The community over time. One feature of a model community would be the
ability to incorporate a temporal aspect, which could take several forms. As
examples, perturbations caused by exposures to antimicrobial agents (important
in the clinical setting), shifts in the chemical environment (i.e., how does commun-
ity vary with respect to evolving geochemistry or the dynamic aspects of an
ecosystem; for example, many Yellowstone hot springs are never the same 2 days
in a row), or physical perturbations (perhaps caused by grazing or changes in
flow). Overall, such perturbations would allow one to address questions such as
community stability, a well-studied question in ecological circles. For example, are
there feedback loops that contribute to the community’s resilience to perturba-
tion? In many ways, lab microbial model systems are the perfect playground for
ecologists, because few other systems can be perturbed reproducibly in so many
ways and over such short time spans. A related question could include evolution
of the community, both in a stable and in a changing environment.

6. Reproducibility. The ability to use constructed communities in a lab setting allows
one a degree of reproducibility that is not easily attained in “the wild." That is, the
ability to store communities (or their members) in the freezer allows for repeatable
studies across time and between labs. Similarly, a frozen stock of a pre-mixed
community could be outgrown with some consistency and repeatability.

7. The model does not need to be perfect. For me, an ideal model system would
include at least one genetically tractable organism, but such a feature is not
essential for all investigators and depends on the questions the model is designed
to ask.  would say, however, that the more features that are useful to the largest
number of investigators would increase the likelihood that a given model is likely
to be broadly adopted. As mentioned above, model development will be an
iterative process (this was the case for model microbes, too), so one may need to
dive in to model building at the outset with incomplete information!

GOING FORWARD

How would microbiologists begin the process of coalescing around a set of model
systems? One pathway is to work with funding agencies. For example, the National
Science Foundation (NSF) Long-Term Ecological Research Program (LTER) funds work at
specific sites, allowing investigators from a variety of disciplines to focus their efforts
on one locale, rather than having individual researchers use their particular (narrowly
focused) tools to study their specific, unique research site. Similarly, NSF Engineering
Research Centers program helped launch, for example, the Center for Biofilm Engineer-
ing—this was a strategic investment in growing a field. A call by the NSF, DOE, or
NIH for proposals that focus on model community development, with a requirement
for trans-disciplinary engagement, coupled with an outreach and/or visiting scientist
program to help “spread the word,” could be an effective strategy.
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A more “bottom-up” approach might leverage a group of scientists already thinking
deeply about building microbial model communities. For example, a virtual workshop |
hosted at the Dartmouth Cystic Fibrosis Center (DartCF) brought together 35+ investiga-
tors working on CF to discuss what are some key aspects of building a model of airway
infection relevant to CF (37). Two ideas came out of this workshop. First, “the right model
for the right question,” that is, we need to think deeply about the kind of questions we
would like to answer as we develop model microbial communities. Second, the clear
need for more than one model system, because of the broad set of questions we would
like to answer about microbial communities found across diverse environments. Maybe a
happy middle ground is ~10 communities that we can rally around.

What do we stand to gain by developing a set of broadly adopted microbial
community model systems? To perhaps overwork an analogy used above, as a field,
we can compare apples to apples, oranges to oranges, and mangos to mangos for
individual communities, and if we are lucky, make generalizations that apply to most/all
fruit, and if we are really lucky, uncover generalizable “rules of life” As depicted in Figure
1, these model communities may allow us to make the first baby steps on the road to
understanding mechanisms that drive the structure/function of natural systems. We still
have a long way to go to come close to any model communities approaching natural
complexity, but these first steps are analogous to those taken by the pioneers using
microbial model organisms to reveal the wonder of the biology of individual microbes.
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