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Model-Free Learning of Two-Stage Beamformers
for Passive IRS-Aided Network Design
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Abstract—Electronically tunable metasurfaces, or Intelligent
Reflecting Surfaces (IRSs), are a popular technology for achieving
high spectral efficiency in modern wireless systems by shaping
channels using a multitude of tunable passive reflecting ele-
ments. Capitalizing on key practical limitations of IRS-aided
beamforming pertaining to system modeling and channel sens-
ing/estimation, we propose a novel, fully data-driven Zeroth-
order Stochastic Gradient Ascent (ZoSGA) algorithm for general
two-stage (i.e., short/long-term), fully-passive IRS-aided stochas-
tic utility maximization. ZoSGA learns long-term optimal IRS
beamformers jointly with short-term optimal precoders (e.g.,
WMMSE-based) via minimal zeroth-order reinforcement and
in a strictly model-free fashion, relying solely on the effective
compound channels observed at the terminals, while being
independent of channel models or network/IRS configurations.
Another remarkable feature of ZoSGA is being amenable to
analysis, enabling us to establish a state-of-the-art (SOTA)
convergence rate of the order of O(v/Se *) under minimal
assumptions, where S is the total number of IRS elements,
and € is a desired suboptimality target. Our numerical results
on a standard MISO downlink IRS-aided sumrate maximiza-
tion setting establish SOTA empirical behavior of ZoSGA as
well, consistently and substantially outperforming standard fully
model-based baselines. Lastly, we demonstrate that ZoSGA
can in fact operate in the field, by directly optimizing the
capacitances of a varactor-based electromagnetic IRS model
(unknown to ZoSGA) on a multiple user/IRS, link-dense net-
work setting, with essentially no computational overheads or
performance degradation.

Index Terms—6G, intelligent reflecting surfaces (IRS/RIS),
two-stage stochastic programming, zeroth-order optimiza-
tion, model-free learning, sumrate maximization, equivalent
circuit model.

1. INTRODUCTION

HE radical growth in the number of mobile and numerous
other wireless devices, in particular those with commu-
nication modalities requiring high bandwidth and low latency
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connectivity such as virtual and augmented reality, tactile inter-
net, internet of things, industrial automation, etc., have pushed
existing wireless communication systems to their performance
limits. The forthcoming era requires seamless wireless connec-
tivity, necessitating proactive research beyond 5G communica-
tions [2], [3], [4], [S].

Recently, 5G-enabling technologies such as mmWave com-
munication, massive multi-input multi-output (MIMO) and
dense networks have been vigorously investigated [6], [7], [8],
[9]. Still, deployment of both massive MIMO and dense net-
works incurs high installation/maintenance costs and energy
consumption, while mmWaves exhibit physical limitations such
as susceptibility to blockages and high propagation losses. To
compensate for such propagation losses, which are a character-
istic of higher carrier frequencies, densely packed and highly
directional mmWave antennas have been proposed [10], [11].
High directionality, combined with reduced scattering, attenu-
ates mmWave signals in the non-line-of-sight (non-LOS) paths,
thus blocking the signals. The reason lies in the physics of
signal propagation: mmWaves exhibit a more prismatic prop-
agation, i.e., they diffract less than microwave signals around
obstacles [12].

Conventional beamforming, which is an established tech-
nique for improving Quality-of-Service (QoS) in wireless com-
munications, cannot fully compensate for such non-LOS losses.
One brute force solution would be to deploy ultra dense net-
works, i.e., networks with a large number of small cells, with
service ranges of tens to hundreds of meters, allowing higher
frequency reuse rates [13], [14]. With such low ranges, however,
ultra-dense network deployment does not demonstrate economy
of scale. Indeed, the consumption of energy increases sharply
with the number of base stations. Additionally, such dense de-
ployments would also exhibit acute signal interference patterns.

While the aforementioned approaches aim to improve QoS,
they may fail to simultaneously satisfy the data-rate, bandwidth,
latency, spectral and energy efficiency requirements of 5G-and-
beyond technologies. This has necessitated efforts to develop
innovative technologies that could meet such requirements, ide-
ally without requiring extra energy and/or deployment or com-
putational costs. An emerging technology for scalably reducing
non-LOS losses while circumventing several limitations related
to underlying propagation environments is that of Intelligent
Reflecting Surfaces (IRSs, or RISs). An IRS is a metasurface
comprised of a planar array of passive reflecting elements with
tunable parameters, such as phase-shifts and/or amplitude gains

1053-587X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Yale University. Downloaded on July 29,2024 at 17:15:30 UTC from IEEE Xplore. Restrictions apply.



HASHMI et al.: MODEL-FREE LEARNING OF TWO-STAGE BEAMFORMERS FOR PASSIVE IRS-AIDED NETWORK DESIGN 653

Fig. 1.

Concept of an IRS-aided wireless network.

of incident signals [15], [16], [17], [18], [19], [20], [21]. A
concept network in which users (or terminals) are linked with an
Access Point (AP) and enjoy improved QoS from the utilization
of IRSs is shown in Fig. 1.

In IRS-aided communications, the goal is to optimally tune
the IRS elements along with other resources (such as AP
precoders), so as to optimize a certain system utility. A stan-
dard setup is that of a weighted sumrate utility in a multi-
user multiple-input single-output (MISO) downlink scenario,
as depicted in Fig. 1, where the goal is to maximize the total
downlink rate of a number of users/terminals actively serviced
by an AP, while passively aided by one or multiple IRSs [22],
[23], [24], [25]. For this standard setting, a core objective is to
jointly optimize the IRS parameters and AP precoders under
certain power constraints, noting that AP precoders are usually
continuous-valued, while IRS phase-shifts can be either quan-
tized [17], or continuously varying [18], [19], [20], [21].

Prior Art on IRS Optimization: Optimizing IRS parameters
is a challenging task, particularly due to three major bottle-
necks. First, a sufficiently accurate channel model will most
certainly be unknown, and even if known, it depends heavily
on network structure and the surrounding environment. Second,
by realistically assuming that IRSs are passive components of a
wireless network, it might not be possible to continuously and
reliably estimate the channel-state-information (CSI) of all the
intermediate channels, e.g., from APs to IRSs, and from IRSs
to users/terminals [26], [27]. While some recent works [28],
[29] have investigated methods for cascaded channel estima-
tion with passive IRSs, they typically rely on specific a priori
known channel models. It is thus clear that IRS optimization
benefits from being free from the need of knowing such detailed
CSI. Third, any reasonable IRS phase-shift tuning approach —
which should only require effective CSI (i.e., the conventional
compound channels observed at the end terminals)—, should
target as infrequent IRS parameter updates as possible, at least
in long-term operation mode. This is in contrast with earlier
approaches that consider fully reactive IRS infrastructure de-
manding resource-wasteful, perpetual IRS control [30], [31].
Addressing these challenges constitutes an active area of re-
search. In fact, one or more of these bottlenecks are persistent
in most available strategies for IRS optimization in wireless
networks (e.g., [27], [32]).

Recently, model-based methods relying on some flavor of
stochastic successive convex optimization (SSCO) [33], [34],
[35] for weighted sumrate optimization have gained substan-
tial traction. These methods operate over two time-scale cus-
tomized protocols, where reactive precoding vectors at the
AP(s) are optimized on a shorter time-scale and non-reactive
(static, “long-term”) IRS beamformers are optimized on a
longer time-scale [22], Section II-C], [23], [24], [25]. Apart
from relying on SSCO, which operates on convex surrogates
of the original problem, these model-based approaches require
complete knowledge of the network structure and the channel
model, along with accurate intermediate CSI (statistic) esti-
mation [36], [37], [38], [39]. Such estimates are difficult to
obtain because, as an ultimately passive device, an IRS cannot
(or should not) transmit and receive pilot signals [26]. Con-
sequently, these methods must rely on active sensing at the
IRSs, demanding expensive and wasteful IRS implementations.
Lastly, any change in the network or channel model incurs a
high environment remodeling cost, while the modeling com-
plexity increases dramatically with an increase in the number of
intermediate channels.

To avoid such limitations, researchers have explored machine
learning (ML) methods to optimize IRS-aided networks. As a
parallel to channel estimation by hand, offline ML methods
have been explored to approximate true CSI models from la-
belled datasets using function approximators (FAs) [40], [41],
[42], [43]. These offline approaches are brittle in that the
learned models are unable to adapt to slight changes in the
network/channel behavior, induced either by movement of the
users/terminals, or due to potential environmental factors. Deep
Reinforcement Learning (DRL) methods, on the other hand,
are adaptive policy learning methods which have been used
for joint beamforming optimization. In particular, deep Q-
learning based methods have been explored, assuming quan-
tized IRS phase-shifts [44], [45], [46]. For continuous phase-
shifts, off-policy policy gradient methods have also been ex-
plored [47], [48], [49], [50], primarily based on the deep deter-
ministic policy gradient (DDPG) algorithm [51]. DRL meth-
ods are designed to be end-to-end. As such, all intermediate
steps such as CSI estimation, channel modeling and beam-
forming optimization can be offloaded to the FAs, the latter
approximating state value functions to jointly model the entire
optimization task.

Nonetheless, without expert domain knowledge, defining
those FAs —e.g., deep neural networks (DNNs)- often increases
the problem complexity; most frequently, FAs are considered as
black-box data-driven models, resulting in non-interpretability
and lack of robustness. On the other hand, explicit utilization
of domain knowledge within the context of FAs often results
in overfitting, thus limiting the versatility and transferability of
DRL models to distinct environments. Further, such learning-
based methods incur increased power/resource consumption
as they primarily consider reactive IRS operation, where each
model output (phase-shift element values) directly depends
on the observed CSI, hence resulting in perpetual IRS con-
trol. Combinations of the mixed-timescale iterative approach
with ML via deep unfolding models [52] also suffer from
similar limitations.
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Contributions: We develop a Zeroth-order Stochastic Gra-
dient Ascent (ZoSGA) algorithm for tackling fully passive
IRS-assisted utility maximization in a wireless communication
setting. We consider two-stage stochastic programming formu-
lations of the problem, in which the first-stage problem consists
of an on-average (long-term) optimization of IRS-parameters,
while the second-stage problem seeks for optimal instantaneous
(short-term) beamformers (e.g., of an AP) associated with a
given network instance (occurring every time new —random-—
CSI is revealed). ZoSGA tacitly exploits WMMSE [53] as a
standard method for solving the (deterministic) second-stage
problems, while remaining agnostic to the channel dynamics
or network topology, thus operating in a completely model-free
manner. The algorithm relies on minimal system probing and
terminal-end effective CSI, both conventionally available (even
approximately) regardless of the number or spatial configura-
tion of the IRSs, in sharp contrast to model-based approaches
[22], [23], [24], [25].

ZoSGA does not rely on function approximations (unlike
DRL methods [44], [45], [46], [47], [48], [49], [50]), and can
be run in real-time since, at each time step, it only requires
to probe the network twice (to obtain a sample zeroth-order
gradient), greatly improving upon SSCO-based methods, such
as TTS-SSCO [23], which utilize internal (model-based) sam-
pling for approximating stochastic gradients, and —prone to
error— strongly convex surrogate utilities (despite the inherent
nonconvexity of the associated optimization problem). Assum-
ing continuous-valued IRS phase-shifts (which are feasible in
practice [18], [19], [20], [21]), ZoSGA treats IRSs as fully
passive tunable network elements (without sensing capabilities,
extra hardware, or special scheduling requirements), and can
be readily applied to a wide range of different wireless net-
work settings. Being model-free, ZoSGA avoids the inherently
nonconvex unit modulus constraints associated with the IRS
phase-shift elements, by utilizing the (unknown) polar represen-
tation of the effective channels. This has far reaching benefits,
as we shall see in Section V-C, where we simulate physical
IRS models.

After discussing the problem of interest, providing our as-
sumptions and some preliminary technical results (Section II),
we develop and analyze ZoSGA (Section III) under a set of
general assumptions (and regularity conditions), and we estab-
lish a state-of-the-art (SOTA) convergence rate of the order
of O (\/§ e~*), where S is the total number of IRS tunable
parameters and € is a desirable sub-optimality target. We note
that our theoretical analysis is novel and involves a minimal set
of assumptions, covering a wide range of realistic settings and
shedding light into the practical behavior of ZoSGA, fully char-
acterizing its convergence. Unlike most alternative approaches,
we do not consider convex approximations of the associated
two-stage stochastic problem, and deal with the inherent non-
convexity of the problem by utilizing key results from optimiza-
tion theory. At the same time, we bypass (without utilizing any
approximation) the nonconvexity associated with unit modulus
constraints, obtaining a model-free method operating in a stan-
dard Euclidean setting.
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Specializing to the case of sumrate maximization on a MISO
downlink scenario (Section IV), we show that most of the
technical assumptions imposed by the theory are automatically
satisfied, except for some mild regularity conditions on the
channel which cannot be avoided. We then numerically demon-
strate (Section V) that ZoSGA exhibits SOTA performance in a
wide-range of scenarios, substantially outperforming the two-
time scale method recently proposed in [23], which is a stan-
dard model-based SSCO-type SOTA baseline for the problem
under consideration. Despite the latter method assuming full
knowledge of channel models and spatial network configura-
tions, the model-agnostic ZoSGA reliably learns near-optimal
solutions yielding significantly better QoS. Importantly, we also
demonstrate the applicability of ZoSGA in a realistic physical
IRS setting, in which the algorithm has only indirect access
to the amplitudes and phases of the IRS elements, by tuning
the capacitances of certain varactor diodes controlling each
IRS element; such IRS tuning in the field is a particularly
unique feature of ZoSGA, not enjoyed by any other IRS tuning
approach in the literature. Fully reproducible source code of
simulation results can be found here.

Notation: Let || - || denote the induced norm of an asso-
ciated inner-product space, defined as ||x|| := \/(x, ) for any
x € F", where F is a field (assuming that F =R or F = C). In
case of a complex vector we use the Hermitian inner product. In
case of a matrix we assume that the induced norm is utilized. We
assume a complete base probability space (Z, %, P), and use
“a.e.” to denote “almost every(where)”. For p € [1, 00), we use
Z,=L,y(2, 7, P;R) to denote the space of all .7 -measurable
functions ¢ : 2 — R, such that [_[¢[’dP < co. Given f: R" —
R and p > 0, we say that f is p-weakly convex (resp. p-weakly
concave) if f(-) + 5 - ||* (resp. —f(-) + &| - ||*) is convex.

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS
A. Problem Formulation

In an IRS-aided network, the effective channels observed at
the terminals of the communication task are treated as functions
of both the intermediate channels as well the phase-shift vectors
of the IRSs. Thus, we may think of the IRSs as network-defining
parameters. Indeed, each instance of their phase-shift elements
produces a different wireless network altogether. Taking this
into account, the objective here is to find an optimal instance of
such a wireless network which maximizes a given terminal QoS
utility, in accordance with all the underlying physical dynamics.

Traditionally, we only optimize the precoding vectors (e.g., at
an AP) to maximize a given QoS metric function, and these pre-
coding vectors are optimized for a particular wireless network
instance. However, in an IRS-aided wireless network, tuning the
IRSs essentially changes the network structure and we have to
re-optimize the precoders, responding to this new network.

We assume dynamic (i.e. reactive) precoders W, while (re-
alistically) viewing the IRSs as static (i.e. non-reactive during
operation) elements with tunable parameters € (such as in [22],
[23], [24], [25]), which encode any propagation feature of the
IRSs that is learnable. For example, 8 can represent amplitudes
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and/or phases, or any other tunable element of an IRS (e.g.,
physical varactor tunable capacitances, see [18], [19]).

Under this setting, beamforming optimization can
be formulated as a stochastic — two-stage  problem.
The first-stage problem seeks for an optimal (say in

expectation) wireless network by tuning the (static) IRSs’
parameters 6 assuming optimal instantaneous precoders
on random effective channels. The second-stage problem
seeks those optimal precoders W given a (possibly
optimal) network instance set by already fixing the IRSs.

We hereafter assume that the IRSs and the precoders max-
imize the same QoS utility function. This is an intuitive and
standard choice in practical applications, which enables the
development of very efficient solution methods. Formally, we
are interested in two-stage problems of the form

maX]E{ max F (W, H(O,w))} , (2SP)

0cO wew

where W is a (known) compact set of feasible dynamic beam-
formers W,and © C RS, isa (known) convex and compact set
of feasible IRS parameter values, where S denotes the number
of real-valued parameters of the complex-valued phase-shift
elements (e.g., amplitudes and phases). The utility function
F: CMv x CMv R is a (known) function of the precod-
ing vectors W as well as the (unknown) observed effective
channels H : RS x Q — CMv | which in turn are functions of
both the IRS parameters and any intermediate random channels
(a “state of nature”), denoted as w: = — ) (the statistics of
which are unknown). The random vector w represents anything
that is unknown about the underlying communication system,
such as propagation or (compound) interference patterns, in-
ternal channel states, or in general the underlying intermedi-
ate communication channels. The (observed) effective channels
H (-,w) are assumed to have unknown dynamics, and we are
only allowed to evaluate them at specific IRS parameter in-
stances 0 € O.

As we discuss in Section II-C, the resulting stochastic bilevel
program assumes a common function for the inner- and outer-
level programs, allowing for first-order optimization, without
the need of computing any second-order information (e.g. as
in [54]).

B. Assumptions

In what follows, we provide certain regularity assumptions
on (2SP) and subsequently prove certain core technical results,
allowing us to derive the proposed optimization scheme.

Second-stage problem: Given some realization w € (), and
some 6 € O, the second-stage problem reads

{G(W, 0,0)2 F (W, H(G,w))} .

max

wew (SSP)

Notice that (SSP) is deterministic, since we are required to solve
this after the state of nature w has been revealed.

First-stage problem: The first-stage problem, which is equiv-
alently given in (2SP), can be provisionally written as

max {/(60) 2E{F (W (0,0), H(0,©)}}  (FSP)

for some W*(0,w) € argmaxwew F (W, H(0,w)).
In what follows, we enforce certain regularity conditions
on (2SP).

Assumption A: The following conditions are in effect:

(A1) The function F': CMv x CMv — R is twice continu-
ously (real) differentiable;

The sets ©® and WV are compact, and O is also convex;
The function H (-,w) is By-uniformly bounded on ©
and twice continuously differentiable on an open set
U D O, for a.e. w € ). Moreover, there exist numbers
L0, Ly 1,suchthat H (-, w)is Ly o-Lipschitz contin-
uous with L g ; -Lipschitz gradients on © fora.e.w € ;
There exists a positive function p(-) € Z1, such that
maxwew F(W, H(-,w)) is p(w)-weakly concave
on O;

F(W*(0,-),H(0,-)) € Z5 is bounded below for
all @ € © and any W (0,w) € argmaxwew F(W,
H(0,w)), and we can draw independent and identi-
cally distributed (i.i.d.) samples from the law of w.

Remark 1: Let us observe that Assumption A is very mild,
and is informed by our application, i.e. two-stage beamforming
for passive IRS-aided network design. Conditions (A1)—(A2)
are standard and are most often met in practical settings involv-
ing IRS-aided wireless communication systems. In particular,
twice-continuous (real) differentiability of F'(-,-) is standard
and subsumes several utility functions of interest (three popular
examples are the weighted sumrate utility, the proportional
fairness utility, or the harmonic-rate utility; see [55]). Note that
real differentiability refers to differentiability of the real and
imaginary parts of F' (see [56, Section 3.2]). Furthermore, as al-
ready noted, by utilizing the polar form of the function H (-, w)
(which we do in this work), © (typically) represents a set of
phases and amplitudes which can be chosen to be real, compact
and convex, without loss of generality. Finally, compactness of
W is also standard, since it typically reflects constraints relating
to the available power of the wireless communication system.

Condition (A3) ensures that the compositional function of
interest is well-defined and retains its properties on an open set
containing ©, while the bound and Lipschitz random functions
associated with H (-, w) are uniformly bounded in w. The latter
condition could potentially be relaxed (e.g. assuming bounded
variance of random functions By o(w), Ly o(w), Lu1(w)),
but is imposed for brevity in exposition.

(A4) is a very general condition since weak concavity sub-
sumes a large class of functions (e.g. all Lipschitz smooth
functions or all twice continuously differentiable functions
on a compact set are weakly concave; see also [57, Sec-
tion 2] for some additional examples). In particular, it im-
plies that for ae. w €, there exists p(w) >0 such that
maxwew F(W, H(-,w)) — ”(7“’)\\ - ||? is concave on ©. Spe-
cialized, albeit technical, conditions ensuring that this holds for
the objective in (FSP) will be discussed later in Section IV.

Finally, condition (A5) ensures that f is well-defined and
bounded on ©. Notice that the same would hold under the
weaker condition F(W™(0,-), H(0,-)) € Z1, however (A5) is
utilized later in Lemma 5.

(A2)
(A3)

(Ad)

(AS)
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C. Technical Results

Since F'(W,-) takes a complex input, we need to devise
an appropriate gradient generalization for it. To that end, we
utilize the so-called Wirtinger calculus (see [56]). In the fol-
lowing lemma we derive the full compositional gradient of
F(W,H(6,w)) by following the developments in [56, Sec-
tion 4].

Lemma 1: For every 8 € ©, W € W and a.e. w € (), the
gradient of F' (W, H(0,w)) with respect to 6 reads

VOF (W,H(B,OJ)) (1)

-
= 2VeR(H(O,w)) R a—F(W,z)
0z 2=H(0,w)
T
z—H(B,w)) 7

where %() is the Wirtinger cogradient operator.
Proof: For a complete proof, see Appendix A. O
We proceed by proving that, for a.e. w € €2, the Wirtinger
cogradient of F, evaluated at some z = H (0, w) forany 6 € O,
is bounded by a positive constant, independent of w.
Lemma 2: Given Assumption A, there exists a constant Br >
0 such that, for all (8, W) € © x W, and a.e. w € Q,

]

+2VeS (H(0,w)) R (jaF(W, z)

0z

o]

0

z=H (0,w)

Proof: From (A3) we obtain that the sets H (©,w), for
w € (Q, are uniformly (in w) compact. Thus, we can find a
compact set V), such that H(O,w) C V for a.e. w € . From
(A2) we also have that YV is compact. Since F' is continuously
(real) differentiable on the compact set V x W, it follows from
the extreme value theorem applied to Wa(z)F (W, z) and to

ﬁa(z)F (W, z), respectively, with z € V, that there exists some

constant Bg such that
0
‘ OR(z)

0
[z
for a.e. we N and any (0, W) € © x W. To complete the
proof, we simply bound the Wirtinger cogradient directly by
its definition (adjusting the constant upper bound). O

Next, we note that under Assumption A, the second-stage
problem (as a function of @, for a.e. w € () is a lower-C?
function (see [58] for a precise definition). We formalize the
consequences of this fact in the following lemma.

Lemma 3: Let Assumption A hold. For a.e. w € 2, there
exists a constant p(w) >0 such that the mapping 6 +—
maxwew F(W, H(0,w)) is p(w)-weakly convex on O.

Proof: From Conditions (A1)-(A3), it follows easily that
the mapping 6 — maxy ey F(W, H(0,w)) is lower-C? (see
[58]). Then, [58, Theorem 6] yields local weak convexity of this
mapping on ©. Compactness of © then yields the result.  [J

We are now ready to show that f in (FSP) is actually con-
tinuously differentiable and weakly concave on ©.

F(W,z)|

z=H (0,w) < Br,

2=H(0,w) < B,
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Theorem 4: Let Assumption A hold. Then, for any 0 € O,
the function f is well-defined and differentiable, with

Vo (0) =E{VeF (W.H(0.9) |yy_y. (0.} @

for any W*(0,w) € argmaxwew F (W, H(0,w)). More-
over, if p(-) € Z1, where p is given in Lemma 3, then there
exists a positive constant p = max {E{p(w)}, E{p(w)}}, such
that f is p-weakly concave on ©O.

Proof: Condition (A5) ensures that f is well-defined and
finite for any @ € ©. On the other hand, by combining Con-
dition (A4) with Lemma 3, we obtain that the map 6 +—
maxw ey F(W, H(0,w)) is continuously Fréchet differen-
tiable (the proof of this fact can be found in [59, Corollary
4.9]). Since this mapping is subdifferentially regular, and its
(generalized) subdifferential is a singleton, it follows that

Vo max F (W, H(6,0))=VoF (W, H(60,%))|yy_y- (o

for any W*(0,w) € argmaxwew F (W, H(0,w)) (e.g. see
[60]). Similarly, by utilizing the integrability of p(-) and
p(+), we obtain that f is also continuously Fréchet differ-
entiable, (again invoking [59, Corollary 4.9], by noting that
f is both p-weakly convex and p-weakly concave, with p =
max {E{p(w)}, E{p(w)}}). Using [61, Theorem 7.44], the gra-
dient of f reads
Vof(8)=E {VGF (W, H(6,w)) |sz*(g,w)} )

for any W*(0,-) € argmaxwew F(W, H(6,")). 0

Remark 2: We observe that the integrability of the weak
convexity constants p(w) (given in Lemma 3) is a very mild
condition and is almost always met in practice (where one
usually has a finite collection of scenarios). As such, for the
rest of this article we make the implicit assumption that this
holds, i.e. p(-) € Z;.

D. Zeroth-Order Gradient Approximation of the Channel

Assuming the lack of availability of any first-order informa-
tion of H (-,w) for any w € €2, we will employ a zeroth-order
scheme in order to obtain a gradient estimate of Vo H (-,w),
using which we can solve (FSP) via a stochastic projected
gradient ascent scheme. The proposed method will be based
on gradient estimates arising from a two-point stochastic eval-
vation of H (-,w) (similar to, among others, [62], [63], [64]).
From (A3), we have

VoH(0,w) = VeR (H(0,w)) + jVeS (H(0,w)).

We would like to approximate each of the above parts of the
gradient using only function evaluations of H(-,w). We let
U ~ N (0, I) be a normal random vector, where I is the iden-
tity matrix of size S. Given a smoothing parameter y > 0, we
consider the following gradient estimate

VoH ,(0.0)2 i]E{(H(G—FMU, W)= H (0—pU, ) U}

=VoH/(0,w) + jVeH, (6, w), 3)
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where Vng(O,w) £ R (VeH ,(0,w)) and VgHi(O,w) =
S (VeH ,(0,w)). Let us notice that given condition (A3),
there exists an open set I/ O O such that (3) is still well-defined.
Thus, the gradient approximation is valid, even if 8 is a point
in the boundary of ©, assuming that an appropriately small y is
chosen. Observe that the smaller the value of  is, the better the
aforementioned zeroth-order approximation is. There is a trade-
off between approximation accuracy and numerical stability,
but in practice we observe that 14 can be chosen to be quite small.

The assumption that the dynamics of H (-, w) are unknown
has multiple benefits. It allows us to bypass any modelling
assumptions about the underlying communication channels,
which typically incur modelling errors. At the same time, it
enables the evaluation of H (-, w) using polar coordinates. That
is, we can (and we do) assume that the IRS parameters 6
represent any real-valued parameters determining the complex-
valued phase-shift elements of the IRSs (e.g. amplitutes and
phases). This allows us to bypass the typical nonconvex unit-
modulus constraints that arise when optimizing over complex
IRS phase-shifts.

The proposed zeroth-order gradient approximation of (1),
based on the zeroth-order approximation given in (3), reads

Vel (W, H(6,w)) (4)

8 T
R
£ 2VeH,/(6,w) <§R <6ZF(W, z)|zH(9’w)>>

o '
+ 2VGH;€(07‘U) (§R (JaZF(W’z)‘zH(O,w)>> )

where Hff(ﬁ7 w) and Hi(@, w) are defined in (3). It should be
noted here that the zeroth-order gradient approximation relies
on small perturbations in the IRS parameters 6. This implies
that ZoSGA is not applicable when optimizing IRSs with dis-
crete phases/states. We identify this limitation of ZoSGA as a
direction for future investigation.

III. ALGORITHM AND CONVERGENCE ANALYSIS

We now derive a zeroth-order projected stochastic gradient
method for the solution of (FSP). To that end, we assume
the availability of an oracle solving the deterministic problem
(SSP). The method treats the unknown function H (-,w) as
a black-box, utilizing samples of the gradient approximation
given in (3).

Assumption B: Given any 6 € © and for a.e. w € (), we have
access to an oracle yielding a (measurable) optimal solution to
(SSP), and Assumption A holds.

A. A Zeroth-Order Projected Stochastic Gradient Ascent

Let us briefly present the proposed (channel-agnostic) zeroth-
order projected stochastic gradient ascent. From condition (AS),
we have available i.i.d. samples w € €). Thus, from (4), at
every (0, W) € © x W, and for a.e. w € €, we can utilize the
following sample gradient approximation

Algorithm ZoSGA Zeroth-order Stochastic Gradient Ascent

Input: 6, € O, {nt}tZO C R+, w>0,and 7" > 0.
for t=0,1,2,...,7T) do
Sample (i.i.d.) wy € Q, Uy ~ N (0, 1).
Find W* € arg maxwew F (W, H(0;,w;)) .
Set D, (0, w;,U;) = D,,(04,w;,Up; W) as in (5).
0111 =projo (0. + m: Dy, (0,0, Uy)) .
end for
Sample t* € {0, ..., T} according to P(t* =1t) = 2;7" -
return 6, . =

D,6,w,U;W)=D,(0,w,U)

aO
A AR 9
—Au (?R <8zF(W’Z)

60
Al —F
+A, <3‘E (jaz (W, 2)
with

(ar.al)

& 2[R0, 0) U (3 (A,0.0.0)T )],
where 1 >0 is a smoothing parameter, U ~ N (0,I) and
AL0,w,U)2 H 0+ uU,w)— H (0 — uU,w). Note that
this is simply a sample from (4) and is obtained by probing
the wireless network twice with the perturbed IRS parameters
0 + pU and 0 — pU, with the induced overhead due to the
associated channel estimation effort, implicitly assumed to be
within the coherence time of the channel; note that this a stan-
dard assumption in the related literature on learning resource
policies in wireless systems; see, e.g., the seminal work [65].

At this point, it may be also worth noting that ZoSGA
requires exactly three effective channels to be estimated, per
operational iteration: one to communicate (on which the opti-
mal short-term precoders W™ are calculated), and two more
pertaining to the required function evaluations (system probes)
for constructing the sample gradient approximations outlined
above. Therefore, any conventional scheme can be employed
for channel estimation, as if no IRS is present in the system.
The proposed method is summarized in Algorithm ZoSGA.

B. Convergence Analysis

We proceed by proving the convergence of
Algorithm ZoSGA. Let us start by proving certain technical
results.

Lemma 5: Let Assumption B hold, and fix any 6 € ©. For
a.e. w € Q let W be the output of the oracle at (6,w). Then,
for any 4 > 0, and any U ~ N (0, I), the following holds

E{ID,(6,w,U; W)|*} < 4BEL3 (8% +25), (6

where U and w are assumed to be statistically independent.
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Proof: By Lemma 2, we have that for any (0, W) € © x
W and a.e. w € (), g—zF(W, z)|z:H(07w)H < Bp. Using the
Cauchy-Schwartz inequality, we obtain

E{|D,(0.0.0)*} < /;B%E{H(Au(f),w, U)UT)THQ}

1
< S BRELE{14,.(6.0. U)PIUI*|U}}

<4BRLY E{|U|*'} = 4B5 LY o(S* +29),

where in the last inequality we used Lipschitz continuity of
H (-,w) (from (A3)) while in the last equality we evaluated the
4-th moment of the y-distribution. Since F' (W, H (0, -)) € Z»
from (AS), we observe that all of the above expectations are
well-defined and finite and hence the proof is complete. O

Lemma 6: Let Assumption B hold, fix any 8 € ©, and for
a.e. w € €, let W be the output of the oracle. Then, the sample
gradient approximation given in (5) satisfies

E{D,(0.w,U;W)| = E{V4F (W,H(0,w))} £ V/(0),
IV£(0) — Vf(0)| < 2uBrLyiVMS.
Proof: Firstly, by utilizing Fubini’s theorem we obtain that
E{D,(6,0,U:W)] =E {VLF (W,H(0,w))},

where the first expectation is taken with respect to the product
measure of the two random variables w and U. Furthermore,

”ng (WaH(avw)) - VGF (W,H(O,w))H

(€R+jsl))H

80

285 [l + je'

z=H (0,w)

IN

where eR 2 VR (H(0,w)) — VQHS‘(O, w) and
e! £ VS (H(0,w)) — VoH,(6,w), and we used Lemma 2.
Next, we observe (from equivalence of norms) that

&” < VM max || (VoR (H(6,w)) — VoHE(8,w))
S %LH,l Vv MS7

where, given a matrix A, (A); denotes the i-th column vector,
and the last bound follows as in the proof of [66, Theorem 1].
The same procedure can be repeated for bounding ||je’|| and
hence a simple application of the triangle inequality and sub-
sequently Jensen’s inequality yield the desired result. O

The Moreau envelope: Let us write the objective function of
(FSP) as ¢(0) = — f(0) + do(8), where do (8) is the indicator
function for the convex set ©. Given some penalty parameter
A > 0, we define the proximity operator as

%

1
prox, ,(u) £ arg min {qs(e) S on?} |
9cRS 2A

and the corresponding Moreau envelope as
1
A A 2
= m 0 -0 .
0 w) 2 guin {006) + 55— 012}

Itis well-known that the Moreau envelope with parameter A > p
(the weak convexity constant) is smooth even if ¢(+) is not, and
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the magnitude of its gradient can be used as a near-stationarity
measure of the non-smooth problem of interest. Indeed, if a
point @ is e-stationary for the Moreau envelope, then it is close
to an near-stationary point of (2SP). This (standard) approach
is adopted in this work, following [57], [64], among others.

Theorem 7: Let Assumption B be in effect and assume that
{60, L, T > 0, is generated by ZoSGA, where ;- is the point
that the algorithm returns. For any p > p, it holds that

E{“V¢l/ﬂ(9t*) ‘2} (7

p <¢1/P($0) —min¢(z) + Cop Zf:o 77? i Clﬁﬂ)
T

pP—p Zt:O Nt

where, letting Ag be the diameter of O,

C1 £20eBpLy1VMS, Cy22B3Li (S +25).

<

Moreover, if we set p = 2p, and

Ay
==t forallt>0,
"=\ 2Cop(T + 1) =

for some Ay > ¢!/(2P)(0,) — min ¢(0), then it holds that

2 ArpC

1/(2p) N < P2
IE{Hng (6, )H }_8( 2(T+1)+Clpu>. (8)
Proof: For any t>0, we have @f(@t) =

E[t] {D#(G,w, U)}, where E[t]{} = E{.JUt_l’ Wt—145---,
Uy, wo} (see Lemma 6). We define the point §; = pr0x¢/p(9t).
Then, we obtain

Eiy {¢1/ﬁ(9t+1)} <Ey {f(ét) + g”é’t - 9t+1||2}
=(0:) + gEm{Hpmje(ét)

— projg (8, + 1 Dyu(04, w0, Uy)) ||2}
< 6(00) + g]EM {Het + D, (01,00, Uy) — @)tHz}
<0(8) + )00 - o

+ pmEpy {<ét — 0;,~D,,(0;,w:, Ut)>} + Con?
= 6(00) + £ 100 00" + pne (B — 01, ~V 1 0) )
+ o (81— 0.,V £(8:) = V(6)) + Cap?
< 61/7(6:) + i (8: — 61, ~V £(6) )
6.~ 01| ||V£(6) ~ V£(6)|| + Copr;

+ P
] R 2
< ¢V7(8,) + pn; <f(9t) — £(60) + % H”t - OfH >

+ C1pune + Capny,

where in the second inequality we used the non-expansiveness
of the projection, in the fourth inequality we used Cauchy-
Schwartz as well as the definition of the Moreau envelope, and
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in the fifth inequality we used the weak convexity of —f(+),
Lemma 6 and the fact that © is assumed to be compact (and
hence there exists a constant Ag > 0 such that ||ét — 0, <
Apg). Next, by following exactly the developments in [57, Sec-
tion 3.1], we notice that the mapping 6 — —f(0) + §||0 -
0;||? is strongly convex with parameter 5 — p, and is minimized
at 9t, thus we obtain

160 - 500 - loe - o> = (~si60 + 5 o~ 61])
_<—f(ét)+g‘9t—ét 2>+p;p Bt—ét ’
~ 112 0 — _ 2
> (5 =) 0.0, =" oo

where the last equivalence follows from [57, Lemma 2.2].
Hence,

_ _ n — _ 2
Epy {¢1/p(9t+1)} <¢'/7(6,) - m(pp_p) HV¢1/’7(9t)H
+ C1puns + Capn; -

Taking expectations with respect to the history wgy, Uy,
.., wi—1, Us—1 and using the total expectation, yields

E{6"7(0:1)} <E{6/7(00)} + pm(uCy + Camy)
_ WE{HV¢1/’)(9t)H2} 7

Subsequently, we can unfold the latter inequality to obtain

T T
E {¢1/ﬁ(9T+1)} < p7(0) + C’1ﬁ/tZTlt + Ozﬁan

t=0 t=0
~ T 5
S o}
t=0

Then, we can lower bound the left-hand side by ¢(8*)=
mingeo f(0), and rearrange, to obtain

limE{HW”WOHQ}

ZtT:O M t—o
p <¢1/p<90) — $(6") + Cop 1y 12
ZZ:O Tt

Since the left-hand side is exactly E{||V¢'/7(0,.)|?}, we
deduce that (7) holds. Finally, setting p = 2p, letting Ay >
$'/7(80) — min ¢(@), and choosing a constant step size as

| Ay
=/ for all t >
M 2T 1) orall ¢t >0,

we obtain (8) which completes the proof. O
Remark 3: Note that choosing p= O(1//(MT)) yields
that E{ ||V<p1/(29) (6|} <, after O(v/Se~*) iterations.

< =
p—p

+ C’lﬁ#)-

IV. CASE STUDY: SUMRATE MAXIMIZATION

Capitalizing on a standard IRS-aided MISO downlink sce-
nario (see Fig. 2 in Section V), our goal here is to maximize
the total downlink rate of K users actively serviced by an AP
with M antennas, while passively aided by one or multiple
IRSs, arbitrarily spatially placed. As usual, we assume dynamic
(reactive) AP precoders, while the IRS beamformers are static
(non-reactive) tunable elements. We make no sensing assump-
tions on the IRSs, i.e., the IRSs are completely passive net-
work elements.

Each of the users k =1, ..., K experiences a random effec-
tive channel denoted by hy, (6, w), indexed by the IRS parame-
ter vector 6 as well as the usual state of nature w € {2 describing
unobservable random propagation patterns for each value of 6.
In other words, hy, (6, w) is a random channel field with spatial
variable 8. We make the standard assumption that the effective
channels hy (0,w),k=1,..., K, are known to the AP at the
time of transmission [22], [23]. Note that the implementation
complexity of estimating effective channels in our setting is
exactly the same as that in conventional multi-user downlink
beamforming (i.e., involving no IRSs), regardless of the number
and/or spatial configuration of the IRSs; no extra hardware or
customized scheduling schemes are required on either the AP
or the IRSs assisting the network.

The QoS of user k is measured by the corresponding SINR,

H 2
‘hk (o, w)wk.‘

SINRy, (W, hy(0,w)) =

2 9

ZjeN;\k ‘hg(e,w)wj‘ + le
where Wzvec([wl woy wK]) € (CMUé(MXK), wy,
is a transmit precoding vector and o7 is the noise variance for
user k, respectively. Then, the weighted sumrate utility of the
network is defined as

K
F(W,H(0,w)) £ > aglog, (1 + SINRy, (W, hy, (0,w))),

k=1

with H = vec( [hl .. hK]) € CMv  and oy, > 0 the weight as-
sociated with user k. We are interested in maximizing the sum-
rate of the network jointly by selecting instantaneous-optimal
dynamic AP precoders W, and on-average-optimal static IRS
beamformers 6 [22], [23], i.e., we are interested in the problem

max

(2SSRM)
WH[W2<P

max E
ISC)

F(W,H(0,w)) },
where P > 0 is a total power budget at the AP, and © is a
real convex and compact feasible set of amplitudes and phases.
Problem (2SSRM) is an instance of (2SP).

Assumption Compatibility: Let us now briefly discuss the
compatibility of Assumption A with problem (2SSRM). We
firstly note that conditions (A1), (A2) are both satisfied. Con-
dition (AS) is also satisfied in light of uniform boundedness.
Condition (A3) of Assumption A imposes regularity that is
required for the grounded development of our optimization
scheme and for its convergence analysis. Also, observe that
the boundedness assumption in condition (A3) is natural, since
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(IRS-aided) wireless channels are always bounded in practice.
While we usually have no information on the analytical prop-
erties of the effective channel, this condition is easily satisfied
in widely used channel models of IRS-aided systems, see, €.g.,
[23] or Section V.

We next showcase that the regularity condition (A4) also
holds under several reasonable circumstances. In particular, we
identify three typical situations under which condition (A4) (i.e.
weak concavity of the sample objective function of the first-
stage problem (FSP)) is readily satisfied. These will be stated
here for completeness, and the reader is referred to Appendix B
for a technical discussion showcasing how weak concavity can
be shown in each of the following cases.

Firstly, condition (A4) is readily satisfied in cases where the
second-stage problem (SSP) admits a unique solution, assum-
ing, of course, the strong second-order sufficient optimality
conditions for the second-stage problem (we refer the reader
to Appendix B for a precise description of these conditions).
Indeed, in this case one can invoke the Implicit Function Theo-
rem [67, Theorem 1B.1] to showcase twice-continuous differ-
entiability of f(-) (as well as of maxw ey F(W, H(0,w)), for
a.e. w € (1), and since f is considered on a compact set, weak
concavity then follows immediately. On the other hand, if the
solution set of the second-stage problem is connected (instead
of a singleton), and instead of the strong second-order sufficient
conditions, the problem satisfies the regularity condition given
in [68, Assumption 4], we also obtain twice-continuous differ-
entiability and thus weak concavity. Finally, if H (-, w) is real-
analytic for a.e. w € € (which often holds for channel models
appearing in the literature; e.g. see [23] and Section V), then
one can show that the function maxw ey F(W, H(0,w)) is
sub-analytic, and satisfies the Lojasiewicz inequality (see [69])
at every 0 € ©, with uniform exponent. If the Lojasiewicz
constant is uniformly bounded and the second-stage problem
satisfies the strong second-order sufficient optimality condi-
tions, weak concavity also follows (see Appendix B for the
technical details).

A. Practical  Per-Iteration Sumrate

Maximization

Complexity  for

Before proceeding with the associated simulations of our
case study, it would be useful to calculate the practical per-
iteration complexity of ZoSGA. To that end, we assume that
the (deterministic here-and-now) second-stage problem is (ap-
proximately) solved using 7% iterations of the well-known
WMMSE algorithm [53], which has a documented computa-
tional complexity given by O(ToK2?M?). For the first-stage
optimization step, the complexity of the zeroth-order stochastic
gradient approximations can be shown to be of the order of
O(K?M + KM? + S), where S is the number of IRS phase-
shift parameters. Thus, the effective per-iteration complexity of
ZoSGA is of order O(To K2M? + 9).

As mentioned in Section I, model-based SSCO methods
have been recently considered for tackling problem (2SSRM),
mainly due to their fast convergence. Then, it would be ap-
propriate to compare the per-iteration complexity of ZoSGA
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with that of a state-of-the-art SSCO method, in particular
TTS-SSCO [23].

In order to derive the practical per-iteration complexity
of TTS-SSCO, we need to assume that the effective chan-
nel H(-,w) follows a specific and common cascaded model
[23]. Considering this, the complexity of TTS-SSCO can be
shown to be of order O(Ty (To K? M3 + K2S5%M)), since each
TTS-SSCO iteration requires 7y WMMSE runs for gradient
statistical approximation. We should also emphasize that this
complexity is in addition to the (highly nontrivial) compu-
tational effort required for estimating cascaded CSI statistics
(called S-CSI in [23]), which are required by TTS-SSCO. It is
evident that the proposed algorithm (i.e. ZoSGA) has a signif-
icantly smaller per-iteration complexity.

V. SIMULATIONS

Building upon the IRS-aided MISO downlink sumrate max-
imization case discussed in Section IV, we present a set of
detailed simulations to empirically evaluate and confirm the
efficacy of the proposed ZoSGA algorithm. Unless stated oth-
erwise, all our empirical results are averaged over 2000 inde-
pendent simulations, with an additional 4-th order Savitzky—
Golay filter [70] of length 500, while 95% confidence intervals
are also provided. In what follows, we describe and evaluate
three distinct wireless network setups and examine the obtained
empirical results. The last set of experiments will involve a
physical model for the IRSs, which is briefly described in the
beginning of Subsection V-C.

A. Baseline Channel Model

With the practically feasible assumption of insufficient angu-
lar spread of signals in a scattering environment, we consider
both LOS and non-LOS channels. Following [23], we consider
three types of intermediate channels in our simulations, namely,
the reflected channel h, ; from an IRS to user k, the channel
G from an AP to an IRS, as well as the direct path channel
hg i from an AP to user k. We model these as general spatially
correlated Rician fading channels [71]. Additionally, we assume
that the second-order statistics of the LOS links are identical for
all users, due to the large distances between an AP and its ser-
ved users.

Concretely, for each user k, we define the path loss adjusted
versions of these channels, respectively, as

@, vk, ©)

o [ Bau 1 1/2
hy 2 P
d,k 1+6Auvd,k+ 15 5an 4 Vdk,

where v, € CN*1 F e CV*M | and v,y € CM*!
the instantaneous components (I-CSI), and »,j €
FeCN*M and Vg k € CMX1 are the statistical components
(S-CSI) of the above channels, all having i.i.d. circularly

are
Nx1
C,
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symmetric complex Gaussian (CSCG) entries with zero mean
and unit variance, and with S-CSI being sampled once per
simulation. The dimensions M and N denote the number of AP
antennas and the number of passive reflecting elements in an
IRS, respectively. The matrices ®,., € CV*N &, € CM*M,
and ®,. € CN*N are, in order, the reflected channel correlation
matrix, the AP transmit correlation matrix, and the IRS receive
correlation matrix. We assume an exponential correlation
model for ®, [72], expressed as

i if i<y,

D4(i,j) = ®,0,0), if (10)

1>7,
where r4 € (0, 1) is the correlation coefficient. The matrices P,
and ®,. ;, are modeled as Kronecker products [73] as

e, =2 2P, B,,=3" 28,
where ®”, <I>f}7k, and ®;, ®/, . for k € N}, represent the spa-
tial correlation matrices of the horizontal and vertical domains,
respectively, and are all modeled similar to ®, in (10), with
spatial correlation coefficients r, € (0,1) and 7, 5, € (0,1) for
®,,and @, 4, k € N}, respectively.

The deterministic components, ie, ., F, and
Vg4 determine the moments of their respective CSIs.
Lastly, the real scalar (4, denotes the Rician fading
factor for the LOS channel, while B3;, and Ba; are
the same for the reflected channels. These factors
define the relative dominance of I-CSIs and S-CSIs
in their respective combined CSIs. Moreover, all intermediate
channels in (9) suffer from an exponential path loss proportional
to the path distance. We model this loss as L (d) = v/Cod~?,
where d is path distance in meters, « is the path loss exponent
depending upon the channel being considered, and Cj is the
common path-loss for when the path distance is one meter.

Considering both path loss and fading, we may adopt the
standard simplified baseline model for the effective channel
hj(0,w) of user k in the presence of an AP and one IRS, i.e.,

hip(0,w) = GHDiag(A ) ej"’)hr,k + hag ,
N

LOS link

non-LOS link

where h,. . = La,, (drui)ri G = Lo, (dar) G and by, =
L., (dAch)fuLd,k. We may take w = {G, h,. 1., har, k € NI},
while the IRS parameters 6 are represented by amplitude and
phase vectors A € [0,1]" and ¢ € [-2m, 27|, respectively
[74]. Adding more IRSs to the system increases the non-LOS
terms comprising the effective channel of each user accordingly.

For slow moving users, as is generally the case, we assume
that the values of S-CSI and the spatial correlation matrices
remain fixed throughout the duration of the AP service. Further,
we assume that IRS-to-IRS links do not contribute to the signal
or the interference in the presented multi-IRS cases. Of course,
the latter assumption is only made for ease of presentation.

In Subsections V-B and V-C, having defined the channel
model, we present simulated results with ideal and physical
IRSs, where physical IRSs are constrained both in terms of

M : no. of AP Antennas

N(_): no. of IRS elements along (-)-axis
p : Rician factor

a: path-loss exponent

r : spatial correlation coefficient

T m-g
artiil_ =0
Fig. 2. First IRS-aided network configuration (ideal IRSs).

amplitude and phase, as well as non-linear sensitivity rela-
tive to the action space, i.e., the ranges of varactor diode
capacitances [75].

B. Networks With Ideal IRSs

In the first set of simulations, we assume that we have full
control over the amplitudes and the phases of IRS phase-shift
elements, i.e. there is no constraint on achievable phase-
amplitude pairs, and we can control them directly. We start by
discussing the wireless network setting as shown in Fig. 2.

To highlight the efficacy of the presence of IRSs in a wireless
network, we assume a more acute signal attenuation in the LOS
links from the AP to the users. Thus, we set a4, = 3.4, apy, =
3 and o 45 = 2.2, where the largest o 4,, is the LOS path loss
exponent while the remaining two are path loss exponents of
IRS-User and AP-IRS links, respectively. Moreover, since the
distances between the IRS and its served users are relatively
small, IRS elements reflect signals with a finite angular spread
and a user-location dependent mean angle in practice [76].

We consider two IRSs, as shown in Fig. 2, equipped with
N=N},xN, rectangular phase-shift elements where Nj (= 4)
and N, (= 10) denote the number of columns and rows, respec-
tively (/N = 40). For the ideal IRS case we define the control-
lable parameters of each IRS as a vector 6;= [¢>;r AiT]T, for
i € {1,2}, where ¢; € [—27,27]" and A; € [0, 1]V are phases
and amplitudes of the IRS elements, respectively. We do not
consider the relative orientations of the IRSs, AP and users, as
those can be incorporated via orientation offsets, if needed. The
effective channel for a user k can, thus, be expressed as

2
hi(6,w) = Gi'Diag(A; 0 /% )h}  + hay
pt —~—

6 ;-non-LoS link LoS link

(R S
where h, ;=L

(d[q,kyi)’uliyk, Gl:Laz (dAI’i)éi, and

Tu Al

fj?k =L, (dAu,ka)lvz;’k for i € {1,2}. Also, for brevity, we

Au

take 6=(01,60;) and w = {G1, G2, h, 1., h} ; hay, k € NL}.
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Fig. 3. (a) Average sumrates achieved by WMMSE [53] (random IRS phase-shifts), TTS-SSCO [23], and ZoSGA, with only IRS 1 present (AA: Adjustable

Amplitude | UA: Unit Amplitude); (b) Corresponding average sumrates versus the Rician factor; (c) Average sumrates achieved by WMMSE (random IRS)

and ZoSGA, with both IRSs present.

After defining the wireless network setting, we move for-
ward with our simulations. In the first simulated compari-
son we compare the proposed algorithm (ZoSGA) with the
well-documented Stochastic Successive Convex Optimization
(SSCO) method, specifically a version of it proposed in [23],
which we shall refer to as Two-Time Scale SSCO (TTS-SSCO).
Both ZoSGA and TTS-SSCO employ the WMMSE algorithm
to optimize the precoding vectors. To keep the comparison
justified, we let WMMSE optimize for 20 iterations per channel
instance for both of these methods, and have also included
WMMSE with randomized IRS parameters as a reference. All
parameters pertaining to the TTS-SSCO are taken from [23,
Section V], i.e., Ty =10, 7 =0.01, p, = t=98 and Y= t=1.
There are four users, so k € N, weighted uniformly i.e., o =
1; the AP has six antennas (M = 6), and the noise variance
is 0 = —80dBm for all k. The reference path loss is Cy =
—30dB, and the total allocated power budget is P = 5dBm. The
LOS Rician factor is S4, = —5dB, while 8, = far = 5dB,
unless specified otherwise. We let the smoothing parameter
i =10""'2 in Algorithm ZoSGA, and choose separate initial
step-sizes 773 = 0.4 and 7% = 0.01 for updating phases and am-
plitudes, respectively, scaled by 0.9972! for t € Nfog, keeping
them constant for ¢ > 103.

The comparison of ZoSGA and TTS-SSCO in terms of
achieved sumrate is shown in Fig. 3(a). The comparison is
done with only IRS 1 present, matching the TTS-SSCO setting
in [23], which requires exact channel and network models.
We observe that ZoSGA, although requiring more iterations to
converge, substantially outperforms TTS-SSCO solely on the
basis of effective CSI, while having no access to the statistical
model of the channel or the spatial configuration of the network.
There are two main reasons for this gain in performance. Firstly,
TTS-SSCO evaluates gradients by utilizing internally sampled
I-CSI and the corresponding optimal precoding vectors (via
WMMSE), with a frequency of ten samples per iteration (1g).
This can greatly limit the convergence of TTS-SSCO if the
internal channel model is not accurate. Secondly, the surrogate
objective optimization employed by TTS-SSCO, which simpli-
fies the problem by decoupling the IRS phase-shift elements, al-
lowing the computation of their optimal values in a closed form,

is not equivalent to the original nonconvex sumrate optimization
problem. As shown by the convergence curves provided in Fig.
3(a), this introduces additional errors, preventing TTS-SSCO
from realizing a competitive QoS gain, compared with ZoSGA.

In Fig. 3(b), we discern the effect of the Rician factor
for spatially uncorrelated channels, i.e., we set rg=r, =
rrr=0, V ke NZ. We observe that the relative gain of
ZoSGA in the achievable sumrate increases with respect to
the Rician factors pertaining to 6,-reflected links, i.e., as we
move from I-CSI to S-CSI dominated channels. The perfor-
mance gap between ZoSGA and TTS-SSCO increases in f3,
since in a close-to-deterministic effective channel zeroth-order
gradient approximations approach the true gradients, while
TTS-SSCO is optimizing an approximate surrogate objective.
We also observe that WMMSE with a randomized IRS re-
mains insensitive to changes in the Rician factors; this is ex-
pected as the reflected channel is not optimized to gain any
performance improvements.

We can now verify that ZoSGA can also optimize networks
with multiple IRSs without any model knowledge. We do so by
tuning both IRSs as shown in Fig. 2, while keeping the same
hyper-parameters for ZoSGA as well as for WMMSE. Fig. 3(c)
shows that ZoSGA succeeds in optimizing both IRSs simultane-
ously, without any information about their spatial configuration.
Fig. 3(c) also visualizes the improved performance gains when
optimizing @, versus optimizing the more distant 85, showing
that ZoSGA not only scales well to unknown system/channel
models, but is also robust with respect to 74 and 74.

In practical scenarios, IRSs may have multiple phase-shift
elements, frequently on the order of hundreds. To demonstrate
that ZoSGA can scale well with the number of IRS parameters
0, we increase N, to 100 rows of elements, and compare the
sumrates achieved by ZoSGA and TTS-SSCO in Fig. 4. It is
evident that ZoSGA is able to scale well and also retains the gain
in performance over TTS-SSCO despite the substantial increase
in the number of IRS phase-shift elements.

Lastly, while in general ZoSGA does take more iterations to
converge as compared with model-based methods (here, TTS-
SSCO:; this is in line with the related literature on model-free
stochastic resource allocation: see, e.g., [65]), we may also
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Fig. 4. Average sumrates achieved by WMMSE (random IRS), TTS-SSCO,

and ZoSGA, with only IRS 1 and N, = 400.

readily observe that it exhibits a high performance ceiling.
Therefore, it can provide very competitive IRS beamformers
way before its actual convergence.

C. Networks With Physical IRSs

In purely simulated environments, ZoSGA outperforms TTS-
SSCO, allowing us to claim it to be a new SOTA for IRS-
aided sumrate optimization. Nonetheless, we would also like
to evaluate its robustness in a practical setting with physically
modeled IRSs. To that end, we first define the IRSs using a
practically feasible Transmission Line (TL) equivalent of an
electromagnetic (EM) model, as presented in [75]. This TL
model accounts for the geometrical and electrical properties of
the IRS elements, also referred to as patches. Specifically, it
considers reconfigurability, changes in response due to differ-
ent angles of wave incidence, mutual coupling among closely
spaced cells, and reflection losses.

An IRS can be classified as a spatially dispersive device, the
reconfigurability of which is achieved by incorporating varactor
diodes in its periodic structure. That is, the beamforming angles
(of reflection) are controlled by changing DC voltages; thus
tuning the capacitances of these diodes. Though there can be
two scenarios when an EM wave impinges on an IRS surface,
namely, the traverse magnetic (TM) incidence and the tra-
verse electric (TE) incidence, here we only consider the former
for simplicity, mostly focusing on the empirical performance
analysis. Moreover, on a side note, we employ the Floquet
theorem (as assumed in [75]) so as to consider the periodic
patches placed in an infinite array, with each element/patch
behaving identically.

Given a non-reconfigurable impedance surface, the TL model
usually consists of a parallelly connected surface impedance
of a reflecting surface, Z,, ¢, and inductive impedance of the
grounded dielectric slab Z;. Then, the input impedance is Z,, =
Zsurf || Zq. For an IRS, however, the Z,,; is further com-
prised of a parallel connection between the unloaded surface

Fig. 5.

Second IRS-aided network configuration (physical IRSs).

impedance of the patch array Z,4;.;, and the lumped impedance
of a varactor diode Z,,,, which is represented as a series of a
resistor, inductance and capacitance as

Zvar = Rvar + jWLvar +]

char ’
where the inductance L, depends on the size of the lumped
component and must be included in the varactor model to take
into account the self-resonance of the component. The resis-
tance R, is included to account for the losses of the varactor.
The variable capacitance C,,,,- of the diode is used to vary Z, 4.
The other two impedances, i.e. Z; and Z,qsc1, depend on
the properties of the substrate, the dielectric, and the angle of
incidence. A detailed description of these is provided in [75,
Section 4]. Once all the considered impedances of a patch have
been evaluated, its phase-shift coefficient 6(C,,,.) is given by

Z’U (Cva'r) - CO

0 Cvar =a C/Uar €j¢(c”‘”‘) = ,
(Cvar) = a(Cuar) Zo(Coar) + Co

where (p is the free space impedance. Thus, by changing
the varactor capacitance C,,,, we can change the varactor
impedance Z,,,., which changes the surface impedance Z,, r,
which, in turn, changes the input impedance of an IRS element
Z,, finally causing a change in the value of the phase-shift
coefficient (C\q,-). Due to our assumption that the Floquet
theorem holds, this dependency flow is identical for all elements
of an IRS. Thus, we may replicate the above relation for all IRS
elements, say ¢ in number, and define a vector function 6(-)
of varactor capacitances ¢,q,. = [C},,. C?,. C3. - C4 ]" as

O(C’Utﬂ“) = [g(ciar) G(Cgar) e(cgar) T G(Cgar)]—r'
Now that we have a model for a practical IRS, we would
like to evaluate our first wireless network setting, with one IRS,
to compare the relative performance drop, if any. As shown in
Fig. 6(a), the performance of the ZoSGA does drop when con-
strained in terms of the physical IRS model; this is very much
expected, due to a decreased number of degrees of freedom in

Authorized licensed use limited to: Yale University. Downloaded on July 29,2024 at 17:15:30 UTC from IEEE Xplore. Restrictions apply.



664 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024
Bar = Bru = 5dB, Bay, = —~5dB, r, = 05,14 = 0,7 = (k—1)/3 Bar = Bru = 5dB, Bay = =5dB, 1, = 05,74 = 0,7 = (k—1)/7 Bar = Bru = 5dB, Bay = —=5dB, r, = 05,74 = 0,7 = (k—1)/7
= WMMSE (Ran d IRS) —— WMMSE (R — WMMSE d IRSs)
—— TTS-SSCO: AA X 3% " —— Z0SGA: Phy —— Z0SGA: P (EM) T
— 20SGA: Physical IRS (EM)
2 2 2
Tteration (Chiannel Realization) teration (Chiannel Realization) teration (Chiannel Realization)
(@ (b) ()

Fig. 6. (a) Average sumrates achieved by WMMSE (random IRS), TTS-SSCO with ideal IRS, and ZoSGA with a physical EM IRS model (network in

Fig. 2); Average sumrates achieved by WMMSE (random IRS), and ZoSGA, with four physical (EM model) IRSs with (b) 40 and (c) 400 phase-shift elements,

respectively (network in Fig. 5).

tuning the IRS parameters. However, the performance gain rel-
ative to the random phase-shifts is still substantial. More inter-
estingly, ZoSGA outperforms TTS-SSCO —the latter optimizing
both amplitudes and phases in an unconstrained manner— even
in the presence of appreciable practical IRS constraints.

To complete our empirical study, which supports our claim
of enabling totally model-free optimization of the IRS ampli-
tudes and phase-shifts, we lastly consider an elaborate wireless
network setting, as shown in Fig. 5, consisting of two APs and
four IRSs serving a total of eight users. We consider a MISO
downlink scenario where both APs transmit a common symbol
to each user, i.e., the two APs are different only in their position
in space. We consider the same channel model and network
environment parameters as given in Subsections V-A and V-B,
respectively. Then, the effective received channel by user & is
expressed as

S22 GDiag(0(cl,,))hiy +  hag
N——

_ 0,;-non-LoS link API LoS link
- 4 Hy; i i
Zj:S Gi Dlag(e(cvar))hr,k: + h’d,k,2
———

AP2 LoS link.

hk(Cvarv LU)

6 ;-non-LoS link

where, again, hi,k =L, (dlukz)ﬁ:,k G = Lo, (dAI,i)CuT‘Z,
and hagj =L, (dauk)hay; for i € Nf and j € {1,2}.
Here, the varactor capacitances of the ¢-th IRS are denoted by
the vector ¢!, and the matrix Cq, = [cl,, c2,, o Ct..]
combines all the varactor capacitances of the four IRSs. Us-
ing the same learning rate scheme as above and a smoothing
parameter 1 = 10~ '2, we optimize the system sumrate using
ZoSGA.

We averaged the results of 40 different simulations in Fig.
6(b) to show not only the performance gain due to IRS capac-
itance tuning, but also the robustness of the approach under
different realizations of the channels. The fact that the proposed
approach is able to optimize a complicated network such as the
one shown in Fig. 5, without any model information, verifies our
claim of true model-free optimization capability of ZoSGA. We
conjecture that the proposed optimization scheme can tackle a
wide-range of problems arising in practical applications, with
little to no additional input from the user.

VI. CONCLUSION

In this paper we introduced a zeroth-order stochastic gradient
ascent (ZoSGA) method for the solution of two-stage stochastic
programs with applications to model-free optimal beamforming
for passive IRS-assisted stochastic network utility maximiza-
tion. ZoSGA is amenable to rigorous convergence analysis and
achieves state-of-the-art convergence rate under very general
assumptions, capturing a wide range of realistic scenarios. By
specializing to the case of sumrate maximization, we numer-
ically demonstrated that ZoSGA outperforms current state-of-
the-art model-based methodologies on three distinct network
settings, yielding solutions of substantially higher quality and
in a computationally efficient manner, while evading practical
limitations that are inherent in current methods. Our numerical
results confirmed that ZoSGA learns (near-)optimal passive IRS
beamformers based solely on conventional effective CSI and in
the absence of channel models and spatial network configura-
tion information, also verifying our theoretical findings.

APPENDIX

A. Wirtinger Gradient Derivation

In light of conditions (A1)—(A3) of Assumption A, we can
easily show that F(W, H(0,w)) (i.e., the objective function in
(SSP)) admits an explicit usual (Fréchet) gradient, for all 8 € U
and a.e. w € 2. We do this by utilizing elements of Wirtinger
calculus (see [56, Section 4] for a detailed exposition).

Indeed, in order to evaluate the gradient of F' (W, H (-, w)),
ie., VoI (W, H(-,w)) : U — R, we consider its Wirtinger
cogradient (a row vector; see [56, Section 4.2]), defined as

0° Al 0
9 (W, H(z,w)) = 3 ((WF (W,H(z,w))
gt W H ) ),

noting that H (z,w) is constant relative to I(z), i.e.

H(z,w)=H(z + jy,w) = H,w), Y(z,y)elU xU,

Authorized licensed use limited to: Yale University. Downloaded on July 29,2024 at 17:15:30 UTC from IEEE Xplore. Restrictions apply.



HASHMI et al.: MODEL-FREE LEARNING OF TWO-STAGE BEAMFORMERS FOR PASSIVE IRS-AIDED NETWORK DESIGN 665

and hence so is F' (W, H(z,w)) . It then follows that

g (W, H(z,w)) = % (VoF (W, H(z,w)))' .

0z
Using the Wirtinger chain rule (see [56, Eq. (32)]), we obtain
0° 0° 0°
a—zF(W,H(z,w)) = a—zF(W,z) sz(myw)a—zH(;w)
0° 0°
+ —F(W,z2) —H(z,w),
0z z=H (z,w) 0z

and §_H (z,w) = (92 H(z,w)). From the real-valuedness of
H

80

Thus, for any 6 € U and a.e. w € €2, we obtain
VGF (Wa H(07 W))
T
zH(G,w))

T
z—H(G,w)) .

B. Weak Concavity of the First-Stage Objective Function

o]

— 2VR (H(8,w)) R <ng(W,z)

[}

1 2VeS (H(6,w)) R <j§ZF(W, 2)

In what follows, we present three typical situations un-
der which condition (A4) of Assumption A is satisfied for
problem (2SP). To simplify the discussion, we assume that
W= {W: |[W|? < P}, which is the constraint utilized in
(2SSRM), noting that this is done without loss of generality.

Cases 1 and 2 - Strong second-order sufficient optimal-
ity: The first two cases rely on the strong second-order sufficient
optimality conditions for (SSP). For any 8 € © and a.e. w € €2,
the Lagrangian associated with (SSP) reads

LW X\ 0,0)=F(W,H(0,w)) + A (|W]|? - P),

where the admissible Lagrange multipliers are nonnegative, i.e.
A>0. Let any W*(0,w) € argmaxwew F(W,H(0,w)).
Then, the strong second-order sufficient optimality
conditions require strict complementarity slackness (i.e.
A >0 if |[W*(0,H(0,w))||> =P, and \* =0 otherwise,
where A\* is an optimal Lagrange multiplier associated
to W*O,H(0,w))), as well as that Vi, L(W,\
0,w)| (W a)=(W=(0,w),x+) is nonsingular. We note that

for problem (2SSRM), strict complementarity slackness holds
without any additional assumptions.

In the first case (Case 1), we assume that the second-
stage problem (SSP) admits a unique solution for each
0 €O and a.e. w € (). It then follows that the mapping 8 —
maxweyw F(W, H(O,w)) is twice continuously differen-
tiable on © by utilizing [68, Lemma 2.2] (which, in turn, utilizes
the Implicit Function Theorem, e.g. see [67, Theorem 1B.1]).
Twice continuously differentiable functions on a compact set (in
this case ©) are, in fact, Lipschitz smooth on that set. However,
Lipschitz smooth functions are both weakly convex and weakly
concave (see [59, Proposition 4.12]), and thus we are done.

In the second case (Case 2), instead of assuming that
the solution set of the second-stage problem is a single-
ton, we assume that H (-,w) is real analytic (which, for ex-
ample, is true in Section V). Then, assuming that F(-,-)
is the sumrate (as in (2SSRM)), it follows that the map-
ping 6 — maxwew F(W,H(0,w)) is sub-analytic on an
open bounded subset ©' DO (e.g. see [77, Example 4]).
In turn, this implies (e.g. see [78, Theorem 2.3]) that the
function maxwew F(W, H(0,w)) — F(W,H (0, w)) satis-
fies the Lojasiewicz inequality with uniform exponent, i.e. for
a.e. w € Q and for each 8 € ©’, there exists 77 > 0 and a subana-
lytic function C'(@) > 0, such that for every (6, W) € ©' x W,
we have

dist <W,argv1‘rllal>/<vF(W,H(0,w))>
€

n

<C(0) (&Iflg\)/(v F(W,H(0,w)) — F(W, H(0,w))

an

In what follows we make the reasonable assumption that C'(0)
is uniformly bounded on ©'.

Lemma 8: Let ©” D0 DO, be a compact set, with ©’
some open set. Given conditions (A1)—(A3) of Assumption
A, the multifunction 0 +— arg maxwew F(W, H(0,w)) is
nonempty and compact-valued on ©”, for a.e. w € Q.

Proof: We have that F'(-,-) is jointly (real) continu-
ously differentiable, and that for any 6 € ©” and ae. we€
Q, arg maxwew F(W, H(0,w)) is non-empty. Additionally,
both ©” and W are assumed to be compact, and H(-,w)
is continuously differentiable and thus has compact range. In
turn, we obtain that F'(-, H(-,w)) also has compact range on
©" x W and is jointly continuous. We complete the proof by
applying Berge’s maximum theorem (see [79]). O

Lemma 9: Let conditions (A1)—(A3) of Assumption A hold,
along with the aforementioned conditions of Case 2. Then, for
any 6 € © and a.e. w € €, and each selection

W7(8,w) € arg max F(W,H(6,w)),

— % e’}
there exists a sequence of selections {W 6+ zk,w)} ,

where W*(B + zp,w) € argmaxwew F(W, H(0 + zp,
w)), for some sequence @ + {2z}, C ©’, such that

lim W*(O + zp,w) =W (0,w).

llzkll—0
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Proof: We fix some (6,w) € © x £ and a bounded open
set ©' D O. From our assumptions, there must exist two positive
constants C, 7, such that for every (W,0 + z) e W x @', (11)
holds with C(0) = C. From Lemma 8 (in particular, from the
closed-valuedness of argmaxw ey F(W,H(6,w)) on the
compact set ©” D ©'), for every W € W and any z such that
0 + z € O, there exists a selection W (6 + z,w) such that

HW 0+ 2z,w) — WH
= dist (W, arg max F(W,H(0 + z,w))) .

Continuity of maxwew F(W,H(-,w)) — F(W,H(-,w))
then yields the desired result, since we can consider a sequence
0+ {z,}72, C © such that ||zg| — 0. O

Lemma 10: Let conditions (A1)—(A3) of Assumption A hold,
along with the aforementioned conditions of Case 2. For a.e.
w € Q, the function maxw ey F(W, H(-,w)) is Fréchet dif-
ferentiable on © with

Vo max F(W,H(0,w)) =
wew

where W*(-,w) € argmaxwew F(W, H(,
trary selection on ©.

Proof: Fix some (0,w) € O x § and some W*(0,w) €
arg maxw ey F(W, H(0,w)). Firstly, we note that the func-
tion maxw ey F(W, H(0,w)) is well-defined and finite on
an open set ©’ D O. Additionally, we have that F'(-, H(0,w))
is real-analytic on W for any 6 € ©’, and F(W, H(-,w)) is
continuously differentiable on ©’. By definition, we obtain that

max F(W,H(0 + z,w)) — max F(W,H(0,w))
Wew Wew

w)) is an arbi-

<F (W*(e tz,w), H(O+ z,w))
_F (W*(e + z,w),H(O,w)) ,

for all z such that 6 + z € ©', where W*(O + z,w) can be
chosen as in Lemma 9. Furthermore, we observe that

max F(W H(0+ z,w)) — max F(W H(0,w))
Wew Wew
>F(W*0,w),HO + z,w)) — F(W*(0,w), H(0,w)).

In other words, we have

F(W*(B,w),H(H—i—z,w)) - F(W*(ng)?H(eaw))
< max F(W,H(0 + z,w)) — max F(W,H(0,w))
wew Wwew

<F (ﬁ?*(e +zw), H(O+ z,w))
_F (ﬁ?*(e ¥ 2,w), H(O,w))

Since F'(W, H(-,w)) is differentiable on ©’, for any W €
W, we may use the mean value theorem to show that for every
z with 0 + z € ©/, there exists c=c(0 + z, W, w) € (0,1)
such that

F (W*(e +zw), H(O+ z,w))
- F (W*(e +z,w), H(, w))

=(VeF (W, H(0 + cz,w)) ‘W T (0 2.)"

FW*(0,w),HO,w)), €0,
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Given the previous inequalities, the latter yields
FW*0,w),H(0+ z,w)) — F(W"(0,w),
<V9F (W H(0 OJ)

H(0,w))
‘W W*(6,w)
gF(W (0 + 2,w), (9+z,w))

—F( (0 + z,w), H(O, w))
<V9F(W H(0 OJ)
<|

—VoF (W,H(0 + cz,w))

‘W W*(6,w)

VoF (W, H(evw)) |W:W*(0,w)

|W:VT/*(e+z,w) =]

Utilizing again the mean value theorem, we also have that there
exists ¢ = /(0 + z, W,w) € (0,1) such that
F(W*(0,w),H(0 + z,w)) — F (W*(0,w), H(0,w))

= (VoF (W,H(0 +cz,w)),2) |y _ WeO.)"

As before, this implies that
FW*(0,w), HO + z,w)) —
—(VoF (W, H(0,w)),

F(W?*(0,w),H(,w))
‘W W*(6,w)

— vaF (W,H(0 + dz,w)) |W:W*(9,w)

—VeoF (W, H(0,w)) 12|

|W:W*(9,w)

Combining the previous inequalities with Lemma 9, yields
lim — (F(W*(H,w), H(O + z,w))
== ||2]|
— F(W*(0,w), H(0,w))

—(VoF (W,H(0,w)), 0,

’W w=(e, w))
which implies that maxwew F(W, H(-,w)) is (Fréchet)
differentiable at 8 € ©, for ae. we (), and its gradient
reads as

Vo max F(W,H(0,w)) = VoF (W, H(6,w))

‘W:W*(O,w)
for any W*(0,w) € argmaxwew F(W, H(0,w)). 0
Theorem 11: Let conditions (A1)—(A3) of Assumption A
hold, along with the aforementioned conditions of Case 2. For
a.e. w € Q, the function maxw ey F(W, H(-,w)) is Lipschitz
smooth and thus weakly concave.
Proof: Under our assumptions, we know from Lemma 10
that the function maxw ey F(W, H(0,w)) is Frechét differ-
entiable on © and its gradient reads as

Vo ‘,rvngfva<W’H(97w)) :F(W*(eaw)vH(07W))7

for any W*(0,w) € argmaxwew F(W,H(0,w)). At the
same time, from the strong second-order sufficient conditions,
we can apply the Implicit Function Theorem (as in [68, Lemma
2.1]; see also [67, Theorem 1B.1]) to the Lagrangian of the
second-stage problem, which implies that for every 0, € O,
and any arbitrary selection W™(6,,w) € arg maxw e
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F(W,H(6,,w)), there exists a neighbourhood ©, > 6., on
which there exists a unique continuously differentiable mapping
Wi(,w):0— argmaxwew F(W, H(6,w)), such that
Wi(0,,w) =W (0,,w). Let us fix this neighbourhood
©,, and consider two arbitrary points 61,02 € O, C O,
(assuming that ©, is a compact set), along with some arbitrary

selections Wi 2 W*(0,,w), Wj2W?*"(0;,w). Then,

letting W7 ; £ W (8;,w), for i = 1,2, we have

Vo F (W7 H(917w))—VGF(WZ,H(GQ,W))H
—HVBF s H(01,w) — VeF(W!,, H(02,w))||
— [Vor W H610) - Tor (W H(02,0)

Vo F(W? y, H(82,w)) — VoF( :,2,H<02,w>>H

< HVGF o, 17 (01,&1)) VGF( 027 H
+ ||V9F Wo,17H(027w))7v9F( 0727 02a H
where we used the fact that Vg maxwew F(W, H(0,w))
has the same value independently of the optimum selec-
tion, while W7} (0;,w) € arg maxwew F(W,H(0;,w)), for
1 =1,2. However, Lipschitz smoothness of the function
F(W,H(-,w)) implies that there exists some constant L; > 0
such that
|VeF(W;,, H(6:,w)) —
< L1601 — 0|
Then, we observe that
HVGF 017 (027(“}))_V9F< 227
< Lo|[W5(01,w) = Wi(02,w)| < LaLs(0)]61 — 62|,

where we used the Lo-Lipschitz smoothness of F(-, H(0,w)),
and the fact that W (-,w) is continuously differentiable on
the compact set ©,, and thus L3(O,)-Lipschitz continuous.
In other words, the function maxyw ey F(W, H(W,w)) is
locally Lipschitz smooth. However, since © is compact, this is
equivalent to saying that it is globally Lipschitz smooth, which
implies that it is both weakly convex and weakly concave (see
[59, Proposition 4.12]). This completes the proof. O

Case 3 - Lack of Hessian Invertibility: Finally, we should
mention that if the solution set of the second-stage problem
(SSP) is not a singleton, while it also does not satisfy the strong
second-order sufficient optimality conditions utilized in Case
2, one can still show that condition (A4) of Assumption A
holds, by utilizing the analysis of [68, Section 4]. Indeed, un-
der some regularity conditions, coupled with an assumption of
connectedness of the solution set of the second-stage problem,
it follows that the function maxyy ey F(W,0(-,w)) is twice
continuously differentiable on ©, and thus weakly concave. The
details are omitted, but the reader is referred to [68, Section 4]
for a detailed analysis of a simplified case.

017

VoF(Wz,lvH(Ova))H

027 H
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