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Abstract—We establish strong duality relations for functional
two-step compositional risk-constrained learning problems with
multiple nonconvex loss functions and/or learning constraints,
regardless of nonconvexity and under a minimal set of technical
assumptions. Our results in particular imply zero duality gaps
within the class of problems under study, both extending and
improving on the state of the art in (risk-neutral) constrained
learning. More specifically, we consider risk objectives/constraints
which involve real-valued convex and positively homogeneous
risk measures admitting dual representations with bounded
risk envelopes, generalizing expectations and including popular
examples, such as the conditional value-at-risk (CVaR), the mean-
absolute deviation (MAD), and more generally all real-valued
coherent risk measures on integrable losses as special cases.
Our results are based on recent advances in risk-constrained
nonconvex programming in infinite dimensions, which rely on
a remarkable new application of J. J. Uhl’s convexity theorem,
which is an extension of A. A. Lyapunov’s convexity theorem for
general, infinite dimensional Banach spaces. By specializing to
the risk-neutral setting, we demonstrate, for the first time, that
constrained classification and regression can be treated under
a unifying lens, while dispensing certain restrictive assumptions
enforced in the current literature, yielding a new state-of-the-art
strong duality framework for nonconvex constrained learning.

Index Terms—Lagrangian Duality, Strong Duality, Zero Du-
ality Gap, Risk-Constrained Learning, Constrained Regression,
Constrained Classification, Constrained Learning with Noncon-
vex Losses.

I. INTRODUCTION

Classification and regression tasks constitute two core prob-
lem classes widely appearing in numerous flavors in signal
processing, machine and statistical learning. Recent advances
in machine learning and artificial intelligence have rejuve-
nated this area of research, enabling highly efficient solution
methods for wide classes of regression and classification
tasks of paramount importance in practical applications, in-
cluding, among many others, healthcare [1], engineering [2],
[3] and computer science [4]. Nonetheless, the literature on
classification and regression has, so far, mostly focused on
the unconstrained setting, often leading to standard fitting
problems. While this class of problems is highly relevant, it
fails to ensure that the associated learnt policy will explicitly
satisfy key properties of interest, such as safety or lack of bias;
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see, e.g., [5], [0]. In such cases, highly specialized priors have
been utilized, requiring extensive tuning and often unrealistic
assumptions, thus leading to fragile methodologies [7]. In
light of the ubiquitous nature of systems utilizing regression
or classification tasks, there has been a rise in the demand
of appropriate ways to incorporate constraints for handling
issues like fairness [8], [9], robustness [10], [ 1], or safety
[12], [13], among others. This is especially important in the
context of nonconvex (constrained) learning, which typically
occurs when utilizing (deep) neural networks (NNs).

Standard machine learning literature, which focuses on the
unconstrained case, relies on the use of appropriate penalty
functions to satisfy the various specifications that a given
learning policy needs to abide by (e.g., see [14]). However,
designing appropriate penalties and finding the corresponding
parameters for weighting the different objectives is a notorious
problem, leading to practically questionable results or fragile
“optimal” policies. Such difficulties have recently lead to the
study of constrained learning problems [15]-[18].

In this setting, one key question concerns the relation of the
constrained learning problem with its associated Lagrangian
dual. This is particularly important to study in the context
of nonconvex constrained learning, in which duality is an
especially complicated concept. Specifically, strong duality
results —which indicate that the primal problem can be
substituted by the dual using certain Lagrange multipliers—
in constrained learning with general nonconvex losses in both
the objective and/or the constraints are particularly important.
Indeed, typical constrained learning problems and associated
solution methods rely on some form of NN parametrization,
which usually leads to nonconvex optimization problems (thus
nonconvex constrained learning problems are ubiquitous). At
the same time, parametrization in the primal domain allows
one to tackle the problem in the dual domain, which is
typically finite-dimensional (despite the infinite-dimensional
nature of the original —non-parametrized— primal problem).

It is thus not a surprise that constrained learning problems
are typically tackled in the Lagrangian dual domain; see, e.g.,
[13], [16], [17], [19], [20]. Consequently, it is of key impor-
tance to find minimal conditions under which the problem
under consideration exhibits strong duality, and especially in
cases where the associated loss functions are nonconvex. Of
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course, in the context of convex learning this is relatively
straightforward via utilizing standard constraint qualifications
(CQ), such as Slater’s CQ. In the nonconvex setting, however,
this question is substantially more challenging. At the same
time, strong duality in this context allows for the general
study of generalization properties of the associated sample-
average approximation (SAA) —or empirical risk minimiza-
tion (ERM)— problems (as in [&], [9], [15], [1&]), generalizing
previous established results in the context of traditional statis-
tical learning theory [21]. Except for the above, strong duality
is also important for establishing minimal conditions under
which saddle points exist for the primal-dual problem, as well
as for deriving necessary conditions for optimality.

To the best of our knowledge, current state-of-the-art results
concerning strong-duality in nonconvex constrained learning
were recently developed in [18]. The theory in [18] dis-
tinguishes between two cases: constrained classification and
constrained regression. In each case, by devising appropriate
assumptions, the authors are able to establish strong duality
relations in the general nonconvex setting, via utilizing the
celebrated convexity theorem of A. A. Lyapunov (see [22,
Corollary IX.1.6]). While the results of [18] are fairly general,
there are several issues which we believe can and should be
addressed, strengthening the theory of [18] significantly.

First, treating the classification and the regression tasks sep-
arately introduces some counter-intuitive and hard-to-evaluate
assumptions (e.g., see [18, Assumption 6]). Instead, our claim
herein is that the classification and regression tasks can be
naturally studied in a unified manner. Second, [!8] assumes
that the underlying functional space of feasible policies is
closed, decomposable, and convex. We claim that only decom-
posability is required (as far as strong duality is concerned),
and this is quite important, since convexity is often a property
that decomposable spaces fail to satisfy (except in trivial
cases). Third, we address some technical issues in [ | 8, Proof of
Proposition II1.2], and propose a slightly different approach to
resolve them. Apart from the above, our analysis also relaxes
some additional assumptions utilized in [1&].

In a nutshell, our contributions in this work enable the use
of nonlinear risk functionals in place of linear operators in
the underlying model, i.e., our technical approach allows for
general risk measures [23] in place of (linear) expectations.
In fact, risk-aware (constrained) learning is an increasingly
relevant subject that has recently gained significant traction
(see, e.g., [24]-[26]). There are several reasons for this. For
instance, risk-aware learning can be incorporated to boost the
tail behaviour of a classifier [27]. Additionally, while on-
average behaviour of existing systems might be optimal, they
face failure when faced with atypical data [28]. Further, by
utilizing risk measures such as the CVaR, one can substantially
robustify indicator-type (chance) constraints that are typically
employed in the constrained learning literature (as in [18,
Section V.B]), thus resulting in more favorable problem for-
mulations. Overall, incorporating risk-measures in constrained
learning has a plethora of useful applications.

Nonetheless, the focus of this work is mostly theoretical,

indeed, we lay the theoretical foundations on how one can
incorporate such risk measures in the objective and/or the
constraints of a learning problem, and establish strong duality
relations of such problems under minimal conditions, in fact
under the exact same conditions required for strong duality in
the risk-neutral setting. More specifically, we propose a gen-
eral two-step compositional risk-constrained learning frame-
work, where the risk incurred by each corresponding random
loss (for each objective/constraint) is evaluated hierarchically,
first relative to the response (e.g., label) posterior given the
features, and then relative to the feature prior. Essentially, we
advocate for a decomposition of risk into likelihood risk and
prior risk, where each component may be evaluated by a risk
measure of different type.

In light of the above, our results pave the way for a more
widespread use of risk measures in the context of constrained
learning, and also for the development of dual-domain algo-
rithms for actually solving such risk-aware constrained learn-
ing problems. At the same time, by specializing our results
to the risk-neutral case, we resolve some technical issues
present in the available literature (as discussed above), while
also providing state-of-the-art results using more general and
realistic assumptions, indeed verifiable in a practical setting.

Notation: Bold capital letters (such as A), or calligraphic
letters (such as A) will denote finite-dimensional sets/spaces,
such as Euclidean spaces. Math script letters (such as 7) will
denote o-algebras. Boldsymbol letters (such as A or a) will
denote (random) vectors. The space of p-integrable functions
from a measurable space (2,.%) equipped with a (o-)finite
measure u: % — R, to a Banach space A, with standard
notation £,(€, %, u; A), is abbreviated as £, (1, A). The rest
of the notation is standard.

II. STRONG DUALITY IN RISK-CONSTRAINED
FUNCTIONAL PROGRAMMING

Let us fix an arbitrary complete probability space (€2, %, u),
and consider a random element H : Q — H = RV# with
induced Borel measure P = Py : ZB(H) — [0, 1], modeling
some observable random phenomenon. Following the recent
developments in [29], we are interested in the class of risk-
constrained nonconvex functional programs formulated as

maximize ¢°(x)

z,p(-)
subjectto x < —p(—f(p(H), H)) (RCP)
g(xz) =0
(z,p)e X x1I

where C = RV, g : RY — R and g : RN — R™Ms are given
concave functions, p : H — R = R? is an allocation policy
on observables H, f : R x7H — C is a (generally nonconvex)
function measuring the quality of a policy p at each realization
H in H and such that f(p(-),-) € £1(P, C) on I, and where
p: L1(P,C) — C is a finite-valued vector risk measure,
assumed to be convex, lower semicontinuous and positively
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homogeneous in every dimension (i.e., component-wise), such
that for each i € N},

pi(Z) = pi(Zs),

As indicated in (RCP), the finite-dimensional variables x are
further restricted to the set X < R and the policies denoted
by p are restricted to some infinite-dimensional set 1I.

It was recently proven in [29] that (RCP) exhibits strong
duality under rather standard assumptions, strictly generalizing
state-of-the-art results on the risk-neutral case (i.e., where all
associated risk measures are expectations), e.g., in [30]-[32].

for all Z € £,(P,C).

Assumption 1. The following conditions are in effect:
1) The utilities g° and g are concave.
2) The service feasible set X is convex.
3) The policy feasible set II is decomposable.
4) The Borel measure P is nonatomic®.
5) Problem (RCP) satisfies Slater’s CQ (i.e., it is strictly
feasible).

“Recall that P is nonatomic if for any event E with P(E) > 0, an event
E' € F exists such that P(E) > P(E’) > 0.

In particular, the following fact was established in [29].

Theorem 1 (Kalogerias, Pougkakiotis). Let Assumption 1 be
in effect. Then problem (RCP) has zero (Lagrangian) duality
gap. In fact, (RCP) exhibits strong duality, i.e., optimal dual
variables exist.

In fact, Theorem 1 is applicable in seemingly more general
formulations of (RCP). In particular, by letting py be some
real-valued convex, lower semicontinuous and positively ho-
mogeneous risk measure, fo: R x H — R be an arbitrary
function such that fo(p(-),-) € L1(P,R), and r: X — R" be
some component-wise convex function, it readily follows that
the problem

mi%;r(x.l)ize g°(x) — po(—fo(p(H), H))
subjectto 7(x) < —p(—f(p(H), H)) ,
g(xz) >0
(z,p)e X x1I

also exhibits strong duality. For a detailed derivation of this
fact, we refer the reader to [29, Section 6.1].

III. NONCONVEX RISK-CONSTRAINED LEARNING

In this section, we will provide precise conditions to show
that a wide range of risk-constrained learning problems, in-
volving nonconvex losses, can be cast in the form of (RCP),
thus exhibiting strong duality under Assumption 1.

We consider a general formulation of a supervised risk-
constrained learning problem, where the associated loss func-
tions are allowed to be nonconvex. On our usual probabil-
ity space (€2, .%#,u), we consider random example vectors
(X;,Y;): Q@ - R? x R, i € N,,, together with their induced
Borel probability distributions D; : Z(R? x R) — [0,1],
instantiated over data pairs (x,y), where & € R? represents

a realized feature or system input and y € R represents a
realized label or measurement (response). We denote by Dx,
the marginal probability distribution of X;, and by Dy, x, the
conditional probability distribution of Y; given a realization of
X, for i e N,,.

Assumption 2. The marginal probability distributions Dx,,
i € NT, are absolutely continuous with respect to the

“common denominator" Dx, (without loss of generality),
which in turn is assumed to be nonatomic.

Remark 1. We note that Assumption 2 implies, by virtue of
the Radon-Nikodym theorem, that there must exist integrable
functions w;: R? — R*, such that w; = dDx,/dDx,, for
all ¢ € N}t. Our assumption of absolute continuity of the
marginal distributions Dx, with respect to Dx, is standard
in the literature. Indeed, it holds if each distribution Dx, is
assumed to have a Lebesgue density (see, e.g., [18] and [29]).
On the other hand, nonatomicity of the common denominator
Dx, is also standard (see, e.g., [!8, Theorem 1]) and very
intuitive, since the feature or input space is naturally expected
to be continuous in many applications of interest yielding
(constrained) classification or constrained regression tasks.

Before proceeding with our proposed formulation of a gen-
eral risk-constrained learning problem, we introduce the notion
of a conditional risk mapping. In particular, for any ¢ € N,,,,
we consider the vector spaces Zi = £,(Q,0(X;), 1;R) and
Zb = Ly(R? x R,B(R? x R),D;) = Ly(D;,R), where
p,p’ € [1,0]. We define a conditional risk mapping as a
functional p (-|X;): 25 — Z{, with the property that for
every qualifying Borel function Z: R¥*! — R, 5(-|X;) obeys
the relation

PZ(X:Y)|X0) (@) = P (Z(2. YD) X) (@) 0
for every elementary event w € €2, where the instantiation
[P (Z(z,)|X;)] (w): Z& — R is a properly chosen risk func-
tional, with Z} = Ly (R, Z(R), Dy, x,) = Lp(Dy,x,,R).
A typical example of such a conditional risk mapping is, of
course, the conditional expectation. We note that the definition
of a conditional risk mapping above is compatible with our
particular construction in Section II, relying on a Borel space
setting. Conditional risk mappings are usually defined more
generally, and are often required to satisfy certain conditions
of interest, and thus associated definitions and assumptions
vary (see, e.g., [33, Definition 2.1] and [34, Definition 1]).
Concrete examples of conditional risk mappings obeying our
definition will be given later on.

Letting ¢;: RF x R — R be given (possibly nonconvex
or discontinuous) “loss” functions, for ¢ € N,,, our proposed
risk-constrained learning framework relies on the constrained
nonconvex functional program

m}l(l_i)fél}ze po(Po (o (f(Xo), Y0)|X0))
subject to p; (p; (4: (£(X4),Yi)| Xs)) < i€ N,

(RCL)

where f: R? — R” belongs to an appropriate policy space
F, and for i € N,,,, ¢; € R, p; is a real-valued convex, lower
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semicontinuous, and positively homogeneous risk measure,
while p;(-|X;) is some conditional risk mapping.

Assumption 3. For each i € N,,, we have /; (f(e),-) € 25,
for any f € F, and the space of policies F is decomposable.

Remark 2. Let us emphasize that Assumption 3 is very gen-
eral. The decomposability of the policy space F is standard,
and is already utilized in (RCP). Furthermore, the assumption
that ¢; (f(e),) € Zi is also standard and very mild. In
particular, it also appears in Assumption 1, and includes
various nonconvex or even vastly discontinuous functions ;.

Fix ¢ € N,,,. Under Assumption 3, and using our definition
of a conditional risk mapping p(-|X;), it readily follows that

pili(F(X4), Yo)|Xi) = pilli(=, V)| X5)|

pi 2=f(X,)
Fi (f(X),X),

such that F; (f(:),-) € £,(Dx,,R), for any f € F. We now
showcase that our definition of conditional risk mappings is
general and includes various useful examples as special cases,
as follows:

o As already mentioned, the most typical example of a con-
ditional risk mapping is that of conditional expectation.
In the context of (RCL), we set p(:|X;) = E{|X;}.
Since we assume that the conditional distribution of Y;
given X exists, it then readily follows that

E{l; (£(X:),Y:) | X} = E{; (2,Y)) | Xi} ‘z=f(Xi)'

The latter equality is well-known as the substitution rule.

o Let us now consider two popular cases in the class of
coherent conditional risk mappings (see [23, Chapter 6]).
The first is the conditional version of the conditional value
at risk (CVaR). For any i € N,,,, and any « € (0,1), we
can define CVaR’, (| X;) : 24 — Zi, as

CVaR), (Z|X;)= inf {W+a "E{(Z-W)_|Xi}},
WeZz}

for Z € Zi where (-); = max{-,0}. As before, the
instantiation [CVaR}, (Z|X;)] (X (w)) can be considered
to take values from Z3. As in the case of conditional
expectation, it is not hard to see that by letting Z =
4;(f(X;),Y;), we obtain

CVaR?, (4;(£(X), V)| X;)

The second popular case we consider is the conditional
mean-upper-semideviation. In particular, for Z € Z3, and
some ¢ € [0, 1], this conditional risk mapping takes the
form

PZ1X)=E{Z| X} +e(B{ (Z—E{Z|X.})" | x. )7

Again, one can readily verify that this conditional risk
mapping is well-defined in the sense of our definition,
and thus satisfies the substitution rule.

« Lastly, in order to stress the generality of the conditional
risk mappings considered in this work, let us define condi-
tional extensions of the generalized mean semideviations
introduced in [35]. In fact, we may consider a larger class
of generalized mean semideviations than those discussed
in [35]. To that end, let R: R — R be any nonnegative
(possibly nonconvex) function. For any Z € Zi, and any
¢ € [0,400), we consider conditional generalized mean
semideviation risk measures, defined as

p(Z1X:)
= E{Z1X:} + c(B{ (R(Z - E{Z|X:)))" |X:})"",

provided that R(Z — E{Z|X;}) € Z!. Apparently, this
conditional risk mapping is also well-defined according
to our definition and satisfies the substitution rule. At
the same time, we observe that, depending on the choice
of R, such conditional risk mappings might fail to sat-
isfy several properties such as convexity, monotonicity,
positive homogeneity, etc. The model in (RCL) allows
such general constructions, showcasing the wide range
of conditional risk mappings enabled in our framework.
Our first main result in this section may now be formulated,
as follows.

Theorem 2. Let problem (RCL) satisfy Assumptions 2 and 3.
Then, there exist convex, proper, lower-semicontinuous and
positively homogeneous risk measures p;: L£1(Dx,,R) —
R, as well as functions G;(e,-) satisfying G;(f(-),:) €
L1(Dx,,R), for all i € N}, such that problem (RCP) can
be equivalently written as

m}rgj)rg}ze o (Fo (f(XO)vXO))

. (RCLO)
subjectto  p; (G;(f(Xo), Xo)) < ¢;,i€ N,

Proof. From Assumption 2, we observe that each Dy, for
i € Nt is absolutely continuous with respect to Dx,,
while, from Assumption 3, we have shown that F;(f(-),) €
L,(Dx,,R) c L1(Dx,,R). It then follows that G, (f(-),-) =
Fz(f(), )wl € ,Cl(DXO,R), 1€ N:l Let A; C £w(DXi,]R),
for all i € N,,,, be the uncertainty sets corresponding to p;(-)
and consider another (related) convex, lower-semicontinuous,
and positively homogeneous risk measure p;(-) defined on
’LULﬁl(’DX”R) - Cl(’DXO,]R), such that ﬁZ(sz) = p(Z),
for any Z € £1(Dx,,R). In particular, we define

7 (G (£(X0), Xo)) = sup f ((@)Gi (f(@), ) dDx, ()

Cehy

= sup JC(w)Fz(f(fB)v z)dDx, (x)
Cehy

= pi (F(f(X0), X3))

= pi(ﬁi(fi(f(Xi)in) Xi))’

where we have used the fact that p;(-) is convex, lower-
semicontinuous, and positively homogeneous. However, the
supremum in the second integral, defining p;(-), would not
change by restricting A; to an appropriately selected bounded
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set A; L+ (Dx,,R) chosen independently of Zw; and with
AP D AZ since the integral is taken with respect to dDx,, and
does not change for functions differing on D x,-measure zero
sets. In other words, p(-) admits a representation

i (Gi(F(X0), X)) = sup j (()Gi(f (), )dDx, (),
CeA;

for some A; = L, (Dx,,R). Using the introduced notation,
we recast (RCL) into the equivalent (given our assumptions)
form of (RCLO). O

Leveraging Theorem 2, we can now state our second main
result of this section.

Theorem 3. Let Assumptions 2, 3 hold for problem (RCL).
If, additionally, (RCL) satisfies Slater’s constraint qualifica-
tion, it exhibits strong duality.

Proof. We note that under Assumptions 2, 3, and by utilizing
Theorem 2, (RCLO) is an instance of (RCP), and hence Staler’s
constraint qualification suffices to ensure that it satisfies the
conditions given in Assumption 1. It then follows from The-
orem 1 that (RCLO) exhibits strong duality, and of course the
same holds for (RCL). O

IV. THE RISK-NEUTRAL CASE

So far, we have stated problem (RCL) (and consequently
(RCLO0)) in full generality. A highly important instance of
(RCL) is in the risk-neutral setting, where p;(-) = Ep, {-},
and ;(-|X;) = E{|X;}. for all i € N,,. Using the tower
property, it is easy to see that, for all 7 € N,,,,

Epx, {B{6:(£(X0),Y:)| X} } = Ep, {6:(£(X0). ¥},

where D; is the Borel probability distribution of (X;,Y;).
Thus, the risk-neutral constrained learning problem reads

m}l(lli)lgfize Ep, {KO (f(XO), YO) }

(CL)
subjectto  Ep, {4;(f(X;),Ys)} < i,

ie Nt

Variations of this problem have been heavily studied and
utilized in the machine learning literature (e.g. [I5]-[18]).
By considering (CL), let us assume that Dx, is nonatomic
(without loss of generality), and that Dx,, » Dx,, that Slater’s
CQ holds, and that ¢;(f(e),:) € L1(D;,R) for any f € F,
where F is a decomposable functional space. Under this very
general framework, we claim that the problem exhibits strong
duality. In fact, we recover the results of [ 8, Proposition II1.2
and Proposition B.1] (unifying the classification and regression
regimes), while dispensing several additional assumptions.
Before we compare our result to that given in [8], let us
first discuss its proof. Obviously, we could directly apply The-
orem 3 (based on Theorem 1, the proof of which can be found
in [29, Section 5]). While this would certainly be a possibility,
the analysis in [29] utilizes Uhl’s weak extension of A. A.
Lyapunov convexity theorem (see [36, Theorem 1]), since the
latter is applicable to a wide range of nonlinear functionals
(and strictly more general than expectations). While this is a

very general result, it requires that the underlying nonatomic
measure is finite (thus not directly covering o-finite measures).
Nonetheless, using the developments of the previous section,
we observe that problem (CL) can be equivalently written as

m}r(lj)rél}ze Ep, {Fo(f(Xo), Xo)}

, (CLO)
subjectto Ep, {Gi(f(Xo),Xo)} < ¢,ie N

where Fo(f(-),-), Gi(f(-),") € L1(Dx,,R), for all s € N} .
In then follows that a simple application of the standard A.
A. Lyapunov’s convexity theorem (see [22, Corollary I1X.1.6]),
which also supports o-finite nonatomic measures (such as the
Lebesgue measure), combined with an appropriate application
of the supporting hyperplane theorem (e.g., see [37, Proposi-
tion 1.5.1]), would immediately yield the desired result, that is
(CLO) (and thus (CL)) exhibits strong duality. Indeed, since we
have already shown the equivalence between (CL) and (CL0),
the strong duality result follows immediately by [32, Theorem
1] (see also prior developments in [30], [31]).

Let us now compare our (risk-neutral) strong duality result
with that shown in [18]. The major difference lies in the way
that the authors in [!8] condition the problem. In particular,
[18] relies on the nonatomicity of conditional distributions
of the form Dx,|y;, in contrast to our work, that requires
nonatomicity of the marginal distributions Dx,. We argue that
our approach has significant benefits. Firstly, the model studied
in [18] assumes that F is closed, convex, and decomposable.
Instead, we have shown that only decomposability is required
for showing strong duality of (CL). Secondly, our result is
applicable to both classification and regression tasks, under the
same set of (minimal) assumptions. In contrast, the aforemen-
tioned work separates these two cases. Specifically, the strong
duality result for regression problems given in [ &, Proposition
B.1] is shown here to hold without the additional requirement
postulated in [18, Assumption 6] (which, in essence, requires
uniform continuity of £;(f(e),y)w;(-|y), for all f € F,
where w;(:|Y;) is the density induced by Dx,y,; note that
this condition might be extremely difficult to verify and is
quite restrictive). In fact, [18] makes some further implicit
assumptions, including boundedness of the range of Y;, for all
i € N,,,, as well as Lipschitz continuity of ¢;(e,y) for all y in
the range of Y; (although the latter is also required to show
some results that are not related to strong duality).

Apart from the benefits of the proposed approach, we should
also mention a technical issue appearing in the analysis given
in [18], while proposing a way to fix it. In particular, in the
proof of [18, Lemma B.2], the last argument utilized by the
authors to show that the corresponding “cost-constrained set"
(denoted as C in [18]) is convex, is not accurate (to the best
of our knowledge). Indeed, what the authors may show at
most is that the closure of this set is convex, and thus their
proof is incomplete. Nonetheless, this can be fixed by utilizing
the developments in [29, Section 5.3], where it is shown that
convexity of the closure of the “cost-constrained set” suffices
to ensure strong duality of (CL). Of course, in our analysis,
this step is completely bypassed.
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V. CONCLUSION

In this paper, we established strong duality for a wide
class of risk-constrained learning problems. Our results rely
on a recent result relying on an application of Uhl’s extension
of Lyapunov’s convexity theorem for general, infinite dimen-
sional Banach spaces in the context of infinite-dimensional
optimization, and are applicable to problems involving a wide
range of risk measures, strictly generalizing existing results
available for the risk-neutral constrained learning setting, and
without imposing additional assumptions. We proposed a gen-
eral risk-constrained functional learning framework involving
nonconvex (possibly even discontinuous) losses and two-step
compositional risk measures. The outer risk measures (evaluat-
ing feature risk) are assumed to be real-valued, convex, lower
semicontinuous and positively homogeneous, with support
over the space £, while the inner (conditional) risk mappings
(evaluating posterior risk) are significantly more general, and
are even allowed to be nonconvex. In the special case of
risk-neutral constrained learning, we unified existing results
for constrained regression and constrained classification tasks,
while dispensing several assumptions utilized in the current
literature. Overall, we have presented new state-of-the-art
strong duality relations for a rich risk-constrained learning
framework, hopefully paving the way for a more widespread
utilization of risk-constraints in this setting.
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