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Abstract—Object detectors used in autonomous vehicles can
have high memory and computational overheads. In this paper,
we introduce a novel semi-structured pruning framework called
R-TOSS that overcomes the shortcomings of state-of-the-art
model pruning techniques. Experimental results on the
JetsonTX2 platform show that R-TOSS has a compression rate
of 4.4× on the YOLOv5 object detector with a 2.15× speedup in
inference time and 57.01% decrease in energy usage. R-TOSS
also enables 2.89× compression on RetinaNet with a 1.86×
speedup in inference time and 56.31% decrease in energy usage.
We also demonstrate significant improvements compared to
various state-of-the-art pruning techniques.

Keywords—pruning, object detection, YOLOv5, RetinaNet,
Jetson TX2, model compression, computer vision.

I. INTRODUCTION

In recent years, autonomous vehicles (AVs) have received
immense attention due to their potential to improve driving comfort
and reduce injuries from vehicle crashes. A report from the National
Highway Traffic Safety Administration (NHTSA) indicated that in
2021, more than 31,720 people were involved in fatal accidents on
U.S. roadways [1]. These accidents were caused predominantly by
distracted drivers, who contributed to ~94% of them. AVs can help
mitigate human errors and avoid such accidents with the help of their
superior perception systems. A perception system helps AVs
understand their surroundings with the help of an array of sensors
that can include Lidars, Radars, and Cameras. Object detection is an
important component of such perception systems [2].

AVs must process a huge amount of data in real-time to provide
precise corrections to the vehicle controller to maintain their
trajectory, speed, and direction. To assist with vehicle path planning
and control, AVs rely on object detectors to provide information
about the obstacles in their surroundings. These object detectors
must satisfy two important conditions: 1) maintaining high
accuracy, and 2) providing inference in real-time (~tens of
milliseconds). In recent years researchers have been able to design
machine learning models for object detection with high accuracy.
However, these models are compute-intensive and often combined
with a sensor fusion task which helps in providing the input to these
models by combining data from various sensors [3], [35]. Apart
from these object detectors AVs also must process immense data as a
part of the Advance Driver Assistance System (ADAS) for
operation safety and security such as in-vehicle communication and
vehicle-to-x (V2X) protocols which can increase computational cost
and power usage [4], [25], [33]. This is a challenge because onboard
computers in AVs are resource-constrained, with strict limits on
power dissipation and computational capabilities.

Object detection is a compute and memory-intensive task
involving both classification and regression. Typically, all machine
learning based object detectors can be classified into two types: 1)
Two-stage detectors and 2) Single-stage detectors. Two-stage
detectors employ a two-stage detection process that involves a
region proposal stage and subsequent object classification stage. The
region proposal stage often consists of a Region Proposal Network
(RPN) which proposes several Regions of Interest (ROIs) in an input
image (e.g., camera sensor in an AV). These ROIs are used to
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classify objects in them. The objects are then surrounded by
bounding boxes to localize them. Examples of two-stage detectors
include R-CNN [5], Fast R-CNN [6], and Faster R-CNN [7]. In
contrast to two-stage detectors, single-stage detectors use a single
feed-forward network which involves both classification and
regression to create the bounding boxes to localize objects. Single-
stage detectors are lightweight and faster than two-stage detectors.
Some examples of single-stage detectors are YOLOv5 [8] (You
Only Look Once), RetinaNet [9], YOLOR [10], and YOLOX [11].

Unfortunately, even single-stage detectors are compute and
memory intensive, so deploying and executing them on embedded
and IoT boards in AVs remains a bottleneck [12]. To address this
bottleneck, many techniques have been proposed in recent years,
such as pruning, quantization, and knowledge distillation, to
compress and optimize object detector execution, with an emphasis
on improving inference time while preserving model accuracy.
Pruning techniques in particular have been shown to be very
effective in increasing the sparsity of object detector models, by
carefully removing redundant weights that do not impact overall
accuracy. Such sparse models require fewer computations, and can
be compressed to reduce latency, memory, and energy costs.

In this paper, we introduce the R-TOSS object detector pruning
framework to achieve efficient pruning of object detectors used in
AVs. Unlike traditional pruning algorithms that can generally be
classified as unstructured pruning [13]-[18] or structured pruning
[19]-[23], we utilize a more niche approach that involves semi-
structured pruning. Our approach involves applying specific kernel
patterns to prune convolutional kernels and associated connectivity.
The novel contributions of our proposed pruning framework for
object detectors are as follows:

     An approach for reducing computational cost of iterative
pruning by using depth first search to generate parent-child
kernel computational graphs, to be pruned together;

     A pruning technique to prune 1×1 kernel weights to increase
achievable model sparsity;

     An implementation of kernel pruning without connectivity
pruning, to preserve kernel information for inference, that
can help retain model accuracy;

     A detailed comparison against multiple state-of-the-art
pruning approaches to showcase the effectiveness of our
novel framework, in terms of mAP, latency, energy usage,
and achieved sparsity.

The rest of the paper is organized as follows: Section II provides
a detailed background in terms of state-of-the-art object detector
models and pruning techniques; Section III describes the motivation
for this work; Section IV introduces our framework and provides a
deep dive into the algorithms proposed; Section V showcases our
experimental results, and Section VI presents our conclusions.

II. BACKGROUND AND RELATED WORK

A. Object Detectors
Object detectors are used in AVs for various tasks such as traffic

sign and traffic light recognition, lane recognition, vehicle tracking,
etc. These object detectors can be classified into two categories, two-
stage and single-stage detectors. To evaluate an object detector,
irrespective of the category, mean average precision (mAP) and
intersection over union (IoU) metrics are used. mAP is the mean of
the ratio of precision to recall for individual object classes, with a
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higher value indicating a more accurate object detector. IoU
measures the overlap between the predicted bounding box and the
ground truth bounding box.

Two-stage object detectors: Two-stage detectors use a two-stage
process consisting of a region proposal and object classification. R-
CNN [5] was one of the first deep learning-based object detectors to
be proposed. The algorithm’s novelty came with an efficient selective
search algorithm for ROI proposals, which dramatically decreased
the overall number of regions needed to be processed. The regions
were fed into a convolutional neural network (CNN) for feature
extraction. The CNN output was sent to a support vector machine
(SVM) for classifying the object in the region. Even though the
reduction in ROI proposals was revolutionary in terms of minimizing
inference time, the R-CNN algorithm cannot infer in real time, as it
can take ~40s to process a single input image.

To address the latency challenge, the same authors proposed Fast
R-CNN [6]. In Fast R-CNN, a CNN is used to generate convolution
feature maps of the input images rather than for feature extraction.
The feature maps are used for ROI identification and the ROIs are
warped to squares using a pooling layer, which is further transformed
into a vector to be fed into a fully connected (FC) layer. The feature
vector from the FC layer is used for object class prediction in the
ROI, using a softmax layer, and a bounding box regressor is used for
coordinate prediction. Fast R-CNN exhibited inference speeds
around ~2s, significantly faster than R-CNN, but the latency is still
high, making it unusable in a real-time scenario.

Faster R-CNN [7] tackled the high latency caused by the region
proposal mechanism in both the prior R-CNN works, by directly
feeding the image to the CNN and letting the CNN learn to perform
ROI prediction. This remarkably reduced the latency to ~0.2s.

Despite their desirable accuracies, two-stage detectors are bulky
and have best case latencies in the hundreds of milliseconds on high-
end GPUs. These latencies and resource overheads make them
impractical for embedded real-time use cases, such as in AVs.

Single-stage detectors: Single-stage detectors are much faster
than two-stage detectors because they use a single feed-forward
network without any intermediate stage for ROI proposals. The
YOLO algorithm was revolutionary when it came out in 2016 as it
reframed object detection as a single-stage regression problem, from
image feature extraction, to bounding box generation, and object
classification. The follow-up variants of YOLO made it faster and
more accurate while preserving the single shot detection philosophy.
YOLOv4 introduced two important techniques: ‘bag of freebies’
(BoF) which involves improved methods for data augmentation and
regularization during training and ‘bag of specials’ (BoS) which is a
post processing module that leads to better mAP and faster inference
[26]. YOLOv5 [8] proposed additional data augmentation and loss
calculation improvements. It also used auto-learning bounding box
anchors to adapt to a given dataset. Even though YOLO models
provide good inference speed, they have a class imbalance problem
when detecting small objects. This issue was addressed in RetinaNet
[9], which used a focal loss function during training and a separate
network for classification and bounding box regression. Table 1
shows a performance comparison of various object detectors in terms
of frames-per-second (fps) on the COCO dataset [27].

TABLE 1: Metrics comparison of two-stage vs single-stage detectors
Name Type mAP Inference rate (fps)

R-CNN [5] two-stage 42% 0.02
Fast R-CNN [6] two-stage       19.7%                   0.5

Faster R-CNN [7] two-stage 78.9% 7
RetinaNet [9]           single-stage     61.1%                   90
YOLOv4 [26]           single-stage      65.7%
62 YOLOv5 [8]          Single-stage 56.4%
140

While single-stage detectors are faster than two-stage detectors,
they still incur significant inference times when deployed on an
embedded board. To further reduce latency, model compression
techniques, such as pruning, quantization, and knowledge
distillation, are essential to consider. Quantization requires
specialized hardware support for efficient deployment, which may
not be available in embedded boards. Knowledge distillation requires
the student model to be robust in order to absorb and retain the
information from the teacher model, which requires both time and

complex computation. Compared to its counterparts, pruning is
neither computationally complex nor hardware bound, so we focus
on pruning for accelerating object detector inference in this work.

B. DNN Model Pruning
Pruning an object detection model aims to reduce model

footprint and computational complexity by removing weight
parameters from the model using some criteria. Consider a deep
learning model with   number of layers. The most compute-
intensive operation of a deep learning model is the Convolution
(Conv) layer. If each Conv layer has   number of kernels with
number of non-zero weights, during inference, the computational
cost of the model is a function of (      ×   ×   ). This
computational cost increases dramatically as the parameters
involved increases, as is the trend in modern deep learning models.
By performing parameter pruning, we can induce sparsity in the
model which will decrease the parameters in       and through kernel
pruning we can also decrease   . This decreases the overall
computational cost. Emerging computing platforms provide
software compression techniques [28] which can compress the input
and weight matrices in response to the presence of zero valued
(pruned) parameters, thus skipping them entirely during model
execution. The skipping operation may optionally also be performed
by the hardware with specifically designed hardware [29].

Pruning approaches from prior work can be classified into three
major categories: unstructured pruning, structured pruning, and
semi-structured or pattern-based pruning.

Fig. 1: Illustration of different pruning methods

Unstructured pruning: In unstructured pruning, redundant
weights (Fig 1(a)) are pruned opportunistically, while keeping the
loss to minimum which helps in retaining the accuracy of the model.
Several unstructured pruning schemes have been proposed, such as:
1) weight magnitude pruning, that focuses on replacing a set of
weights below a predefined threshold to zero [13], [14]; 2) gradient
magnitude pruning, that prunes a set of weights whose gradients are
below a predefined threshold [15], [16]; 3) synaptic flow pruning,
which is an iterative pruning technique that uses a global scoring
scheme and prunes a set of weights until the global score drops below a
threshold [17]; 4) second order derivative pruning, that calculates the
second order derivative of weights by replacing a set of weights by
zero and keeping the loss of the network close to the original loss [18].
These approaches negatively impact thread level parallelism
due to the load imbalance caused by different levels of sparsity across
weight matrices. Irregular sparsity also affects memory performance
due to changes it creates in data locality, leading to reduced benefits
from caching across various platforms (GPUs, CPUs, TPUs).

Structured pruning: In structured pruning, an entire filter (Fig. 1
(c)) [19]-[21] or consecutive channels (Fig. 1(b)) [22], [23] are
pruned, to increase sparsity of the model. Filter/channel pruning
provides a more uniform weight matrix and reduces the size of the
model. The reduced matrix sizes help in reducing the number of
multiply and accumulate (MAC) operations compared to that of
unstructured pruning. However, structured pruning also decreases the
accuracy of the model since weights that can be contributing to the
overall accuracy of the model will also be pruned along with the
redundant weights. Structured pruning can also be used with
acceleration platforms like TensorRT [24]. Unlike unstructured
pruning, due to the uniform nature of the weight matrix, structured
pruning can better utilize the hardware acceleration provided by
various platforms in terms of memory and bandwidth [21], [23].
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Semi-structured pruning: Semi-structured pruning, also called
pattern pruning, is a combination of structured pruning and
unstructured pruning schemes (Fig. 1(d)). This type of pruning
utilizes kernel patterns that can be used as a mask on a kernel. A mask
prevents the weights it covers from being pruned, inducing partial
sparsity in a kernel. By evaluating the effectiveness of the pruned
kernel, by utilizing L2 norm for example, the most effective pattern
masks can be identified and deployed during inference. Since the
kernel patterns can only prune a fixed number of weights inside a
kernel, they will induce lesser sparsity than that of its counterparts
[30], [31]. To overcome this issue, pattern pruning is applied together
with connectivity pruning which prunes some of the kernels entirely.
However, most modern object detectors have a large number of 1×1
kernels which contain redundant weights that are not pruned during
this process. This is because, pattern pruning techniques typically
focus on kernels with sizes 3×3 and above, that have more candidate
weights for pruning. Connectivity pruning also reduces the accuracy
of the model since several important weights in a particular kernel
are also removed during this process. However, kernel pattern
pruning due to its semi-structured nature can still leverage hardware
parallelism to reduce inference times of the model [31].

III. MOTIVATION

Object detectors designed for use in AVs require high accuracy,
but consequently, these models also have overheads such as a large
memory footprint and higher inference time [38]. To overcome these
issues, we need to come up with a model that can be lightweight and
can achieve high accuracy. Single-stage detectors such as YOLOv5,
RetinaNet, Detection Transformer (DETR), and YOLOR are good
starting points to achieve real-time object detection goals, but these
models still have a high memory footprint which can decrease model
performance. Table 2 summarizes the inference time as the size of
the object detector model increases, on a Jetson TX2 platform.

TABLE 2: Comparison of model sizes vs. execution time
Models Number of parameters (Millions) Execution time (sec)

YOLOv5 [8]                              7.02 0.7415
YOLOX [11]                              8.97                                         1.23
RetinaNet [9]                            36.49                                         6.8
YOLOv7 [34] 36.90 6.5
YOLOR [10] 37.26                                        6.89
DETR [32] 41.52 7.6

In order to reduce latency of operation, while retaining model
accuracy a pruning technique can be employed. Among pruning
techniques, pattern-based semi-structured pruning can offer better
sparsity over unstructured pruning, while ensuring better accuracy
than structured pruning techniques. Semi-structured pruning also
allows for more regular weight matrix shapes, allowing the hardware
to better accelerate the model inference. Simultaneously, it does not
prune entire kernel weights, unlike structured pruning, thus retaining
more information and hence ensuring better accuracies. Therefore,
pattern-based pruning techniques can generate models with high
sparsity and high accuracy, ideally.

However, a caveat of pattern-based pruning, which limits the
achievable sparsity and hence the inference acceleration benefits, is
that current techniques primarily focus on 3×3 kernels. Most state-
of-the-art models such as YOLOv5, RetinaNet and DETR consist of
68.42%, 56.14% and 63.46% of small 1×1 kernels, respectively. So,
to increase the sparsity of such models, pattern-based pruning
techniques sometimes employ connectivity pruning on these 3×3
kernels [30]. But the ‘last kernel per layer’ criteria used in
connectivity pruning contributes to loss of important information
which can affect the accuracy of the model. So, we elect to avoid
connectivity pruning in our pruning framework. Moreover, this
technique still does not address the 1×1 kernels, which constitute a
significant portion of the kernels, as mentioned above.

To address these shortcomings, we propose a three-step pruning
approach to prune 1×1 kernels: 1) group 1×1 kernels to form 3×3
temporary weight matrices; 2) apply kernel pattern pruning on these
weight matrices; 3) decompose the temporary weight matrices to 1×1
kernels and reassign to their original layers. Our approach thus
increases the sparsity of the model while preserving important
information which contributes to the accuracy of the model.

IV. R-TOSS PRUNING FRAMEWORK

In this section, we describe our novel R-TOSS pruning framework
and detail how we have implemented the previously mentioned
improvements to the kernel pruning technique on the YOLOv5 and
RetinaNet object detectors. A straightforward approach to pruning,
while retaining much of the original performance of the model, is to
adopt an iterative pruning approach. But this is a naïve approach as
an iterative approach can quickly become unwieldy in terms of
computational cost and time requirement as the model sizes increase.
As mentioned in Section III.C, the model sizes of modern object
detectors are increasing, but for many application spaces which
employ them, such as AVs, their accuracy cannot be compromised.

Our R-TOSS framework (Fig. 2) adopts an iterative pruning
scheme with several optimizations for reducing computational cost
and time overheads. We start by using a depth first search (DFS)
algorithm which is used to find the parent-child layer couplings
within the model. The parent-child graphs thus obtained are used to
reduce the computation requirements for pruning. The reduction in
computation costs happens as the pruning at the parent layer is
reflected in its child layers within the graph. We follow up DFS with
identifying the 3×3 and 1×1 kernels within the sub-graphs and
applying kernel size specific pruning to them. These algorithms are
discussed in detail, in the following subsections.

Fig. 2: An overview of the proposed R-TOSS pruning framework

A. DFS algorithm
Algorithm 1 shows the pseudocode for the DFS algorithm.

Using the pretrained model as input, we compute the computational
graph (G) using the gradients obtained from backpropagation. An
empty list (group_list) is initialized (line 2) to store the parent-child
layer groups. We then traverse the model layers (l) and apply DFS
search on the computational graph G to identify the parent of that
layer. If a layer does not have any parent layer, then we assign that
layer as its own parent layer (lp) (lines 7–9) and this becomes a
group. If a layer is identified as the child layer (lc) to any layer in the
group_list (line 5) then this layer now becomes the parent layer (lp) of
the child layer (lc) and added to that group (lines 5–6). Each parent
layer (lp) can have multiple child layers (lc) but each child layer can
only have one parent layer (lp). This process continues until all the
layers are assigned to a group. Since layers in each group have
coupled channels in them, they also share their kernel properties,
hence they can share the same kernel patterns.

B. Selecting kernel patterns
We generate pattern masks in all possible combinations via

standard combinatorics, using the following equation:

 ( ) =  
 

  = 
 ! (  −  )!

(1)

where, n is the size of the matrix and k is the size of the pattern mask.
We then narrow down the number of kernel patterns used, using the
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following two criteria: 1) we drop all patterns without adjacent non-
zero weights; this is done to keep the semi-structured nature of the
kernel patterns; 2) we select the most used kernel pattern by
calculating the L2 norm of the kernel using random initiations in the
range [-1, 1]. The value of k can range from 1 to 8, which can
generate 8 different types of pattern groups. To increase the sparsity
level of the model, the number of non-zero weights in a pattern
should be low. Prior work [20], [30] on kernel pattern pruning has
used 4-entry patterns that consist of 4 non-zero weights in a kernel.
But this leads to models with relatively low sparsity and to overcome
this issue the authors of these works have utilized connectivity
pruning. Due to the drawbacks of connectivity pruning discussed in
Section II, we propose to use 3-entry pattern (3EP) and 2-entry
pattern (2EP) kernel patterns, which uses 3 and 2 non-zero weights
respectively, in our R-TOSS framework.

Algorithm 1: Layer grouping using DFS
Inputs: Pretrained model (M)
1: compute the computational graph (G) of the pretrained model
2: group_list ← Ø
3: for l in M:
4: apply DFS with G and find parent [lp] of M[lc]
5: if group_list[lp[0]] then
6: group_list[lp] ← M[lc]
7:        else
8: group_list[lp] ← 0
9: group_list[lp] ← M[lc]
10:      end
11: end
Output: a list of parent-child layer groups (group_list)

(a) Examples of 3-entry patterns (b) Examples of 2-entry patterns
Fig. 3: Illustration of kernel patterns

C. 3×3 kernel pruning
Algorithm 2 shows the pseudocode of the 3×3 kernel pattern

pruning using the proposed kernel patterns, examples of which are
illustrated in Fig 3. We start by using the 3×3 parent kernels weights
(KW) from Algorithm 1 as input and initializing a variable (shape) to
store the shape of the kernel weights (line 1). We also create a pattern
dictionary (kernel_patterns_dict) consisting of 3EP (Fig 3(a)) and
2EP (Fig 3(b)) patterns (line 3). We then traverse the 3×3 kernels and
store the weight matrices of the current 3×3 kernel in the layer as
temp_kernel (line 5). We then initialize an empty list (L2_dict) that
can store the L2 norm of the temp_kernel after applying the kernel
pattern from the pattern dictionary. We then iterate through the kernel
pattern in the kernel_patterns_dict and calculate the L2norm of the
kernel after applying the kernel pattern. This L2norm is stored in the
L2_dict list along with the key of the current pattern from the
kernel_patterns_dict (lines 710). We then find the best kernel
pattern for the temp_kernel by using the L2norm value from the
L2_dict and store the index of the kernel pattern in the bestfit variable
(line 11). The index from bestfit is now used as the kernel pattern for
the kernel and updated to its original weight matrices Kw (lines 12-
14). We then iterate through all the kernels in the parent layer and
store this as the kernel mask for the rest of the 3×3 kernels in the
parent layer group (lP) from Algorithm 1.

Once suitable patterns for the parent kernels are found, those
patterns are also applied to the corresponding children, by utilizing
the convolution mapping. We also apply this pattern matching
approach to the 1×1 kernels by performing a 1×1 to 3×3 kernel
transformation (see Section IV.D). Since we apply the same kernel
mask to all the kernels in a particular group, we can reduce the time
taken by the framework to prune the entire model. From experiments,
we reduced the total number of patterns required to 21 patterns. Since
we have only 21 pre-defined kernel patterns at inference, the kernels
with similar patterns are grouped together, which can reduce the
overall computational cost and speed up inference.

Algorithm 2: 3×3 Kernel Pruning
Inputs: 3×3 Kernel Weights (KW)
1: shape ← KW.shape
2: kernel_patterns_dict ← patterns used to prune the kernel.
3: for i in range (shape[0]):
4:     for j in range (shape[1]):
5: temp_kernel = KW[i, j, :, :].copy()
6:              L2_dict ← Ø
7: for key, pattern in kernel_patterns_dict.items():
8:                for index in pattern:
9: L2_norm = L2.norm(temp_kernel)
10:                     L2_dict[key] = L2_norm
11: bestfit ← best fit pattern for the kernel in terms of L2norm
12: for index in patterns_dict1[bestfit]:
13: KW[i, j, index[0], index[1]] = 1
14:                    end
15: end
16:           end
17:     end
18: end
Outputs: Pruned 3×3 kernels.

D. 1×1 kernel transformation
By performing 1×1 to 3×3 transformation we remove

connectivity pruning from kernel pruning. This can ensure we can
maintain the accuracy of the model and mitigate losses that arise from
connectivity pruning. 1×1 kernel pruning can also speedup inference
by grouping similar kernel patterns together.

Algorithm 3 shows the pseudocode for performing 1×1 kernel
pruning. We start by using 1×1 kernel weights Kw from the parent
layer from Algorithm 1 (group_list) as input. We then initialize a list
FL that is used to store the flattened 1×1 kernel weights from Kw

(lines 1-2). Subsequently, a temp_array for storing the temporary
weight matrices is initialized. We iterate through the flattened array
FL and group every 9 weights in the list into 3×3 temporary weight
matrices that are stored in temp_array (lines 5-11). This process
continues till we reach the end of the list or if the values are less than 9.
At this point the left-over weights are considered as zero weights and
pruned (line 13). We then use Algorithm 2 to perform 3×3 kernel
pruning with the temporary 3×3 weight matrices from temp_array
(line 14). The output matrices from Algorithm 2 are stored back into
temp_array which is transformed back into 1×1 kernels and
appended back into the original 1×1 kernel weights (lines 15-16).

Algorithm 3: 1×1 Kernel Pooling
Inputs: 1×1 Kernel Weights (KW)
1:     FL ← Ø
2:     FL = [w for k in        for w in K]
3:     temp_array ← Ø
4:        ← Ø
5:     for i in range (0, length(FL), 9):
6: t1 ← Ø
7: t1 = FL [i : i+9]
8: if t1.shape[0] == 9 then
9:            t1 = t1.reshape(3,3)
10: L2_norm_array.append(L2norm(t1,2))
11:          temp_array.append(t1)
12: else
13: temp_array.append(t1=0)
14: Apply 3×3 kernel pruning on temp_array using Algorithm 2
15: temp_array = output weight matrices from Algorithm 2
16: Reshape temp_array to 1×1 and append to KW

17: end
Outputs: pruned 1×1 kernel

V. EXPERIMENTS AND RESULTS

In this section, we evaluate our proposed R-TOSS framework on
Nvidia RTX 2080Ti and Jetson TX2 platforms in terms of sparsity,
mAP, accuracy, and energy usage of the model pruned using our
framework and compare it to state-of-the-art pruning techniques.

A. Experimental setup
Our framework is implemented on YOLOv5s, which is a smaller

variant of the well-known YOLOv5 with 25 layers and 7.02 Million
parameters [8] and RetinaNet that consists of 186 layers and 36.49
million parameters [9]. We implemented object detectors with our
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TABLE 3: Table showing sensitivity analysis of R-TOSS framework in terms of induced sparsity, mAP, and inference time for YOLOv5s and RetinaNet

Entry pattern
variant

R-TOSS-5EP
R-TOSS-4EP
R-TOSS-3EP
R-TOSS-2EP

Reduction ratio
1.79×
2.2×
2.9×
4.4×

YOLOv5s
mAP          Inference Time (ms) Energy Usage (J) Reduction ratio      mAP
72.6                     11.09                        0.97                     1.45×           66.09
70.45                    10.98                        0.91                     1.6×             75.8
78.58                     6.9                         0.478                    2.4×            79.45
76.42                      6.5                         0.454                    2.9×             82.9

RetinaNet
Inference Time (ms) Energy Usage (J)

157.24                      14.27
150.58                      13.62
72.98                        6.45
64.83 5.50

R-TOSS framework using Python and Pytorch and trained them on
an NVIDIA RTX 2080Ti GPU [36]. The trained framework is then
evaluated using the RTX 2080Ti GPU and also deployed on a Jetson
TX2 [37] embedded AI computing device. We use the KITTI
automotive dataset [39], with an input image frame size of 640× 640,
and a split of 60:40, for training and inference, respectively. The
KITTI dataset is a widely used dataset comprised of traffic scenes,
making it ideal for AV perception model training. We measure
inference times across models in terms of milliseconds (ms) and the
mAP with an IoU threshold of 0.5 AP@[.5:.95].

B. Sensitivity analysis on R-TOSS pruning framework

We performed a sensitivity analysis study on our R-TOSS
framework to determine the impact of considering different sizes of
kernel patterns. Table 3 shows the results of the study, performed on
the RTX 2080Ti. We explored 4-entry patterns (R-TOSS-4EP) and
5-entry patterns (R-TOSS-5EP), with 4 and 5 nonzero weights in a
kernel, respectively, along with our 3EP and 2EP patterns discussed
in Section IV. From the results it can be seen that while R-TOSS-
2EP performs better in terms of sparsity induced, inference time, and
energy usage on YOLOv5s, it has lesser mAP than when using R-
TOSS-3EP. We can also observe that 2EP performs better in terms of
sparsity induced, mAP, inference time, and energy usage on the
RetinaNet model. The performance improvement in terms of
inference time and energy usage is due to the higher achieved
sparsity of the models. The results indicate that that our proposed R-
TOSS-3EP and R-TOSS-2EP pruning frameworks can provide faster
and also more accurate results than that with the 4EP and 5EP
variants of R-TOSS. In the next subsection, we compare the
performance of 3EP and 2EP variants of R-TOSS with other state-
of-the-art pruning frameworks.

2EP framework achieves very high sparsity across both object
detector models. We were able to achieve approximately 2.9× and
4.4× compression on the YOLOv5s model with R-TOSS-3EP and R-
TOSS-2EP, respectively. Similarly, a 2.4× and 2.9× improvement in
compression ratio was achieved for RetinaNet with R-TOSS-3EP
and R-TOSS-2EP, respectively. Fig. 5 shows the mAP comparison.
One can observe that R-TOSS-3EP and R-TOSS-2EP were able to
achieve an mAP of 79.45 % and 82.9% on RetinaNet which is 8.06%
and 10.98% better than the best performing framework from prior
work (NMS). For YOLOv5s, the R-TOSS-3EP variant was
outperformed slightly by the PD framework.

(a) mAP comparison (YOLOv5s) (b) mAP comparison (RetinaNet)

Fig 5: Comparison of mAP achieved using different frameworks.

Our inference time results in Fig. 6 show that on RTX 2080 Ti,
R-TOSS-3EP and R-TOSS-2EP were able to achieve a 1.86× and
1.97× speedup in execution time for YOLOv5s and a 1.87× and 2.1×
speedup on RetinaNet compared to BM. We also outperform the
best performing prior work framework (PD) by 8% and 13.3% for
YOLOv5s and 43.3% and 49.6% for RetinaNet with R-TOSS-2EP
and R-TOSS-3EP, respectively. Similarly, on Jetson TX2, R-TOSS-
3EP and R-TOSS-2EP were able to achieve a 2.12× and 2.15×
speedup in inference time on YOLOv5s model and 1.56× and 1.87×
speedup on RetinaNet compared to BM. R-TOSS-3EP and R-TOSS-
2EP also outperformed PD with 2.6% and 4.27% faster execution
time on YOLOv5s and 5.94% and 21.62% on RetinaNet.

(a) Sparsity ratio (YOLOv5s) (b) Sparsity ratio (RetinaNet)

Fig. 4: Comparison of sparsity achieved using different frameworks.

C. Comparison results with other pruning frameworks
We compared the R-TOSS-3EP and R-TOSS-2EP with a Base

Model (BM) which does not use any pruning, PATDNN (PD) [30]
which is a pattern-based pruning technique that uses a 4 entry pattern
on 3×3 kernels along with connectivity pruning to increase sparsity,
Neural Magic SparseML (NMS) [14] which is an unstructured
weight pruning approach that uses the magnitude of the weights in a
layer, with the weights below a threshold being pruned, Network
Slimming (NS) [23] which uses channel pruning in which a channel is
pruned based on a scaling factor for the channel in a layer, Pruning
filters (PF) [20] which performs filter granularity weighted pruning,
where the total sum of filters weights is calculated and filters below a
corresponding threshold are pruned [20], Neural pruning (NP) [21]
which uses a combination of filter pruning along with unstructured
weight pruning where L1 norm is used to perform weight pruning
and L2 regularization is used to perform filter pruning.

Fig. 4 shows the comparison of the sparsity ratio with other
pruning frameworks from prior work, with results normalized to the
baseline model BM. It can be observed that our proposed R-TOSS-

(a) Speedup on YOLOv5 (b) Speedup on RetinaNet

Fig 6: Speedups in models after using the pruning frameworks.

(a) Energy usage (YOLOv5s) (b) Energy usage (RetinaNet)
Fig 7: Reduction in energy in models after using the pruning frameworks.
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The models pruned using our framework also perform better in
terms of energy consumption. Fig. 7 shows the comparison of
reduction in use of energy among various frameworks on both
YOLOv5s and RetinaNet. For YOLOv5s, R-TOSS-2EP and R-
TOSS-3EP were able to achieve 45.5% and 48.23% energy reduction
over BM and a 6.5 % and 11.2% energy reduction over PD on RTX
2080Ti; and on the Jetson TX2 they achieved 54.90% and 57.01%
reduction over BM and 1.84% and 6.43% reduction over PD. We
also observed similar trends on RetinaNet, with 48% and 55.75%
reduction of energy usage over BM and 42.46% and 50.97%
reduction over PD on RTX 2080 Ti; as well as 56.31% and 70.12%
reduction over BM and 18.26% and 44.10% reduction of energy
usage over PD on Jetson TX2.

Fig 8. Comparison of inference output with other pruning techniques on
KITTI automotive dataset using RetinaNet

Fig 8 illustrates the performance of different frameworks on a
test case from the KITTI dataset. From the results it can be observed
that R-TOSS-2EP and R-TOSS-3EP retain the ability to detect tiny
objects (the car in this example), along with better confidence scores
than NP and PD. As AVs rely on fast and accurate inference to take
time critical driving decision, R-TOSS can help achieve both speed
and accuracy while keeping the energy usage lower than that of
other state-of-the-art pruning techniques we have compared with.

VI. CONCLUSIONS

In this paper we proposed a new pruning framework (R-TOSS)
that is able to outperform several state-of-art pruning frameworks in
terms of compression ratio and inference time. We were also able to
increase the mAP of the object detectors compared to the mAP of
the baseline models. Overall, our framework achieves significant
compression ratios while improving mAP performance on two state-
of-the-art object detection models, YOLOv5s and RetinaNet. The
proposed framework achieves these results without any compiler
optimization or additional hardware requirement. Experimental
results on JetsonTX2 show that our pruning framework has a model
compression rate of 4.4× on YOLOv5s and 2.89× on RetinaNet
while outperforming the original model as well as several state-of-
the-art pruning frameworks in terms of accuracy and inference time.
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