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Abstract—Most research studies on deep learning (DL) applied
to the physical layer of wireless communication do not put
forward the critical role of the accuracy-generalization trade-off
in developing and evaluating practical algorithms. To highlight
the disadvantage of this common practice, we revisit a data
decoding example from one of the first papers introducing DL-
based end-to-end wireless communication systems to the research
community and promoting the use of artificial intelligence
(AD/DL for the wireless physical layer. We then put forward
two key trade-offs in designing DL models for communication,
namely, accuracy versus generalization and compression versus
latency. We discuss their relevance in the context of wireless
communications use cases using emerging DL models including
large language models (LLMs). Finally, we summarize our
proposed evaluation guidelines to enhance the research impact of
DL on wireless communications. These guidelines are an attempt
to reconcile the empirical nature of DL research with the rigorous
requirement metrics of wireless communications systems.

I. INTRODUCTION

ESEARCHERS are developing use cases where DL can

potentially enhance the system performance and reduce
complexity/overhead compared to classical methods (see en-
visioned examples for standardization in the 3GPP Release
18 [1, Section 9.2]). Since the introduction of the AlexNet
network in 2012, the use of deep neural networks (DNNs)
has skyrocketed within the communications community by
substituting conventional optimization solvers with generative
and/or discriminative DL techniques. Fig. 1 summarizes some
of the key DL models applied to communications problems,
starting from the multilayer perception (MLP) model [2] to
the diffusion model [3]. We refer the reader to [4] for a
comprehensive survey on the applications of DL for wireless
physical layer design. In Fig. 1, we also include the recent
generative pre-trained transformer (GPT) models [5], [6] as
they are currently initiating many discussions within the com-
munications research community about the data compression
properties of large language models (LLMs) and their role in
replicating digital twins (cf. Section III-B).

Because the sixth-generation (6G) networks are envisaged
as multi-band, decentralized, fully autonomous, and hyper-
flexible user-centric systems encompassing satellite, aerial,
terrestrial, underwater, and underground communications, DL
techniques are expected to partially or fully substitute clas-
sical methods, their assessment metrics should comply with
rigorous evaluation guidelines that equally address latency,
complexity, generalization, and accuracy. In this paper, we

reflect on the last decade of research on DL for wireless
communications with a focus on the physical and link layers.
We start by highlighting the limitations of state-of-the-art DL
methods for wireless communications. We do so by revisiting
one of the first published papers [7] introducing DL-based end-
to-end communications systems over additive white Gaussian
noise (AWGN) channels. By doing so, we pinpoint how [7],
as many of the subsequent DL papers for wireless, turn the
spotlight on the accuracy of DL methods at the cost of
sacrificing their generalization capabilities. We also highlight
how the open literature does not draw enough attention to the
important practical considerations for designing DL systems
for wireless communications, such as data acquirement and
adaptation to new system dimensions. We then describe the
two key trade-offs in designing DL-aided wireless communi-
cations systems, namely, accuracy versus generalization and
compression versus latency. These two trade-offs offer new
evaluation guidelines to assess future DL research directions
for wireless communications.
@ Chat-GPT

@ Diffusion

ResNet
@ AlexNet

GPT-3 @
Transformer @
o @)

Fig. 1: Publication timeline of the key DL models used
and/or being investigated by the communications research
community.

II. LIMITATIONS OF THE STATE-OF-THE-ART
DL TECHNIQUES FOR WIRELESS COMMUNICATIONS

In this section, we describe the limitations of neglecting the
data distribution shift when evaluating DL models for wireless
communications at the physical layer. Specifically, we revisit



an example from [7] to illustrate the drawbacks of blindly
applying black-box DL models in a plug-and-play manner
when only the model accuracy is assessed. We also describe
other challenges arising from the use of DL techniques that
are usually not examined in the open literature.

A. Evaluation of a Single Metric

It is always possible to beat a classical method that solves a
non-closed form problem using DL techniques based on deep
neural networks (DNNs) given a known model by generating
training and test datasets on which DNNs are both trained and
evaluated. For this reason, it is critical to use both the accuracy
and generalization of DNNs to assess their performance on a
variety of:

« in-distribution (ID) scenarios where the training and testing
datasets are generated from the same distribution (e.g., the
same user speed is assumed to generate mobility data to be
used for training and testing).

o out-of-distribution (OOD) scenarios where a distribution
shift occurs between training and testing datasets (e.g.,
different user speeds are assumed to generate mobility data
to be used for training and testing).

In other words, DL models that are either accurate and non-
robust or highly biased and robust are equally worthless for
real-time physical/link layer applications.

To illustrate this idea, we revisit the study [7], which is one
of the first papers promising the design of communications
systems as an autoencoder for reconstruction tasks that jointly
optimize transmitter and receiver components in a single end-
to-end process. As shown in Fig. 2, the physical communica-
tion chain of the transmitter and the receiver are substituted
by an encoder and a decoder, respectively. The channel is
represented as a noisy non-parameterized layer that injects an
additive Gaussian white noise at a specific energy per bit to
noise power spectral density ratio, Fj/Ny.
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Fig. 2: An end-to-end communication system over an AWGN
channel as an autoencoder: the input is the one-hot encoded
transmit symbol s while the estimated one-hot symbol § is
argmax of the softmax probability distribution over all possible
messages.

In [7], the training of the autoencoder was performed on
a dataset generated at E,/Ny, = 7dB. However, the eval-
uation was conducted over a range of E,/Ny between in
[-4dB, 8dB|. By doing so, the authors obtained a lower block
error rate (BLER) than the Hamming code with rate R = 4/7
and concluded that the autoencoder “has learned some joint
coding and modulation scheme, such that a coding gain is
achieved”.

From a machine learning theory perspective, this conclusion
is questionable. For this reason, we train multiple autoen-
coders, each with a training F},/Ng € {—4,0,5,7,8} dB. We
then evaluate each autoencoder on the testing range E;, /Ny €
[-4dB, 8dB| as shown in Fig. 3. There, all autoencoders in
Fig. 3 exhibit a decreasing BLER over the entire test E} /Ny
range even though they were trained on one single Ej,/Ng
value. While this fact suggests that autoencoders over AWGN
channels generalize well to out-of-distribution decoding sce-
narios, it can also indicate that the problem at hand is easy
to solve because the distribution shift between the training
data distribution associated with E, /Ny = 7dB and the test
data distributions with E, /Ny € [-4dB, 8dB] is minimal. To
confirm this fact, we report in Table I the percentage of the area
overlap between the data distribution of the received signal
y~N (:c, m I) for training and testing Ej, /Ny values
. We observe the fact that lower testing values for Ej,/Ny
compared to the training value E},/Ny = 7dB yields a lower
area overlap, or equivalently, a higher OOD shift. However,
it is interesting to note the significantly high overall overlap.
This suggests that the AWGN channel is a simplistic model
to assess the generalization performance of DL models. One
can perceive the AWGN channel model in communication as
the MNIST dataset in computer vision on which any great
performance is considered obsolete by the computer science
community due to the intrinsic simplicity of the handwritten
digit classification task.

TABLE I: The percentage of area overlap between the training
(Ey/Ny = 7dB) and testing received signal distributions
(EI)/NO € {745 07 57 8} dB).
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Fig. 3: BLER of the autoencoder versus test Fj/Ny for
multiple training Ejp/Np.

To quantify the shift between two distributions, their area overlap is more
informative than their KL-divergence because the latter only accounts for the
region where both distributions are non-zero.



It is also unclear whether the chosen value Fj,/Ny = 7dB is
the best one to select. It is seen that training autoencoders
on lower E}/Ny values in [—4dB, 8dB] (i.e., with higher
noise levels) leads to a smaller BLER across the entire test
E,/Ny interval. This result not only shows that the train
Ey /Ny = 7dB selected in [7] is not the best choice, but also
demonstrates how noisy training can be more beneficial for
better generalization.

Given all the aforementioned reasons, the fact that the
autoencoder outperformed the Hamming code in [7] is more
justified by the simplicity of the AWGN channel model which
does not shift significantly the received signal in the testing
E, /Ny interval. As a matter of fact, adding a noise correlation
to the AWGN channel or accounting for the fading effects by
changing the AWGN channel to a Rayleigh one break down
the decoding performance of the autoencoder. In summary, the
analysis of the results as a function of the trade-off between
generalization and accuracy metrics opens the door to future
rigorous investigations and reveals more insights about better
data generation and model training choices.

B. Is Meta-learning Sufficient for Generalization?

To sidestep the need for large data samples to train DL
models, meta-learning optimizes a general model using sam-
ples from multiple tasks (a.k.a., meta-tasks) in order to adapt
to new unseen tasks. By designing meta-tasks associated with
specific communication scenarios using the model-agnostic
meta-learning (MAML) framework [8], prior work reported
better performance for meta-learning solutions compared to
standard DL methods. A few attempts bypass the black-box
nature of DL models and connect communication systems
models with meta-learning. This enables learning a subset of
the model-based parameters, thereby minimizing the search
space induced by black-box DL models [9]. However, the large
body of research about generalization in wireless is limited
to creating multiple meta-tasks with different communication
conditions following the MAML-like framework. While enu-
merating and generating meta-tasks do not scale for some
complex communication scenarios, understanding which fea-
ture is invariant across different domains becomes critical for
scaling DL techniques. By doing so, one relies on the domain
knowledge in addition to the standard two-step optimization
of meta-learning. For instance, variations of complex signals
related to the phase generalize better than those related to the
amplitude. Overall, the study of the features in the context of
meta-learning (a.k.a., meta-features) for wireless problems has
not been explored by the wireless communications community.
Existing studies rely on back-propagation to extract suitable
correlations characterizing specific meta-tasks. This is differ-
ent from those in the ML community which investigate data
properties that affect the learning performance, and measure
similarities between datasets and meta-features using multiple
criteria such as mutual information and density skewness [10].

C. Unquestioned Sources of Dataset

In conventional communications protocols, a significant
portion of a transmission interval (e.g., time slot) is usually

used to send training sequences for channel estimation. The
real-time computation involved during these training time slots
defines the computational complexity of many communica-
tion methods. For possible future Al-aided communication
protocols, it is still unclear whether they will be designed
based on fully offline training procedures or by additionally
relying on extra finetuning steps. The latter scenario raises
the question about real-time collection of data for adaptation
purposes, and the related overhead to determine the complexity
of DL techniques. The existing research in the open literature
disregards these practical challenges and focuses entirely on
fully offline-trained DL methods, which, at the current state,
cannot fulfill the adaption capabilities of wireless systems
envisioned for 6G.

When accuracy is the only metric of evaluation of DL
models, ignoring these practical challenges seems acceptable
because offline training is enough to judge the DL perfor-
mance. However, when the assessment of DL techniques
accounts for their generalization issues, the availability of data
sources and their properties becomes a central component of
the analysis.

D. Use of Reinforcement Learning for Optimization

In the pre-DL era (i.e., before 2012), optimizing non-convex
problems using gradient descent (GD) algorithms were not
very popular in the wireless research community. Instead of
using GD-based optimization, researchers convexified the non-
convex problems in order to solve them. DL research has
introduced a plethora of optimizers to train DNNs which
has made GD a popular technique. This is partly due to
the unique properties of flat minima characterizing DNNs’
loss functions [11]. Consequently, DL techniques have been
used to solve optimization problems such as channel and
power allocation, beamforming/precoding, user association,
and trajectory planning for unmanned aerial vehicles (UAVs)
in the physical/link layers in various contexts and system
models.

A common practice to tackle non-convex communication
problems in the DL era is by resorting to the reinforcement
learning (RL) paradigm. RL agents are trained to learn the
optimal policy to act on an environment in order to maximize
the sum of the instantaneous reward signals received from
an environment. We refer the reader to [12] for a rigorous
treatment of RL formulation in terms of Markov decision
processes (MDPs). By substituting the reward signal within the
RL formalism with a convex or non-convex cost function to be
optimized, the RL agent can find the best policy to optimize
it. For instance, one can associate the beamforming vector
to the action of the RL agent and the achievable rate of the
communication system to be the reward signal [13].

Because wireless communications problems must satisfy
multiple constraints simultaneously (e.g., power, latency,
signal-to-interference-plus-noise ratio [SINR]), prior work
made use of clipping strategies to enforce constraints on
the RL agent’s output. While this strategy provides good
results in some scenarios, it does not guarantee an optimal
solution. A better choice would be to cast the communication



problem within a constrained MDP formalism [14]. However,
little effort has been dedicated to properly incorporating the
constraints, and the unconstrained MDP approach remains a
popular data-driven approach to optimize non-convex commu-
nication problems. In addition, the discussion of RL challenges
in terms of sample efficiency and generalization is usually
neglected despite the fact that it is an active research area
within the ML research community.

E. Fixed Structures of Deep Neural Networks

DNNs have fixed structures and it is not possible to change
them anymore after initialization. This inflexibility is con-
sidered a drawback because many wireless communications
problems may require different input/output sizes over time.
As one example, consider the problem of channel estimation
at the base station based on the SINR vector with each
component being associated with a specific user. In this
case, the DNN input is the SINR vector while the estimated
channel matrix represents the DNN output. During multiple
transmission blocks, the number of users changes and so does
the size of the SINR vector. Using the dropout method [15], it
is possible to randomly drop the contribution of some neurons
during the DNN training. While this provides flexibility in the
structure of hidden layers, the input and output layers still have
a fixed size, and hence limited flexibility in practice. Actively
altering the network structure by adding neurons is both a
promising and challenging direction. Because DL research for
wireless communications generally considers DNNs as black-
box modules, this field has not attracted the attention of the
wireless research community and opted for constant-padding
the input and output layers to the expected maximum size.
Another unexplored area in this direction is the mapping of
different vector sizes to the same latent space, thereby unifying
the DNN input into the same feature space. While feature
extractors for computer vision and natural language processing
(NLP) tasks are abundant, wireless communications problems
require signal-based feature extractors, which have not been
well examined by our research community yet. It is worth
noting that the recent wave of NLP models has allowed DNNs
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to have an apparent flexibility in the input and output sizes
since LLMs are trained to sequentially predict the next token
given the current token. This is to be opposed to the application
of DL for wireless where the output of DNNs is obtained with
a one-shot inference run.

III. TWO KEY TRADE-OFFS FOR DL
APPLIED TO WIRELESS PHYSICAL LAYER

In this section, we highlight the importance of two fun-
damental learning trade-offs in the assessment of DL mod-
els, namely, accuracy versus generalization, and compres-
sion versus latency. In particular, we discuss how accuracy-
generalization should guide the evaluation of smaller DL
models and highlight the importance of the compression-
latency trade-off for practical use cases of LLMs. Through
this section, generalization does not refer to the stability of
the model’s performance under noise and adversarial examples
(i.e., adversarial robustness), but rather to the ability of the
model to generalize to unseen scenarios.
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Fig. 5: The key trade-offs in assessing the relevance of small
DL models and LLMs for communication use cases.

A. Accuracy Versus Generalization

In classical machine learning, the trade-off between the
accuracy and the generalization pertains to the fundamental
bias—variance trade-off which characterizes the generalization
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Fig. 4: Plots of training and test losses characterized by: (a) a U-shaped loss curve justified by the bias-variance trade-off, and
(b) the double-descent loss curve combining the U-shaped loss curve for the under-parameterized regime and a decreasing loss
for the over-parameterized regime. The latter is not a phenomenon exhibited by all deep learning models and hence is not well

understood yet.



capabilities of predictive models [16]. The bias—variance trade-
off stipulates that a model must have enough parameters to
capture the underlying structure of the dataset without over-
fitting spurious patterns. Fig. 4(a) depicts the expected U-
shaped variation of the test loss whose minimum represents
the sweet spot in terms of the number of parameters between
under-fitting and over-fitting. In DL practice, however, deeper
networks with a large number of parameters are trained to in-
terpolate between the training samples and do maintain a lower
test loss accuracy on test datasets as depicted by the “double
descent” curve in Fig. 4(b). While this over-parameterized
regime depicted might look contradictory to classical (i.e.,
under-parameterized) regime, this over-parameterized regime
is not well understood and is being actively investigated within
the theoretical DL community [17]. This is because the double
descent behavior does not consistently occur for every DNN
and some of them, even very deep ones, still empirically obey
the bias-variance trade-off [18]. Whether the DNN follows
the variance-bias trade-off or the double descent behavior
depends on the DNN’s parameters such as the number of input
data points, the number of layers, and the overall number of
parameters.

For the above reasons, evaluating the performance of DL
models must be entirely tied to the employed DNN archi-
tecture. For example, one cannot claim that DL decoding is
superior to classical methods because the mean-square error
of one specific DNN tested on a few evaluation scenarios is
lower than the one of a classical method (cf. Section II-A). Re-
cent efforts from the communication community initiated the
application of different learning paradigms including transfer
learning, meta-learning, and continual learning to investigate
the generalization of DNNs [19]. Some studies also showed
that even the incorporation of domain knowledge in supervised
learning without the explicit use of other learning paradigms
can improve the DNN’s generalization. For instance, by
alternating between the time-domain and frequency-domain
representations of signals and using the idea of successive-
estimation and cancellation, it is possible to design DNNs to
handle multiple sinusoid waves and improve their estimation
performance on out-of-distribution samples [20].
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In summary, by blinding applying DNNs without account-
ing for their accuracy-generalization trade-off, most research
results become biased and less impactful in the long term.
At the time of writing, potential leaks about the unknown
GPT-4 architecture on Reddit [21] revealed that GPT-4 is not
one giant monolithic lossy dataset compressor but rather an
ensemble of eight 220B-parameter LLMs, each trained with
different data/task distributions. This suggests that GPT-4 is a
mixture of experts (unlike GPT-3.5 and GPT-3) and operates
at a much smaller over-parameterized regime that challenges
the myth of very large and fully end-to-end DNNs.

B. Compression Versus Latency

The study of the trade-off between lossless/lossy compres-
sion and latency has historically evolved around reaching the
source coding limit established in 1948 by Shannon’s seminal
work [22]. In a nutshell, it stipulates that higher compression
ratios require longer block lengths and thus higher encoding
and decoding time complexity. Specifically, Shannon showed
that the codeword length of an optimal prefix-free code is
approximately the negative logarithm of the codeword’s prob-
ability. He also proved that the expected message length of an
optimal prefix-free code is close to the entropy of the message.
Shannon also explored the information-theoretic relationship
between compression and (next-letter) prediction by estimating
the entropy of the English language [23]. Similar to the con-
nection between next-letter predictors and data compressors,
the emerging LLMs represent lossy data compressors in a
data-driven fashion which exploit the inherent redundancy
within the human language to embed massive datasets into a
significantly smaller DNN model [24]. They are giant DNNs
with billions of parameters compressing a large number of
datasets by learning to predict the next token from the previous
context composed of one or multiple tokens.

Given the tight information-theoretic relationship between
the compression ratio and the decoding latency, it is there-
fore natural at this time to review some of the envisioned
communication use cases of LLMs. The fascination of the
general public with the quality of the output text of LLMs
suggests that their compression quality will be at the cost of
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Fig. 6: Image transfer using (a) conventional communication, and (b) using a LLM as an image compressor to a prompt.
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their decoding latency. Indeed, an LLM with a few billion
parameters requires around 100 GB of RAM. Moreover, the
current optimized deployment of LLMs for efficient inference
comes at the expense of high backend infrastructure costs and
significant latency. Aware of these issues, important research
efforts from the LLM community are actively examining the
effect of quantization on the inference time of LLMs without
significantly affecting their accuracies. For these reasons,
the discussed applications of LLMs by the communications
research community focus on latency-tolerant use cases at the
application layer.

The first use case of LLMs for communication is image
transfer. As shown in Fig. 6(b), a user equipped with an LLM
obtains the text prompt of the image to transfer. Only the
prompt is sent through the channel as a bit stream. The prompt
is then recovered from the received bits to probe the LLM,
which in turn outputs the image to the receiver. This is unlike
the conventional data transfer where the entire bit stream of
the image is transmitted through the channel as in Fig. 6(a).
Here, the LLM-aided image transfer can provide a significant
data compression rate under two conditions. The first one is
that the parameters of the transmit and receive LLMs must be
equal, or that their embeddings yield the encoded and decoded
image. The second one is related to the compression-latency
trade-off where both the encoding and decoding time of LLMs
must provide a significant advantage over the improvement of
the compression ratio between an image and a text prompt.

Another use case of LLMs is to minimize the need for
communication between two users by learning a personalized
LLM as a digital twin for each one of them as shown in Fig.
7. This means that an LLM must be able to reliably mimic the
user interaction. From a probabilistic perspective, this corre-
sponds to reliably learning the joint distribution of reactions,
preferences, and thoughts of any user. The realizability of this
scenario is still far from being a reality in the near future
due to multiple reasons. This includes the data privacy and
security concern, as well as the hallucination effects exhibited
by LLMs as they tend to output text that appears to be

correct but is actually false or not based on the input given.
In summary, short-cutting the cost of communication must
come with the benefit of highly accurate digital twins. Another
important limitation to implementing these use cases is the
lack of rigorous metrics to assess the performance of LLMs.
In fact, existing evaluation protocols are either automatic (e.g.,
the ROUGE metric for text summarization) exhibiting poor
correlation to human judgments, or manual yielding noisy and
potentially biased annotations. In summary, the adaptation of
LLMs to the unique signal-based nature of communication
datasets is vague and uncertain and is still in its infancy.

IV. CONCLUSION

The ever-increasing requirements for future 6G wireless
applications call for the urgent need to go beyond the accuracy
metric to assess DL methods for communication. We have
described the importance of the accuracy-generalization and
compression-latency trade-offs in shaping the future evaluation
guidelines of DL techniques for wireless problems as summa-
rized in Fig. 8.

Performance benchmark
using the figure-of-merits

Accuracy
evaluation

Investigation of the model accuracy for
different parameter values pertaining
to different regimes of analysis

Generalization

evaluation

Latency Time complexity benchmark for

practical algorithmic solutions

evaluation

Fig. 8: The proposed evaluation components.

These evaluation criteria should be continuously updated in
light of a new understanding of the specific challenges fac-
ing the applications of deep learning models for wireless
communication problems. We also have discussed how these



metrics are critical in evaluating the relevance of emerging
deep learning models including large language models. We
believe these trade-offs bridge the gap between the empirical
nature of deep learning models applied to communication
problems and the challenging technical requirements of future
communication systems.
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