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Abstract—Electronically tunable metasurfaces, or Intelligent
Reflecting Surfaces (IRSs), are a popular technology for achieving
high spectral efficiency in modern wireless systems by shaping
channels using a multitude of tunable passive reflecting ele-
ments. Capitalizing on key practical limitations of IRS-aided
beamforming pertaining to system modeling and channel sens-
ing/estimation, we propose a novel, fully data-driven Zeroth-
order Stochastic Gradient Ascent (ZoSGA) algorithm for general
two-stage (i.e., short/long-term), fully-passive IRS-aided stochas-
tic utility maximization. ZoSGA learns long-term optimal IRS
beamformers jointly with short-term optimal precoders (e.g.,
WMMSE-based) via minimal zeroth-order reinforcement and
in a strictly model-free fashion, relying solely on the effective
compound channels observed at the terminals, while being
independent of channel models or network/IRS configurations.
Another remarkable feature of ZoSGA is being amenable to
analysis, enabling us to establish a state-of-the-art (SOTA)

convergence rate of the order of O(
√
Sε

−4) under minimal
assumptions, where S is the total number of IRS elements,
and ε is a desired suboptimality target. Our numerical results
on a standard MISO downlink IRS-aided sumrate maximiza-
tion setting establish SOTA empirical behavior of ZoSGA as
well, consistently and substantially outperforming standard fully
model-based baselines. Lastly, we demonstrate that ZoSGA
can in fact operate in the field, by directly optimizing the
capacitances of a varactor-based electromagnetic IRS model
(unknown to ZoSGA) on a multiple user/IRS, link-dense net-
work setting, with essentially no computational overheads or
performance degradation.

Index Terms—6G, intelligent reflecting surfaces (IRS/RIS),
two-stage stochastic programming, zeroth-order optimiza-
tion, model-free learning, sumrate maximization, equivalent
circuit model.

I. INTRODUCTION

T
HE radical growth in the number of mobile and numerous

other wireless devices, in particular those with commu-

nication modalities requiring high bandwidth and low latency
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connectivity such as virtual and augmented reality, tactile inter-

net, internet of things, industrial automation, etc., have pushed

existing wireless communication systems to their performance

limits. The forthcoming era requires seamless wireless connec-

tivity, necessitating proactive research beyond 5G communica-

tions [2], [3], [4], [5].

Recently, 5G-enabling technologies such as mmWave com-

munication, massive multi-input multi-output (MIMO) and

dense networks have been vigorously investigated [6], [7], [8],

[9]. Still, deployment of both massive MIMO and dense net-

works incurs high installation/maintenance costs and energy

consumption, while mmWaves exhibit physical limitations such

as susceptibility to blockages and high propagation losses. To

compensate for such propagation losses, which are a character-

istic of higher carrier frequencies, densely packed and highly

directional mmWave antennas have been proposed [10], [11].

High directionality, combined with reduced scattering, attenu-

ates mmWave signals in the non-line-of-sight (non-LOS) paths,

thus blocking the signals. The reason lies in the physics of

signal propagation: mmWaves exhibit a more prismatic prop-

agation, i.e., they diffract less than microwave signals around

obstacles [12].

Conventional beamforming, which is an established tech-

nique for improving Quality-of-Service (QoS) in wireless com-

munications, cannot fully compensate for such non-LOS losses.

One brute force solution would be to deploy ultra dense net-

works, i.e., networks with a large number of small cells, with

service ranges of tens to hundreds of meters, allowing higher

frequency reuse rates [13], [14]. With such low ranges, however,

ultra-dense network deployment does not demonstrate economy

of scale. Indeed, the consumption of energy increases sharply

with the number of base stations. Additionally, such dense de-

ployments would also exhibit acute signal interference patterns.

While the aforementioned approaches aim to improve QoS,

they may fail to simultaneously satisfy the data-rate, bandwidth,

latency, spectral and energy efficiency requirements of 5G-and-

beyond technologies. This has necessitated efforts to develop

innovative technologies that could meet such requirements, ide-

ally without requiring extra energy and/or deployment or com-

putational costs. An emerging technology for scalably reducing

non-LOS losses while circumventing several limitations related

to underlying propagation environments is that of Intelligent

Reflecting Surfaces (IRSs, or RISs). An IRS is a metasurface

comprised of a planar array of passive reflecting elements with

tunable parameters, such as phase-shifts and/or amplitude gains
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Fig. 1. Concept of an IRS-aided wireless network.

of incident signals [15], [16], [17], [18], [19], [20], [21]. A

concept network in which users (or terminals) are linked with an

Access Point (AP) and enjoy improved QoS from the utilization

of IRSs is shown in Fig. 1.

In IRS-aided communications, the goal is to optimally tune

the IRS elements along with other resources (such as AP

precoders), so as to optimize a certain system utility. A stan-

dard setup is that of a weighted sumrate utility in a multi-

user multiple-input single-output (MISO) downlink scenario,

as depicted in Fig. 1, where the goal is to maximize the total

downlink rate of a number of users/terminals actively serviced

by an AP, while passively aided by one or multiple IRSs [22],

[23], [24], [25]. For this standard setting, a core objective is to

jointly optimize the IRS parameters and AP precoders under

certain power constraints, noting that AP precoders are usually

continuous-valued, while IRS phase-shifts can be either quan-

tized [17], or continuously varying [18], [19], [20], [21].

Prior Art on IRS Optimization: Optimizing IRS parameters

is a challenging task, particularly due to three major bottle-

necks. First, a sufficiently accurate channel model will most

certainly be unknown, and even if known, it depends heavily

on network structure and the surrounding environment. Second,

by realistically assuming that IRSs are passive components of a

wireless network, it might not be possible to continuously and

reliably estimate the channel-state-information (CSI) of all the

intermediate channels, e.g., from APs to IRSs, and from IRSs

to users/terminals [26], [27]. While some recent works [28],

[29] have investigated methods for cascaded channel estima-

tion with passive IRSs, they typically rely on specific a priori

known channel models. It is thus clear that IRS optimization

benefits from being free from the need of knowing such detailed

CSI. Third, any reasonable IRS phase-shift tuning approach –

which should only require effective CSI (i.e., the conventional

compound channels observed at the end terminals)–, should

target as infrequent IRS parameter updates as possible, at least

in long-term operation mode. This is in contrast with earlier

approaches that consider fully reactive IRS infrastructure de-

manding resource-wasteful, perpetual IRS control [30], [31].

Addressing these challenges constitutes an active area of re-

search. In fact, one or more of these bottlenecks are persistent

in most available strategies for IRS optimization in wireless

networks (e.g., [27], [32]).

Recently, model-based methods relying on some flavor of

stochastic successive convex optimization (SSCO) [33], [34],

[35] for weighted sumrate optimization have gained substan-

tial traction. These methods operate over two time-scale cus-

tomized protocols, where reactive precoding vectors at the

AP(s) are optimized on a shorter time-scale and non-reactive

(static, “long-term”) IRS beamformers are optimized on a

longer time-scale [22], Section II-C], [23], [24], [25]. Apart

from relying on SSCO, which operates on convex surrogates

of the original problem, these model-based approaches require

complete knowledge of the network structure and the channel

model, along with accurate intermediate CSI (statistic) esti-

mation [36], [37], [38], [39]. Such estimates are difficult to

obtain because, as an ultimately passive device, an IRS cannot

(or should not) transmit and receive pilot signals [26]. Con-

sequently, these methods must rely on active sensing at the

IRSs, demanding expensive and wasteful IRS implementations.

Lastly, any change in the network or channel model incurs a

high environment remodeling cost, while the modeling com-

plexity increases dramatically with an increase in the number of

intermediate channels.

To avoid such limitations, researchers have explored machine

learning (ML) methods to optimize IRS-aided networks. As a

parallel to channel estimation by hand, offline ML methods

have been explored to approximate true CSI models from la-

belled datasets using function approximators (FAs) [40], [41],

[42], [43]. These offline approaches are brittle in that the

learned models are unable to adapt to slight changes in the

network/channel behavior, induced either by movement of the

users/terminals, or due to potential environmental factors. Deep

Reinforcement Learning (DRL) methods, on the other hand,

are adaptive policy learning methods which have been used

for joint beamforming optimization. In particular, deep Q-

learning based methods have been explored, assuming quan-

tized IRS phase-shifts [44], [45], [46]. For continuous phase-

shifts, off-policy policy gradient methods have also been ex-

plored [47], [48], [49], [50], primarily based on the deep deter-

ministic policy gradient (DDPG) algorithm [51]. DRL meth-

ods are designed to be end-to-end. As such, all intermediate

steps such as CSI estimation, channel modeling and beam-

forming optimization can be offloaded to the FAs, the latter

approximating state value functions to jointly model the entire

optimization task.

Nonetheless, without expert domain knowledge, defining

those FAs –e.g., deep neural networks (DNNs)– often increases

the problem complexity; most frequently, FAs are considered as

black-box data-driven models, resulting in non-interpretability

and lack of robustness. On the other hand, explicit utilization

of domain knowledge within the context of FAs often results

in overfitting, thus limiting the versatility and transferability of

DRL models to distinct environments. Further, such learning-

based methods incur increased power/resource consumption

as they primarily consider reactive IRS operation, where each

model output (phase-shift element values) directly depends

on the observed CSI, hence resulting in perpetual IRS con-

trol. Combinations of the mixed-timescale iterative approach

with ML via deep unfolding models [52] also suffer from

similar limitations.
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Contributions: We develop a Zeroth-order Stochastic Gra-

dient Ascent (ZoSGA) algorithm for tackling fully passive

IRS-assisted utility maximization in a wireless communication

setting. We consider two-stage stochastic programming formu-

lations of the problem, in which the first-stage problem consists

of an on-average (long-term) optimization of IRS-parameters,

while the second-stage problem seeks for optimal instantaneous

(short-term) beamformers (e.g., of an AP) associated with a

given network instance (occurring every time new –random–

CSI is revealed). ZoSGA tacitly exploits WMMSE [53] as a

standard method for solving the (deterministic) second-stage

problems, while remaining agnostic to the channel dynamics

or network topology, thus operating in a completely model-free

manner. The algorithm relies on minimal system probing and

terminal-end effective CSI, both conventionally available (even

approximately) regardless of the number or spatial configura-

tion of the IRSs, in sharp contrast to model-based approaches

[22], [23], [24], [25].

ZoSGA does not rely on function approximations (unlike

DRL methods [44], [45], [46], [47], [48], [49], [50]), and can

be run in real-time since, at each time step, it only requires

to probe the network twice (to obtain a sample zeroth-order

gradient), greatly improving upon SSCO-based methods, such

as TTS-SSCO [23], which utilize internal (model-based) sam-

pling for approximating stochastic gradients, and –prone to

error– strongly convex surrogate utilities (despite the inherent

nonconvexity of the associated optimization problem). Assum-

ing continuous-valued IRS phase-shifts (which are feasible in

practice [18], [19], [20], [21]), ZoSGA treats IRSs as fully

passive tunable network elements (without sensing capabilities,

extra hardware, or special scheduling requirements), and can

be readily applied to a wide range of different wireless net-

work settings. Being model-free, ZoSGA avoids the inherently

nonconvex unit modulus constraints associated with the IRS

phase-shift elements, by utilizing the (unknown) polar represen-

tation of the effective channels. This has far reaching benefits,

as we shall see in Section V-C, where we simulate physical

IRS models.

After discussing the problem of interest, providing our as-

sumptions and some preliminary technical results (Section II),

we develop and analyze ZoSGA (Section III) under a set of

general assumptions (and regularity conditions), and we estab-

lish a state-of-the-art (SOTA) convergence rate of the order

of O
(√

Sε−4
)

, where S is the total number of IRS tunable

parameters and ε is a desirable sub-optimality target. We note

that our theoretical analysis is novel and involves a minimal set

of assumptions, covering a wide range of realistic settings and

shedding light into the practical behavior of ZoSGA, fully char-

acterizing its convergence. Unlike most alternative approaches,

we do not consider convex approximations of the associated

two-stage stochastic problem, and deal with the inherent non-

convexity of the problem by utilizing key results from optimiza-

tion theory. At the same time, we bypass (without utilizing any

approximation) the nonconvexity associated with unit modulus

constraints, obtaining a model-free method operating in a stan-

dard Euclidean setting.

Specializing to the case of sumrate maximization on a MISO

downlink scenario (Section IV), we show that most of the

technical assumptions imposed by the theory are automatically

satisfied, except for some mild regularity conditions on the

channel which cannot be avoided. We then numerically demon-

strate (Section V) that ZoSGA exhibits SOTA performance in a

wide-range of scenarios, substantially outperforming the two-

time scale method recently proposed in [23], which is a stan-

dard model-based SSCO-type SOTA baseline for the problem

under consideration. Despite the latter method assuming full

knowledge of channel models and spatial network configura-

tions, the model-agnostic ZoSGA reliably learns near-optimal

solutions yielding significantly better QoS. Importantly, we also

demonstrate the applicability of ZoSGA in a realistic physical

IRS setting, in which the algorithm has only indirect access

to the amplitudes and phases of the IRS elements, by tuning

the capacitances of certain varactor diodes controlling each

IRS element; such IRS tuning in the field is a particularly

unique feature of ZoSGA, not enjoyed by any other IRS tuning

approach in the literature. Fully reproducible source code of

simulation results can be found here.

Notation: Let ‖ · ‖ denote the induced norm of an asso-

ciated inner-product space, defined as ‖x‖ :=
√

〈x,x〉 for any

x ∈ F
n, where F is a field (assuming that F= R or F= C). In

case of a complex vector we use the Hermitian inner product. In

case of a matrix we assume that the induced norm is utilized. We

assume a complete base probability space (Ξ,F , P ), and use

“a.e.” to denote “almost every(where)”. For p ∈ [1,∞), we use

Zp ≡ Lp(Ξ,F , P ;R) to denote the space of all F -measurable

functions φ : Ξ→ R, such that
∫
Ξ
|φ|pdP <∞. Given f : Rn →

R and ρ > 0, we say that f is ρ-weakly convex (resp. ρ-weakly

concave) if f(·) + ρ
2‖ · ‖2 (resp. −f(·) + ρ

2‖ · ‖2) is convex.

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

A. Problem Formulation

In an IRS-aided network, the effective channels observed at

the terminals of the communication task are treated as functions

of both the intermediate channels as well the phase-shift vectors

of the IRSs. Thus, we may think of the IRSs as network-defining

parameters. Indeed, each instance of their phase-shift elements

produces a different wireless network altogether. Taking this

into account, the objective here is to find an optimal instance of

such a wireless network which maximizes a given terminal QoS

utility, in accordance with all the underlying physical dynamics.

Traditionally, we only optimize the precoding vectors (e.g., at

an AP) to maximize a given QoS metric function, and these pre-

coding vectors are optimized for a particular wireless network

instance. However, in an IRS-aided wireless network, tuning the

IRSs essentially changes the network structure and we have to

re-optimize the precoders, responding to this new network.

We assume dynamic (i.e. reactive) precoders W , while (re-

alistically) viewing the IRSs as static (i.e. non-reactive during

operation) elements with tunable parameters θ (such as in [22],

[23], [24], [25]), which encode any propagation feature of the

IRSs that is learnable. For example, θ can represent amplitudes
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and/or phases, or any other tunable element of an IRS (e.g.,

physical varactor tunable capacitances, see [18], [19]).

Under this setting, beamforming optimization can

be formulated as a stochastic two-stage problem.

The first-stage problem seeks for an optimal (say in

expectation) wireless network by tuning the (static) IRSs’

parameters θ assuming optimal instantaneous precoders

on random effective channels. The second-stage problem

seeks those optimal precoders W given a (possibly

optimal) network instance set by already fixing the IRSs.

We hereafter assume that the IRSs and the precoders max-

imize the same QoS utility function. This is an intuitive and

standard choice in practical applications, which enables the

development of very efficient solution methods. Formally, we

are interested in two-stage problems of the form

max
θ∈Θ

E

{
max
W∈W

F (W ,H(θ, ω))

}
, (2SP)

where W is a (known) compact set of feasible dynamic beam-

formers W , and Θ¢ R
S , is a (known) convex and compact set

of feasible IRS parameter values, where S denotes the number

of real-valued parameters of the complex-valued phase-shift

elements (e.g., amplitudes and phases). The utility function

F : CMU × C
MU → R is a (known) function of the precod-

ing vectors W as well as the (unknown) observed effective

channels H : RS × Ω→ C
MU , which in turn are functions of

both the IRS parameters and any intermediate random channels

(a “state of nature”), denoted as ω : Ξ→ Ω (the statistics of

which are unknown). The random vector ω represents anything

that is unknown about the underlying communication system,

such as propagation or (compound) interference patterns, in-

ternal channel states, or in general the underlying intermedi-

ate communication channels. The (observed) effective channels

H(·, ω) are assumed to have unknown dynamics, and we are

only allowed to evaluate them at specific IRS parameter in-

stances θ ∈Θ.

As we discuss in Section II-C, the resulting stochastic bilevel

program assumes a common function for the inner- and outer-

level programs, allowing for first-order optimization, without

the need of computing any second-order information (e.g. as

in [54]).

B. Assumptions

In what follows, we provide certain regularity assumptions

on (2SP) and subsequently prove certain core technical results,

allowing us to derive the proposed optimization scheme.

Second-stage problem: Given some realization ω ∈ Ω, and

some θ ∈Θ, the second-stage problem reads

max
W∈W

{
G(W ,θ, ω)� F (W ,H(θ, ω))

}
. (SSP)

Notice that (SSP) is deterministic, since we are required to solve

this after the state of nature ω has been revealed.

First-stage problem: The first-stage problem, which is equiv-

alently given in (2SP), can be provisionally written as

max
θ∈Θ

{f(θ)� E {F (W ∗(θ, ω),H(θ, ω))}} (FSP)

for some W
∗(θ, ω) ∈ argmaxW∈W F (W ,H(θ, ω)).

In what follows, we enforce certain regularity conditions

on (2SP).

Assumption A: The following conditions are in effect:

(A1) The function F : CMU × C
MU → R is twice continu-

ously (real) differentiable;

(A2) The sets Θ and W are compact, and Θ is also convex;

(A3) The function H(·, ω) is BH -uniformly bounded on Θ
and twice continuously differentiable on an open set

U £Θ, for a.e. ω ∈ Ω. Moreover, there exist numbers

LH,0,LH,1, such thatH(·, ω) isLH,0-Lipschitz contin-

uous withLH,1-Lipschitz gradients onΘ for a.e.ω ∈ Ω;

(A4) There exists a positive function ρ̃(·) ∈ Z1, such that

maxW∈W F (W ,H(·, ω)) is ρ̃(ω)-weakly concave

on Θ;

(A5) F (W ∗(θ, ·),H(θ, ·)) ∈ Z2 is bounded below for

all θ ∈Θ and any W
∗(θ, ω) ∈ argmaxW∈W F (W ,

H(θ, ω)), and we can draw independent and identi-

cally distributed (i.i.d.) samples from the law of ω.

Remark 1: Let us observe that Assumption A is very mild,

and is informed by our application, i.e. two-stage beamforming

for passive IRS-aided network design. Conditions (A1)–(A2)

are standard and are most often met in practical settings involv-

ing IRS-aided wireless communication systems. In particular,

twice-continuous (real) differentiability of F (·, ·) is standard

and subsumes several utility functions of interest (three popular

examples are the weighted sumrate utility, the proportional

fairness utility, or the harmonic-rate utility; see [55]). Note that

real differentiability refers to differentiability of the real and

imaginary parts of F (see [56, Section 3.2]). Furthermore, as al-

ready noted, by utilizing the polar form of the function H(·, ω)
(which we do in this work), Θ (typically) represents a set of

phases and amplitudes which can be chosen to be real, compact

and convex, without loss of generality. Finally, compactness of

W is also standard, since it typically reflects constraints relating

to the available power of the wireless communication system.

Condition (A3) ensures that the compositional function of

interest is well-defined and retains its properties on an open set

containing Θ, while the bound and Lipschitz random functions

associated with H(·, ω) are uniformly bounded in ω. The latter

condition could potentially be relaxed (e.g. assuming bounded

variance of random functions BH,0(ω), LH,0(ω), LH,1(ω)),
but is imposed for brevity in exposition.

(A4) is a very general condition since weak concavity sub-

sumes a large class of functions (e.g. all Lipschitz smooth

functions or all twice continuously differentiable functions

on a compact set are weakly concave; see also [57, Sec-

tion 2] for some additional examples). In particular, it im-

plies that for a.e. ω ∈ Ω, there exists ρ̃(ω)> 0 such that

maxW∈W F (W ,H(·, ω))− ρ̃(ω)
2 ‖ · ‖2 is concave on Θ. Spe-

cialized, albeit technical, conditions ensuring that this holds for

the objective in (FSP) will be discussed later in Section IV.

Finally, condition (A5) ensures that f is well-defined and

bounded on Θ. Notice that the same would hold under the

weaker condition F (W ∗(θ, ·),H(θ, ·)) ∈ Z1, however (A5) is

utilized later in Lemma 5.
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C. Technical Results

Since F (W , ·) takes a complex input, we need to devise

an appropriate gradient generalization for it. To that end, we

utilize the so-called Wirtinger calculus (see [56]). In the fol-

lowing lemma we derive the full compositional gradient of

F (W ,H(θ, ω)) by following the developments in [56, Sec-

tion 4].

Lemma 1: For every θ ∈Θ, W ∈W and a.e. ω ∈ Ω, the

gradient of F (W ,H(θ, ω)) with respect to θ reads

∇θF (W ,H(θ, ω)) (1)

= 2∇θ
 (H(θ, ω))

(
∂◦

∂z
F (W , z)

∣∣∣∣
z=H(θ,ω)

)�

+ 2∇θ� (H(θ, ω))

(
j
∂◦

∂z
F (W , z)

∣∣∣∣
z=H(θ,ω)

)�

,

where ∂◦

∂z (·) is the Wirtinger cogradient operator.

Proof: For a complete proof, see Appendix A.

We proceed by proving that, for a.e. ω ∈ Ω, the Wirtinger

cogradient of F , evaluated at some z =H(θ, ω) for any θ ∈Θ,

is bounded by a positive constant, independent of ω.

Lemma 2: Given Assumption A, there exists a constant BF >
0 such that, for all (θ,W ) ∈Θ×W , and a.e. ω ∈ Ω,

∥∥∥∥
∂◦

∂z
F (W , z)

∣∣
z=H(θ,ω)

∥∥∥∥≤BF .

Proof: From (A3) we obtain that the sets H(Θ, ω), for

ω ∈ Ω, are uniformly (in ω) compact. Thus, we can find a

compact set V , such that H(Θ, ω)¢ V for a.e. ω ∈ Ω. From

(A2) we also have that W is compact. Since F is continuously

(real) differentiable on the compact set V ×W , it follows from

the extreme value theorem applied to ∂
∂�(z)F (W , z) and to

∂
∂�(z)F (W , z), respectively, with z ∈ V , that there exists some

constant BF such that∥∥∥∥
∂

∂
(z)F (W , z)
∣∣
z=H(θ,ω)

∥∥∥∥≤BF ,

∥∥∥∥
∂

∂�(z)F (W , z)
∣∣
z=H(θ,ω)

∥∥∥∥≤BF ,

for a.e. ω ∈ Ω and any (θ,W ) ∈Θ×W . To complete the

proof, we simply bound the Wirtinger cogradient directly by

its definition (adjusting the constant upper bound).

Next, we note that under Assumption A, the second-stage

problem (as a function of θ, for a.e. ω ∈ Ω) is a lower-C2

function (see [58] for a precise definition). We formalize the

consequences of this fact in the following lemma.

Lemma 3: Let Assumption A hold. For a.e. ω ∈ Ω, there

exists a constant ρ̂(ω)> 0 such that the mapping θ �→
maxW∈W F (W ,H(θ, ω)) is ρ̂(ω)-weakly convex on Θ.

Proof: From Conditions (A1)–(A3), it follows easily that

the mapping θ �→maxW∈W F (W ,H(θ, ω)) is lower-C2 (see

[58]). Then, [58, Theorem 6] yields local weak convexity of this

mapping on Θ. Compactness of Θ then yields the result.

We are now ready to show that f in (FSP) is actually con-

tinuously differentiable and weakly concave on Θ.

Theorem 4: Let Assumption A hold. Then, for any θ ∈Θ,

the function f is well-defined and differentiable, with

∇θf(θ) = E

{
∇θF (W ,H(θ, ω))

∣∣
W=W ∗(θ,ω)

}
, (2)

for any W
∗(θ, ω) ∈ argmaxW∈W F (W ,H(θ, ω)). More-

over, if ρ̂(·) ∈ Z1, where ρ̂ is given in Lemma 3, then there

exists a positive constant ρ�max {E{ρ̃(ω)},E{ρ̂(ω)}}, such

that f is ρ-weakly concave on Θ.

Proof: Condition (A5) ensures that f is well-defined and

finite for any θ ∈Θ. On the other hand, by combining Con-

dition (A4) with Lemma 3, we obtain that the map θ �→
maxW∈W F (W ,H(θ, ω)) is continuously Fréchet differen-

tiable (the proof of this fact can be found in [59, Corollary

4.9]). Since this mapping is subdifferentially regular, and its

(generalized) subdifferential is a singleton, it follows that

∇θ max
W∈W

F (W,H(θ, ω))=∇θF (W,H(θ, ω))
∣∣
W=W ∗(θ,ω)

,

for any W
∗(θ, ω) ∈ argmaxW∈W F (W ,H(θ, ω)) (e.g. see

[60]). Similarly, by utilizing the integrability of ρ̃(·) and

ρ̂(·), we obtain that f is also continuously Fréchet differ-

entiable, (again invoking [59, Corollary 4.9], by noting that

f is both ρ-weakly convex and ρ-weakly concave, with ρ�
max {E{ρ̃(ω)},E{ρ̂(ω)}}). Using [61, Theorem 7.44], the gra-

dient of f reads

∇θf(θ) = E

{
∇θF (W ,H(θ, ω))

∣∣
W=W ∗(θ,ω)

}
,

for any W
∗(θ, ·) ∈ argmaxW∈W F (W ,H(θ, ·)).

Remark 2: We observe that the integrability of the weak

convexity constants ρ̂(ω) (given in Lemma 3) is a very mild

condition and is almost always met in practice (where one

usually has a finite collection of scenarios). As such, for the

rest of this article we make the implicit assumption that this

holds, i.e. ρ̂(·) ∈ Z1.

D. Zeroth-Order Gradient Approximation of the Channel

Assuming the lack of availability of any first-order informa-

tion of H(·, ω) for any ω ∈ Ω, we will employ a zeroth-order

scheme in order to obtain a gradient estimate of ∇θH(·, ω),
using which we can solve (FSP) via a stochastic projected

gradient ascent scheme. The proposed method will be based

on gradient estimates arising from a two-point stochastic eval-

uation of H(·, ω) (similar to, among others, [62], [63], [64]).

From (A3), we have

∇θH(θ, ω) =∇θ
 (H(θ, ω)) + j∇θ� (H(θ, ω)) .

We would like to approximate each of the above parts of the

gradient using only function evaluations of H(·, ω). We let

U ∼N (0, I) be a normal random vector, where I is the iden-

tity matrix of size S. Given a smoothing parameter μ > 0, we

consider the following gradient estimate

∇θHµ(θ, ω)�
1

2μ
E{(H(θ+μU , ω)−H (θ−μU , ω))U�}�

≡∇θH
R
µ (θ, ω) + j∇θH

I
µ(θ, ω), (3)
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where ∇θH
R
µ (θ, ω)� 
 (∇θHµ(θ, ω)) and ∇θH

I
µ(θ, ω)�

� (∇θHµ(θ, ω)) . Let us notice that given condition (A3),

there exists an open set U £Θ such that (3) is still well-defined.

Thus, the gradient approximation is valid, even if θ is a point

in the boundary of Θ, assuming that an appropriately small μ is

chosen. Observe that the smaller the value of μ is, the better the

aforementioned zeroth-order approximation is. There is a trade-

off between approximation accuracy and numerical stability,

but in practice we observe that μ can be chosen to be quite small.

The assumption that the dynamics of H(·, ω) are unknown

has multiple benefits. It allows us to bypass any modelling

assumptions about the underlying communication channels,

which typically incur modelling errors. At the same time, it

enables the evaluation of H(·, ω) using polar coordinates. That

is, we can (and we do) assume that the IRS parameters θ

represent any real-valued parameters determining the complex-

valued phase-shift elements of the IRSs (e.g. amplitutes and

phases). This allows us to bypass the typical nonconvex unit-

modulus constraints that arise when optimizing over complex

IRS phase-shifts.

The proposed zeroth-order gradient approximation of (1),

based on the zeroth-order approximation given in (3), reads

∇µ
θ
F (W ,H(θ, ω)) (4)

� 2∇θH
R
µ (θ, ω)

(


(
∂◦

∂z
F (W , z)

∣∣
z=H(θ,ω)

))�

+ 2∇θH
I
µ(θ, ω)

(


(
j
∂◦

∂z
F (W , z)

∣∣
z=H(θ,ω)

))�

,

where H
R
µ (θ, ω) and H

I
µ(θ, ω) are defined in (3). It should be

noted here that the zeroth-order gradient approximation relies

on small perturbations in the IRS parameters θ. This implies

that ZoSGA is not applicable when optimizing IRSs with dis-

crete phases/states. We identify this limitation of ZoSGA as a

direction for future investigation.

III. ALGORITHM AND CONVERGENCE ANALYSIS

We now derive a zeroth-order projected stochastic gradient

method for the solution of (FSP). To that end, we assume

the availability of an oracle solving the deterministic problem

(SSP). The method treats the unknown function H(·, ω) as

a black-box, utilizing samples of the gradient approximation

given in (3).

Assumption B: Given any θ ∈Θ and for a.e. ω ∈ Ω, we have

access to an oracle yielding a (measurable) optimal solution to

(SSP), and Assumption A holds.

A. A Zeroth-Order Projected Stochastic Gradient Ascent

Let us briefly present the proposed (channel-agnostic) zeroth-

order projected stochastic gradient ascent. From condition (A5),

we have available i.i.d. samples ω ∈ Ω. Thus, from (4), at

every (θ,W ) ∈Θ×W , and for a.e. ω ∈ Ω, we can utilize the

following sample gradient approximation

Algorithm ZoSGA Zeroth-order Stochastic Gradient Ascent

Input: θ0 ∈Θ, {ηt}t≥0 ¢ R+, μ > 0, and T > 0.

for (t= 0, 1, 2, . . . , T ) do

Sample (i.i.d.) ωt ∈ Ω, U t ∼N (0, I).
Find W

∗ ∈ argmaxW∈W F (W ,H(θt, ωt)) .
Set Dµ(θt, ωt,U t)≡Dµ(θt, ωt,U t;W

∗) as in (5).

θt+1 = projΘ (θt + ηtDµ (θt, ωt,U t)) .
end for

Sample t∗ ∈ {0, . . . , T} according to P(t∗ = t) = ηt∑
T

i=0
ηi

.

return θt∗ .

Dµ(θ, ω,U ;W )≡Dµ(θ, ω,U)

�∆
R
µ

(


(
∂◦

∂z
F (W , z)

∣∣∣∣
z=H(θ,ω)

))�

+∆
I
µ

(


(
j
∂◦

∂z
F (W , z)

∣∣∣∣
z=H(θ,ω)

))�

, (5)

with
(
∆

R
µ ,∆

I
µ

)

�
1

μ

[
(
 (∆µ(θ, ω,U ))U�)�(� (∆µ(θ, ω,U))U�)�

]
,

where μ > 0 is a smoothing parameter, U ∼N (0, I) and

∆µ(θ, ω,U)�H (θ + μU , ω)−H (θ − μU , ω). Note that

this is simply a sample from (4) and is obtained by probing

the wireless network twice with the perturbed IRS parameters

θ + μU and θ − μU , with the induced overhead due to the

associated channel estimation effort, implicitly assumed to be

within the coherence time of the channel; note that this a stan-

dard assumption in the related literature on learning resource

policies in wireless systems; see, e.g., the seminal work [65].

At this point, it may be also worth noting that ZoSGA

requires exactly three effective channels to be estimated, per

operational iteration: one to communicate (on which the opti-

mal short-term precoders W
∗ are calculated), and two more

pertaining to the required function evaluations (system probes)

for constructing the sample gradient approximations outlined

above. Therefore, any conventional scheme can be employed

for channel estimation, as if no IRS is present in the system.

The proposed method is summarized in Algorithm ZoSGA.

B. Convergence Analysis

We proceed by proving the convergence of

Algorithm ZoSGA. Let us start by proving certain technical

results.

Lemma 5: Let Assumption B hold, and fix any θ ∈Θ. For

a.e. ω ∈ Ω let W be the output of the oracle at (θ, ω). Then,

for any μ≥ 0, and any U ∼N (0, I), the following holds

E

{
‖Dµ(θ, ω,U ;W )‖2

}
≤ 4B2

FL
2
H,0(S

2 + 2S), (6)

where U and ω are assumed to be statistically independent.
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Proof: By Lemma 2, we have that for any (θ,W ) ∈Θ×
W and a.e. ω ∈ Ω,

∥∥∥ ∂◦

∂zF (W , z)
∣∣
z=H(θ,ω)

∥∥∥≤BF . Using the

Cauchy-Schwartz inequality, we obtain

E

{
‖Dµ(θ, ω,U)‖2

}
≤ 1

μ2
B2

FE

{∥∥∥
(
∆µ(θ, ω,U)U�

)�∥∥∥
2
}

≤ 1

μ2
B2

FE
{
E
{
‖∆µ(θ, ω,U)‖2‖U‖2

∣∣U
}}

≤ 4B2
FL

2
H,0E

{
‖U‖4

}
= 4B2

FL
2
H,0(S

2 + 2S),

where in the last inequality we used Lipschitz continuity of

H(·, ω) (from (A3)) while in the last equality we evaluated the

4-th moment of the χ-distribution. Since F (W ,H(θ, ·)) ∈ Z2

from (A5), we observe that all of the above expectations are

well-defined and finite and hence the proof is complete.

Lemma 6: Let Assumption B hold, fix any θ ∈Θ, and for

a.e. ω ∈ Ω, let W be the output of the oracle. Then, the sample

gradient approximation given in (5) satisfies

E {Dµ(θ, ω,U ;W )] = E {∇µ
θ
F (W ,H(θ, ω))}� ∇̂f(θ),

∥∥∇̂f(θ)−∇f(θ)
∥∥≤ 2μBFLH,1

√
MS.

Proof: Firstly, by utilizing Fubini’s theorem we obtain that

E {Dµ(θ, ω,U ;W )] = E {∇µ
xF (W ,H(θ, ω))} ,

where the first expectation is taken with respect to the product

measure of the two random variables ω and U . Furthermore,

‖∇µ
θ
F (W ,H(θ, ω))−∇θF (W ,H(θ, ω))‖

=

∥∥∥∥∥2

(
∂◦

∂z
F (W , z)

∣∣∣∣
z=H(θ,ω)

(
ε
R + jεI

))
∥∥∥∥∥

≤ 2BF

∥∥εR + jεI
∥∥

where εR �∇θ
 (H(θ, ω))−∇θH
R
µ (θ, ω) and

εI �∇θ� (H(θ, ω))−∇θH
I
µ(θ, ω), and we used Lemma 2.

Next, we observe (from equivalence of norms) that

‖εR‖ ≤
√
M max

i

∥∥∥
(
∇θ
 (H(θ, ω))−∇θH

R
µ (θ, ω)

)
i

∥∥∥

≤ μ

2
LH,1

√
MS,

where, given a matrix A, (A)i denotes the i-th column vector,

and the last bound follows as in the proof of [66, Theorem 1].

The same procedure can be repeated for bounding ‖jεI‖ and

hence a simple application of the triangle inequality and sub-

sequently Jensen’s inequality yield the desired result.

The Moreau envelope: Let us write the objective function of

(FSP) as φ(θ)�−f(θ) + δΘ(θ), where δΘ(θ) is the indicator

function for the convex set Θ. Given some penalty parameter

λ > 0, we define the proximity operator as

proxλφ(u)� argmin
θ∈RS

{
φ(θ) +

1

2λ
‖u− θ‖2

}
,

and the corresponding Moreau envelope as

φλ(u)� min
θ∈RS

{
φ(θ) +

1

2λ
‖u− θ‖2

}
.

It is well-known that the Moreau envelope with parameter λ > ρ
(the weak convexity constant) is smooth even if φ(·) is not, and

the magnitude of its gradient can be used as a near-stationarity

measure of the non-smooth problem of interest. Indeed, if a

point θ is ε-stationary for the Moreau envelope, then it is close

to an near-stationary point of (2SP). This (standard) approach

is adopted in this work, following [57], [64], among others.

Theorem 7: Let Assumption B be in effect and assume that

{θt}Tt=0, T > 0, is generated by ZoSGA, where θt∗ is the point

that the algorithm returns. For any ρ̄ > ρ, it holds that

E

{∥∥∥∇φ1/ρ̄(θt∗)
∥∥∥
2
}

(7)

≤ ρ̄

ρ̄− ρ

(
φ1/ρ̄(x0)−minφ(x) + C2ρ̄

∑T
t=0 η

2
t∑T

t=0 ηt
+ C1ρ̄μ

)

where, letting ∆Θ be the diameter of Θ,

C1 � 2∆ΘBFLH,1

√
MS, C2 � 2B2

FL
2
H,0(S

2 + 2S).

Moreover, if we set ρ̄= 2ρ, and

ηt =

√
∆f

2C2ρ(T + 1)
, for all t≥ 0,

for some ∆f ≥ φ1/(2ρ)(θ0)−minφ(θ), then it holds that

E

{∥∥∥∇φ1/(2ρ)(θt∗)
∥∥∥
2
}
≤ 8

(√
∆fρC2

2(T + 1)
+ C1ρμ

)
. (8)

Proof: For any t≥ 0, we have ∇̂f(θt)≡
E[t] {Dµ(θ, ω,U)}, where E[t]{·}� E{·|U t−1, ωt−1, . . . ,

U0, ω0} (see Lemma 6). We define the point θ̂t � proxφ/ρ̄(θt).
Then, we obtain

E[t]

{
φ1/ρ̄(θt+1)

}
≤ E[t]

{
f(θ̄t) +

ρ̄

2

∥∥θ̂t − θt+1

∥∥2
}

= φ
(
θ̂t

)
+

ρ̄

2
E[t]

{∥∥projΘ(θ̂t)

− projΘ (θt + ηtDµ(θt, ωt,U t))
∥∥2

}

≤ φ
(
θ̂t

)
+

ρ̄

2
E[t]

{∥∥∥θt + ηtDµ(θt, ωt,U t)− θ̂t

∥∥∥
2
}

≤ φ
(
θ̂t

)
+

ρ̄

2

∥∥θt − θ̂t

∥∥2

+ ρ̄ηtE[t]

{〈
θ̂t − θt,−Dµ(θt, ωt,U t)

〉}
+ C2ρ̄η

2
t

= φ
(
θ̂t

)
+

ρ̄

2

∥∥θt − θ̂t

∥∥2 + ρ̄ηt

〈
θ̂t − θt,−∇f(θ)

〉

+ ρ̄ηt

〈
θ̂t − θt,∇f(θt)− ∇̂f(θt)

〉
+ C2ρ̄η

2
t

≤ φ1/ρ̄(θt) + ρ̄ηt

〈
θ̂t − θt,−∇f(θ)

〉

+ ρ̄ηt

∥∥∥θ̂t − θt

∥∥∥
∥∥∥∇̂f(θ)−∇f(θ)

∥∥∥+ C2ρ̄η
2
t

≤ φ1/ρ̄(θt) + ρ̄ηt

(
f(θt)− f

(
θ̂t

)
+

ρ

2

∥∥∥θt − θ̂t

∥∥∥
2
)

+ C1ρ̄μηt + C2ρ̄η
2
t ,

where in the second inequality we used the non-expansiveness

of the projection, in the fourth inequality we used Cauchy-

Schwartz as well as the definition of the Moreau envelope, and
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in the fifth inequality we used the weak convexity of −f(·),
Lemma 6 and the fact that Θ is assumed to be compact (and

hence there exists a constant ∆Θ > 0 such that
∥∥θ̂t − θt‖ ≤

∆Θ). Next, by following exactly the developments in [57, Sec-

tion 3.1], we notice that the mapping θ �→ −f(θ) + ρ̄
2‖θ −

θt‖2 is strongly convex with parameter ρ̄− ρ, and is minimized

at θ̂t, thus we obtain

f(θ̂t)− f(θt)−
ρ

2
‖θt − θ̂t‖2 =

(
−f(θt) +

ρ̄

2

∥∥∥θ̂t − θ̂t

∥∥∥
2
)

−
(
−f(θ̂t) +

ρ̄

2

∥∥∥θt − θ̂t

∥∥∥
2
)
+

ρ̄− ρ

2

∥∥∥θt − θ̂t

∥∥∥
2

≥ (ρ̄− ρ)
∥∥∥θt − θ̂t

∥∥∥
2

≡ ρ̄− ρ

ρ̄2

∥∥∥∇φ1/ρ̄(θt)
∥∥∥
2

,

where the last equivalence follows from [57, Lemma 2.2].

Hence,

E[t]

{
φ1/ρ̄(θt+1)

}
≤ φ1/ρ̄(θt)−

ηt(ρ̄− ρ)

ρ̄

∥∥∥∇φ1/ρ̄(θt)
∥∥∥
2

+ C1ρ̄μηt + C2ρ̄η
2
t .

Taking expectations with respect to the history ω0, U0,

. . . , ωt−1, U t−1 and using the total expectation, yields

E

{
φ1/ρ̄(θt+1)

}
≤ E

{
φ1/ρ̄(θt)

}
+ ρ̄ηt(μC1 + C2ηt)

− ηt(ρ̄− ρ)

ρ̄
E

{∥∥∥∇φ1/ρ̄(θt)
∥∥∥
2
}
,

Subsequently, we can unfold the latter inequality to obtain

E

{
φ1/ρ̄(θT+1)

}
≤ φ1/ρ̄(θ0) + C1ρ̄μ

T∑

t=0

ηt + C2ρ̄

T∑

t=0

η2t

− ρ̄− ρ

ρ̄

T∑

t=0

ηtE

{∥∥∥∇φ1/ρ̄(θt)
∥∥∥
2
}
.

Then, we can lower bound the left-hand side by φ(θ∗)�
minθ∈Θ f(θ), and rearrange, to obtain

1
∑T

t=0 ηt

T∑

t=0

ηtE

{∥∥∥∇φ1/ρ̄(θt)
∥∥∥
2
}

≤ ρ̄

ρ̄− ρ

(
φ1/ρ̄(θ0)− φ(θ∗) + C2ρ̄

∑T
t=0 η

2
t∑T

t=0 ηt
+ C1ρ̄μ

)
.

Since the left-hand side is exactly E{‖∇φ1/ρ̄(θt∗)‖2}, we

deduce that (7) holds. Finally, setting ρ̄= 2ρ, letting ∆f ≥
φ1/ρ̄(θ0)−minφ(θ), and choosing a constant step size as

ηt =

√
∆f

2C2(T + 1)
, for all t≥ 0,

we obtain (8) which completes the proof.

Remark 3: Note that choosing μ=O
(
1/
√

(MT )
)

yields

that E
{∥∥∇ϕ1/(2ρ)

(
θt∗

)∥∥}≤ ε, after O(
√
Sε−4) iterations.

IV. CASE STUDY: SUMRATE MAXIMIZATION

Capitalizing on a standard IRS-aided MISO downlink sce-

nario (see Fig. 2 in Section V), our goal here is to maximize

the total downlink rate of K users actively serviced by an AP

with M antennas, while passively aided by one or multiple

IRSs, arbitrarily spatially placed. As usual, we assume dynamic

(reactive) AP precoders, while the IRS beamformers are static

(non-reactive) tunable elements. We make no sensing assump-

tions on the IRSs, i.e., the IRSs are completely passive net-

work elements.

Each of the users k = 1, . . . ,K experiences a random effec-

tive channel denoted by hk (θ, ω), indexed by the IRS parame-

ter vector θ as well as the usual state of nature ω ∈ Ω describing

unobservable random propagation patterns for each value of θ.

In other words, hk (θ, ω) is a random channel field with spatial

variable θ. We make the standard assumption that the effective

channels hk (θ, ω) , k = 1, . . . ,K, are known to the AP at the

time of transmission [22], [23]. Note that the implementation

complexity of estimating effective channels in our setting is

exactly the same as that in conventional multi-user downlink

beamforming (i.e., involving no IRSs), regardless of the number

and/or spatial configuration of the IRSs; no extra hardware or

customized scheduling schemes are required on either the AP

or the IRSs assisting the network.

The QoS of user k is measured by the corresponding SINR,

SINRk(W ,hk(θ, ω))�

∣∣∣hH

k (θ, ω)wk

∣∣∣
2

∑
j∈N

+

K
\k

∣∣∣hH

k (θ, ω)wj

∣∣∣
2

+ σ2
k

,

where W=vec(
[
w1 w2 · · · wK

]
) ∈ C

MU�(M×K), wk

is a transmit precoding vector and σ2
k is the noise variance for

user k, respectively. Then, the weighted sumrate utility of the

network is defined as

F (W ,H(θ, ω))�

K∑

k=1

³k log2 (1 + SINRk (W ,hk (θ, ω))) ,

with H = vec(
[
h1 . . .hK

]
) ∈ C

MU , and ³k ≥ 0 the weight as-

sociated with user k. We are interested in maximizing the sum-

rate of the network jointly by selecting instantaneous-optimal

dynamic AP precoders W , and on-average-optimal static IRS

beamformers θ [22], [23], i.e., we are interested in the problem

max
θ∈Θ

E

{
max

W :‖W ‖2≤P
F (W ,H(θ, ω))

}
, (2SSRM)

where P > 0 is a total power budget at the AP, and Θ is a

real convex and compact feasible set of amplitudes and phases.

Problem (2SSRM) is an instance of (2SP).

Assumption Compatibility: Let us now briefly discuss the

compatibility of Assumption A with problem (2SSRM). We

firstly note that conditions (A1), (A2) are both satisfied. Con-

dition (A5) is also satisfied in light of uniform boundedness.

Condition (A3) of Assumption A imposes regularity that is

required for the grounded development of our optimization

scheme and for its convergence analysis. Also, observe that

the boundedness assumption in condition (A3) is natural, since
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(IRS-aided) wireless channels are always bounded in practice.

While we usually have no information on the analytical prop-

erties of the effective channel, this condition is easily satisfied

in widely used channel models of IRS-aided systems, see, e.g.,

[23] or Section V.

We next showcase that the regularity condition (A4) also

holds under several reasonable circumstances. In particular, we

identify three typical situations under which condition (A4) (i.e.

weak concavity of the sample objective function of the first-

stage problem (FSP)) is readily satisfied. These will be stated

here for completeness, and the reader is referred to Appendix B

for a technical discussion showcasing how weak concavity can

be shown in each of the following cases.

Firstly, condition (A4) is readily satisfied in cases where the

second-stage problem (SSP) admits a unique solution, assum-

ing, of course, the strong second-order sufficient optimality

conditions for the second-stage problem (we refer the reader

to Appendix B for a precise description of these conditions).

Indeed, in this case one can invoke the Implicit Function Theo-

rem [67, Theorem 1B.1] to showcase twice-continuous differ-

entiability of f(·) (as well as ofmaxW∈W F (W ,H(θ, ω)), for

a.e. ω ∈ Ω), and since f is considered on a compact set, weak

concavity then follows immediately. On the other hand, if the

solution set of the second-stage problem is connected (instead

of a singleton), and instead of the strong second-order sufficient

conditions, the problem satisfies the regularity condition given

in [68, Assumption 4], we also obtain twice-continuous differ-

entiability and thus weak concavity. Finally, if H(·, ω) is real-

analytic for a.e. ω ∈ Ω (which often holds for channel models

appearing in the literature; e.g. see [23] and Section V), then

one can show that the function maxW∈W F (W ,H(θ, ω)) is

sub-analytic, and satisfies the Łojasiewicz inequality (see [69])

at every θ ∈Θ, with uniform exponent. If the Łojasiewicz

constant is uniformly bounded and the second-stage problem

satisfies the strong second-order sufficient optimality condi-

tions, weak concavity also follows (see Appendix B for the

technical details).

A. Practical Per-Iteration Complexity for Sumrate

Maximization

Before proceeding with the associated simulations of our

case study, it would be useful to calculate the practical per-

iteration complexity of ZoSGA. To that end, we assume that

the (deterministic here-and-now) second-stage problem is (ap-

proximately) solved using T2 iterations of the well-known

WMMSE algorithm [53], which has a documented computa-

tional complexity given by O(T2K
2M3). For the first-stage

optimization step, the complexity of the zeroth-order stochastic

gradient approximations can be shown to be of the order of

O(K2M +KM2 + S), where S is the number of IRS phase-

shift parameters. Thus, the effective per-iteration complexity of

ZoSGA is of order O(T2K
2M3 + S).

As mentioned in Section I, model-based SSCO methods

have been recently considered for tackling problem (2SSRM),

mainly due to their fast convergence. Then, it would be ap-

propriate to compare the per-iteration complexity of ZoSGA

with that of a state-of-the-art SSCO method, in particular

TTS-SSCO [23].

In order to derive the practical per-iteration complexity

of TTS-SSCO, we need to assume that the effective chan-

nel H(·, ω) follows a specific and common cascaded model

[23]. Considering this, the complexity of TTS-SSCO can be

shown to be of order O(TH(T2K
2M3 +K2S2M)), since each

TTS-SSCO iteration requires TH WMMSE runs for gradient

statistical approximation. We should also emphasize that this

complexity is in addition to the (highly nontrivial) compu-

tational effort required for estimating cascaded CSI statistics

(called S-CSI in [23]), which are required by TTS-SSCO. It is

evident that the proposed algorithm (i.e. ZoSGA) has a signif-

icantly smaller per-iteration complexity.

V. SIMULATIONS

Building upon the IRS-aided MISO downlink sumrate max-

imization case discussed in Section IV, we present a set of

detailed simulations to empirically evaluate and confirm the

efficacy of the proposed ZoSGA algorithm. Unless stated oth-

erwise, all our empirical results are averaged over 2000 inde-

pendent simulations, with an additional 4-th order Savitzky–

Golay filter [70] of length 500, while 95% confidence intervals

are also provided. In what follows, we describe and evaluate

three distinct wireless network setups and examine the obtained

empirical results. The last set of experiments will involve a

physical model for the IRSs, which is briefly described in the

beginning of Subsection V-C.

A. Baseline Channel Model

With the practically feasible assumption of insufficient angu-

lar spread of signals in a scattering environment, we consider

both LOS and non-LOS channels. Following [23], we consider

three types of intermediate channels in our simulations, namely,

the reflected channel hr,k from an IRS to user k, the channel

G from an AP to an IRS, as well as the direct path channel

hd,k from an AP to user k. We model these as general spatially

correlated Rician fading channels [71]. Additionally, we assume

that the second-order statistics of the LOS links are identical for

all users, due to the large distances between an AP and its ser-

ved users.

Concretely, for each user k, we define the path loss adjusted

versions of these channels, respectively, as

h̆r,k�

√
´Iu

1+´Iu
v̌r,k+

√
1

1+´Iu
Φ

1/2
r,k vr,k, (9)

Ğ�

√
´AI

1+´AI
F̌+

√
1

1+´AI
Φ

1/2
r FΦ

1/2
d ,

h̆d,k�

√
´Au

1+´Au
v̌d,k+

√
1

1+´Au
Φ

1/2
d vd,k,

where vr,k ∈ C
N×1,F ∈ C

N×M , and vd,k ∈ C
M×1 are

the instantaneous components (I-CSI), and v̌r,k ∈ C
N×1,

F̌ ∈ C
N×M , and v̌d,k ∈ C

M×1 are the statistical components

(S-CSI) of the above channels, all having i.i.d. circularly
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symmetric complex Gaussian (CSCG) entries with zero mean

and unit variance, and with S-CSI being sampled once per

simulation. The dimensions M and N denote the number of AP

antennas and the number of passive reflecting elements in an

IRS, respectively. The matrices Φr,k ∈ C
N×N ,Φd ∈ C

M×M ,

and Φr ∈ C
N×N are, in order, the reflected channel correlation

matrix, the AP transmit correlation matrix, and the IRS receive

correlation matrix. We assume an exponential correlation

model for Φd [72], expressed as

Φd(i, j) =

{

r
j−i
d , if i≤j,

Φd(j, i), if i>j,
(10)

where rd ∈ (0, 1) is the correlation coefficient. The matrices Φr

and Φr,k are modeled as Kronecker products [73] as

Φr =Φ
h
r ⊗Φ

v
r , Φr,k =Φ

h
r,k ⊗Φ

v
r,k,

where Φ
h
r , Φ

h
r,k, and Φ

v
r ,Φ

v
r,k, for k ∈ N

+

K , represent the spa-

tial correlation matrices of the horizontal and vertical domains,

respectively, and are all modeled similar to Φd in (10), with

spatial correlation coefficients rr ∈ (0, 1) and rr,k ∈ (0, 1) for

Φr, and Φr,k, k ∈ N
+

K , respectively.

The deterministic components, i.e, v̌r,k, F̌ , and

v̌d,k determine the moments of their respective CSIs.

Lastly, the real scalar βAu denotes the Rician fading

factor for the LOS channel, while βIu and βAI are

the same for the reflected channels. These factors

define the relative dominance of I-CSIs and S-CSIs

in their respective combined CSIs. Moreover, all intermediate

channels in (9) suffer from an exponential path loss proportional

to the path distance. We model this loss as Lα(d) =
√
C0d−α,

where d is path distance in meters, α is the path loss exponent

depending upon the channel being considered, and C0 is the

common path-loss for when the path distance is one meter.

Considering both path loss and fading, we may adopt the

standard simplified baseline model for the effective channel

hk(θ, ω) of user k in the presence of an AP and one IRS, i.e.,

hk(θ, ω)�GHDiag(A ◦ ejφ)hr,k
︸ ︷︷ ︸

non-LOS link

+ hd,k
︸︷︷︸

LOS link

,

where hr,k = LαIu
(dIu,k)h̆r,k, G= LαAI

(dAI)Ğ, and hd,k =
LαAu

(dAu,k)h̆d,k. We may take ω = {G,hr,k,hd,k, k ∈ N
+

K},

while the IRS parameters θ are represented by amplitude and

phase vectors A ∈ [0, 1]N and φ ∈ [−2π, 2π]N , respectively

[74]. Adding more IRSs to the system increases the non-LOS

terms comprising the effective channel of each user accordingly.

For slow moving users, as is generally the case, we assume

that the values of S-CSI and the spatial correlation matrices

remain fixed throughout the duration of the AP service. Further,

we assume that IRS-to-IRS links do not contribute to the signal

or the interference in the presented multi-IRS cases. Of course,

the latter assumption is only made for ease of presentation.

In Subsections V-B and V-C, having defined the channel

model, we present simulated results with ideal and physical

IRSs, where physical IRSs are constrained both in terms of

Fig. 2. First IRS-aided network configuration (ideal IRSs).

amplitude and phase, as well as non-linear sensitivity rela-

tive to the action space, i.e., the ranges of varactor diode

capacitances [75].

B. Networks With Ideal IRSs

In the first set of simulations, we assume that we have full

control over the amplitudes and the phases of IRS phase-shift

elements, i.e. there is no constraint on achievable phase-

amplitude pairs, and we can control them directly. We start by

discussing the wireless network setting as shown in Fig. 2.

To highlight the efficacy of the presence of IRSs in a wireless

network, we assume a more acute signal attenuation in the LOS

links from the AP to the users. Thus, we set αAu = 3.4, αIu =
3 and αAI = 2.2, where the largest αAu is the LOS path loss

exponent while the remaining two are path loss exponents of

IRS-User and AP-IRS links, respectively. Moreover, since the

distances between the IRS and its served users are relatively

small, IRS elements reflect signals with a finite angular spread

and a user-location dependent mean angle in practice [76].

We consider two IRSs, as shown in Fig. 2, equipped with

N=Nh×Nv rectangular phase-shift elements where Nh(= 4)
and Nv(= 10) denote the number of columns and rows, respec-

tively (N = 40). For the ideal IRS case we define the control-

lable parameters of each IRS as a vector θi=
[

φT

i AT

i

]T
, for

i ∈ {1, 2}, where φi ∈ [−2π, 2π]N and Ai ∈ [0, 1]N are phases

and amplitudes of the IRS elements, respectively. We do not

consider the relative orientations of the IRSs, AP and users, as

those can be incorporated via orientation offsets, if needed. The

effective channel for a user k can, thus, be expressed as

hk(θ, ω) =

2∑

i=1

GH

i Diag(Ai ◦ e
jφ

i)hi
r,k

︸ ︷︷ ︸

θi-non-LoS link

+ hd,k
︸︷︷︸

LoS link

,

where hi
r,k = Lαi

Iu

(dIu,k,i)h̆
i

r,k, Gi = Lαi

AI

(dAI,i)Ğ
i
, and

hi
d,k = Lαi

Au

(dAu,k,i)h̆
i

d,k for i ∈ {1, 2}. Also, for brevity, we

take θ=(θ1,θ2) and ω = {G1,G2,h
1

r,k,h
2

r,k,hd,k, k ∈ N
+

K}.
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Fig. 3. (a) Average sumrates achieved by WMMSE [53] (random IRS phase-shifts), TTS-SSCO [23], and ZoSGA, with only IRS 1 present (AA: Adjustable
Amplitude | UA: Unit Amplitude); (b) Corresponding average sumrates versus the Rician factor; (c) Average sumrates achieved by WMMSE (random IRS)
and ZoSGA, with both IRSs present.

After defining the wireless network setting, we move for-

ward with our simulations. In the first simulated compari-

son we compare the proposed algorithm (ZoSGA) with the

well-documented Stochastic Successive Convex Optimization

(SSCO) method, specifically a version of it proposed in [23],

which we shall refer to as Two-Time Scale SSCO (TTS-SSCO).

Both ZoSGA and TTS-SSCO employ the WMMSE algorithm

to optimize the precoding vectors. To keep the comparison

justified, we let WMMSE optimize for 20 iterations per channel

instance for both of these methods, and have also included

WMMSE with randomized IRS parameters as a reference. All

parameters pertaining to the TTS-SSCO are taken from [23,

Section V], i.e., TH = 10, τ = 0.01, ρt = t−0.8 and γt = t−1.

There are four users, so k ∈ N
+

4 , weighted uniformly i.e., αk =
1; the AP has six antennas (M = 6), and the noise variance

is σk =−80dBm for all k. The reference path loss is C0 =
−30dB, and the total allocated power budget is P = 5dBm. The

LOS Rician factor is βAu =−5dB, while βIu = βAI = 5dB,

unless specified otherwise. We let the smoothing parameter

µ= 10−12 in Algorithm ZoSGA, and choose separate initial

step-sizes η0φ = 0.4 and η0A = 0.01 for updating phases and am-

plitudes, respectively, scaled by 0.9972t for t ∈ N
+

103
, keeping

them constant for t > 103.

The comparison of ZoSGA and TTS-SSCO in terms of

achieved sumrate is shown in Fig. 3(a). The comparison is

done with only IRS 1 present, matching the TTS-SSCO setting

in [23], which requires exact channel and network models.

We observe that ZoSGA, although requiring more iterations to

converge, substantially outperforms TTS-SSCO solely on the

basis of effective CSI, while having no access to the statistical

model of the channel or the spatial configuration of the network.

There are two main reasons for this gain in performance. Firstly,

TTS-SSCO evaluates gradients by utilizing internally sampled

I-CSI and the corresponding optimal precoding vectors (via

WMMSE), with a frequency of ten samples per iteration (TH ).

This can greatly limit the convergence of TTS-SSCO if the

internal channel model is not accurate. Secondly, the surrogate

objective optimization employed by TTS-SSCO, which simpli-

fies the problem by decoupling the IRS phase-shift elements, al-

lowing the computation of their optimal values in a closed form,

is not equivalent to the original nonconvex sumrate optimization

problem. As shown by the convergence curves provided in Fig.

3(a), this introduces additional errors, preventing TTS-SSCO

from realizing a competitive QoS gain, compared with ZoSGA.

In Fig. 3(b), we discern the effect of the Rician factor

for spatially uncorrelated channels, i.e., we set rd = rr =
rr,k = 0, ∀ k ∈ N

+

4 . We observe that the relative gain of

ZoSGA in the achievable sumrate increases with respect to

the Rician factors pertaining to θ1-reflected links, i.e., as we

move from I-CSI to S-CSI dominated channels. The perfor-

mance gap between ZoSGA and TTS-SSCO increases in β,

since in a close-to-deterministic effective channel zeroth-order

gradient approximations approach the true gradients, while

TTS-SSCO is optimizing an approximate surrogate objective.

We also observe that WMMSE with a randomized IRS re-

mains insensitive to changes in the Rician factors; this is ex-

pected as the reflected channel is not optimized to gain any

performance improvements.

We can now verify that ZoSGA can also optimize networks

with multiple IRSs without any model knowledge. We do so by

tuning both IRSs as shown in Fig. 2, while keeping the same

hyper-parameters for ZoSGA as well as for WMMSE. Fig. 3(c)

shows that ZoSGA succeeds in optimizing both IRSs simultane-

ously, without any information about their spatial configuration.

Fig. 3(c) also visualizes the improved performance gains when

optimizing θ1 versus optimizing the more distant θ2, showing

that ZoSGA not only scales well to unknown system/channel

models, but is also robust with respect to ηφ and ηA.

In practical scenarios, IRSs may have multiple phase-shift

elements, frequently on the order of hundreds. To demonstrate

that ZoSGA can scale well with the number of IRS parameters

θ, we increase Nv to 100 rows of elements, and compare the

sumrates achieved by ZoSGA and TTS-SSCO in Fig. 4. It is

evident that ZoSGA is able to scale well and also retains the gain

in performance over TTS-SSCO despite the substantial increase

in the number of IRS phase-shift elements.

Lastly, while in general ZoSGA does take more iterations to

converge as compared with model-based methods (here, TTS-

SSCO; this is in line with the related literature on model-free

stochastic resource allocation: see, e.g., [65]), we may also
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Fig. 4. Average sumrates achieved by WMMSE (random IRS), TTS-SSCO,
and ZoSGA, with only IRS 1 and Nv = 400.

readily observe that it exhibits a high performance ceiling.

Therefore, it can provide very competitive IRS beamformers

way before its actual convergence.

C. Networks With Physical IRSs

In purely simulated environments, ZoSGA outperforms TTS-

SSCO, allowing us to claim it to be a new SOTA for IRS-

aided sumrate optimization. Nonetheless, we would also like

to evaluate its robustness in a practical setting with physically

modeled IRSs. To that end, we first define the IRSs using a

practically feasible Transmission Line (TL) equivalent of an

electromagnetic (EM) model, as presented in [75]. This TL

model accounts for the geometrical and electrical properties of

the IRS elements, also referred to as patches. Specifically, it

considers reconfigurability, changes in response due to differ-

ent angles of wave incidence, mutual coupling among closely

spaced cells, and reflection losses.

An IRS can be classified as a spatially dispersive device, the

reconfigurability of which is achieved by incorporating varactor

diodes in its periodic structure. That is, the beamforming angles

(of reflection) are controlled by changing DC voltages; thus

tuning the capacitances of these diodes. Though there can be

two scenarios when an EM wave impinges on an IRS surface,

namely, the traverse magnetic (TM) incidence and the tra-

verse electric (TE) incidence, here we only consider the former

for simplicity, mostly focusing on the empirical performance

analysis. Moreover, on a side note, we employ the Floquet

theorem (as assumed in [75]) so as to consider the periodic

patches placed in an infinite array, with each element/patch

behaving identically.

Given a non-reconfigurable impedance surface, the TL model

usually consists of a parallelly connected surface impedance

of a reflecting surface, Zsurf , and inductive impedance of the

grounded dielectric slab Zd. Then, the input impedance is Zv =

Zsurf ‖ Zd. For an IRS, however, the Zsurf is further com-

prised of a parallel connection between the unloaded surface

Fig. 5. Second IRS-aided network configuration (physical IRSs).

impedance of the patch array Zpatch and the lumped impedance

of a varactor diode Zvar, which is represented as a series of a

resistor, inductance and capacitance as

Zvar =Rvar + jωLvar + j
1

ωCvar

,

where the inductance Lvar depends on the size of the lumped

component and must be included in the varactor model to take

into account the self-resonance of the component. The resis-

tance Rvar is included to account for the losses of the varactor.

The variable capacitance Cvar of the diode is used to vary Zvar.

The other two impedances, i.e. Zd and Zpatch, depend on

the properties of the substrate, the dielectric, and the angle of

incidence. A detailed description of these is provided in [75,

Section 4]. Once all the considered impedances of a patch have

been evaluated, its phase-shift coefficient θ(Cvar) is given by

θ(Cvar) = a(Cvar)e
jφ(Cvar) =

Zv(Cvar)− ζ0

Zv(Cvar) + ζ0
,

where ζ0 is the free space impedance. Thus, by changing

the varactor capacitance Cvar, we can change the varactor

impedance Zvar, which changes the surface impedance Zsurf ,

which, in turn, changes the input impedance of an IRS element

Zv , finally causing a change in the value of the phase-shift

coefficient θ(Cvar). Due to our assumption that the Floquet

theorem holds, this dependency flow is identical for all elements

of an IRS. Thus, we may replicate the above relation for all IRS

elements, say q in number, and define a vector function θ(·)
of varactor capacitances cvar = [C1

var C
2
var C

3
var · · · Cq

var]
� as

θ(cvar) = [θ(C1
var) θ(C

2
var) θ(C

3
var) · · · θ(C

q
var)]

�.

Now that we have a model for a practical IRS, we would

like to evaluate our first wireless network setting, with one IRS,

to compare the relative performance drop, if any. As shown in

Fig. 6(a), the performance of the ZoSGA does drop when con-

strained in terms of the physical IRS model; this is very much

expected, due to a decreased number of degrees of freedom in
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Fig. 6. (a) Average sumrates achieved by WMMSE (random IRS), TTS-SSCO with ideal IRS, and ZoSGA with a physical EM IRS model (network in
Fig. 2); Average sumrates achieved by WMMSE (random IRS), and ZoSGA, with four physical (EM model) IRSs with (b) 40 and (c) 400 phase-shift elements,
respectively (network in Fig. 5).

tuning the IRS parameters. However, the performance gain rel-

ative to the random phase-shifts is still substantial. More inter-

estingly, ZoSGA outperforms TTS-SSCO –the latter optimizing

both amplitudes and phases in an unconstrained manner– even

in the presence of appreciable practical IRS constraints.

To complete our empirical study, which supports our claim

of enabling totally model-free optimization of the IRS ampli-

tudes and phase-shifts, we lastly consider an elaborate wireless

network setting, as shown in Fig. 5, consisting of two APs and

four IRSs serving a total of eight users. We consider a MISO

downlink scenario where both APs transmit a common symbol

to each user, i.e., the two APs are different only in their position

in space. We consider the same channel model and network

environment parameters as given in Subsections V-A and V-B,

respectively. Then, the effective received channel by user k is

expressed as

hk(Cvar, ω) =

£
¤¤¤¥

∑2
i=1 G

H

i Diag(θ(civar))h
i
r,k︸ ︷︷ ︸

θi-non-LoS link

+ hd,k,1︸ ︷︷ ︸
AP1 LoS link∑4

j=3 G
H

i Diag(θ(civar))h
i
r,k︸ ︷︷ ︸

θi-non-LoS link

+ hd,k,2︸ ︷︷ ︸
AP2 LoS link

¦
§§§̈ ,

where, again, hi
r,k = Lαi

Iu
(dIu,k,i)h̆

i

r,k, Gi = Lαi
AI
(dAI,i)Ğ

i
,

and hd,k,j = L
α

j
Au

(dAu,k,j)h̆d,k,j for i ∈ N
+
4 and j ∈ {1, 2}.

Here, the varactor capacitances of the i-th IRS are denoted by

the vector civar, and the matrix Cvar = [c1var c
2
var c

3
var c

4
var]

combines all the varactor capacitances of the four IRSs. Us-

ing the same learning rate scheme as above and a smoothing

parameter µ= 10−12, we optimize the system sumrate using

ZoSGA.

We averaged the results of 40 different simulations in Fig.

6(b) to show not only the performance gain due to IRS capac-

itance tuning, but also the robustness of the approach under

different realizations of the channels. The fact that the proposed

approach is able to optimize a complicated network such as the

one shown in Fig. 5, without any model information, verifies our

claim of true model-free optimization capability of ZoSGA. We

conjecture that the proposed optimization scheme can tackle a

wide-range of problems arising in practical applications, with

little to no additional input from the user.

VI. CONCLUSION

In this paper we introduced a zeroth-order stochastic gradient

ascent (ZoSGA) method for the solution of two-stage stochastic

programs with applications to model-free optimal beamforming

for passive IRS-assisted stochastic network utility maximiza-

tion. ZoSGA is amenable to rigorous convergence analysis and

achieves state-of-the-art convergence rate under very general

assumptions, capturing a wide range of realistic scenarios. By

specializing to the case of sumrate maximization, we numer-

ically demonstrated that ZoSGA outperforms current state-of-

the-art model-based methodologies on three distinct network

settings, yielding solutions of substantially higher quality and

in a computationally efficient manner, while evading practical

limitations that are inherent in current methods. Our numerical

results confirmed that ZoSGA learns (near-)optimal passive IRS

beamformers based solely on conventional effective CSI and in

the absence of channel models and spatial network configura-

tion information, also verifying our theoretical findings.

APPENDIX

A. Wirtinger Gradient Derivation

In light of conditions (A1)–(A3) of Assumption A, we can

easily show that F (W ,H(θ, ω)) (i.e., the objective function in

(SSP)) admits an explicit usual (Fréchet) gradient, for all θ ∈ U
and a.e. ω ∈ Ω. We do this by utilizing elements of Wirtinger

calculus (see [56, Section 4] for a detailed exposition).

Indeed, in order to evaluate the gradient of F (W ,H(·, ω)),
i.e., ∇θF (W ,H(·, ω)) : U → R

S , we consider its Wirtinger

cogradient (a row vector; see [56, Section 4.2]), defined as

∂◦

∂z
F (W ,H(z, ω))�

1

2

(
∂

∂
(z)
F (W ,H(z, ω))

− j
∂

∂�(z)
F (W ,H(z, ω))

)
,

noting that H(z, ω) is constant relative to �(z), i.e.

H(z, ω) =H(x+ jy, ω) =H(x, ω), ∀(x,y) ∈ U × U ,
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and hence so is F (W ,H(z, ω)) . It then follows that

∂◦

∂z
F (W ,H(z, ω)) =

1

2
(∇xF (W ,H(x, ω)))

�
.

Using the Wirtinger chain rule (see [56, Eq. (32)]), we obtain

∂◦

∂z
F (W ,H(z, ω)) =

∂◦

∂z
F (W , z)

∣∣∣∣
z=H(x,ω)

∂◦

∂z
H(z, ω)

+
∂◦

∂z
F (W , z)

∣∣∣∣
z=H(x,ω)

∂◦

∂z
H(z, ω),

where z denotes the complex conjugate of z. It follows that

∂◦

∂z
H(z, ω) =

1

2

(
∂

∂
(z)
H(z, ω)− j

∂

∂�(z)
H(z, ω)

)

=
1

2

(
(∇x
 (H(x, ω)))

�
+ j (∇x� (H(x, ω)))

�
)
,

and ∂◦

∂z
H(z, ω) =

(
∂◦

∂z
H(z, ω)

)
. From the real-valuedness of

F (W ,H(·, ω)), we have

∂◦

∂z
F (W ,H(x, ω)) =

∂◦

∂z
F (W , z)

∣∣∣∣
z=H(x,ω)

∂◦

∂z
H(z, ω)

+

(
∂◦

∂z
F (W , z)

∣∣∣∣
z=H(x,ω)

∂◦

∂z
H(z, ω)

)

= 2


(
∂◦

∂z
F (W , z)

∣∣∣∣
z=H(x,ω)

∂◦

∂z
H(z, ω)

)
.

Thus, for any θ ∈ U and a.e. ω ∈ Ω, we obtain

∇θF (W ,H(θ, ω))

= 2∇θ
 (H(θ, ω))


(
∂◦

∂z
F (W , z)

∣∣∣∣
z=H(θ,ω)

)�

+ 2∇θ� (H(θ, ω))


(
j
∂◦

∂z
F (W , z)

∣∣∣∣
z=H(θ,ω)

)�

.

B. Weak Concavity of the First-Stage Objective Function

In what follows, we present three typical situations un-

der which condition (A4) of Assumption A is satisfied for

problem (2SP). To simplify the discussion, we assume that

W = {W : ‖W ‖2 ≤ P}, which is the constraint utilized in

(2SSRM), noting that this is done without loss of generality.

Cases 1 and 2 - Strong second-order sufficient optimal-

ity: The first two cases rely on the strong second-order sufficient

optimality conditions for (SSP). For any θ ∈Θ and a.e. ω ∈ Ω,

the Lagrangian associated with (SSP) reads

L(W , λ;θ, ω) = F (W ,H(θ, ω)) + λ
(
‖W ‖2 − P

)
,

where the admissible Lagrange multipliers are nonnegative, i.e.

λ≥ 0. Let any W ∗(θ, ω) ∈ argmaxW∈W F (W ,H(θ, ω)).
Then, the strong second-order sufficient optimality

conditions require strict complementarity slackness (i.e.

λ∗ > 0 if ‖W ∗(θ,H(θ, ω))‖2 = P , and λ∗ = 0 otherwise,

where λ∗ is an optimal Lagrange multiplier associated

to W ∗(θ,H(θ, ω))), as well as that ∇2
W

L(W , λ;
θ, ω)|(W ,λ)=(W ∗(θ,ω),λ∗) is nonsingular. We note that

for problem (2SSRM), strict complementarity slackness holds

without any additional assumptions.

In the first case (Case 1), we assume that the second-

stage problem (SSP) admits a unique solution for each

θ ∈Θ and a.e. ω ∈ Ω. It then follows that the mapping θ �→
maxW∈W F (W ,H(θ, ω)) is twice continuously differen-

tiable on Θ by utilizing [68, Lemma 2.2] (which, in turn, utilizes

the Implicit Function Theorem, e.g. see [67, Theorem 1B.1]).

Twice continuously differentiable functions on a compact set (in

this case Θ) are, in fact, Lipschitz smooth on that set. However,

Lipschitz smooth functions are both weakly convex and weakly

concave (see [59, Proposition 4.12]), and thus we are done.

In the second case (Case 2), instead of assuming that

the solution set of the second-stage problem is a single-

ton, we assume that H(·, ω) is real analytic (which, for ex-

ample, is true in Section V). Then, assuming that F (·, ·)
is the sumrate (as in (2SSRM)), it follows that the map-

ping θ �→maxW∈W F (W ,H(θ, ω)) is sub-analytic on an

open bounded subset Θ′ £Θ (e.g. see [77, Example 4]).

In turn, this implies (e.g. see [78, Theorem 2.3]) that the

function maxW∈W F (W ,H(θ, ω))− F (W ,H(θ, ω)) satis-

fies the Łojasiewicz inequality with uniform exponent, i.e. for

a.e. ω ∈ Ω and for each θ ∈Θ′, there exists η > 0 and a subana-

lytic function C(θ)> 0, such that for every (θ,W ) ∈Θ′ ×W ,

we have

dist

(
W , arg max

W∈W
F (W ,H(θ, ω))

)

≤ C(θ)

(
max
W∈W

F (W ,H(θ, ω))− F (W ,H(θ, ω))

)η

.

(11)

In what follows we make the reasonable assumption that C(θ)
is uniformly bounded on Θ′.

Lemma 8: Let Θ′′ £Θ′ £Θ, be a compact set, with Θ′

some open set. Given conditions (A1)–(A3) of Assumption

A, the multifunction θ �→ argmaxW∈W F (W ,H(θ, ω)) is

nonempty and compact-valued on Θ′′, for a.e. ω ∈ Ω.

Proof: We have that F (·, ·) is jointly (real) continu-

ously differentiable, and that for any θ ∈Θ′′ and a.e. ω ∈
Ω, argmaxW∈W F (W ,H(θ, ω)) is non-empty. Additionally,

both Θ′′ and W are assumed to be compact, and H(·, ω)
is continuously differentiable and thus has compact range. In

turn, we obtain that F (·, H(·, ω)) also has compact range on

Θ′′ ×W and is jointly continuous. We complete the proof by

applying Berge’s maximum theorem (see [79]).

Lemma 9: Let conditions (A1)–(A3) of Assumption A hold,

along with the aforementioned conditions of Case 2. Then, for

any θ ∈Θ and a.e. ω ∈ Ω, and each selection

W ∗(θ, ω) ∈ arg max
W∈W

F (W ,H(θ, ω)),

there exists a sequence of selections
{
W̃

∗
(θ + zk, ω)

}∞

k=0
,

where W̃
∗
(θ + zk, ω) ∈ argmaxW∈W F (W ,H(θ + zk,

ω)), for some sequence θ + {zk}
∞
k=0 ¢Θ′, such that

lim
‖zk‖→0

W̃
∗
(θ + zk, ω) =W ∗(θ, ω).
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Proof: We fix some (θ, ω) ∈Θ× Ω and a bounded open

setΘ′ £Θ. From our assumptions, there must exist two positive

constants C, η, such that for every (W ,θ + z) ∈W ×Θ′, (11)

holds with C(θ) = C. From Lemma 8 (in particular, from the

closed-valuedness of argmaxW∈W F (W ,H(θ, ω)) on the

compact set Θ′′ £Θ′), for every W ∈W and any z such that

θ + z ∈Θ′, there exists a selection W̃
∗
(θ + z, ω) such that

∥∥∥W̃
∗
(θ + z, ω)−W

∥∥∥

= dist

(
W , arg max

W∈W
F (W ,H(θ + z, ω))

)
.

Continuity of maxW∈W F (W ,H(·, ω))− F (W ,H(·, ω))
then yields the desired result, since we can consider a sequence

θ + {zk}
∞
k=0 ¢Θ′ such that ‖zk‖→ 0.

Lemma 10: Let conditions (A1)–(A3) of Assumption A hold,

along with the aforementioned conditions of Case 2. For a.e.

ω ∈ Ω, the function maxW∈W F (W ,H(·, ω)) is Fréchet dif-

ferentiable on Θ with

∇θ max
W∈W

F (W ,H(θ, ω)) = F (W ∗(θ, ω),H(θ, ω)), θ ∈Θ,

where W ∗(·, ω) ∈ argmaxW∈W F (W ,H(·, ω)) is an arbi-

trary selection on Θ.

Proof: Fix some (θ, ω) ∈Θ× Ω and some W ∗(θ, ω) ∈
argmaxW∈W F (W ,H(θ, ω)). Firstly, we note that the func-

tion maxW∈W F (W ,H(θ, ω)) is well-defined and finite on

an open set Θ′ £Θ. Additionally, we have that F (·,H(θ, ω))
is real-analytic on W for any θ ∈Θ′, and F (W ,H(·, ω)) is

continuously differentiable on Θ′. By definition, we obtain that

max
W∈W

F (W ,H(θ + z, ω))− max
W∈W

F (W ,H(θ, ω))

≤ F
(
W̃

∗
(θ + z, ω),H(θ + z, ω)

)

− F
(
W̃

∗
(θ + z, ω),H(θ, ω)

)
,

for all z such that θ + z ∈Θ′, where W̃
∗
(θ + z, ω) can be

chosen as in Lemma 9. Furthermore, we observe that

max
W∈W

F (W ,H(θ + z, ω))− max
W∈W

F (W ,H(θ, ω))

≥ F (W ∗(θ, ω),H(θ + z, ω))− F (W ∗(θ, ω),H(θ, ω)).

In other words, we have

F (W ∗(θ, ω),H(θ + z, ω))− F (W ∗(θ, ω),H(θ, ω))

≤ max
W∈W

F (W ,H(θ + z, ω))− max
W∈W

F (W ,H(θ, ω))

≤ F
(
W̃

∗
(θ + z, ω),H(θ + z, ω)

)

− F
(
W̃

∗
(θ + z, ω),H(θ, ω)

)

Since F (W ,H(·, ω)) is differentiable on Θ′, for any W ∈
W , we may use the mean value theorem to show that for every

z with θ + z ∈Θ′, there exists c≡ c(θ + z,W , ω) ∈ (0, 1)
such that

F
(
W̃

∗
(θ + z, ω),H(θ + z, ω)

)

− F
(
W̃

∗
(θ + z, ω),H(θ, ω)

)

= 〈∇θF (W ,H(θ + cz, ω)) , z〉
∣∣
W=W̃

∗

(θ+z,ω)
.

Given the previous inequalities, the latter yields

F (W ∗(θ, ω),H(θ + z, ω))− F (W ∗(θ, ω),H(θ, ω))

− 〈∇θF (W ,H(θ, ω)) , z〉
∣∣
W=W ∗(θ,ω)

≤ F
(
W̃

∗
(θ + z, ω),H(θ + z, ω)

)

− F
(
W̃

∗
(θ + z, ω),H(θ, ω)

)

− 〈∇θF (W ,H(θ, ω)) , z〉
∣∣
W=W ∗(θ,ω)

≤

∥∥∥∥∇θF (W ,H(θ, ω))
∣∣
W=W ∗(θ,ω)

−∇θF (W ,H(θ + cz, ω))
∣∣
W=W̃

∗

(θ+z,ω)

∥∥∥∥‖z‖.

Utilizing again the mean value theorem, we also have that there

exists c′ ≡ c′(θ + z,W , ω) ∈ (0, 1) such that

F (W ∗(θ, ω),H(θ + z, ω))− F (W ∗(θ, ω),H(θ, ω))

= 〈∇θF (W ,H(θ + c′z, ω)) , z〉
∣∣
W=W ∗(θ,ω)

.

As before, this implies that

F (W ∗(θ, ω),H(θ + z, ω))− F (W ∗(θ, ω),H(θ, ω))

− 〈∇θF (W ,H(θ, ω)) , z〉
∣∣
W=W ∗(θ,ω)

≥−

∥∥∥∥∇θF (W ,H(θ + c′z, ω))
∣∣
W=W ∗(θ,ω)

−∇θF (W ,H(θ, ω))
∣∣
W=W ∗(θ,ω)

∥∥∥∥‖z‖.

Combining the previous inequalities with Lemma 9, yields

lim
‖z‖→0

1

‖z‖

(
F (W ∗(θ, ω),H(θ + z, ω))

− F (W ∗(θ, ω),H(θ, ω))

− 〈∇θF (W ,H(θ, ω)) , z〉
∣∣
W=W ∗(θ,ω)

)
= 0,

which implies that maxW∈W F (W ,H(·, ω)) is (Fréchet)

differentiable at θ ∈Θ, for a.e. ω ∈ Ω, and its gradient

reads as

∇θ max
W∈W

F (W ,H(θ, ω)) =∇θF (W ,H(θ, ω))
∣∣
W=W ∗(θ,ω)

for any W ∗(θ, ω) ∈ argmaxW∈W F (W ,H(θ, ω)).
Theorem 11: Let conditions (A1)–(A3) of Assumption A

hold, along with the aforementioned conditions of Case 2. For

a.e. ω ∈ Ω, the function maxW∈W F (W ,H(·, ω)) is Lipschitz

smooth and thus weakly concave.

Proof: Under our assumptions, we know from Lemma 10

that the function maxW∈W F (W ,H(θ, ω)) is Frechét differ-

entiable on Θ and its gradient reads as

∇θ max
W∈W

F (W ,H(θ, ω)) = F (W ∗(θ, ω),H(θ, ω)),

for any W ∗(θ, ω) ∈ argmaxW∈W F (W ,H(θ, ω)). At the

same time, from the strong second-order sufficient conditions,

we can apply the Implicit Function Theorem (as in [68, Lemma

2.1]; see also [67, Theorem 1B.1]) to the Lagrangian of the

second-stage problem, which implies that for every θ◦ ∈Θ,

and any arbitrary selection W ∗(θ◦, ω) ∈ argmaxW∈W
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F (W ,H(θ◦, ω)), there exists a neighbourhood Θ◦ � θ◦, on

which there exists a unique continuously differentiable mapping

W ∗
◦(·, ω) : θ �→ argmaxW∈W F (W ,H(θ, ω)), such that

W ∗
◦(θ◦, ω) =W ∗(θ◦, ω). Let us fix this neighbourhood

Θ◦, and consider two arbitrary points θ1,θ2 ∈ Θ̃◦ ¢Θ◦

(assuming that Θ̃◦ is a compact set), along with some arbitrary

selections W ∗
1 �W ∗(θ1, ω), W ∗

2 �W ∗(θ2, ω). Then,

letting W ∗
◦,i �W ∗

◦(θi, ω), for i= 1, 2, we have

‖∇θF (W ∗
1,H(θ1, ω))−∇θF (W ∗

2,H(θ2, ω))‖

=
∥∥∇θF (W ∗

◦,1,H(θ1, ω))−∇θF (W ∗
◦,2,H(θ2, ω))

∥∥

=

∥∥∥∥∇θF (W ∗
◦,1,H(θ1, ω))−∇θF (W ∗

◦,1,H(θ2, ω))

+∇θF (W ∗
◦,1,H(θ2, ω))−∇θF (W ∗

◦,2,H(θ2, ω))

∥∥∥∥
≤
∥∥∇θF (W ∗

◦,1,H(θ1, ω))−∇θF (W ∗
◦,1,H(θ2, ω))

∥∥
+
∥∥∇θF (W ∗

◦,1,H(θ2, ω))−∇θF (W ∗
◦,2,H(θ2, ω))

∥∥,
where we used the fact that ∇θ maxW∈W F (W ,H(θ, ω))
has the same value independently of the optimum selec-

tion, while W ∗
◦(θi, ω) ∈ argmaxW∈W F (W ,H(θi, ω)), for

i= 1, 2. However, Lipschitz smoothness of the function

F (W ,H(·, ω)) implies that there exists some constant L1 > 0
such that∥∥∇θF (W ∗

◦,1,H(θ1, ω))−∇θF (W ∗
◦,1,H(θ2, ω))

∥∥
≤ L1‖θ1 − θ2‖.

Then, we observe that∥∥∇θF (W ∗
◦,1,H(θ2, ω))−∇θF (W ∗

◦,2,H(θ2, ω))
∥∥

≤ L2‖W
∗
◦(θ1, ω)−W ∗

◦(θ2, ω)‖ ≤ L2L3(Θ̃◦)‖θ1 − θ2‖,

where we used the L2-Lipschitz smoothness of F (·,H(θ, ω)),
and the fact that W ∗

◦(·, ω) is continuously differentiable on

the compact set Θ̃◦, and thus L3(Θ̃◦)-Lipschitz continuous.

In other words, the function maxW∈W F (W ,H(W , ω)) is

locally Lipschitz smooth. However, since Θ is compact, this is

equivalent to saying that it is globally Lipschitz smooth, which

implies that it is both weakly convex and weakly concave (see

[59, Proposition 4.12]). This completes the proof.

Case 3 - Lack of Hessian Invertibility: Finally, we should

mention that if the solution set of the second-stage problem

(SSP) is not a singleton, while it also does not satisfy the strong

second-order sufficient optimality conditions utilized in Case

2, one can still show that condition (A4) of Assumption A

holds, by utilizing the analysis of [68, Section 4]. Indeed, un-

der some regularity conditions, coupled with an assumption of

connectedness of the solution set of the second-stage problem,

it follows that the function maxW∈W F (W ,Θ(·, ω)) is twice

continuously differentiable on Θ, and thus weakly concave. The

details are omitted, but the reader is referred to [68, Section 4]

for a detailed analysis of a simplified case.
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