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Abstract—Optimal resource allocation in wireless systems
still stands as a rather challenging task due to the inherent
statistical characteristics of channel fading. On the one hand,
minimax/outage-optimal policies are often overconservative and
analytically intractable, despite advertising maximally reliable
system performance. On the other hand, ergodic-optimal resource
allocation policies are often susceptible to the statistical dispersion
of heavy-tailed fading channels, leading to relatively frequent
drastic performance drops. We investigate a new risk-aware
formulation of the classical stochastic resource allocation problem
for point-to-point power-constrained communication networks
over fading channels with no cross-interference, by leveraging
the Conditional Value-at-Risk (CV@R) as a coherent measure
of risk. We rigorously derive closed-form expressions for the
CV @R-optimal risk-aware resource allocation policy, as well as
the optimal associated quantiles of the corresponding user rate
functions by capitalizing on the underlying fading distribution,
parameterized by dual variables. We then develop a purely dual
tail waterfilling scheme, achieving significantly more rapid and
assured convergence of dual variables, as compared with the
primal-dual tail waterfilling algorithm, recently proposed in the
literature. The effectiveness of the proposed scheme is also readily
confirmed via detailed numerical simulations.

Index Terms—Resource Allocation, Conditional Value-at-Risk
(CV@R), Waterfilling, Risk-Aware Optimization, Dual Descent.

I. INTRODUCTION

In this paper, we revisit the classical resource allocation
problem in point-to-point communication networks with no
cross-interference operating over random fading channel real-
izations H € H C RYV. In the dynamic landscape of wireless
networks, efficiently allocating resources stands as a critical
and perpetual challenge to ensure optimal and robust system
performance. In fact, even achieving decent performance in
expectation is often insufficient in modern networking ap-
plications, as occurrence of less-probable though statistically
significant fading events might prompt rather unsatisfactory
outcomes [1]. To this extent, heavy-tailed characteristics of
channel fading necessitate the development of statistically
robust resource allocation policies to compensate such non-
typical events, even at the cost of minor performance degra-
dation on average.

Conventionally, allocation of resources, such as transmis-
sion power and/or channel access, is carried out by either
deterministic or stochastic methods to optimize certain net-
work utilities. In the deterministic framework, including most
conservative minimax formulations [2], [3], the statistical
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variability of fading is often disregarded as an essential charac-
teristic of the system. On the other hand, stochastic approaches
consider expectations of random network objectives [3]-[7]
(e.g., transmission rates) while aiming to maximally optimize
performance in the long-term, i.e., in the ergodic sense.
While minimax-type resource allocation policies are often
regarded as “robust” due to their maximally reliable system
performance [2], [3], they are, in fact, overcautious and exhibit
conservative system performance. Such policies target the
“worst-case scenario”, inherently preventing the system to
achieve higher average network utilities, e.g., transmission
rates. On the other extent, ergodic resource allocation policies
are optimal only in expectation, and generally fail to effec-
tively anticipate comparably rare-occurring but operationally
significant channel observations, e.g., deep fades. Such fading
realizations are rather observable in communication media
with heavy-tailed fading distributions, leading to severe service
outages. In fact, it is well-known that ergodic policies are
typically channel-opportunistic [4], subsequently leading to
poor performance over sporadic channel realizations. This
corresponds to considerable operational spectrum underutiliza-
tion, correlating with unreliable system performance.
Although approaches based on outage probability optimiza-
tion [8] aim to overcome the issues presented by the methods
above, they ultimately raise new questions: How do we select
feasible outage probability targets to effectively allocate re-
sources, and even when those targets are feasible, how do we
guarantee that they prompt substantial system performance?
Quantile-based resource allocation policies, including outage
rate/capacity optimization, aim to alleviate those questions,
however, they are limited in terms of interpretability, and
inherently lack favorable structure, such as convexity.
Risk-aware approaches are steadily becoming important
[9]-[12], particularly in modern network applications ne-
cessitating strict reliability requirements to be met. To this
end, we investigate a risk-aware problem formulation of
the resource allocation problem in multi-terminal point-to-
point resource-constrained communication network with no
cross-interference by utilizing the Conditional-Value-at-Risk
(CV@R) as a measure of fading risk [13]. CV@R is a coherent
risk measure [14] continuously spanning between the extremes
of ergodic and minimax settings, allowing us to reformulate
the resource allocation problem as a convex, interpretable, and
well-structured extension of its classical (ergodic) counterpart
[4], [15]. In our previous work [16], we introduced the primal-
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dual tail waterfilling (PDTW) algorithm for purely data-driven
CV @R-optimal risk-aware resource allocation policy learning,
achieving fully tunable system robustness and reliability.

In this paper, we exploit potential prior information on the
fading probability distribution (available —even approximately—
in various settings), leading to the dual tail waterfilling (DTW)
algorithm, facilitating globally optimal, statistically robust and
reliable risk-aware resource policy optimization. Our con-
tributions are as follows: We rigorously obtain closed-form
expressions of the CV@R-optimal Lagrangian-relaxed risk-
aware resource policy, as well as the related quantile measures
for user rates regulated by CV@R-optimal resource policies
(and the optimal rate vector). Then, we design a purely dual
descent scheme (DTW) to attain a globally optimal risk-aware
policy in a recursive, subgradient-based fashion. Efficiently
exploiting fading priors drastically accelerates convergence
speed, as well as the overall effectiveness of our CV@R-based
approach. We conduct detailed numerical simulations substan-
tiating the effectiveness and good empirical characteristics of
DTW algorithm for two common network utilities.

II. PROBLEM FORMULATION

We consider a Ny -terminal parallel point-to-point commu-
nication channel model with no cross-interference. Also, for
simplicity, we assume perfect channel state information (CSI)
at transmission time. The resources are allocated via a policy
function p(h) > 0, where h is the instantaneous fading
vector, whose elements h;, ¢ € {1,..., Ny} correspond to
fading coefficients of parallel links, distributed by a cumulative
distribution function (cdf) F},,. The instantaneous transmission
rate of communication link ¢ € {1,..., Ny} in the network is

2
ri(pi(hi), hi) = log (1 + W) ,

)

6]

where o2 is the noise variance of the corresponding link. In
an ergodic setting, optimal resource policies can be readily
obtained by solving a classical stochastic problem [4], [15].
To meaningfully mitigate the adverse effects of commonly dis-
persive or heavy-tailed channel fading in system performance,
we investigate a risk-aware extension of the resource allocation
problem formulated as [16]

P* = maximize fo(x),
subject to & <X —CV@R®* [—r(p(h),h)], @
[E[p(R)] 1 < Fo,

where x is a risk-ergodic rate vector, and CV@R is defined
as

1
CV@R?[2] £ inf ¢+ ~E[(z—1)], 3)

for an integrable random cost z, « € (0, 1] is the corresponding
confidence level, the vector notation CV@R®[-] represents
elementwise operations (with a being a vector of correspond-
ing CV@R confidence levels), and (-); = max{-,0}. Note
that CV@R is a convex, monotone, translation equivariant
and positively homogeneous —therefore coherent— risk measure

[14], strictly generalizing expectation in a tunable and tractable
fashion, since it satisfies

CV@R'[z] = lim CV@R“[z] = ess sup z,
a—0 (4)
CV@R'[z] = E[2] < CV@R"[z] for o € (0, 1],
also being monotonic in . CV@R measures the expected
loss of a random cost z restricted to the upper tail of the
underlying distribution, of probability equal to « [13]. We
modify the formulation in (3) to measure an expected reward
constrained in the lower tail of probability equal to «, suitable
for maximizing objectives, as

1
—~CV@RY[—z] £sup t — —E[(t —2)4]. )
teR «
Utilizing (5) in (2), we may simply express the risk-aware
resource allocation problem as

fO(m)7

P* = maximize
xzxeX ,p~0,t

subject to x Xt — é O E[(t—r(p(h),h)).], ©
[E[p(h)] L < Fo,

where “©” stands for Hadamard product, and division with
respect to vector o similarly stands for elementwise division.
Problem (6) remains convex due to the inherent coherence of
CV@R. Nonetheless, problem (6) is still rather complicated,
since the fading vector h attains values of a continuum,
introducing infinite-dimensionality to the problem, therefore
solving (6) may seem an obscure and difficult challenge. How-
ever, under the assumption of certain constraint qualifications,
such as Slater’s condition, strong Lagrangian duality in (6) is
observed —hence, there is no duality gap. This fact enables the
use of the dual problem of (6) within the Lagrangian duality
framework. The Lagrangian of (6) is defined as

L(z,p,t,A) = fo(z) +p(Po— |Elp(h)] 1)

1 @)
AT (£ L O[T 1) 2 )
where A = (A, u) > O are the Lagrangian coefficients
—dual variables— for corresponding constraints in (6). The
dual function is then expressed as the maximization of the
Lagrangian function over the primal variable triplet (x, p,t),
1.€.,
q(A) £

sup  L(z,p,t,A). (®)

xzeX,p~0,t
We may subsequently define the dual problem as the mini-
mization of the dual problem with respect to dual variables,
ie.,

D* £ inf sup
AZ0 zcx p=0,t

L(z,p,t,A). ©)

Recall that the primal problem (6) exhibits no duality gap
and remains infinite-dimensional, however, the corresponding
dual problem is finite-dimensional, initiating the use of (9)
for globally optimal solutions as anticipated. We next propose
an efficient dual waterfilling scheme (cf. PDTW algorithm of
[16]) to solve the minimax problem in (9), and obtain dual
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variable-parameterized closed-form solutions of all primal
variables involved, including the CV@R-optimal solution to
the risk-aware resource policy.

III. THE DUAL TAIL WATERFILLING

The dual problem (9) can be separated into several sub-
problems with respect to the primal variables. Leveraging
the interchangeability principle [14, Theorem 7.92], we may
express the dual problem in the form

Ny
m}+ sup {Z)‘iti

TEX teRNU | ;4

Y W )

Next, by capitalizing on the separation of subproblems, we rig-
orously derive the closed-form solution of all primal variables,
particularly the dual variable-parameterized CV @R-optimal
resource policy and the corresponding optimal ¢t*.

D* = mf uPy + sup {fo(m) -

A. CV@R-Optimal Risk-Aware Resource Policy

The particular resource policy subproblem for each terminal

1€ {1, N, U} is

sup £ (206 = rit)e ) — i |

p; >0
Next, we present the optimal solution to (11), exhibiting the
unique behavior of optimal risk-aware policy, compared to its
risk-neutral (classical) counterpart.

Theorem I (CV@R-Optimal Risk-aware Policy): An optimal

solution to the resource policy subproblem (11) for terminal

ie{l,...,Ny}is
N o? o? (elt)+ — 1)
i hiv' £ i - L ) - )
pithi) mm{(uai )
(12)

whenever (\;, 1) # 0, otherwise selecting p; = 0 is optimal.
Proof of Theorem 1: Notice that problem (11) is concave,
and becomes null when (\;, 1) = 0. For A; = 0 or ¢; <0, and
1 > 0, the subproblem stands trivial with the optimal solution
of p; =0. For \; > 0 and p = 0, the subproblem becomes

A ih
sup {— <t —log <1+p Z)) }, (13)
pi=0 Q; Ui +

()4

(In

and choosing pf = 42 (e - 1>/h? is optimal. For
(i, Niypb) = O —assumed hereafter—, each subgradient g(p;)
of the objective of (11) can be expressed as

by pih2 B2
)=k SHH |t log (1 i L (14
9(pi,-) /H— { og( + g ﬂ P (14)

3

where H|-| is any selection of the Heaviside step multifunc-
tion. Notice that g is a decreasing function of p; > 0, and the
maximum value of subgradients is attained at p; = 0, where

A\; B2

g=-—n+_-=5
Q; T;

(15)

- -~
=
-
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Fig. 1: CV@R-Optimal resource allocation policies for risk-aware (RA, oo =
0.90) and risk-neutral (RN, o = 1.00) settings in a 3-terminal network.

where g is in the subdifferential of the objectlve of (11) at

= 0. If g < 0, occurring iff ;7 ;’2 < 0, then the
tr1V1a1 ch01ce pZ = O naturally becomes optlmal Ifg>Do,
& > 0, we exploit the fact that 0 € 9f (z*)
for an arbltrary/functlon f at the maximizing value z*, and
investigate two scenarios for a subgradient g to attain zero. In
the first scenario, suppose a p; > 0 exists such that

H{ti—log(l—ki—;ﬁ)} zlﬁti—log(l

i

*7 2
+ —p;}g’l) > 0.

(16)
Then, from (14), we subsequently have
i o2
fhy,)=——--2%] , 17
)= (- 55) (1)
provided that p} satisfies (16) as
a2 (et — 1) i o2
B A _ v , 18
h? <Mai h?) 1o

providing a branch condition. For the second scenario, suppose
a p; > 0 exists such that

ti—log (1+ 230 ) =0 H [t; —log (1+ 2032 ) | = €,

i

(19)
where C' € [0, 1]. Consequently, from (19), we have
o',? e(ti)+ — 1
p; (hi,) = (T)’ (20)
provided that p; inherently satisfies
o? (et — 1) N o?
gile =0 (A% 21
hi oo (Maz‘ hi > @D

by combining (19) and (14), meeting the complementary
branch condition. Combining (17), (20), (18), and (21) ulti-
mately concludes the proof. ]
It follows that the optimal solution presented in (12) is an
extension of the risk-neutral resource allocation policy. Recall
that CV@R is a tractable generalization of expectation at
the extreme values of «, i.e., @ = 1, leading ¢; to infinity.
Therefore, the classical risk-neutral resource policy

Xi o2

N 2 7

pi (hi,-)=<—> )
no by

stands within the operational spectrum of a-parameterized
risk-aware resource policy.

(22)
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B. Optimal Value-at-Risk / Risk-Ergodic Rate

The remaining subproblems can be solved with respect
to their corresponding primal variables. Recalling the dual
problem (10), we may now focus, for each terminal i €
{1,..., Ny}, on the subproblem

sup {6 (1) 2 6= € (-t )+ - e i)} @)
t:€R Q; Ai
and we also define G*(-) = G(p},-). A closed-form expres-
sion for the optimal ¢; follows.

Theorem 2 (Optimal Value-at-Risk): Let F},, be a continuous
and invertible cdf for the fading of terminal ¢ € {1,..., Ny }.
Then, the optimal solution of (23) at terminal ¢ is

i 2 (1og (s (5 0)”) )

ooy

(24)

where F,: 1is the inverse of cdf Ey,,.

Proof of Theorem 2: Let F, , ) be the cdf of instan-
taneous rate (1) at terminal ¢, ¢ € {1,..., Ny}. Recall the
optimal resource policy in (12) to express F,. (¢, .) as

Fri(to(ri) £ L{(t:)+ <7}

— (25)
+ Fp, ( v 'er"’) ‘1{0 <7 < (ti)+}-
Note that F}.,(,,.) also corresponds to the outage probability.
Since G in (23) is jointly concave, it can be shown that the
subdifferential of G* may be characterized by

ati sup G(p’Lv tz) = ath(p’Lv t2)|

—p* (£, )7
pi>0 pi=pi(ti)

L (26)
=1- a—i[E [H [t; —ri(p; (t:,))]] -

Utilizing (25) on (26), we can show that a subgradient g €
O, G*(t;) of (23) can be selected as

1, if £, <0
1 poio? . -
1_;Fhi< *“;a) if > 0,

with C' € [0, 1] arbitrary. Notice that every such g is decreasing
and takes values in [1,1 — 1/a;], with a jump at t; = 0. A
subgradient satisfying 0 € 9;,G*(¢}) can either occur when

ocio? . _ 2
—Q%Fhi (,/“ S ) >0 Mji»ﬂ ) (Fhil(ai)) >1, (28)

and ¢ = log (ijag (Fy (ai))2) > 0 is a solution, or
otherwise with the selection of the  optimal ty = 0, which
concludes the proof. ]
For most standard fading distributions, e.g., Rayleigh, Weibull,
Nakagami, Rician, Lognormal, etc., the particular solution of
t uniquely exists. Further, with some tractable and analytically
invertible distributions, e.g., Rayleigh and Weibull, the inverse
of cdfs have tractable expressions which can be promptly

leveraged to obtain simplest closed-form solutions for t*.

Algorithm 1 Dual Tail Waterfilling (DTW)

Choose initial values £, p(® () A
for n =1 to Process End do

Observe ™).

# Primal Variables

— Set tf(+) using (24), for all i.

— Set pr (™) using (12), for all i.

— Set z* (A" V) using (29).

# Dual Variables

— Update A™ using (31) and (32).
end for

The last maximizing subproblem relates with the risk-
ergodic rate x. Nonetheless, it inherently depends on the
concave objective function fj, and dual variable A A™ ina
recursive fashion, n > 0—, such that

x*(A) € argmax {fo(m) - /\Ta:} .

zeX

(29)

Again, we assume that such a solution as a function of A exists,
and fy is tractable, e.g., in closed-form, and readily available.
Common objective functions inducing standard derivation and
variable elimination, e.g., sumrate and proportional fairness
utilities, are investigated later on.

C. Dual Descent

We are now left with the updates of the remaining dual
variables, as all primal variables are explicitly expressed in
closed-from as functions of dual variables. We might then
restate the dual problem (10) with the optimal primal variables
in place, as

D* = it fo(@*) +p(Po — [E[P"(R)]II1)

(30)
+ AT <t* — é OE[t" —r(p*(h),h)).] — w) .

Note that the dual function D is convex with respect to A =
(A, pt). We then utilize the corresponding constraint gaps, in an
analogous fashion to [4], and formulate stochastic subgradient
descent updates for dual variables (A, ), i.e.,

A (A(nfl) —EAQA(A(n71)>) : (31)

+

starting with A®) and where the stochastic subgradient vector
gA (A("fl)) = [g,\ (A(”fl)) 9 (A("fl))}T is expressed as

g (A(n—l)) — ¢ (A(n—1)> _ é ® (t* (A(n—l))
—r(p*(h™, A(n—l)),hm))) — 2 (A),
+

g0 (A7) = Py — [lp" (R, AT,

(32)
with €5 being a stepsize. Notice that (32) is a stochastic
subgradient of the objective in (30) from [14, Theorem 7.52].
Proposedly called dual tail waterfilling, the complete char-
acterization of the proposed dual descent scheme along with
the parameterization of the primal variables, is presented in

Algorithm 1.
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D. Common Utilities & Fading Distributions

We now examine several popular utilities and common fad-
ing distributions which are regularly practiced and investigated
in applications.

1) Sumrate Utility: In case when fo(z) = wlz, € RNV
for an arbitrary weight vector w € RM w = 0, the
subproblem with respect to risk-ergodic rate vector & becomes

sup {(w — X"z}, (33)
xzeX
which is unbounded for any selection of A and w, except
for the optimal selection of A* = w. This case inherently
eliminates the steps for  and A.

2) Proportional Fairness Utility: In case when fo(x) =
vagl log (2;), € RNV, the subproblem with respect to risk-
ergodic rate vector & becomes

sup {Zlog(ml )\ixl} ,

zeX

(34)

which has a particular solution =* = 5., emphasizing that the
division by a vector stands for elementwise division.

For several popular fading models which enjoy favorable
structure, i.e., analytical tractability and invertibility, the opti-
mal t* can be obtained purely in closed-form.

1) Weibull Fading: In case the channel follows a Weibull
fading model, i.e., the cdfs of the h;’s are

Fhi <ha Vi, Ki) =1- 6_(h/w)wv h e [07 OO)’ (35)

where v; is the scale parameter, and «; is the shape parameter
of the distribution. From (27), we promptly arrive at

(i) = (tog (- 2022 >))+.

Ri — p& 10'
2) Rayleigh Fading: In this case the distribution functions
of channel fading are described as

7 log (1 - (36)

—p2 2
h /(2,)i)7

Ey,(hspi)=1—e h € [0, 00), (37)

where p; is the scale parameter of the distribution. In fact,
Rayleigh distribution is a particular case of Weibull distribu-
tion. From (27), it then trivially follows that

. Ai
ti (Az, p,) = (10g <—2p2 Ma40-2 log (1 — O[J)) .
1Y +

IV. PERFORMANCE EVALUATION

(38)

We now confirm the effectiveness of the proposed dual
tail waterfilling algorithm, presented in Algorithm 1. For the
numerical simulations, we investigate a 3-terminal point-to-
point communication network consisting of independent —
with no cross-interference— links with distinct noise variance
levels, operating under Rayleigh fading. The proposed dual tail
waterfilling (DTW) algorithm is then applied with the utility
functions presented in Section III-D, namely the sumrate and
proportional fairness utilities.

TABLE I: Simulation parameters for 3-terminal network

Sumrate Proportional Fairness
w (3 13 1/3)T
o2 (1o 20 307 || o2 (10 20 157
p 1 1 1"
Po,en, et (15 10°6 10-%)"

Outage

Outage

Instantaneous Rates

Fig. 2: Outage probabilities for a 3-terminal network with sumrate utility (top)
and proportional fairness utility (bottom).

The outage probability, i.e., Pout(r,) = P{R < ro}, can
naturally be taken as another instructive measure of robust-
ness. The CV@R-optimal instantaneous rates exhibit a sharp
statistical threshold, as shown in Fig. 2, due to the risk-
averse rate-constraining nature of the CV@R. For smaller
values of ax —corresponding to stricter, more conservative risk-
aware settings— the outage probability is substantially lower
at always-attainable rate levels. Conversely, larger o values —
corresponding to less risk-aware settings— induce much higher
variability in optimal instantaneous rates, see Fig. 3 (bottom).
The confidence level a concurrently regulates the distribution
of rates and the instantaneous rate boundary t*.

To further elaborate on the efficacy of the proposed dual
tail waterfilling (DTW) algorithm, we compare it with the
primal-dual tail waterfilling (PDTW) algorithm developed in
[16], in terms of convergence to the optimal t*. DTW uses
additional statistical information (i.e., fading distributions) to
obtain closed-form expressions for ¢* relative to dual variables,
which is observed to converge rapidly —see Fig. 4—, (provided
that fading distributions are known). On the other extent,
PDTW leverages a purely data-driven scheme to learn globally
optimal primal and dual variables. In both methods, the CV@R
level o constraints the attainable rates to lower a-quantiles,
particularly upper bounded by ¢*. For a small «, the variable t
drastically limits the achievable rates, and immensely increases
their probability of eventually attaining the optimal ¢*. Since
stochastic subgradient ascent for ¢ depends on instantaneous
rates/fading realizations —as it happens for PDTW [16, Section
IV-B]-, such a data-driven approach will be susceptible to di-
verging for small values of « due to data starvation (increasing
rarity of “bad” fading events). This issue is not observed in
the proposed DTW algorithm even for rather small values for
a, as DTW leverages knowledge of the fading distributions
through our explicit closed-form expressions for ¢*.
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Fig. 3: Achieved rates for the 3-terminal network with sumrate utility (left), and proportional fairness utility (left). Top: risk-aware. Bottom: risk-neutral.
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Fig. 4: t-iterates for the 3-terminal network with sumrate utility (left), and proportional fairness utility (right).

V. CONCLUSION

We investigated a risk-aware formulation of a classical but
fundamental stochastic resource allocation problem in point-
to-point communication networks. Exploiting CV@R as a
measure of risk, we proposed dual tail waterfilling (DTW), a
purely dual version the primal-dual tail waterfilling (PDTW)
algorithm recently proposed in [16]. We developed closed-
form solutions for all primal variables, and derived stochastic
subgradient updates for dual variables. Detailed numerical
simulations implemented over two typical utilities effectively
corroborated the efficacy and characteristics of the proposed
algorithm, as well as the precise and rapid global convergence
in both primal and dual variables.
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