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Abstract—Relaying offers promise to improve reliability
in millimeter-wave (mmWave) vehicular networks, which
are susceptible to link outages caused by blockage. The
benefits of relaying, however, may be limited by the time
overhead and undesired beam directions resulting from
the commonly used exhaustive beam sweeping and arrays
based on phased-shifters (PSs). In this paper, we propose
a beam training scheme with hybrid arrays using phase
shifters (PSs) and true time delay (TTD) elements based
on deep reinforcement learning (DRL). The algorithm
leverages frequency dependent beam patterns, akin to a
rainbow beam, to track relay vehicles with negligible time
overhead and point toward the desired direction within
the wide bandwidth. Numerical simulations shows that the
proposed method outperforms state-of-the-art DRL-based
relay selection algorithm using phased arrays, motivating
further investigation.

I. INTRODUCTION

Relays are useful in mmWave vehicular networks, fa-
cilitating link establishment amidst the blockage caused
by dynamic topology of vehicles [1]. Relay selection
that rely on the solidified standard of PS-based beam
sweeping [2], however, can incur significant control
overhead leading to data rate deterioration.

DRL is an emerging framework for minimizing con-
trol overhead in resource management tasks in vehicular
networks [3]. It can address data rate deterioration by
learning the expected data rate from relay links and
triggering beam realignment in response to changing
network conditions [4]. Still, PS-based beam sweeping
pose a bottleneck in the upcoming vehicular networks
of 5G and beyond due to twofold reasons: proliferation
of antennas and the expansion of bandwidths, leading
to increased beam training overhead and inaccurate
beam alignment across different radio frequencies [5].
TTD elements, long studied in the antenna community
for their efficacy in wideband beamforming with large
arrays, are becoming increasingly practical, achieving
power efficiency and compactness [6]. This motivates
research leveraging TTDs for vehicular relay networks.

Several works made advancements in TTD technology
addressing beamforming issues in quasi-static networks.
Delay-phase precoding introduces a time delay network
in the hybrid precoding architecture, allowing control

over delay and phase to generate frequency-dependent
beam pointing consistently within wide bandwidth [7].
Rainbow codebooks with fixed delays, inversely pro-
portional to bandwidth, spread pencil beams uniformly
across frequencies, reducing beam training overhead [8].
The work in [9] propose directional-frequency multi-
plexing using delay-phase precoding to serve multiple
users simultaneously. Nonetheless, beam training using
delay-phase precoding in dynamic vehicular scenarios
with mobile users remains as an open challenge [10].

In this paper, we present a delay-phase codebook con-
struction algorithm employing DRL for beam training
in wideband vehicular relay networks with large an-
tenna arrays. The algorithm minimizes control overhead
by tracking relay vehicles with beam lobes pointing
in their direction and beamwidth corresponding to the
confidence interval of the tracked vehicle. We presume
a single-stream communication, at most a two-hop link
is allowed, and the communication nodes employ delay-
phase precoding. We also assume the communication
nodes employ Orthogonal Frequency Division Multi-
plexing (OFDM) and that the beam measurements are
fed back to the transmitter without quantization or over-
head. The feedback may be available through a dedicated
channel in the sub-6 GHz frequency range or may be sent
on the reverse link with reduced coding and spreading.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We assume a downlink scenario in a MIMO-OFDM
wireless network, as shown in Fig. 1, where a single base
station (BS) serves a single mobile user (UE). The BS
generates data traffic requested by the UE, where other
mobile nodes serve as potential relays. The BS is aware
of candidate relays, denoted as indices in 1, . . . , NREL,
based on a tracking algorithm with details deferred to
Section III. The BS can establish a one-hop direct link
or a two-hop indirect link through one of the relays
in 1, . . . , NREL. The BS performs beam alignment and
data transmission over the OFDM frames. During beam
alignment, it trains beams by sending pilots for MBA
discrete time slots, and during data transmission, it sends
symbols to a single UE for MDT discrete time slots.
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Fig. 1: Illustration of an example system model consisting
of (1) a base station, (2) relay vehicles, (3) the user, and
(4) mobile blockages. Two snapshots are shown: (a) the base
station performs beam training with multi-frequency probing
of beams, and (b) the base station performs data transmission
to a single user using all frequencies.

We describe the signal model of the direct BS-UE
link, as the signal model of the indirect BS-UE link is
analogous to the direct BS-UE link applied individually
to the BS-REL and REL-UE link. We presume the
system is equipped with a delay-phase architecture as in
[7]. We denote NBS as the number of antennas, NBS,RF
as the number of RF chains, and NTTD as the number
of TTD elements at the BS. Similarly, we denote NUE
as the number of antennas, NUE,RF as the number of RF
chains, and as NUE,TTD the number of TTD elements at
the UE. The BS and the UE communicate via NS data
streams, where NS ≤ NBS,RF ≤ NBS.

At each OFDM time frame m, the BS sends a
symbol vector s[k,m] of size NS × 1 to the UE. The
symbol vectors are assumed to be normalized such that
E[|s[k,m]|2] = 1. The BS precodes the symbol vector
with NBS,RF×NS frequency-selective baseband precoder
FBB[k,m]. Following the baseband precoding, the analog
precoding consist of two parts: NTTD × NBS,RF TTD
analog precoder FTTD[k,m] and the NBS ×NTTD phase

shifter analog precoder FRF[m]. We assume the precoded
signal propagates through a time-varying frequency-
selective channel model H[k,m] with large-scale fading
denoted as G[m] and the noise denoted as n[k,m]. At the
UE, the received signal is processed by NUE ×NUE,TTD
frequency-flat RF combiner vector WRF[m] followed by
the NUE,TTD × NUE,RF TTD combiner WTTD[k,m] and
the NUE,RF × NS baseband combiner WBB[k,m]. We
set power constraint on the BS by denoting P [k,m] as
the transmit power and constraining FBB[k,m] such that
∥FRF[m]FTTD[k,m]FBB[k,m]∥2F = NS. The end-to-end
input-to-output relation is

y[k,m] =
√
P [k,m]G[m]WBB[k,m]WTTD[k,m]WRF[m]

×H[k,m]FRF[m]FTTD[k,m]FBB[k,m]s[k,m]

+WBB[k,m]WTTD[k,m]WRF[m]n[k,m], (1)

and the spectral efficiency can be written as

S[FBB[k,m],FTTD[k,m],FRF[m],WRF[m],WTTD[k,m]

,WBB[k,m];H[k,m]]

=
1

K

K∑
k=1

log det
(
INS + P [k,m]G[m]σ−2

n WBB[k,m]

×WTTD[k,m]WRF[m]H[k,m]FRF[m]FTTD[k,m]

× FBB[k,m]F∗
BB[k,m]F∗

TTD[k,m]F∗
RF[m]H∗[k,m]

×W∗
RF[m]W∗

TTD[k,m]W∗
BB[k,m]

)
. (2)

Hereinafter, for the sake of brevity, we denote the spec-
tral efficiency as S[m] and the overall spectral efficiency
over two-hop link through the nth relay as Sn[m]. We
assume optimal time resource allocation for decode-and-
forward relaying in the two-hop link [11].

The BS equipped with TTD array can perform multi-
frequency probing. For the purpose of beam training, we
assume the UE exhaustively sweep beams for simplicity;
UE exploiting frequency dependent beam patterns for
beam training will be considered in our future work.
Then, denoting νUE as the size of the UE codebook, the
overhead of beam alignment procedure is

MBA = νUE. (3)

To account for measurement errors, we assume that
the UE feeds back the spectral efficiency for each UE
beam to the base station. We use the MMSE estimator for
the effective channel, which accounts for the measure-
ment error in its estimation, under a rectangular Doppler
spectrum as outlined in [12, Sec. 4.8]. The MMSE
estimator is defined by the ratio of pilots per symbol
transmission, denoted as βRF, and the total number of
OFDM frames during beam training, denoted as ζRF. The
MMSE can be expressed as

MMSE =
1

1 + βRFζRFSNR
, (4)



and the effective SNR as

SNReff =
SNR(1−MMSE)
1 + SNR ·MMSE

. (5)

The effective SNR is applied to the spectral efficiency
feedback from the UE to the BS

SUE[m] = S[m]

∣∣∣∣
SNR=SNReff

(6)

The BS aims to maximize the cumulative data rate
over a time horizon M by selecting the best relay and
beam at each time slot m = 1, . . . ,m. Let us denote
A[m] as the action the BS needs to decide. For each
nth relay, denoting the binary variable cn(A[m]) = 0
when beam training is in progress and cn(A[m]) = 1
when data transmission is performed, the optimization
problem can be written as

max
{A[m]}

M∑
m=1

NREL∑
n=0

cn(A[m])Sn[m], (7)

which we assume to be finite with bounded M .
To solve (7), the BS must first identify a set of

candidate relays {1, . . . , NREL} and estimate the data
rate Sn[m] to select the best relay. To minimize the
overall control overhead, we propose a DRL algorithm
that replaces the exhaustive beam sweeping with multi-
frequency probing to concurrently track the candidate
relays and the respective data rate.

III. DRL-BASED RELAY VEHICLE TRACKING AND
BEAM TRAINING USING DELAY-PHASE CODEBOOK

CONSTRUCTION

DRL algorithms aim to improve decision-making over
time by training neural networks that are specified by
Markov decision processes (MDPs), consisting of state,
action, and reward. We describe the MDP for learning
delay-phase codebooks used in relay vehicle tracking.

The proposed MDP builds upon that of [4]. Let us
denote ℓn[m] = (iGn

[m], S[m]) as the link vector of
the nth indirect two-hop link consisting of user beam
index and spectral efficiency feedback. Let us also denote
τrelay[m] as the relay switching threshold and τmode[m] as
the beam realignment threshold.

1) State: the state consist of the link vectors

T [m] = {ℓ0[m], ℓ1[m], . . . , ℓNREL [m]}. (8)

2) Action: inspired by bounding boxes widely
adopted in computer vision studies [13], the angles and
beamwidths of the beams tracking relay vehicles are
concatenated to yield the action as

A[m] ={τrelay[m], τmode[m], A0[m], θ0[m],

. . . , ANREL [m], θNREL [m]}. (9)

Fig. 2: Example bounding boxes for beam-to-vehicle relay
tracking, showing two beam lobes and vehicles. Beam lobe
colors indicate frequencies. Lower vehicle position estimated
as θ1 and upper vehicle position as θ2. Upper beam is 1.5
times wider than the lower, with a 1.5 times longer confidence
interval for vehicle relay tracking.

Fig. 2 illustrates how the bounding boxes of beam lobes
are mapped for vehicle relay tracking.

3) Reward: the reward is set to the instataneous
realization of the objective in (7)

r[m] =

NREL∑
n=0

cn(A[m])Sn[m]. (10)

For completeness, we provide the pseudocode in Al-
gorithm 1 that updates the neural networks.

Algorithm 1 Delay-phase codebook construction based
on deep reinforcement learning

1: Input: Length M of decision horizon, set
{0, 1, . . . , NREL} of relays, minibatch sample size
B, replay buffer D, exploration noise distribution
N , length MBA of beam alignment period

2: Randomly initialize online critic network
Q(T [m], a[m]|θC,ON) and online actor network
µ(T [m]|θA,ON) with θC,ON and θA,ON

3: Initialize target critic network θC,TAR ← θC,ON and
target actor network θA,TAR ← θA,ON

4: for m = 1, . . . ,M do
5: Select action A[m] using the current online actor

network and exploration noise distribution N
6: Compute reward r[m] from (10)
7: Get successor state T [m + 1] from the current

beam management procedure and its duration
8: Put transition (T [m], a[m], r[m], T [m+ 1]) in D
9: Sample B transitions randomly from D

10: Update the online actor and critic network
11: Update target networks from online networks
12: end for

IV. NUMERICAL RESULTS AND DISCUSSION

We adopt the method from [4] to simulate channels
from ray tracing applied to vehicle trajectories generated



by Simulator of Urban Mobility (SUMO). Notable as-
sumptions include NS = 1, a carrier frequency of 28
gigahertz, average vehicle speed of 80 km/h, possible
line-of-sight blockage by vehicles, and vehicles’ surfaces
acting as lossless reflectors. We adopt deep deterministic
policy gradient as the DRL algorithm and subcarrier
grouping for frequency allocation. We approximate the
ensemble mean by averaging over 1,000 channel in-
stances. Regarding the DRL-based policy performance,
we report the average of the final 20 iterations out of a
total of M = 200 to represent the converged reward.

Fig. 3 compares the spectral efficiency achieved by
the proposed method and two baselines across fractional
bandwidths ranging from 0.01 to 0.3. The upper plots
depict results for a 64 × 64 system, while the lower
plots depict results for a 16 × 16 system. As fractional
bandwidth increases within the observed range, the DRL
approach with phased arrays experiences a 30% loss in
spectral efficiency for the 16 × 16 system and a 32%
loss for the 64×64 system. The genie-aided policy with
phased arrays sees a 12% loss for the 16 × 16 system
and a 14% loss for the 64× 64 system. In contrast, the
proposed method incurs only a 7% loss for the 16× 16
system and a 4% loss for the 64× 64 system.

The proposed method enjoys robustness to increased
bandwidth via squint-free beams generated with TTD
elements. We analyze that, with hours of initial learn-
ing iterations, the DRL algorithm grasps the stationary
distribution of vehicle mobility. Assessing the proposed
algorithm in environments with nonstationary vehicle
mobility distributions demands further exploration.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a DRL algorithm using
bounding boxes to map frequency dependent beams
generated by delay-phase codebooks to vehicle position
estimations along with their confidence intervals. In
comparison to the baseline based on phased arrays, the
proposed method incurs only one-fifth of the spectral
efficiency loss in a 16 by 16 system and one-eighth
loss in a 64 by 64 system with an increase in fractional
bandwidth. Future work includes integrating delay-phase
combiners into the beam training, extending to multi-
user scenarios, and assessing the DRL algorithm’s ro-
bustness to data rate feedback errors.
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