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Indoor localization plays a vital role in applications such as emergency response, warehouse management,
and augmented reality experiences. By deploying machine learning (ML) based indoor localization frame-
works on their mobile devices, users can localize themselves in a variety of indoor and subterranean envi-
ronments. However, achieving accurate indoor localization can be challenging due to heterogeneity in the
hardware and software stacks of mobile devices, which can result in inconsistent and inaccurate location
estimates. Traditional ML models also heavily rely on initial training data, making them vulnerable to degra-
dation in performance with dynamic changes across indoor environments. To address the challenges due to
device heterogeneity and lack of adaptivity, we propose a novel embedded ML framework called FedHIL. Our
framework combines indoor localization and federated learning (FL) to improve indoor localization accuracy
in device-heterogeneous environments while also preserving user data privacy. FedHIL integrates a domain-
specific selective weight adjustment approach to preserve the ML model’s performance for indoor localization
during FL, even in the presence of extremely noisy data. Experimental evaluations in diverse real-world in-
door environments and with heterogeneous mobile devices show that FedHIL outperforms state-of-the-art
FL and non-FL indoor localization frameworks. FedHIL is able to achieve 1.62 X better localization accuracy
on average than the best performing FL-based indoor localization framework from prior work.
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1 INTRODUCTION

Indoor localization is the process of determining the location of a device or user within an indoor
environment, such as a building or a warehouse [1]. This technology is becoming increasingly
important in critical applications such as emergency response, security, and healthcare, where
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knowing the precise location of individuals or assets can be critical for saving lives and preventing
harm [2]. Many efforts from industry and academia are attempting to build indoor localization
solutions because of its promising future [3]. One foundational technology for indoor localization
is Wi-Fi, which is ubiquitously deployed across indoor locales and can thus be cost-effectively
used as part of indoor localization solutions [4]. There are two main types of Wi-Fi-based indoor
localization systems: propagation model-based and fingerprinting-based [5-8].

Propagation model-based methods estimate the distance between the transmitter (e.g., Wi-Fi ac-
cess point (AP)) and receiver (e.g., mobile device carried by user) using propagation models such
as the free space model. Then, by computing the relative locations of the receiver to specific trans-
mitters, these methods estimate the user’s coordinates in the indoor environment. Propagation
model-based methods have advantages but also many limitations. These methods require prior
knowledge of the AP locations, which may make them unsuitable for environments where AP
locations are unknown or deliberately obscured due to security concerns [9]. Additionally, signal
propagation in the indoor environment is dynamic and influenced by unpredictable factors such as
obstacles and people, which can impact the accuracy of propagation model-based methods. Other
factors, such as signal attenuation, multi-path fading, and shadowing, can also distort signals and
result in inaccurate location estimates [10]. These limitations motivate the need for more robust
localization methods.

Fingerprinting-based methods extract representative and distinguishable characteristics from
indoor environments, called fingerprints [11]. In these methods, any radio frequency (RF) sig-
nal, such as Wi-Fi, Bluetooth, and Zigbee, can be used to estimate the user’s location in indoor
environments [12]. However, Wi-Fi is one of the most popular and widely used RF signals for
indoor localization due to its availability in almost all indoor locales, without the need for deploy-
ing expensive custom APs [1-3]. Compared to other approaches, Wi-Fi fingerprinting can provide
more accurate location estimates as it has a higher sampling rate and can enable capturing a larger
amount of signal data. Additionally, Wi-Fi signals can penetrate through walls and other obstacles,
providing more comprehensive coverage of indoor environments [13].

A Wi-Fi fingerprinting system typically consists of an offline and an online phase [1-4]. In
the offline phase, Wi-Fi signal characteristics (e.g., received signal strength or RSS) at predefined
reference points (RPs; representing specific locations within the indoor environment) are collected
to build a fingerprint database. In the online phase, the system extracts a fingerprint from the
observed Wi-Fi signals in the same way and matches the observed fingerprint to those saved
in the database. The user’s location is then estimated by determining the RP whose fingerprint
is most similar to the observed fingerprint captured by the user’s mobile device. While Wi-Fi
fingerprinting has many advantages, there are also several limitations [9, 10]. One major limitation
is device heterogeneity, which can result in variations in signal strength and accuracy [10, 13].
Different mobile devices can have varying Wi-Fi chips, antennas, and software stacks that can
impact the captured Wi-Fi signal characteristics. This can lead to inconsistencies in the Wi-Fi
fingerprints collected from different devices, making it difficult to accurately estimate the user’s
location. Additionally, changes in the Wi-Fi environment, such as interference from movement
of people or changes in the configuration of the Wi-Fi APs can also impact the accuracy of the
location estimates [13].

Machine learning (ML) models can be trained to learn features from Wi-Fi data (e.g., RSS) and use
them to provide more accurate location predictions and address some of the limitations mentioned
above [14]. One approach is to use supervised learning, where the system is trained using a dataset
of known locations (RPs) and their corresponding Wi-Fi RSS fingerprints. In this approach, the
ML model learns to map the input (Wi-Fi RSS fingerprint) to the output (known RP). The ML
model structure can vary, e.g., they can be fully connected deep neural networks or convolutional
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neural networks [15]. Another approach is to use unsupervised learning, where the system is not
provided with labeled data but instead tries to identify patterns and structure in the data [16].
In this approach, the ML model can be used to cluster similar Wi-Fi RSS fingerprints together,
which can help to identify regions of similar signal strength in the indoor environment [17]. This
information can be used to provide location estimates based on the nearest cluster or the centroid
of the cluster.

Another approach to training ML models for indoor localization is in a distributed manner by
using federated learning (FL). This approach allows multiple devices to collaboratively train a
model without sharing their data, which is particularly important in scenarios where data privacy
is a concern, such as in healthcare or industrial tracking [18]. In FL, the devices do not share their
location data directly with a central server, but instead share the updated model parameters from a
local model (LM) with a server, which aggregates the received parameters from each device to up-
date a global model (GM) maintained at the server, while keeping the data on each device private
[19]. FL can be used in scenarios where devices are heterogeneous, i.e., with different capabilities or
hardware [20]. The FL approach allows for each device to contribute to the model training, regard-
less of its capabilities, providing a more comprehensive and diverse dataset. But the FL technique
also has a major limitation: the performance of FL depends on the quality and diversity of the data
contributed by each device [18-20]. If the data provided by different devices is noisy, it can lead to
a degradation of the model performance, as the model may struggle to generalize across the data.
This is because data from different devices may contain noise or outliers that fall outside the true
distribution of the data. In such cases, effective feature selection of the trained model parameters
before aggregating them becomes extremely important.

In this paper, we propose a novel embedded ML framework called FedHIL, that utilizes a neural
network-based FL algorithm tailored for the indoor localization domain, to address the multiple
challenges of device heterogeneity, model degradation, and privacy concerns. Our key contribu-
tions are as follows:

e We propose a novel and strategically tailored data augmentation strategy using unsuper-
vised learning to address the variations in the Wi-Fi RSS fingerprints caused by device
heterogeneity.

e We propose a combination of a lightweight neural network (supervised learning) within an
FL setting that continually updates the underlying supervised model to maintain accuracy
within the device heterogeneity-resilient and privacy-preserving framework.

e We propose a unique and strategic federated aggregation technique to contribute to the
robustness of the proposed framework for indoor localization, thereby preventing degra-
dation of the model’s performance, caused by noisy or outlying data.

e We deploy the proposed FedHIL framework on multiple heterogeneous mobile devices and
conduct evaluations across real-world building environments, and comprehensively com-
pare its performance against several state-of-the-art FL- and non-FL based indoor localiza-
tion frameworks.

2 RELATED WORK

In recent years, ML has become increasingly popular in Wi-Fi RSS fingerprinting based indoor
localization [14]. Supervised learning methods such as K-nearest neighbor (KNN) [21], support
vector machines (SVM) [22], random forest (RF) [23], and neural networks including deep neural
networks (DNN) [24] and convolutional neural network (CNN) [25] have been widely used to im-
prove localization accuracy. In particular, neural network-based approaches have shown promising
results due to their ability to model complex non-linear relationships in the data [24, 25]. However,
these supervised learning methods do not address the issues faced due to device heterogeneity.
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These methods also require a large amount of training data, which is problematic in real-world
settings, where collecting large amounts of labeled fingerprint data may be too time consuming
and costly, and thus impractical.

To overcome the limitations of supervised learning-based approaches, some prior works em-
ploy unsupervised learning-based approaches such as principal component analysis (PCA) [26],
k-means clustering [27], and non-negative matrix factorization (NMF) [28]. These approaches aim
to discover the underlying structure in the Wi-Fi RSS fingerprint data without the need for labeled
data (RP of the corresponding fingerprints). Such methods can be useful in cases where obtain-
ing labeled training data is difficult or costly. The works in [26-28] utilize various unsupervised
learning methods to extract the most important features from the data and represent it in a lower-
dimensional space. This can help to improve the performance of the ML model by reducing the
complexity of the data and removing irrelevant or redundant features. While unsupervised meth-
ods can be useful for discovering underlying structure in the data, they are rarely as accurate as
supervised methods in predicting location. Therefore, recent works propose a combination of su-
pervised and unsupervised learning to create a more robust model to address device heterogeneity.

The hybrid approaches that combine supervised and unsupervised learning-based models take
advantage of the strengths of the two unique learning approaches to improve the accuracy and ro-
bustness of indoor localization. The unsupervised learning methods are typically used to augment
the training data, thereby diversifying the training data [29]. Augmenting the data can be bene-
ficial because it can result in physically capturing lesser data for training while maintaining the
diversity in the data. Additionally, augmenting the data can help reduce the effects of heterogene-
ity by generating more training examples with variations in the RSS. This improves the robustness
of the model and its ability to handle RSS variations caused by device heterogeneity. The works
in [30-33] make use of hybrid approaches. They concatenate the output from the unsupervised
learning models and send it to a supervised learning model to yield stable localization results. This
approach allows the supervised learning model to learn from the augmented data and extract the
most relevant features from the data.

In recent years, many other frameworks have been proposed to address the challenge of device
heterogeneity during indoor localization [34-38]. These frameworks employ a variety of tech-
niques to address device heterogeneity, including multi-headed attention neural networks with a
lightweight augmentation strategy [34, 35], a combination of KNN and DNN [36], vision trans-
former neural networks with specialized augmentation strategies [37, 38], and stacked autoen-
coders with a Gaussian process classifier (GPC) [39]. While these frameworks have shown promis-
ing results, they heavily rely on the initial training phase of the model, and any noisy or outlier
data during the online phase can negatively impact the accuracy of the localization prediction.

A few recent works explore the use of federated learning (FL) to achieve collaborative learning
for indoor localization [40—-42]. As discussed earlier, FL allows multiple participating client devices
to train an underlying GM at a server by sharing parameters from LMs on these devices that are
trained with locally collected data. This approach preserves privacy during distributed learning
as devices do not need to share their local (fingerprint) data with the server. The work in [40]
proposes a centralized indoor localization method using pseudo-labels (CRNP). The authors use a
stacked autoencoder for data augmentation and a DNN-based classifier with FL. During the online
phase, the pseudo-labels generated from the DNN are used to retrain the model, and the retrained
parameters are aggregated using the federated averaging (FedAvg) [43] method, which is a popular
method for aggregation in FL. FedAeDNN [41] uses an autoencoder and DNN with FedAvg, while
[42] proposes FedLoc, which uses a multi-layer perceptron and a federated stochastic gradient
descent (FedSGD) [44] aggregation strategy. FedSGD is similar to FedAvg but uses a stochastic
gradient descent (SGD) approach for model aggregation.
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The ability to learn from a greater amount of data (from multiple clients while preserving their
data privacy) has allowed these FL-based approaches to achieve promising results. However, these
methods are sensitive to noisy or outlier data, which can skew the model’s performance and lead to
poor generalization and overfitting. To overcome these issues, in this work we propose a novel FL-
based framework called FedHIL that builds on the merits of the FL-based methods discussed earlier.
FedHIL utilizes a novel and uniquely tailored unsupervised learning-based ML model for efficient
data augmentation, and the augmented data is further trained with an underlying lightweight
supervised model that is also robust to device heterogeneity. This proposed combination is used in
a distributed FL environment, where multiple client devices are used to update the model with their
new and heterogeneous data. As FL can cause the accuracy of the underlying ML model to degrade,
we further propose a new domain-specific selective weight adjustment approach to preserve the
ML model’s performance for indoor localization, even in the presence of extremely noisy data.

3 HETEROGENEITY ANALYSIS OF WI-FI RSS FINGERPRINTS

Wi-Fi RSS is a measurement of the power level of the wireless signal received from a Wi-Fi AP
by a Wi-Fi receiver, such as those found in all smartphones, tablets, and laptops today. The RSS
value is expressed in units of decibels (dB) relative to a milliwatt and represents the strength
of the Wi-Fi signal received by the receiver. These values typically range from —100dB to 0dB
[45]. A value of —100dB indicates that no signal is received, while a value of 0dB represents the
strongest signal strength that can be received. However, it is rare to capture an RSS value of 0dB
in real-world environments, as the signal strength is typically affected by factors such as signal
attenuation, reflection, and multipath propagation. In practice, the RSS values captured during
Wi-Fi fingerprinting are often in the range of —80dB to —30dB, with values below —70dB generally
considered weak and values above —50dB generally considered strong [45]. The exact threshold
values for strong and weak RSS signals may vary depending on the specific Wi-Fi chipset and the
environment in which it is used.

The observed Wi-Fi RSS values at any indoor location are impacted by many factors, such as
the distance between the receiver and the AP, the type of obstacles and interference in the signal
path, the signal propagation characteristics of the wireless channel, and most importantly, device
heterogeneity. Device heterogeneity is a major problem in indoor localization because it signifi-
cantly affects the accuracy and reliability of localization results. This is because indoor localization
systems rely on Wi-Fi RSS fingerprints to estimate the location of the target device, and the RSS
values captured by different devices can vary significantly due to the differences in their hard-
ware, software, and antenna configurations [13]. Devices with the same Wi-Fi chipset can exhibit
different Wi-Fi RSS readings due to heterogeneity in their firmware stacks. Variations in firmware
configurations, calibration settings, and signal processing algorithms can lead to discrepancies in
the RSS values reported by different devices, even if they share the same underlying Wi-Fi chipset.
Since the RSS values captured by different devices at the same location can vary, the data used
to train ML models that are part of indoor localization frameworks may not accurately represent
the precise RSS values incident at a location. This can result in poor generalization of the model,
leading to inaccurate localization results. To better understand device heterogeneity-based vari-
ations, we show results from a study we conducted that captured Wi-Fi RSS values at a specific
indoor location in a real-world building setting with four different smartphones: LG V20, Samsung
Galaxy S7, Motorola Z2, and OnePlus 3, as shown in Figure 1. The x-axis represents the MAC IDs
(Media Access Control address) of the Wi-Fi APs, and the y-axis shows the RSS values captured
by each smartphone. Ideally, the RSS value from each AP should be the same across the smart-
phones. From Figure 1, we observe that the values can differ significantly. For instance, for the AP
with the MAC address ‘80:8d:b7:55:35:11°, the LG V20 recorded an RSS value of —58 dB, while the
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Fig. 1. RSS fingerprints of visible Wi-Fi APs collected using four different smartphones at the same indoor
location.
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Fig. 2. Federated learning (FL) overview using multiple client devices for indoor localization.

Samsung Galaxy S7 recorded —78 dB. Similarly, for the AP with the MAC address ’38:17:¢3:1£:01:92’,
the Motorola Z2 and Samsung Galaxy S7 recorded —80 dB and —73 dB respectively, while LG V20
and OnePlus 3 recorded —63 dB and —35 dB respectively. We comprehensively analyzed such RSS
variations across different buildings and a larger pool of heterogeneous smartphones. We utilized
this information to both design and validate our FedHIL framework. Our data augmentation and
FL strategies have been specifically designed to improve the accuracy and robustness of the indoor
localization system by mitigating the impact of RSS variations.

4 BACKGROUND ON FEDERATED LEARNING (FL) FOR INDOOR LOCALIZATION

FL is a powerful technique that enables training of ML models across multiple decentralized client
devices. In an FL system, training data is kept on the local devices (decentralized client devices),
and the ML model is trained on each device. The updated model parameters are then transmitted
and aggregated to create a global model that reflects the collective knowledge of all the devices.
This approach provides many benefits, including enhanced data privacy, improved scalability, and
long-term reliability of the model. In the context of indoor localization with Wi-Fi RSS data, FL
can be used to train models that accurately predict the location of a device based on its local Wi-Fi
RSS readings. Figure 2 shows an overview of how FL can be utilized for indoor localization. In this
scenario, a centralized server is used to maintain a global model (GM), which is pretrained with
a subset of the Wi-Fi RSS data. The GM represents the collective knowledge of all the local client
devices participating in the FL process. Initially, this GM is first sent to client devices (e.g., via a
localization app) which use it to make predictions based on their local Wi-Fi RSS readings. After
receiving the GM from the centralized server, a client device can retrain the GM with its own local
RSS data to create a local model (LM). The local training process involves retraining the received
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GM from the server using the client device’s own RSS fingerprint dataset. As the client device’s
local RSS data is used to update the weights (model parameters) of the LM, it helps to improve the
accuracy of the GM by accounting for local variations in the Wi-Fi RSS data. To collect the local
Wi-Fi RSS readings, a client device at a specific indoor location captures Wi-Fi signals from nearby
APs and measures their strength. The RSS values are combined into an RSS fingerprint, which is
then sent to the LM to estimate the device (and user’s) location. The client device can display the
location on the user’s device on a map of the building floorplan and this can be used for a variety of
applications such as indoor navigation, location-based advertising, and asset tracking. The trained
parameters from the client device’s LM are periodically sent back to the centralized server, where
they are aggregated with the original GM and parameters received from other devices, to update
the GM, which is then sent to all client devices (Figure 2). This process of updating the GM with
the contributions from multiple client devices helps to achieve better accuracy and scalability than
traditional ML approaches.

While there are several popular aggregation techniques used in FL, state-of-the-art approaches
that use FL for indoor localization ([40-42], discussed earlier in Section 3) employ FedAvg [43] and
FedSGD [44]. These aggregation techniques offer a simple and efficient way to combine models
from different clients. We describe these aggregation approaches next. In Section 5, we describe
our proposed FL-based localization framework.

4.1 Federated Averaging (FedAvg)

The FedAvg algorithm, first introduced by [43] in 2016, aims to train a GM using data available
on multiple devices without transferring the data to a central server. The algorithm can be broken
down into six steps: (1) initialization of a GM on a central server, (2) selection of a subset of clients
to participate in each round of training, (3) sending of the GM to the selected client devices, (4)
local training of the model on each device using an SGD algorithm, (5) sending of the updated
models back to the central server, and (6) aggregation of the models using a weighted average.
The aggregation strategy used in the FedAvg technique is shown in the equations below.

Wclient = WT i/ Vlf (WT) (1)
N
Wyiobal = Z - % client @ @)

i=1

where Wejjen: are the weights generated from the LM using SGD, Wr are the weights from the
GM at the beginning of the round, 5 is the learning rate, and V [ f(Wr) is the gradient of the loss
function with respect to the GM weights. The W,j;.,; obtained from (1) is used to update the GM
using the weighted average method, as shown in (2). Wy,p4; are the updated GM weights, Nis the
number of client devices, K; is the number of local data samples of the i* h client, and K is the total
number of local data samples in all clients. (2) calculates the weighted average of the LMs based on
the number of local data samples available at each client. Clients with more data contribute more
to the GM, while clients with less data have a smaller impact on the final model.

FedAvg is a popular technique for training ML models in distributed settings. However, it suf-
fers from limitations such as overfitting and low accuracy over time in the presence of high noise
in environments. For applications such as indoor localization using Wi-Fi RSS data, the data can
be preprocessed and cleaned on each client device, and local ML models can be trained using an
SGD algorithm. The resulting models can be aggregated using the FedAvg algorithm to predict the
location within an indoor environment without the need for centralized data storage or process-
ing. Overall, FedAvg is a powerful technique that can be applied to a wide range of applications,
including those involving distributed data.
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4.2 Federated Stochastic Gradient Descent (FedSGD)

FedSGD [44] was introduced as another distributed ML technique, similar to FedAvg. The main
difference between FedSGD and FedAvg is the aggregation strategy, where FedAvg uses a weighted
average of the LMs, while FedSGD uses a simple averaging approach. Like FedAvg, FedSGD also
follows the same steps, except for the aggregation step. In FedSGD, gradients are calculated locally
on individual devices using available data, which are sent to a central server for aggregation and to
update the GM. Gradients represent the direction and magnitude of change required to minimize
the loss function, which is used to update the weights in each iteration of the training process. The
equations below capture the aggregation strategy used in FedSGD.

Gelient = Vlf (WT) (3)

1 N
Gavg = ﬁ ; Gelient (i) (4)
ngobal = WT - n * Gavg (5)

where Gjien: are the gradients of the client models’ loss functions with respect to the GM’s
weights, which is represented as Wr. These gradients are sent to the server for aggregation. The
Gaog are the averaged gradients of all the client devices. N is the number of client devices and
Gelient (i) are the gradients computed using (3) per client. W04 are the new GM weights ob-
tained by subtracting the product of the learning rate () and the average of the client gradients
(Gaug) obtained from (4). In this way, FedSGD technique uses the client gradients instead of the
client weights (as done in FedAvg) to compute the average.

Much like FedAvg, FedSGD is beneficial in training ML models on decentralized and hetero-
geneous data sources, while maintaining privacy. In indoor localization based on Wi-Fi RSS data,
FedSGD can be suitable for scenarios with a small number of clients and less imbalanced (or noisy)
data. It can also be useful when communication bandwidth is limited, as its communication cost
is lower than FedAvg.

5 FEDHIL FRAMEWORK

In this section, we describe our proposed FedHIL framework for FL-based indoor localization. The
framework follows the general principles of FL, as discussed earlier. However, it also includes
modifications that have been tailored to address some of the key challenges associated with de-
vice heterogeneity and long-term robustness. The first modification is in the GM architecture,
which allows the framework to aggregate data from different sources and train a model that can
generalize well across different devices. The second modification is in the LM architecture, which
enables each device to train its model on local data while ensuring that the data remains private
and secure. Finally, the third modification is in the federated aggregation approach, which ensures
that the GM is updated with new information from different LMs via communication between the
LM and GM. By integrating these modifications into the FL framework, FedHIL aims to overcome
some of the limitations of traditional FL methods for the indoor localization problem. In the fol-
lowing sections, we describe each of these mechanisms, providing a comprehensive overview of
the FedHIL framework and its capabilities.

5.1 Global Model (GM) Architecture

The GM architecture plays a critical role in achieving high accuracy and scalability. The GM ar-
chitecture consists of two phases, namely, the offline training and online training phase, as shown
in Figure 3.
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Fig. 3. GM architecture for FedHIL.

The offline training phase consists of two components: A data augmentation strategy using a
custom stacked autoencoder (SAE) and a shallow neural network (SNN) model. Data augmentation
using a custom SAE is a key component of the proposed framework. The custom SAE learns to
extract meaningful features from the input RSS data and generates augmented data that can help
improve the accuracy of the model. The output from the custom SAE is concatenated with the
original RSS data and then sent for training the SNN model. The SNN model is chosen to have a
lightweight architecture, which makes it well suited for mobile devices. Once the SNN model is
trained, it is made available as the GM. The offline training phase is complete at this point, and the
trained GM is then made available for deployment on client for prediction.

In the online training phase, the client device makes a copy of the GM and stores it locally.
The client device uses the trained GM, now called the LM, to make predictions for the user with
an unknown location. While this prediction is happening, the client device also retrains the LM
using its local data. The updated trained weights in the LM are then sent back to the server, which
holds the GM. The server receives the updated weights only and aggregates them with the GM,
thus updating the GM without looking at the raw RSS data from the client devices. This process
enables the GM to adapt to new heterogeneous data from multiple clients while maintaining the
privacy of the client devices.

5.1.1 Custom Stacked Autoencoder (SAE) Neural Network. To enhance the collected RSS data
prior to training, we customize an SAE neural network model to create augmented RSS data. Our
SAE model comprises of multiple autoencoders (AE) that are trained one layer at a time using a
layer-by-layer training approach. The AE neural network consists of three key components: an
Encoder, a Decoder, and a Bottleneck layer. Each of these components is comprised of one or more
fully connected layers with varying numbers of neurons. The encoder layers are responsible for
compressing the input data and reducing its dimensionality, while the decoder layers are utilized to
reconstruct a noisy representation of the input data back to its original dimension. The bottleneck
layer represents the input data at its lowest dimension and reflects the most salient and significant
features in the data.

The encoder layers consist of fully connected layers with decreasing numbers of neurons in
each layer. These layers perform the compression and dimensionality reduction operations. By
reducing the number of neurons in each layer, the encoder layers effectively reduce the dimen-
sionality of the input data. Non-linear activation functions, such as ReLU (Rectified Linear Unit),
are used in these layers to introduce non-linearity and capture complex relationships in the data.
The bottleneck layer is positioned at the center of the AE and has the lowest dimensionality among
all the layers in the network. It acts as the bottleneck for information flow, representing the most
salient and significant features of the input data. The bottleneck layer typically has the least num-
ber of neurons, allowing it to capture the essential information while discarding less relevant or
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redundant information. The reduced dimensionality in this layer helps in extracting the most dis-
criminative features from the input data. The encoder can be considered a neural network that
transforms high-dimensional input data into lower-dimensional data (at the bottleneck layer).

The decoder layers mirror the structure of the encoder layers but in reverse order. They con-
sist of fully connected layers with increasing numbers of neurons in each layer. These layers are
responsible for reconstructing the compressed representation back to the original dimension. By
increasing the number of neurons in each layer, the decoder layers expand the compressed repre-
sentation and attempt to reconstruct the input data. The decoder layers are designed to reconstruct
the data in the same way it was reduced, ensuring the preservation of relevant information and
the underlying structure of the data. The layer-by-layer training approach employed in the SAE
model is specifically designed to ensure minimal noise during the reconstruction process in the
decoder. This approach allows each layer to learn an effective representation of the data before
proceeding to the next layer. By gradually building up the complexity of the reconstruction, the
network can better capture important details and relationships within the data. This results in
more stable training and better overall performance of the model.

The proposed SAE model involves stacking three AEs together, each having its own fully con-
nected layers, as shown in Figure 3. AE1 and AE3 are trained layer-wise, with the output of the
second layer (L2) of AE1 being fed as input to AE3. AE2 is positioned as illustrated in Figure 3 and
receives the trained weights from AE1 and AE3. The SAE model is trained layer-by-layer to mini-
mize the reconstruction error between the input and output data. The advantage of this approach
is that it allows the network to learn an effective representation of the input data at each layer
before proceeding to the next one, rather than attempting to train all the layers simultaneously.
This can result in a more stable training process and better overall performance. The SAE model
is leveraged for RSS data augmentation by training it on the training RSS data created during the
offline phase. The SAE can subsequently generate synthetic RSS measurements that can be used to
augment the training dataset. The synthetic RSS data emulates the variations that can occur across
different devices, potentially improving the system’s robustness and generalization by providing
a more diverse set of training data that accurately represents variations across different devices.

5.1.2  Shallow Neural Network (SNN). The SNN model is an artificial neural network that re-
ceives concatenated input from both the training and augmented RSS data. Our SNN model is
comprised of three fully connected layers, namely, the input layer, the hidden layer, and the out-
put layer. The input layer is responsible for receiving the concatenated input data, which is then
passed on to the hidden layer. The hidden layer is where the complex processing of the input data
occurs, using various activation functions, such as rectified linear unit (Relu), and weights assigned
to each neuron in the layer. The output of the hidden layer is then passed on to the output layer,
which provides the final result of the model’s prediction. One advantage of our SNN model is that
it is lightweight (it has only a single hidden layer), making it easy to deploy on client devices. This
is particularly beneficial for indoor localization as we require real-time prediction and processing
of data, and a lightweight model minimizes the computational resources required. Furthermore,
the augmented data used in the training of the SNN model allows it to generalize for device het-
erogeneity during indoor localization. This means that the model is able to recognize and predict
the location of a user, even if they are using different devices to access the application.

5.2 Local Model (LM) Architecture

The client device receives the trained GM from the central server, as illustrated in Figure 4. Once
received, the client device clones the trained GM and stores it locally as the LM, which is used to
make predictions.
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Fig. 4. LM architecture for FedHIL.

To enhance the accuracy of predictions, the client device scans for nearby Wi-Fi APs and stores
their RSS data locally. This stored RSS data is used to inference with the LM and to retrain the
LM to better fit the user’s environment. This local training is supervised, and the client device
uses its stored data to update its own local model through backpropagation with stochastic gra-
dient descent. Gradients are calculated based on the loss function of the local model. The LM
is retrained over a small number of epochs to ensure that the process has low overhead on the
resource-constrained client device. After the LM is retrained, the client device uses an absolute
distance method, which is part of the FedHIL aggregation technique (discussed in Section 5.3), to
select only a subset of LM weights to upload to the server for aggregation. This is done to protect
the GM from noisy, low impacting weights. By only transmitting a high impact subset of weights,
not only are the communication requirements for the FL process relaxed, but overall accuracy can
also be improved. Throughout this process, multiple client devices participate in the prediction
and contribute to updating the GM with new heterogeneous device-specific RSS data. Figure 4
illustrates the selection process of the high-impact weights using the absolute distance method,
which is discussed in more detail in the following subsection.

5.3 FedHIL Aggregation Technique

We now describe our FL aggregation method that has been specifically designed to address the
challenges of heterogeneity and long-term accuracy robustness in indoor localization. Traditional
FL techniques may cause the ML model to degrade in accuracy over multiple rounds of client-side
retraining, due to noisy data collected from the client devices. These outliers in the online training
phase can skew the ML model’s performance and cause it to degrade. Our FedHIL aggregation
technique addresses this issue by identifying selected features in the trained LM of the client during
the online training phase. The selected features are the high-impacting features in the locally
collected RSS fingerprints of the client device, calculated by finding the absolute distance of the
weights between the trained LM and the cloned GM that each client maintains before retraining it.
This absolute distance represents the changes in the weights for the visible features in the LM. Our
technique then filters these absolute weights by only capturing the top H% of the highest changes
in the weights. This means that the top H% of the largest magnitude difference between the LM
and GM are captured, and the background noise and potentially noisy distribution in the weights
picked up by the client device are filtered out. The top H% of weights from the client are then sent
back to the server for aggregation. The received weights from the client device are then averaged
with the existing GM in the server via simple averaging. This process is repeated with participating
client devices, with each device contributing to the improvement of the ML model’s performance.
The equations below show a mathematical representation of the proposed technique:

Welient = Wr — /e Vlf (WT) (6)
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This equation is the same as in FedAvg, where W,;;.,; are the weights generated from the LM
using SGD, Wr are the weights from the GM at the beginning of the round, 7 is the learning rate,
and V If (Wr) is the gradient of the loss function with respect to the GM weights.

Waps = |ngobal - Welien:! (7)
IHigh = l#(Vvabsa H) (8)

Equations (7), and (8) identify the high-impact weights in the W,;¢p,; from equation (6). Equa-
tion (7) involves calculating the absolute difference between the weights in the GM (W;;0p41) and
the weights of the LM (W,j;en;). By calculating the absolute difference, we can identify the areas
where the GM and LM differ the most. Equation (8) involves determining the indices of the top
H% of weights. The variable H% represents the top percentage of the largest magnitude difference
between the GM and the LM. The 1 function is used in selecting the indices associated with the
top H% weights in Wy;;.

WHigh = Wetient> ifIclient € IHigh’

0, otherwise

©)

In (9), we capture the high impact weights in W,j;.p; by setting the non-high-impact weights to
0 and keeping the high-impact weights the same as before. This is done to reduce the impact of
client-to-client variation on the high-impact weights.

N
1
Whew global = ﬁ ; Whigh + ngobal (10)

Finally, (10) computes the new GM weights by taking the average of the selected high impact
client model weights (Wj;45,) and the original GM weights (W, ;0pq), Where N is the number of
clients.

By following this technique, we update the GM with only high-impacting weights from the client
devices. The proposed technique has several advantages. First, the high-impacting weights can
prevent the ML model from overfitting, thereby preventing the GM model from degrading. Second,
by only capturing the top H% of the weights, the proposed technique filters out noise, leading to
better performance of the ML model. Third, by having multiple clients with heterogeneous data
participating in this process, the overall system can achieve heterogeneity resilience. Lastly, since
only a subset of the trained weights is shared, compression techniques can compress sparse (zero)
weights to reduce the wireless communication volume and latency from the client devices to the
server. These factors make FedHIL a promising FL approach for indoor localization.

6 EXPERIMENTAL RESULTS
6.1 Experimental Setup

In this section, we present the experimental setup for the evaluation of the proposed FedHIL frame-
work. The aim of our experiments is to evaluate the performance of the FedHIL framework in real-
world settings and compare it with other FL and non-FL based indoor localization frameworks.
In the FedHIL framework, we pre-train the GM using RSS data collected from a single smart-
phone. This is done to ensure that the framework is resilient towards heterogeneity and can be
evaluated on any number of smartphones. To pre-train the GM, we first augment the original RSS
data using a custom SAE, with the trainable parameters shown in Table 1. The custom SAE uses
SGD for optimization with the MSE (mean square error) loss function. The custom SAE is trained
for 700 epochs per layer, to generate the best results for the given data. We then concatenate the
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Table 1. Trainable Parameters in Each Layer in the Custom SAE

AE1-L1| AE1-L2 AE1-L3| AE2-L1| AE2-L2| AE2-L3| AE2-L4| AE2-L5| AE3-L1| AE3-L2| AE3-L3| Total
14878 10414 14964 10414 5103 3570 7388 14964 7289 5103 7388 1101475

Table 2. Trainable Parameters in Each Layer in the SNN Model

Input Layer Hidden Layer Output Layer Total
22144 33024 15677 70845

Table 3. Details of Smartphones Used in Our Experiments

Manufacturer Model Abbreviation Wi-Fi Chipset
BLU Vivo 8 BLU MediaTek Helio P10
HTC U11 HTC Qualcomm Snapdragon 835
Samsung Galaxy S7 S7 Qualcomm Snapdragon 820
LG V20 LG Qualcomm Snapdragon 820
Motorola Z2 MOTO Qualcomm Snapdragon 835
Oneplus Oneplus 3 OP3 Qualcomm Snapdragon 820

original and augmented data and use it to train the SNN model. The proposed SNN model in the
FedHIL framework has a Relu non-linearity with 256 neurons in the hidden layer and uses the
sigmoid function in the output layer for prediction. The SNN also uses the SGD optimization with
the Sparse Categorical Crossentropy loss function and trained for 1200 epochs. The SNN model is
trained with the trainable parameters shown in Table 2.

After pre-training the GM, we make it available to each client device for testing and retraining.
The client devices retrain the SNN model over 10 epochs during the online training phase, to fit
the resource constraints in the client devices and report only the top H% of the high impacting
features in the local model back to the server. We set the H parameter in the proposed FedHIL
aggregation technique based on our sensitivity analysis presented in Section 6.2. To evaluate the
performance of the FedHIL framework, we measured the localization accuracy using the Euclidean
distance formula:

Euclidean Distance = \Z/(Xz - X))+ (Yo — V)2 + (2, - Z))* (12)

where (X3, Y1, Z;) represents the ground truth location coordinates and (X3, Y2, Z,) represents
the predicted location coordinates. The accuracy is thus calculated based on the distance between
the ground truth location and the estimated location of a device, which is based on the RSS data
collected by the device. This approach allows us to assess the accuracy of the framework across
multiple devices and scenarios, ensuring that the framework can be reliably used in real-world
settings.

We compared the performance of our FedHIL framework with three FL-based frameworks
(CRNP [40], FedAeDNN [41], and FedLoc [42]) and four non-FL-based frameworks (ANVIL [33],
SHERPA [36], VITAL [37] and WiDeep [39]). The FL-based frameworks were selected because they
have shown promising results in addressing device heterogeneity, which is a key challenge. On
the other hand, we chose the non-FL-based frameworks to provide a baseline for comparison and
to highlight the improvements achieved using FL.

To collect data for our indoor localization experiments, we utilized six smartphones from dif-
ferent manufacturers, each equipped with a different Wi-Fi chipset, as shown in Table 3. We
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Table 4. Inference Time Latency for the SNN Model on Different Smartphones in Milli-seconds (ms)

BLU

HTC

LG

MOTO

OP3

S7

Average

73.35 ms

62.05 ms

64.81 ms

76.87 ms

64.16 ms

67.25 ms

68.08 ms

normalized the RSS values between 0 and 1 to train the ML model on a consistent and uniform
dataset, which can lead to better performance and more accurate indoor localization.

We select five different buildings (Building 1-5) with different salient features. and performed
experiments on paths of different shapes and with lengths ranging from 60 to 88 meters. Building 1
is made of wood, and concrete, and is surrounded by computers with large open areas. A total of
78 unique Wi-Fi APs were visible in this building. Building 2 and Building 3 are relatively new
buildings with a mix of metal and wooden structures, open areas, and bookshelves with heavy
metallic equipment. We observed 218 and 112 unique APs, respectively in these buildings. Build-
ing 1 and Building 2 are located in close proximity to each other and are separated by a single
wall. The floorplans in these two buildings were chosen to consider the impact of interference
from different sources in the two buildings. The mix of different materials and equipment in the
buildings creates a complex indoor environment, which, together with interference from Wi-Fi
APs in the other building, poses a challenge for indoor localization systems. Building 4 has several
small offices, with a mix of metal, wood, and glass structures. The building was densely covered
by 156 APs. Building 5 has laboratory equipment with a considerable amount of electronic and
mechanical equipment and 125 visible APs.

The presence of metal and electronics in the vicinity of the tested paths in the buildings lead
to noisy Wi-Fi fingerprints that complicate indoor localization efforts. We captured Wi-Fi RSS
fingerprints during regular working hours, without artificially manipulating human occupancy.
By collecting Wi-Fi RSS fingerprints during the course of entire days, including regular working
hours, we were able to capture various forms of interference in Wi-Fi signal propagation. Our data
collection methodology allowed us to incorporate various sources of interference, including dy-
namic factors such as population density and human movement within the building. By capturing
data in this authentic setting, our aim is to gain a comprehensive understanding of the challenges
and complexities encountered in real-world indoor localization, thereby enhancing the generaliz-
ability of our results. For the offline phase, we used five fingerprints per RP to train the GM, and for
the online phase, we used one fingerprint per RP. We selected a granularity of 1-meter separation
between RPs for our experiments, which we consider sufficient for localizing humans.

To assess the lightweight nature of the SNN model implemented on the smartphones listed
in Table 3, we measured the inference time latencies for each device using the SNN model dur-
ing the online phase, as listed in Table 4. The inference speed is influenced by various smartphone
resources, including processor speed, memory, and other hardware capabilities. Based on our mea-
surements, the average inference time latency across all smartphones was found to be 68.08 ms,
indicating the efficient and lightweight performance of the SNN model on these devices. In the
following subsections, we present sensitivity analysis, comparison of the proposed FedHIL frame-
work with state-of-the-art indoor localization frameworks, and analysis for skew and scalability.

6.2 Sensitivity Analysis for FedHIL

6.2.1 Selection of H Parameter. In this section, we analyze the H parameter value within FedHIL
and evaluate the framework’s performance on real-world data. The parameter determines percent-
age of the trained weight values in the LM to be aggregated with the GM. Figure 5 shows experi-
mental results for selecting the H parameter, whose value is shown ranging from 10% to 100%. The
results shown are for the Building 5 floorplan (highly noisy environment) with the MOTO device
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used for training and OP3 device used for testing in the online phase. From the figure it can be
observed that setting H to 10% causes the model to overfit easily, leading to a significant degrada-
tion in localization error (y axis), particularly after RP 5, as only a tiny proportion of the trained
weights in the client LM are used to update the GM. Additionally, the model is heavily affected by
noise, resulting in an increase in localization errors. Setting H to 20% yields the best results, where
the model is most resilient towards noisy RP locations. Although the model with H = 20% shows
a few instances of high errors, they are much smaller than those observed for other H values. The
H values from 30% to 100% show similar results, demonstrating some resilience towards noise,
but they are still heavily affected by it, resulting in higher localization errors compared to the 20%
value. The 100% H value is where all the trained LM weights are averaged with the GM, which is
the same as the FedAvg aggregation approach. The approach shows high localization errors and
is heavily affected by noise.

To thoroughly analyze the impact of the H parameter value within the FedHIL framework and
determine the optimal H value, we conducted experiments and plotted the average error for dif-
ferent H values. In Figure 6, we present the results, where each H value ranges from 10% to 100%
with a step size of 10. Upon analyzing the plot, several observations can be made. Firstly, setting
H to 10% resulted in the highest average error compared to other H values. This can be attributed
to a significant loss of weights during aggregation, leading the model to easily overfit the data.

On the other hand, when we set H to 20%, we observed the lowest average error. This indicates
that preserving 20% of the highest changing weights during aggregation strikes a balance between
retaining important information and avoiding overfitting. As a result, the model achieves better
generalization and performs more accurately. For H values of 30% and 40%, we observed slightly
higher errors compared to H = 20%, but significantly lower errors than H = 10%. This suggests
that these H values strike a trade-off between preserving important information and allowing for
some level of noise or variability in the aggregated weights. Furthermore, H values of 50%, 60%,
70%, 80%, and 90% showed similar average errors, albeit slightly higher than H = 30% and H = 40%.
These values still maintain a good level of performance by preserving a considerable portion of
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Fig. 7. Average communication latency in seconds for different H value in FedHIL technique.

the highest changing weights during aggregation. Lastly, when setting H to 100%, we observed the
highest error among the range of 20% to 90%. Nevertheless, even H = 100% showed a significantly
lower error compared to H = 10%, indicating that preserving all weights during aggregation still
yields improvements over discarding all weights. Based on these findings, we conclude that setting
H to 20% provides the optimal balance between weight preservation and error reduction, even in
the presence of high noise in the floorplan (Building 5). We ultimately set the H parameter in
FedHIL to 20%, as it also provided the best performance across other buildings. We used this value
for FedHIL in all our subsequent experiments.

6.2.2 Client-Server Communication Latency. In In this section, we analyze the communication
latency between client devices and the server in our FedHIL framework. Figure 7 shows the average
communication latency for different H values across all RPs in Building 5. We observe that as the
H value increases, the communication latency also increases. This is because a higher H value
involves transmitting more data from the client to the server, resulting in longer transfer times.
However, the average communication latency differences between H values are relatively small,
always remaining below 1 second. Analyzing and optimizing communication latency is crucial in
FL as it directly impacts system performance and efficiency.

A higher communication latency can result in delays in aggregating the model updates, leading
to slower convergence and overall training performance. On the other hand, minimizing com-
munication latency enables faster synchronization, allowing the system to adapt and learn more
quickly. Combining the findings from Figure 6, which illustrates the relationship between H values
and average error, we observe that H = 20% achieves the lowest average error, indicating better
localization accuracy. Additionally, H = 10% exhibits the lowest communication latency, but it
compromises performance. Higher H values show slightly higher communication latency without
significant improvements in accuracy. Considering these aspects, we conclude that H = 20% strikes
a balance between performance and communication latency. It offers the optimal solution within
the FedHIL framework, ensuring accurate localization while maintaining efficient communication.

6.2.3 Impact of Custom SAE in FedHIL. In order to evaluate the impact of the custom SAE in
addressing device heterogeneity challenges during indoor localization, we conducted a series of
experiments comparing different configurations of the FedHIL framework. Specifically, we exam-
ined three situations during the offline training phase: FedHIL without SAE (no augmentation),
FedHIL with a traditional SAE, and FedHIL with the custom SAE. To introduce data augmentation,
we incorporated a traditional SAE into the FedHIL framework. The parameters of this traditional
SAE were set to be identical to those of the custom SAE. However, it is important to note that the
traditional SAE was not trained using a layer-by-layer approach, which is a key characteristic of
our custom SAE. To assess the performance of the trained SNN model, we conducted experiments
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Fig. 8. FedHIL with different SAE configurations, training device: MOTO (values in cells represent Euclidean
distance).

using MOTO as the training device. We compared the results obtained from these experiments with
the three previously mentioned situations, as illustrated in Figure 8. This comparison allowed us
to analyze the influence of the custom SAE on the accuracy and effectiveness of the FedHIL frame-
work in addressing device heterogeneity challenges during the offline training phase.

Figure 8(a) illustrates the outcome of FedHIL without the SAE, Figure 8(b) depicts the results
with the traditional SAE, and Figure 8(c) depicts the results with our proposed custom SAE. The
evaluation aimed to assess the impact of the custom SAE on the localization performance across
various client devices and building floorplans. To conduct the evaluation, we utilized the dataset
consisting of six client devices and five different building floorplans, as discussed in Section 6.1. For
each combination of the client device and building floorplan, we measured the localization error
using the Euclidean distance method. The localization error represents the discrepancy between
the estimated position and the ground truth position of the client device. In Figure 8, each cell
corresponds to a specific combination of client devices and building floorplan. The value displayed
within each cell represents the average localization error observed across all available RPs within
the corresponding building floorplan.

By analyzing these figures, we can clearly observe the importance of our proposed custom SAE
in our FedHIL framework. The results indicate that the underlying SNN model without SAE only
performs well in the absence of device heterogeneity. This can be observed from the lower lo-
calization errors for MOTO in the online phase, which is the same device that is used to train
the model in the offline phase in Figure 8(a). Without SAE, the model fails to generalize on het-
erogeneous devices other than MOTO, including LG, OP3, and S7 (performance for BLU and HTC
devices is slightly better, but still poor), and also in high noise environments, such as in Buildings 4
and 5. However, with the addition of the traditional SAE, we observe significant improvements in
localization errors compared to those without using the SAE. The incorporation of the traditional
SAE allows for some level of adaptation to device heterogeneity, leading to better performance
across different devices and noise environments. This is evident from the reduced errors in the
localization, especially for devices other than MOTO. However, it is important to note that the
performance improvement is limited, and the model still struggles to achieve satisfactory accu-
racy in challenging scenarios, such as Building 4 and Building 5. On the other hand, with the
custom SAE, we witness even more remarkable improvements in localization errors, surpassing
the performance achieved with the traditional SAE. The custom SAE, trained in a layer-by-layer
approach specifically tailored for our domain, effectively addresses the challenges posed by de-
vice heterogeneity. By augmenting the training data and diversifying its distribution, the custom
SAE enables the SNN model to adapt and generalize across a wide range of devices and noisy
environments.
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The substantial reduction in localization errors with the custom SAE demonstrates its superior
ability to enhance the robustness and accuracy of the FedHIL framework. The model now achieves
reliable and accurate indoor localization across various devices and noise levels, indicating the
effectiveness of our approach in mitigating the impact of device heterogeneity.

To summarize the effectiveness of the custom SAE within the FedHIL framework, we present a
bar plot to compare the average error in meters across the three previously mentioned scenarios
in Figure 9. The experimental setup aligns with the conditions in Figure 8.

Figure 9 serves as compelling evidence showcasing the substantial positive impact of the cus-
tom SAE on the FedHIL framework’s ability to handle device heterogeneity. The bar plot illus-
trates the average error per building floorplan, providing valuable insights into the framework’s
performance across different scenarios. The results are striking, revealing significant reductions
in average errors when utilizing the custom SAE. Building 1 demonstrates a remarkable 77.1% re-
duction in errors compared to the scenario without SAE, and a noteworthy 50.2% error reduction
compared to the traditional SAE. Building 2 follows closely, with a reduction of 72.59% compared
to without SAE and a substantial 46.8% error reduction compared to the traditional SAE. Build-
ing 3 showcases a 67.19% error reduction compared to without SAE, and a commendable 36.4%
error reduction compared to the traditional SAE. Building 4 exhibits a 63.08% reduction in errors
compared to without SAE, and a notable 30.09% error reduction compared to the traditional SAE.
Lastly, building 5 experiences a remarkable 60.9% reduction in errors compared to without SAE,
along with a significant 32.36% error reduction compared to the traditional SAE. These findings
powerfully emphasize the efficacy of the custom SAE in enhancing the framework’s resilience to
device heterogeneity, resulting in improved accuracy in indoor localization across diverse build-
ings. By effectively addressing the unique characteristics of each device, the integration of the
custom SAE empowers the FedHIL framework to deliver more reliable and accurate localization
results.

To provide a clear analysis of the impact of the custom SAE, we present a plot in Figure 10 that
compares the original fingerprint with the augmented fingerprint generated using the custom SAE.
Upon careful examination, we observe distinct variations in the augmented fingerprint compared
to the original fingerprint. The custom SAE effectively captures and incorporates device hetero-
geneity, resulting in a more diverse and representative fingerprint. This augmentation process
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Fig. 11. Average localization across all smartphones and floorplans for comparison with FL and non-FL
frameworks.

enables the model to learn and adapt to the unique characteristics of different devices, enhancing
its ability to handle device heterogeneity. The differences between the original and augmented fin-
gerprints are indicative of the custom SAE’s capability to capture important features and patterns
that can potentially arise due to device heterogeneity. These additional features contribute to a
more comprehensive and accurate representation of the indoor environment, leading to improved
localization performance.

6.3 Comparison with Prior FL and Non-FL Indoor Localization Frameworks

In this section, we present experimental results of comparing FedHIL with other state-of-the-art
frameworks. We begin by comparing the performance of FedHIL with FL and non-FL based frame-
works that have been specifically curated for device heterogeneity. The FL frameworks evaluated
are FedHIL, CRNP [40], FedAeDNN [41], and FedLoc [42], while the non-FL frameworks are ANVIL
[33], SHERPA [36], VITAL [37], and WiDeep [39]. Figure 11 shows box plot results from this com-
parison study. The presented data in the figure is the average error of each framework with all
testing client devices across all building paths.

It can be observed that the FL frameworks demonstrate superior results compared to the non-FL
frameworks in terms of average localization error. This indicates that FL, which leverages multiple
devices to train a model collectively, is more effective in addressing device heterogeneity, result-
ing in more accurate localization. FedHIL outperforms all other FL (and non-FL) frameworks, with
the lowest average error of 3.24 meters. Specifically, compared to the FL-based indoor localiza-
tion frameworks CRNP, FedAeDNN, and FedLoc, our FedHIL framework is able to achieve 1.62X,
1.86X, and 2.26x lower average localization error, respectively. The non-FL frameworks ANVIL and
SHERPA perform better than FedLoc, but still have higher average errors compared to the other FL
frameworks. ANVIL and SHERPA use more powerful ML models such as attention networks and
KNN with DNN, which explains their better performance. However, the FL frameworks use simpler
DNN models and still outperform the complex non-FL frameworks. Analyzing the minimum and
maximum errors of each framework, FedHIL has the lowest minimum and maximum error among
all the frameworks. CRNP, FedAeDNN, and FedLoc have similar minimum and maximum errors.
Among the non-FL frameworks, ANVIL and SHERPA have the lowest minimum errors, but their
maximum errors are higher than all FL frameworks excluding FedLoc. We observe that WiDeep
and VITAL show higher errors compared to other frameworks as these models use GPC (WiDeep)
and vision transformers (VITAL) to perform their computation. These models are larger, more com-
plex, and require huge amounts of data for effective performance, indicating the need for a larger
database of heterogeneous data to effectively utilize the potential of their underlying models.

To better understand the performance of the FL frameworks, we present a detailed heatmap
view that shows the average error values for each device across the five buildings. In Figure 12,
each box indicates the average error for each building floorplan and smartphone. In this analysis,
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Fig. 12. Device- specific performance across all building floorplans and FL frameworks for different training
devices.

we present results for three training devices. In Figure 12(a), we trained all the frameworks on BLU,
Figure 12(b) on MOTO, and Figure 12(c) on OP3. We omit the results from training on the remain-
ing three devices for brevity (trends were similar to those observed in Figure 12). From Figure 12, it
can be seen that FedLoc performs well on floorplans with less noise (Building 1, 2, and 3) but fails
to provide accurate results on high noise floorplans (Building 4 and 5), even for the same training
device that the model was trained on. FedAeDNN has better performance than FedLoc, but still
fails to provide accurate results in Building 4 and Building 5. However, it significantly reduces er-
rors from FedLoc, indicating greater resilience towards heterogeneity. CNRP outperforms FedLoc
and FedAeDNN since the SAE used in it is better suited for heterogeneity. The FedAvg aggrega-
tion approach, used in CNRP and FedAeDNN, performs better than FedLoc’s FedSGD aggregation
approach. The weighted averaging of FedAvg prevents overfitting, while FedSGD overfits due to
gradient aggregation, making it more appropriate for less noisy environments. FedHIL exhibits
the lowest localization errors for each device compared to other FL-based frameworks. It pro-
vides accurate results even in floorplans with high noise (Building 4 and 5), effectively mitigating
bottlenecks observed in other frameworks (e.g., in Figure 12(b) see: Building 1-OP3/S7, Building
2-OP3/S7, Building 3-S7, Building 4-LG/OP3/S7, and Building 5-BLU/HTC/LG/MOTO/OP3/S7).
Figure 13 depicts the susceptibility of various FL-based frameworks to noisy data collected in
the online phase at each RP, including FedHIL, in the high-noise environment of Building 5 with
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Fig. 13. Susceptibility to noise across FL frameworks with training device: MOTO, testing device OP3 in
Building 5.
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Fig. 14. Skewness analysis on different floorplans and devices with different device mixes among clients.

MOTO as the training device and OP3 as the testing device. The noisy environment in Building 5
led to many instances of introducing noisy or outlier fingerprints, leading to the training of the
ML model with noisy data, which can degrade the performance of FL-based frameworks. Our
FedHIL framework and its selective aggregation technique, designed to prevent the underlying
SNN model from degrading due to noise, outperforms other FL frameworks. The combination of
the proposed SAE and the novel aggregation technique reduces the error even on highly noisy
RPs, demonstrating the superior performance of FedHIL in noisy environments.

6.4 Skew and Scalability Analysis

In this section, we show results of further experiments to explore FedHIL’s resilience to skewness
and scalability. Skewness refers to uneven distribution of device types in the FL system. Scalability
refers to the FL system’s ability to handle an increase in clients and data.

6.4.1 Skewness Analysis. A skewness analysis was conducted using six different users, each
with a smartphone (client). The client device combinations were split into five cases, with each
case consisting of a different combination of device types. All the cases were initially trained on
the MOTO device and evaluated on all the building floorplans. In Figure 14, we plot the average
localization error per case per floorplan with all device combinations in the case split. The device
combinations in each of the cases are as follows: Skew Case 1 contains two unique devices (5 users
with BLU and 1 with S7), Skew Case 2 contains three unique devices (4 users with BLU, 1 with
OP3, and 1 with S7), Skew Case 3 contains four unique devices (3 users with BLU, 1 with MOTO,
1 with OP3, and 1 with S7), Skew Case 4 contains five unique devices (2 users with BLU, 1 with
LG, 1 with MOTO, 1 with OP3, and 1 with S7), and Skew Case 5 contains six unique devices (each
user has a different device: BLU, MOTO, LG, OP3, S7, and HTC).

The results in Figure 14 indicate that the FedHIL framework is fairly resilient to device skew-
ness. Even in the presence of skewness, the model performance remains relatively stable across
scenarios (comparing for the same building floorplan). In Skew Case 1, we observe lower localiza-
tion errors in all buildings. This is because in the online training phase, the data is weighted more
for a particular device, and hence the model learns to generalize better, even when there is one
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Fig. 15. Scalability analysis on different floorplans and varying devices combinations split.

other heterogeneous device. In Skew Case 2, we observe similar results as that of Skew Case 1,
but with a slight error increase for Building 5. This is due to the high-noise environment in that
building. The Skew Case 3 shows similar results as for Skew Case 1 and Skew Case 2. The Skew
Case 4 and Skew Case 5 scenarios show similar results even in high noise environments but show
slightly higher errors compared to Skew Case 3, due to the added diversity in the participating
client devices. Although Skew Cases 4 and 5 contain a greater number of heterogeneous client
devices, they show similar performance as in Skew Case 2. From the results, we can conclude that
the FedHIL framework shows resilience to device skewness, making it practical for deployment in
real-world scenarios where it can provide good accuracy even when the device heterogeneity mix
varies among clients.

6.4.2  Scalability Analysis. This scalability analysis explored the performance of FedHIL as the
number of clients was increased from 6 to 12 and 18. The 6 Client case had six users with unique
smartphone devices, the 12 Client case had twelve devices with each of the six unique smartphone
devices used by two out of the 12 users, and the 18 Client case had eighteen devices with each
of the six unique smartphone devices used by 3 out of the 18 users. In all scenarios, we set the
training device to be MOTO, and the trained model was tested on all participating devices in all
available building floorplans.

Figure 15 shows the average localization error per scenario per floorplan. Our findings demon-
strate similar localization results across all client devices, with little to no variations across the
scenarios. This indicates that the FedHIL framework is scalable, and its performance is stable, even
in the presence of scalability of the participating clients. This is an important observation which
suggest that the FedHIL framework has great potential for scalability in indoor localization using
Wi-Fi RSS fingerprinting.

7 CONCLUSION

In this paper, we presented FedHIL, a new FL-based framework that improves indoor localization
accuracy while preserving user privacy across diverse environments. FedHIL employs a custom
SAE, a lightweight neural network, and a novel aggregation strategy in a distributed learning set-
ting, thereby diversifying the training data and improving the model’s accuracy. To address privacy
concerns and robustness, FedHIL employs a domain-specific selective weight adjustment approach.
We performed extensive analysis with the proposed framework, testing it for heterogeneity, sus-
ceptibility to noise, scalability, and skewness, which are common situations faced in real-world
distributed learning deployments. Experimental evaluations in real-world settings showed that
FedHIL outperformed state-of-the-art FL- and non-FL based frameworks, achieving 1.62x better
localization accuracy on average than the best performing FL-based indoor localization framework
from prior work. FedHIL thus represents a promising practical framework for simultaneously ad-
dressing the many challenges related to heterogeneity, noise-resilience, data privacy, and accuracy
in the indoor localization problem domain.
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