
20
23

 6
0t

h
A

C
M

/I
E

E
E

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
)

| 9
79

-8
-3

50
3-

23
48

-1
/2

3/
$3

1.
00

 ©
20

23
 I

E
E

E
 |

D
O

I:
 1

0.
11

09
/D

A
C

56
92

9.
20

23
.1

02
47

84
5

Lightning Talk: Efficient Embedded Machine Learning
Deployment on Edge and IoT Devices

Sudeep Pasricha
Department of Electrical and Computer Engineering

Colorado State University
Fort Collins, CO, United States

sudeep@colostate.edu

Abstract –There has been rapid growth in the use of machine
learning (ML) software in emerging edge and IoT systems. ML
software deployments enable analytics and pattern recognition
for multi-modal data (e.g., audio, images/video, wireless signals,
air quality) obtained from embedded sensors and transceivers.
However, resource constraints in edge and IoT platforms make
it challenging to meet quality-of-service and real-time goals. The
growing complexity of ML also exacerbates these issues. We
discuss the challenges of ML software deployment in edge and
IoT platforms, present strategies to ease deployment, and
discuss case studies from the automotive, indoor navigation, and
hardware/software co-design domains.

Keywords—embedded software, machine learning, edge
computing, IoT computing, model optimizations

I. EMBEDDED ML SOFTWARE IN EDGE AND IOT PLATFORMS

Machine learning (ML) software is being actively deployed in
edge and IoT platforms in our everyday lives. Our homes have smart
thermostats (e.g., Nest), smart speakers with voice assistants (e.g.,
Amazon’s Alexa), surveillance IP cameras (e.g., Wyze), and virtual
reality gaming headsets (e.g., Meta Quest) that rely on ML software.
Our cars are using ML for vehicle localization; detection of
pedestrians, traffic/road signs, and lanes; and advanced driver
assistance systems [1]. Even our smartphones today use ML in
almost every aspect of how we interact with these devices [2].

While in many of these cases, ML software is deployed in the
cloud and accessed via API calls from devices connected to the
Internet, there is a growing push to implement ML models on the
resource-constrained devices. The primary motivation here is to
avoid the uncertainty and overheads associated with wireless
communication. Not only does wireless communication lead to high
power consumption in devices (e.g., up to 70% [3]) and reliability
issues due to wireless signal interference or lack of available wireless
network coverage at locations, but the latency associated with
communication can exceed real-time requirements in many
applications (e.g., in real-time automotive perception systems).

For these reasons, there has been growing interest in supporting
on-device ML software execution on edge and IoT platforms, ranging
from base stations and mobile devices with GPUs and hardware
accelerators to simpler CPU-based systems. At the extreme end of
this device spectrum are tiny microcontrollers which are being
considered as platforms for ML deployment to achieve low-power
audio keyword spotting (i.e., recognizing a word or phrase), anomaly
detection and forecasting from sensor data, and pattern recognition
(e.g., detecting faces, images, objects, gesture, activities, text) [4].
However, there remain many open challenges with deploying ML on
resource-limited edge and IoT platforms, as discussed next.

II. ML DEPLOYMENT CHALLENGES

ML deployments on edge and IoT devices face many important
challenges: 1) Power dissipation: the low cost and compact nature of
many edge/IoT platforms limits the use of fans or liquid cooling. As
a result, power dissipation has to be carefully controlled to meet
stringent TDP (thermal design power) goals that can be as small as a

This research is supported by grants from NSF (CNS-2132385, CCF-1813370)

few milliWatts. Meeting reasonable performance goals (e.g., sub-
second runtimes) with a large class of ML software algorithms, such
as deep learning techniques, can easily exceed these requirements; 2)
Energy consumption: many edge/IoT platforms are battery-driven,
and as such have a limited energy store at their disposal. Compute
intensive ML models, such as the neural network family of models
that require large numbers of matrix multiplication operations, can
drain the battery quickly, and reduce uptime in devices; 3) Memory
footprint: edge and IoT platforms are typically memory limited, to
reduce device area, power, and cost. Even relatively simple deep
learning ML models have peak memory requirements of several GBs,
which cannot be supported in these devices; 4) Computation
complexity: To support high accuracy, executing large and complex
ML models are crucial. These models can have requirements that
exceed hundreds of GFLOPs, whereas edge and IoT platforms may
only be capable of delivering a few GFLOPs, and up to tens of
GFLOPs in the best case; 5) Real-time constraints: many applications
have real-time constraints, requiring ML models to not only generate
the correct results, but also to do so within a time constraint. For
instance, indoor navigation with smartphones, and automotive
perception-to-actuation have strict timing constraints that require ML
predictions within 50-200 milliseconds [5], [6]. Meeting such goals
is difficult with the limited resources in edge and IoT devices.

III. STRATEGIES FOR EFFICIENT ML DEPLOYMENT

Due to the resource limitations of edge and IoT platforms,
training ML models on them is usually impractical. But even
deploying and running pre-trained models for inference runs into the
issues discussed in the previous section. To unlock the full potential
of ML on edge and IoT devices, there is a need for strategies to
optimize ML runtime behavior. ML models need to fit in limited
memory and utilize limited processing capabilities, which requires
creative approaches that can limit the size of the input and the number
of layers in the ML model, optimize the parameters and computations
within ML models, or make use of lightweight non-neural network-
based ML algorithms to accomplish application goals.

The approaches that have shown the most promise to reduce ML
overheads across edge and IoT platforms include: 1) Model selection:
sometimes the extra few % of accuracy with predictions that comes
with more complex ML models can be sacrificed in favor of simpler
ML models with fewer parameters that provide “good enough”
accuracy. For example, the family of single-stage object detectors,
including SSD, YOLOx, and RetinaNet have much fewer parameters
and faster inference speeds than the more accurate two stage object
detectors, such as Faster R-CNN [7], 2) Quantization: the 32-bit
floating point values of weights in parameterized ML models (such
as neural networks) can lead to significant memory footprint and
computation overheads. Therefore, converting these weight
parameters (and also activations) to fixed point integer values with
lower bitwidths (e.g., 8 bits) is desirable. In many cases quantization
with retraining can lead to minimal reduction in accuracy while
leading to orders of magnitude reduction in inference time and
memory footprint [8], 3) Pruning: removing redundant, non-
informative weights in a pre-trained ML model (e.g., DNN or CNN),
or training such models with sparsity constraints not only allows
compressed storage of such models in memory, but can also speed up
their inference [9]; 4) Knowledge distillation: by shifting knowledge
from a large teacher model into a smaller one, and by learning the
class distributions output via softmax, it is possible to compress deep

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:25:23 UTC from IEEE Xplore. Restrictions apply.

and wide networks into shallower ones, where the shallower model
mimics the functions learned by the complex model [10]; 5) Loop
optimizations: as ML models are often custom coded (e.g., using C
or C++) for resource-constrained platforms, and involve time-
consuming operations on tensors in loops, optimizations such as loop
tiling, loop unrolling, and loop reordering can change the data access
patterns in a manner that improves spatial and temporal locality that
can be better exploited by caches, to improve performance [11].

IV. CASE STUDY: AUTOMOTIVE PLATFORMS

Efficient deployment of ML in automotive platforms is a topic of
much research, given the rise of autonomous vehicles. Here we
present recent examples of ML software optimization approaches for
the automotive domain. In [12], a framework for optimizing ML-
based perception architectures for autonomous vehicles was
proposed. The main contribution of the framework was an iterative,
semi-structured pruning approach that was able to reduce inference
time, energy use, and memory footprint for single stage object
detectors such as YOLOv5s and RetinaNet. In [13], a framework for
co-optimizing the selection of locations and orientations for sensors,
object detectors, and sensor fusion algorithms was proposed for semi-
autonomous vehicles and demonstrated for the Audi-TT and BMW-
Minicooper vehicles. The framework involved selecting appropriate
object detectors for a given vehicle and sensing goal using multi-
modal sensors, while also fine tuning the object detectors using
neural architecture search (NAS) techniques to improve inference
accuracy and performance. In [14], an efficient ML-based framework
for anomaly detection in automotive networks was proposed. The
framework made use of a simplified ML model with a powerful
temporal convolutional neural attention mechanism to learn to detect
patterns in sequence data. The model reduced memory footprint,
inference time, and model parameters by several orders of magnitude
compared to the state-of-the-art [15].

V. CASE STUDY: INDOOR NAVIGATION

Efficient deployment of ML for indoor localization with mobile
devices is an emerging domain that is poised to usher in highly
precise emergency response; seamless robot, human, and UAV
navigation; and location-based services within indoor, dense urban,
and subterranean environments, where GPS signals cannot penetrate.
Here we present recent examples of ML software optimization
approaches for the indoor navigation domain. In [16], a framework
for simultaneous quantization and pruning of ML models used in
indoor localization was proposed. Using these two ML model
compression techniques, the framework was able to deploy a
convolutional autoencoder and a CNN classifier on resource-scarce
devices with an inference latency of just a few milliseconds to meet
the needs of real-time navigation. Moreover, the bitwidth reduction
in model parameters and model pruning allowed the ML model to fit
in less than 100KB of memory, while maintaining acceptable indoor
localization accuracy. In [17], an early exit strategy was leveraged to
speed up ML inference on mobile devices. The strategy involved
training an ML model in a manner that allowed making predictions
with high confidence in a majority of scenarios after executing just a
few layers of the ML model. Such an early exit during model
inference was able to achieve up to 42% reduction in inference
latency and 45% reduction in inference energy. In [18], a large vision
transformer ML model architecture was simplified and adapted for
deployment on mobile devices, with a small enough footprint (less
than 250K parameters) to accomplish a localization prediction in 50
milliseconds or less, while outperforming ML models (in terms of
accuracy) that were several orders of magnitude larger.

VI. CASE STUDY: HW/SW CO-DESIGN

If co-designing the ML software and hardware platform is
possible, it opens up new avenues for optimizing performance and
energy-efficiency for ML software on edge and IoT platforms. As an
example, [19] proposed a co-design approach that trained hyper-
quantized binary neural network ML models (with 1 bit weights and
4 bit activations) and simultaneously customized an optical hardware
accelerator platform to execute these models efficiently. Similarly,

[20] proposed a co-design approach that trained sparse neural
network ML models and simultaneously customized the optical
hardware accelerator platform to execute these models efficiently.
These approaches were able to improve ML energy-efficiency and
power consumption by over 10× compared to an optical hardware
accelerator [21] that was designed for high performance server
platforms. In [22], inference with large transformer models such as
BERT [23] was optimized, enabling it to be efficiently executed by
co-designing the device, circuit, and architectures layers in the
hardware together with the ML software model. The deployed ML
models showed orders of magnitude reduction in energy-per-bit
compared to CPU, GPU, FPGA, and other ML accelerator platforms.

VII. CONCLUSIONS

In this paper, we presented a brief overview of some of the key
challenges with deploying ML software on edge and IoT platforms.
Given the many resource limitations of edge and IoT platforms,
novel approaches are needed to deploy powerful ML models on
these platforms. We discussed some effective strategies to improve
ML performance, energy-efficiency, and reduce its memory
footprint on edge and IoT platforms. We presented case studies of
efficient ML deployment from the automotive and indoor navigation
application domains. Lastly, we motivated the use of hardware/
software co-design to further optimize efficiency metrics.

REFERENCES

[1] V. Kukkala, et al., “Advanced driver assistance systems: a path toward
autonomous vehicles“, IEEE Consumer Electronics, 2018.

[2] “Apple using machine learning for almost everything, and privacy-first
approach actually better”, 2020 [Online]:
https://9to5mac.com/2020/08/06/apple-using-machine-learning/

[3] S. Branco, et al., "Machine learning in resource-scarce embedded
systems, FPGAs, and end-devices: A survey." Electronics 8.11, 2019.

[4] H. Han, et al. "TinyML: A systematic review and synthesis of existing
research." In IEEE ICAIIC, pp. 269-274, 2022.

[5] C. Langlois, et al., “Indoor localization with smartphones”, IEEE
Consumer Electronics, 6(4), 2017.

[6] K. Strobel et al. "Accurate, low-latency visual perception for
autonomous racing: Challenges, mechanisms, and practical solutions."
IEEE/RSJ IROS, 2020.

[7] A Balasubramaniam et al., “Object detection in autonomous vehicles:
Status and open challenges”, arXiv, 2022.

[8] A. Gholami, et al. "A survey of quantization methods for efficient neural
network inference." arXiv, 2021.

[9] J. Liu, et al. "Pruning algorithms to accelerate convolutional neural
networks for edge applications: A survey." arXiv 2020.

[10] J. Gou, et al. "Knowledge distillation: A survey." IJCV, 2021.
[11] J. Gao, et al. "A systematic survey of general sparse matrix-matrix

multiplication." ACM Computing Surveys 55.12: 1-36, 2023.
[12] A. Balasubramaniam, et al., “R-TOSS: A framework for real-time object

detection using semi-structured pruning”, IEEE/ACM DAC, 2023.
[13] J. Dey, et al., “Robust Perception Architecture Design for Automotive

Cyber-Physical Systems”, IEEE ISVLSI, 2022
[14] S. V. Thiruloga, et al., “TENET: Temporal CNN with attention for

anomaly detection in automotive cyber-physical systems”, IEEE/ACM
ASPDAC, Jan 2022

[15] V. K. Kukkala, et al., “INDRA: Intrusion Detection using Recurrent
Autoencoders in Automotive Embedded Systems”, IEEE TCAD, 2020.

[16] L. Wang, et al., “CHISEL: Compression-aware high-accuracy
embedded indoor localization with deep learning”, IEEE ESL, 2022.

[17] S. Tiku, et al., “QuickLoc: adaptive deep-learning for fast indoor
localization with mobile devices”, ACM TCPS, 17(4), Oct 2021.

[18] D. Gufran, et al., “VITAL: vision transformer neural networks for
smartphone heterogeneity resilient and accurate indoor localization”,
IEEE/ACM DAC, 2023.

[19] F. Sunny, et al., “ROBIN: A robust optical binary neural network
accelerator”, ACM TECS, Volume 20, Issue 5s, Oct 2021.

[20] F. Sunny, et al., “SONIC: A sparse neural network inference accelerator
with silicon photonics for energy-efficient deep learning”, IEEE/ACM
ASPDAC, Jan 2022.

[21] F. Sunny, et al., “CrossLight: A cross-layer optimized silicon photonic
neural network accelerator”, IEEE/ACM DAC, 2021

[22] S. Afifi, et al., “TRON: transformer neural network acceleration with
non-coherent silicon photonics”, ACM GLSVLSI, 2023.

[23] J. Devlin, et al., “BERT: pre-training of deep bidirectional transformers
for language understanding,” in CoRR, 2018.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on October 01,2023 at 16:25:23 UTC from IEEE Xplore. Restrictions apply.

