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ABSTRACT
We present the design and implementation of RECA, a novel human-
centric recommender system for co-optimizing energy consump-
tion, comfort and air quality in commercial buildings. Existing
works generally optimize these objectives separately, or by only
controlling energy consuming resources within the building with-
out directly engaging occupants. We develop a deep reinforcement
learning architecture based on multitask learning, demonstrate how
it can be used to jointly learn energy savings, comfort and air qual-
ity improvements for different actions, and build a recommender
systemwith humans-in-the-loop. Through real deployments in mul-
tiple commercial buildings, we found that RECA has the potential to
further reduce energy consumption by up to 8% in energy-focused
optimization, improve all objectives by 5 − 10% in joint optimiza-
tion, and improve thermal comfort by up to 21% in comfort and air
quality focused optimization, over existing solutions.

CCS CONCEPTS
• Computer systems organization → Real-time systems; Em-
bedded and cyber-physical systems; • Human-centered com-
puting → Ubiquitous and mobile computing.
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building co-optimization, deep reinforcement learning, energy sav-
ings, air quality, thermal comfort, recommender system
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1 INTRODUCTION
Commercial Buildings are responsible for nearly 40% of total energy
consumption in the United States [14]. To work towards future
sustainability, research communities, industry, and government
agencies have developed projects and policies to improve energy
efficiency in buildings. However, studies have shown that these
efforts can still be improved [17]. In addition to energy consump-
tion, comfort and air quality are key targets for optimization in
commercial buildings, since they can lead to many benefits such as
increased productivity and occupant health [9]. Jointly optimizing
energy, comfort, and air quality is challenging due to the complex
and often conflicting nature of these objectives.

Prior works optimize energy, comfort, and air quality by con-
trolling energy consuming resources. However, there is a limit in
savings that can be achieved in this way. For example, optimizing
thermal comfort of multiple occupants in the same roomwho prefer
different temperatures cannot be achieved by only changing the
thermostat temperature. Because most energy consuming resources
in a building are used to service occupants, the improvements we
can achieve without directly engaging occupants are limited.

We present and deploy RECA, a novel recommender system
that generates intelligent move and setpoint recommendations to
co-optimize energy, comfort, and air quality co-optimization with
humans-in-the-loop and allows building managers to tune which
aspects to focus on. For example, tuning RECA to aggressively
reduce energy consumption may prompt more occupants to move
to shared spaces to reduce heating, ventilation, and air conditioning
(HVAC) service to other spaces. This decreases energy, but also
decreases air quality and comfort, since more people occupy a single
space and one temperature setpoint may not satisfy everyone’s
preferences. We present the following contributions:
1.We introduce RECA, a recommender system that co-optimizes
energy savings, occupant comfort, and air quality with humans-in-
the-loop in real commercial buildings. Unlike previous works, RECA
is tunable, allowing building managers to prioritize energy savings,
occupant comfort, and/or air quality, and engages occupants with
actionable recommendations (move and thermostat setpoint) to im-
prove these objectives.
2.We integrate a novel deep reinforcement learning architecture,
using multi-task learning to learn the effects of actions on energy,
comfort, and air quality. Our architecture utilizes an embedding
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Figure 1: RECA’s system architecture. To account for the
challenge of cold-start, RECA leverages a simulation envi-
ronment with statistical models to estimate future building
states and generate more training examples from a past his-
tory of observed building states and recommendations.

to efficiently learn the location configurations of occupants and
relationships between different locations.
3. Over a four week study, we evaluate RECA in two commercial
office buildings and show that our system can account for a wide
range of configurations that emphasize combinations of energy,
comfort, and air quality.

2 RELATED WORKS
Works that optimize energy, comfort, and air quality first model
a building before developing a control algorithm to perform opti-
mization. Modeling software, such as EnergyPlus [7], have been
commonly used to produce physics-based models of spaces, while
data-driven models such as artificial neural networks [10] use real-
world data. The buildingmodels are integrated into IoT systems [15]
or paired with different controllers such as model predictive control
(MPC) [8] to optimize energy consumption, comfort, and air quality.
In general, these systems only control building resources, such as
lighting and heating, ventilation, and air conditioning (HVAC).

Several works have proposed methods for optimizing energy and
comfort by grouping occupants based on thermal preferences [18]
or controlling HVAC resources with human feedback on comfort [5].
In contrast, we develop a recommender system to actively engage
occupants throughout the day by delivering real-time actionable
recommendations, allowing our system to adapt to changes in build-
ing resources and occupant behavior throughout the day. Moreover,
our system not only uses human feedback to inform actions, but
also recommends actionable steps to occupants in order to improve
their own comfort, energy footprint, and/or air quality.

Reinforcement learning has become an important area for ad-
dressing dynamic environments. [1, 6] introduce reinforcement
learning-based strategies for controlling windows and HVAC re-
sources to optimize energy consumption or comfort/air quality.
[24, 25] engage occupants by providing recommendations (e.g.,
schedule changes) to optimize energy consumption through Q-
table and deep Q-network based recommender systems and demon-
strate that strategies, which do not engage occupants, may pass
over significant optimization opportunities. In contrast, our work
co-optimizes comfort and air quality, in addition to energy con-
sumption, by incorporating humans in the optimization process.

3 DEEP REINFORCEMENT LEARNING BASED
RECOMMENDER SYSTEM

We propose RECA, a deep reinforcement learning-based (DRL) rec-
ommender system for co-optimizing energy consumption, occupant
thermal comfort, and air quality, shown in Figure 1. There are sev-
eral reasons why this problem is challenging. First, direct modeling
of all dynamics in a commercial building that contribute to energy
usage, comfort, and air quality is impractical, and the building’s
resources and occupants change over time, making it even more
difficult. Second, the effects of different actions on these objectives
are difficult to quantify, especially if changes are not realized until
multiple steps in the future. Lastly, different occupants may value
certain objectives and recommendations differently.

Model-free deep Q-learning can help address these challenges:
first, deep Q-learning utilizes a deep neural network to approximate
the state-action function, which is beneficial for large state spaces
with many occupants and building resources. Secondly, deep Q-
learning can learn action returns long-term, independent of the
policy being followed and without requiring an explicit model
of the complex effects between the environment and occupants.
Lastly, returns for actions specific to each occupant can be learned
separately, which allows for the model to account for different
preferences among users.

We first explain how we represent the building energy, com-
fort, and air quality co-optimization problem in context of deep
Q-learning (Section 3.1). Next, we introduce the deep Q-network
model for generating actionable recommendations to occupants to
co-optimize the three objectives (Section 3.2). Finally, we introduce
our full recommender system that leverages the predictions pro-
vided by the Q-network to “recommend” actions to occupants to
improve our objectives (Section 3.3).

3.1 Deep Reinforcement Learning Formulation
We represent the building co-optimization problem as follows. At
each time step, the network uses a policy to choose an action 𝑎 from
a set of possible actions 𝑎 ∈ 𝐴 based on the current state of the
building, 𝑠 , which constantly changes over time due to agent rec-
ommendations and external factors like outside temperature. This
action is sent to the actor(s) (occupants in our case), which is then
accepted or rejected. Our system then sees a reward, 𝑟 , representing
short-term changes given by the environment, which would be
improvements energy, comfort, and air quality. For example, our
system may recommend the only occupant in room A to move to
room B. The occupant accepts and moves to room B, allowing the
building to turn down the HVAC and lights in room A. As a result,
the system observes a reward of energy savings from room A.

The building environment continuously changes, due to agent
recommendations and external factors such as occupant location
changes and environmental factors. Thus, we can formulate the
problem as a finite Markov Decision Process (MDP). Each action
has a transition probability of occurrence at the current state and a
reward (𝑟 ), representing short-term changes due to the action.

The goal of the deep Q-network is to estimate long-term changes
associated with each action given the current building state 𝑠 . Stan-
dard reinforcement learning aims to maximize this return at time 𝑡 ,
defined as 𝑅𝑡 =

∑𝑇
𝑖=𝑡 𝛾

𝑖𝑟𝑖 , where 𝑟𝑖 is the reward observed at time
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𝑖 , 𝛾 ∈ (0, 1) is the "discount factor", and 𝑇 is the end time (or end
of day in commercial buildings). We leverage Q-learning, a widely-
used model-free reinforcement learning method, where the agent
seeks an action-value function 𝑄 (𝑠, 𝑎) which represents the return
of taking an action 𝑎 at a given state 𝑠 . If the state/action space is
too large,𝑄 (𝑠, 𝑎) is too complex to be stored in a data structure, but
can be approximated effectively using a deep neural network [13].
3.1.1 State-Actions and Recommendation Types. RECA’s state is
comprised of the following features, which captures the three ob-
jectives we are co-optimizing.
(1) Per Space: energy consumption, temperature, humidity, thermo-
stat setpoint temperature, 𝑃𝑀2.5, and 𝑃𝑀10.
(2) Per Occupant: Location of each occupant in the building at the
space or room-level (e.g., the occupant is in lab space A), including
a null indicator if the occupant is absent.

We divide the building into spaces based on functional pur-
pose [21, 22] because occupants generally use and refer to spaces
in this way (e.g., group A’s workspace). There are three categories
of actionable recommendations that our system recommends occu-
pants in a building with |𝑂 | occupants and |𝑆 | spaces.
(1) Move: This recommendation suggests users to move to a dif-
ferent location. For example, moving multiple occupants into a
single location may allow the building to turn down HVAC in other
locations and reduce energy. There are |𝑂 | × |𝑆 | number of move
actions that can be recommended. Suggesting occupants to move
to areas that they would never reside in is unproductive. Instead,
we introduce mechanisms that help RECA adapt to user location
preferences (Section 5.2).
(2) Thermostat Setpoint Changes: This recommendation suggests
users to change the thermostat setpoint at their location. We rec-
ommend changes in setpoint by ≈ ±2 degrees Fahrenheit (exact
values discussed in Section 5.1.1). As such, there are 2 × |𝑂 | × |𝑆 |
total number of setpoint actions that can be recommended.
(3) Temperature and Lighting Relaxation: In empty rooms, we relax
the temperature setpoint by 2 degrees Fahrenheit and turn off lights,
without affecting occupants. This action is directly taken by the
building when it observes empty spaces.
These categories of actionable recommendations allow our system to
incorporate actions that existing works use to optimize energy sav-
ings and comfort, while enabling more complex action sequences,
described in Section 6.3, that are otherwise not possible.

3.1.2 Reward. Since we are co-optimizing energy savings, thermal
comfort, and air quality, the reward is the improvement in these
objectives from one time step to the next and depend on the current
building state, current action, and the building state at the beginning
of the next time step. Equation 1 shows the reward at timestep 𝑛.

𝑟𝑛 = −𝛼𝐸𝑛 − 𝛽Δ𝐶𝑛 − 𝛾Δ𝑄𝑛 (1)

𝐸𝑛 refers to the total energy consumption of all energy-consuming
resources, 𝐶𝑛 refers to the total comfort of all occupants, and 𝑄𝑛

is the total air quality rating experienced by all occupants in the
building at time step 𝑛. Higher values of 𝐸𝑛 ,𝐶𝑛 , and𝑄𝑛 correspond
to higher energy consumption, lower overall occupant comfort, and
lower overall air quality experienced by occupants. 𝛼 , 𝛽 , 𝛾 are used
as weights for the three objectives, allowing building managers

to customize and select which objective(s) to prioritize. Next, we
describe how we compute 𝐸𝑛 , 𝐶𝑛 , and 𝑄𝑛 .

1. Energy consumption, 𝐸𝑛 is computed in Equation 2, where
Δ is the length of one time step and 𝑃𝑑 (𝑡) is the power consumption
of the energy consuming resource 𝑑 (e.g., HVAC and lights). 𝐸𝑛
is therefore the total energy consumed by all energy-consuming
resources 𝑑 in the 𝑛th time window.

𝐸𝑛 =

∫ (𝑛+1)Δ

𝑡=𝑛Δ

∑︁
𝑑

𝑃𝑑 (𝑡)𝑑𝑡 . (2)

2. Thermal comfort, 𝐶𝑛 is computed in Equation 3, where
𝐶 (𝑅𝑜 , 𝑡) is the comfort of occupant 𝑜 at location 𝑅𝑜 at time 𝑡 . As
such, 𝐶𝑛 is the total comfort across all occupants in the building at
time step 𝑛. Measuring comfort is challenging, and we discuss how
we measure comfort in our real deployments in Section 4.

𝐶𝑛 =

∑
𝑜∈𝑂

∫ (𝑛+1)Δ
𝑡=𝑛Δ 𝐶 (𝑅𝑜 , 𝑡)𝑑𝑡
Δ · |𝑂 | (3)

3. Air quality,𝑄𝑛 is computed as shown in Equation 4.𝑄 (𝑅𝑜 , 𝑡)
is the air quality experienced by occupant 𝑜 at location 𝑅𝑜 at time
𝑡 . Much like thermal comfort, the reward only considers the air
quality of the areas where occupants are present because the air
quality of empty rooms will not affect any of the occupants. We
discuss how we measure air quality of different rooms, locations,
and spaces in Section 4.

𝑄𝑛 =

∑
𝑜∈𝑂

∫ (𝑛+1)Δ
𝑡=𝑛Δ 𝑄 (𝑅𝑜 , 𝑡)𝑑𝑡
Δ · |𝑂 | (4)

3.2 Deep Q-Network for Generating Actionable
Recommendations

There are two challenges unique to building co-optimization that
prevents direct application of a standard deep Q-network. The first
challenge is representing occupant locations in a building. Typically,
categorical data such as occupant locations are represented using
one-hot encoding. However, the number of input nodes in the neural
network quickly increases with the number of occupants and rooms.
We address this challenge by incorporating an embedding layer
(Section 3.2.1). The second challenge is the representation of the
reward; there are many actions in each state and three different
objectives (energy, comfort, air quality) for each action. The network
must learn the objectives for all states and actions. We address this
challenge through multi-task learning (Section 3.2.2).

3.2.1 Location Embedding. There are hidden relationships in the
encoding of the occupant locations. Consider an occupant who
spends time in three different locations: two similar office spaces
and one lab space. Let us assume that the energy consumption,
setpoint temperature, humidity and air quality are similar for the
two office spaces. A one-hot encoding of the locations will not
uncover similarities between these spaces.

Embedding layers reduce memory and computation require-
ments, compared to one-hot encoding, and have been shown to
learn relationships between categories [16]. In our deep Q-network,
we utilize an embedding layer to better learn the occupant location
configurations than standard dense layers.
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Figure 2: Our deep Q-network architecture includes an em-
bedding layer for learning occupant locations, and has three
output tasks for learning energy savings, comfort and air
quality improvements for each action.

Each location corresponds to a unique row in the embedding
layer. The embedding layer selects rows corresponding to the loca-
tion of each occupant, which is concatenated into a vector of size
|𝑂 | ×𝑑 , where 𝑑 is the embedding dimension and |𝑂 | is the number
of occupants. In our deployments, we observe that 𝑑 = 3 yielded
the best tradeoff in performance vs computation.

3.2.2 Multi-Task Learning. Since there are three separate objectives
(energy, comfort, air quality), there are two options for learning.
The first option is to combine energy, comfort, and air quality
changes into a single reward (e.g., sum all rewards in Equation 1),
and use the return as the target for the Q-network. The second
option is to learn the objectives separately, and then combine them
at the output of the Q-network using a ranker. The advantages of
the second option are that optimization emphasis can be quickly
changed without retraining the network. However, this method
requires learning three times the number of outputs.

A key observation is that there are hidden relationships between
energy, comfort and air quality. As an example, a variable air volume
system that supplies cold air turns on to supply air to a room;
this will increase the energy consumption, increase air flow which
may lead to improved air quality, and reduce the temperature in
the room thus affecting comfort. We can take advantage of these
relationships by usingmulti-task learning. In multi-task learning,
the input features are fed into a number of “shared” layers which
learn information about the state of the building and the individual
locations. The output is then fed into “task-specific” layers, which
are responsible for learning information specific to the objective.
In our deep Q-network, we create task-specific layers for each of
the energy, comfort, and air quality objectives in Equation 1.

3.2.3 Network Architecture. The network input consists of the
sparse location features of each occupant and dense features, in-
cluding temperature, humidity, setpoint temperature, air quality,
and energy consumption for each location. The complete network
architecture is shown in Figure 2. The sparse location features are
fed into the embedding matrix, and the output vectors are flattened
and concatenated with the dense features. The new vector is fed to
the shared layers, then to the individual objective task layers. The
output of each task are values representing the expected change
in the energy consumption (𝐸𝑎𝑛), comfort (𝐶𝑎

𝑛 ), and air quality (𝑄𝑎
𝑛)

objectives for all possible actions, 𝑎, at time step 𝑛.

3.3 Recommender System Design
The upper half of Figure 1 shows the full online system, consisting
of the following components: the networked sensing layer (Sec-
tion 4) that senses the building state (Section 3.1.1), the deep-Q
network model (Section 3.2) and the ranker (Section 3.3.1) that
uses the building state to generate recommendations for occupants,
and the occupant-facingweb client (Section 3.3.2) where users can
view and accept/reject recommendations.

3.3.1 Ranker. Once the Q-network estimates the changes in en-
ergy consumption, comfort, and air quality objectives, the ranker
arranges the recommendations for each occupant to maximize the
overall energy savings, comfort, and air quality improvements. To
accomplish this, the ranker generates a score for each action, 𝑎,
according to Equation 5.

𝑆𝑎𝑛 = −𝛼𝐸𝑎𝑛 − 𝛽𝐶𝑎
𝑛 − 𝛾𝑄𝑎

𝑛 (5)
Just like the reward (Equation 1), 𝛼 , 𝛽 , 𝛾 are weights that building
managers can tune to prioritize certain objectives. There is a nega-
tive sign with each objective because a higher value is less desirable
(Sections 3.1 and 4). In Section 6.4, we compare improvements in
each objective using different weights in real deployments.

As RECA recommends two different categories of recommenda-
tions directly to users (move and setpoint), it is important to give the
occupants a selection from both categories (diversity). The ranker
selects two recommendations from each category that is displayed
to the user. To select recommendations at time step 𝑛, the ranker
samples recommendations after normalizing scores, 𝑆𝑎𝑛 , for all rec-
ommendations, 𝑎 ∈ 𝐴, using the softmax function (Equation 6),
where 𝜏 is a temperature parameter. Sampling recommendations
this way also allows RECA to incorporate exploration.

𝑝 (𝑎, 𝑛) =
exp 𝑆𝑎𝑛

𝜏∑
𝑏∈𝐴 exp 𝑆𝑎𝑛

𝜏

(6)

3.3.2 User Feedback. To serve recommendations to occupants in
real-time, we developed a web interface where occupants can
browse a list of up-to-date recommendations, and select recom-
mendations which are sent back to the system and stored in history
as feedback. Additionally, we store the history of observed build-
ing states in a digital twin, similar to the one presented here [19].
In Section 5, we discuss how we use feedback and the history of
building states to address several challenges for deploying RECA
in the real world.

4 SYSTEM IMPLEMENTATION
To co-optimize energy savings, thermal comfort, and air quality,
we need to measure these quantities per space and occupant to
compute the reward and observe the building state (Section 3.1). Be-
cause we engage occupants to perform this optimization (e.g., move
recommendations), we also need to estimate the location of each
occupant. We make these measurements through the networked
sensing layer, which we discuss next.

1. Energy: We measure three types of energy consumption
(Equation 2), at the room level: HVAC, lighting, and individual en-
ergy devices. To monitor HVAC, we interface with the building
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management system over BACNet, which provides energy con-
sumption information for large units such as fan coil units and
variable air volume. Because most modern commercial buildings
have a building management system (BMS) that can be accessed
via BACNet, this step can be adapted to many existing and new
buildings. For HVAC units that are not monitored by the BMS, we
deploy wind sensors to estimate energy consumption from airflow
and temperature [4]. We also deploy light sensors and plug meters
to monitor lighting energy and local devices.

2. Comfort: Comfort is more challenging to measure, as it is
subjective. The standard metric to measure thermal comfort is the
predicted mean vote (PMV) model from ASHRAE 55 [3], where
scores are generated from each occupant based purely on current
environmental factors (e.g. temperature and humidity) and their
own physical attributes. These scores are averaged to produce a
value between −3 (cold) and 3 (hot). However, individuals may have
temperature and space preferences that cannot be fully captured
purely by physical attributes of the individual or the building. As
such, we construct personalized thermal regression models.

We integrate the thermal comfort estimation pipeline, in [23], by
deploying sensor nodes consisting of FLIR One Pro RGB-thermal
cameras, Jetson Nanos, and temperature/humidity sensors into each
room. We recorded thermal images of occupants over the course
of two weeks to generate personalized comfort regression mod-
els. During this time, users also provide feedback or labels for their
comfort levels, so we can correlate the observed thermal tempera-
ture with their perceived comfort. This pipeline estimates thermal
comfort on the same scale as PMV ASHRAE 55, but more accurately
by using facial temperature and feedback from users. The absolute
value of this score is used as the overall comfort, 𝐶 (𝑅𝑜 , 𝑡), of each
occupant 𝑜 , at location 𝑅𝑜 , at time 𝑡 in Equation 3.

Though this method is more accurate, there is considerable over-
head to adapt to each person. For larger deployments without ther-
mal cameras, using the PMV ASHRAE 55 model and substituting
measurements for a typical person, just like in [23], can still yield
promising results, as we show in Section 6.1.

3. Air Quality: To measure air quality, we use the US Environ-
mental Protection Agency’s Air Quality Index (AQI), which incor-
porates PM2.5 and PM10 measurements [12]. The higher the value,
the more pollution is present in the air. A value of less than 50 is
healthy. We deploy PM2.5 and PM10 sensors at each location/room
in our deployments. The air quality (Equation 4), 𝑄 (𝑅𝑜 , 𝑡), expe-
rienced by each occupant 𝑜 at time 𝑡 is the AQI of the space 𝑅𝑜 ,
where occupant 𝑜 is residing at time 𝑡 .

4. Localization: The location of each occupant is critical to
determining the impacts of different actions and engaging occu-
pants in the co-optimization process. To localize occupants, we
extract head bounding boxes in the RGB domain using the comfort
estimation pipeline we integrated [23]. We train a convolutional
neural network based on VGG-16 to classify occupants by partici-
pant ID; the training data is hand-labeled using images taken over
the course of one week. Because the number of occupants in our
deployments is controlled, this solution is relatively simple to im-
plement. Other methods such as wireless localization can be used
in larger deployments, which we will explore in future work.

5 REAL-WORLD CONSIDERATIONS
There are several challenges that need to be addressed to ensure our
system performs robustly in real environments. The first challenge
is the lack of training data. Without a large amount of feedback
describing the benefits of different actions, the recommender system
will initially provide poor random recommendations to occupants,
which inhibits useful feedback. This problem, also known as cold
start, can be mitigated by providing data that is semi-realistic. We
use real data, building states, and feedback from users, as discussed
in Section 3.3.2 to generate more training examples (Section 5.1).

The second challenge is accounting for how a person’s prefer-
ences can periodically change. For example, RECA may estimate
the greatest reward if a user moves out of room A. However, if s/he
needs to immediately perform lab work there, then s/he would not
accept this recommendation (Section 5.2).

The third challenge is recommending conflicting actions to dif-
ferent users. For example, one occupant may choose to increase the
setpoint temperature to reduce energy, while a second occupant at
the same location and time may choose to decrease it (Section 5.3).

5.1 Data Augmentation for Exploring More
Building States and Actions

We develop a simulation environment that enables the creation of
a large number of potential future states, which is used to evaluate
recommendations and train our recommender system. The simu-
lation environment leverages statistical models to simulate future
building states based on occupant actions and the input building
state, collected from our deployment (Section 4). We first discuss
how we simulate and predict key modules: HVAC energy, lighting
energy, indoor comfort, indoor air quality prediction, and com-
fort (Section 5.1.1). Next, we introduce how we incorporate this
simulator into training our deep Q-network (Section 5.1.2).
5.1.1 Predicting Future States.

1. HVAC Energy: Predicting HVAC energy is challenging due
to nonlinearities associated with HVAC control and outdoor en-
vironmental conditions. As discussed in Section 2, physics-based
models such as EnergyPlus have limited ability to predict HVAC en-
ergy, especially when detailed design documentation is unavailable
and granular temporal scales (i.e., hourly) are required, which both
apply in our setting. Data-driven surrogate energy modeling is a
promising framework for addressing these limitations. However,
these models are typically applied at the building level rather than
room level. Here, we introduce data-driven surrogate HVAC energy
modeling at the room level to support our simulation engine.

We identified three regression models that have been shown to
be effective in energy prediction tasks: artificial neural networks,
random forests, and gradient boosting [20]. In this task, the tar-
get is room-level HVAC energy consumption and the features are
as follows (aggregated to the hourly level): number of occupants,
heating degree days (𝐻𝐷𝐷 = 65 − 𝑇0 in ºF), cooling degree days
(𝐶𝐷𝐷 = 𝑇0 − 65 in ºF), day of year + week + hour of day, and
historical HVAC energy data (48-hr sliding window).

We used a temporal 80%–20% split to create training and test-
ing sets. As a state-of-art comparison, we also built an EnergyPlus
model based on historical building state data collected from our de-
ployments and performed standard calibration measures, following
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Figure 3: For a building state, the reinforcement learning
agent provides an action to the simulation environment. The
next state, energy savings, comfort and air quality improve-
ments are returned to the agent to tune the policy.

the procedure in [11].We used the coefficient of variation of the root
mean squared error (CV(RMSE)) to compare the models. CV(RMSE)
is commonly used to asses energy prediction performance in build-
ings, where a value less than 30% is considered a well-calibrated
model [2]. We found that the random forest model produced the
best results, with an average CV(RMSE) of 28.6% across the rooms,
compared to EnergyPlus’s 94.3%. We therefore implemented the
random forest model for 1-hour-ahead energy prediction.
2. Lighting Energy: Based on the data from our collected building
state history, we assume that lighting operation can directly follow
occupancy patterns: lights are on whenever a room has at least
one occupant and off whenever a room is unoccupied, since most
modern office lights are controlled with motion sensors.
3. Indoor Temperature: We model the relationship between ther-
mostat settings and indoor temperature from data collected from
our networked sensing deployment. Individual rooms in the build-
ing include thermostats that give occupants the option to change
the temperature. To investigate the empirical relationship between
these settings and actual indoor temperature, we built linear regres-
sion models for each room that includes an indicator variable for
each of the possible thermostat settings at each timestep as features
and the actual temperature at each timestep as the response variable.
In our deployments, the thermostats had three possible settings,
“warm,” “cool,” and “neutral”. We found that, on average, setting the
thermostat to “warm” increases temperatures by 1.88ºF and setting
the thermostat to “cool” decreases temperatures by 1.80ºF.
4. Air Quality: Our air quality prediction task closely follows that
of indoor temperature. We would expect a change in the thermostat
setting to increase airflow in the room because the heating and
cooling system would need to supply additional air to affect air
temperature. We would also expect the additional air to be cleaner,
due to the filters in the HVAC system. We would therefore expect
such thermostat actions to decrease PM concentrations. However,
these dynamics were not clearly evident in the data—the regression
models did not produce significant relationships for most rooms.
For each room, we did include small factors based on the direction
of the relationship between HVAC energy and PM concentrations.
5. Comfort: In real deployments, we more accurately measure
thermal comfort on the PMV ASHRAE 55 scale using thermal cam-
eras and indoor temperature (Section 4). Because it is difficult to
predict future temperatures at each pixel for each thermal camera,
we instead simulate comfort levels of each occupant by directly
using PMV ASHRAE 55 and substituting indoor temperature and
standard values, just like in this work [23].

5.1.2 Training. To train and remedy the cold start problem, we
create an offline training environment by integrating our simulator,

with the deep Q-network in a tightly coupled control loop, which
allows for rapid data generation and learning. An illustration of the
training environment is shown in Figure 3.

Training runs in episodes, with fixed Δ = 1 hour time steps.
In each episode, the simulation environment is instantiated with
occupant locations and building states based on historical data. The
state 𝑠 is provided to the deep Q-network, which outputs predicted
changes in energy, comfort, and air quality for each possible action
from this state. An action is chosen based on softmax selection
(Equation 6), just like how recommendations are displayed.

The action is sent to the simulation environment (Section 5.1)
and performed in simulation, and the episode advances to the next
step, producing a new building state (next state 𝑠′) to be sent to
the deep Q-network. Expected rewards for energy, comfort, and air
quality are estimated and stored with the state in a pool of samples
for experience replay.

5.2 Adapting to User Preferences
It is not productive to suggest actions that an occupant has con-
sistently rejected. To address this, we estimate the probability that
an occupant will accept a recommendation by counting the recom-
mendations that occupants have rejected (“feedback” as described
in Section 3.3.2). We add a penalty to the ranker scoring function
(Equation 6) that penalizes recommendations with more rejections.

Second, a person’s preferences may change over time. As such,
we allow building managers to begin retraining the recommender
system after an interval of time. Once started, RECA will automati-
cally augment the data observed and stored in history using our
simulation environment (Section 5.1) to retrain the deep Q-network.

5.3 Conflicting Actions
In real deployments, recommender systems serve multiple occu-
pants concurrently, which can lead to conflicting actions (e.g., one
occupant increases the setpoint temperature to reduce energy, while
a second occupant decreases it to improve comfort). A second chal-
lenge is receiving multiple actions of the same type in quick suc-
cession (e.g., receiving two consecutive move recommendations).

To address these challenges, we temporarily remove any move
or setpoint recommendations for an occupant at a location once a
move or setpoint recommendation has been accepted, for a period
𝑡𝑠 = 1 hour. Additionally, when a setpoint recommendation has
been selected by an occupant for a location, no other occupants
will be given setpoint recommendations for the remainder of 𝑡𝑠 .

6 EVALUATION
We evaluate our system in two parts. First, we evaluate our rec-
ommender system using our simulation environment (Section 5.1)
with different objective weights to study the ability to learn re-
wards from energy, comfort and air quality for different actions.
Next, we deploy our system into two commercial office buildings
and conduct A/B tests to evaluate the improvements our system
can achieve in real settings over the course of four weeks.

We compare against two baseline strategies. The setpoint only
strategy involves changing the setpoint temperature at each loca-
tion to improve energy savings (energy emphasis), comfort (comfort
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emphasis), or air quality (air quality emphasis). This strategy lever-
ages the same pipeline as RECA, except move recommendations are
removed. The service strategy involves only relaxing HVAC services
in locations that have no occupants, based on [4].

6.1 Evaluation using Simulation Environment
As the simulation environment is responsible for augmenting data
for training and retraining the deep Q-networks, it is critical to
evaluate the performance of the models in simulation before de-
ploying them in the real world. We tested our recommender system
with different objective weights (Equation 1) using simulated build-
ing episodes based on the building environments in our actual
deployments, described in Section 6.2.

Evaluating these models in simulation involves simulating two
states: one state representing that an action was performed, and
the other state representing no action. We compare the energy con-
sumption, thermal comfort, and air quality of occupants between
the states. We calculate energy savings 𝐸𝑅 as the difference in en-
ergy consumption between the two states over the 𝑛th timestep of
length Δ, where 𝑃𝑑 (·) and 𝑃𝑑 (·) denotes the power of resource 𝑑
in the baseline state and the state with action (Equation 7).

𝐸𝑛𝑅 =

∫ (𝑛+1)Δ

𝑡=𝑛Δ

∑︁
𝑑

(𝑃𝑑 (𝑡) − 𝑃𝑑 (𝑡))𝑑𝑡 . (7)

We calculate thermal comfort and air quality improvement by
taking the average PMV (𝑃𝑀𝑉 (·)) and air quality ratings (𝐴𝑄 (·))
for each occupant 𝑜 ∈ 𝑂 in room 𝑅𝑜 (Equations 8 and 9).

𝐶𝑛
𝑅 =

∑
𝑜∈𝑂

∫ (𝑛+1)Δ
𝑡=𝑛Δ

�𝑃𝑀𝑉 (𝑅𝑜 , 𝑡) − 𝑃𝑀𝑉 (𝑅𝑜 , 𝑡) 𝑑𝑡
Δ · |𝑂 | (8)

𝑄𝑛
𝑅 =

∑
𝑜∈𝑂

∫ (𝑛+1)Δ
𝑡=𝑛Δ 𝐴𝑄 (𝑅𝑜 , 𝑡) −𝐴𝑄 𝑑𝑡

Δ · |𝑂 | (9)

We simulated the performance of different models on 10000
episodes with semi-randomized occupant start locations. As shown
in Table 1, we simulated episodes using the deep Q-network ar-
chitecture with and without the embedding layer, and set weights,
in Equation 1, for four different emphases: energy (𝛼 >> 𝛽 = 𝛾 ),
comfort (𝛽 >> 𝛼 = 𝛾 ), air quality (𝛾 >> 𝛼 = 𝛽), and joint opti-
mization (𝛼 = 𝛽 = 𝛾 ). We note that the architecture without the
embedding layer performed worse for each emphasis in comparison
to the architecture with the embedding layer and would often rec-
ommend actions that negatively impact the objectives. For example,
in the comfort emphasis, RECA with embedding improved aver-
age PMV by 0.31 on a 3-point scale, compared to 0.03 without the
embedding. Although the energy savings achieved for the comfort
emphasis without embedding (22.2 kWh) exceeded the savings with
the embedding (14.9 kWh), the system was tuned to emphasize and
achieve comfort improvements at the expense of other objectives.
Similar trends can be observed for all other emphases, while the
joint emphasis achieves a more balanced improvement across all
three objectives because it weights all three similarly in importance.

Additionally, the service strategy can only improve energy sav-
ings because it only turns down services in areas with no occupants.
Our system also outperforms the setpoint only strategy across all
emphases because our system can not only change setpoints, but

Table 1: Comparison of our deepQ-network architecturewith
and without an embedding layer, against existing strategies,
on simulated building episodes with four different weighting
combinations to emphasize different optimizations.

Method Emphasis Energy Comfort Air Quality
Savings Improvement Improvement
(kWh) (Average PMV) (Average AQI)

RECA- No Embedding

Energy 27 −0.24 −2
Comfort 22.2 +0.03 −1.8
Air Quality −90 −0.09 +1.0
Joint 23.0 −0.02 +0.06

RECA- With Embedding

Energy 75 −.03 −2.5
Comfort 14.9 +0.31 −0.73
Air Quality −45 +0.1 +2.0
Joint 15 +0.01 +1.05

Setpoint Only Strategy
Energy 16 −.04 −1.3
Comfort 5.5 +0.08 −0.7
Air Quality −12 +0.04 +0.8

Service Strategy NA 10 −0.08 −1.5

Figure 4: Acceptance rate during the first two weeks (control)
and second two weeks after retraining (adapted) for the set-
point (left) and move (right) recommendations.
also recommend more complex action sequences, such as grouping
occupants with similar temperature preferences together.

6.2 Recommender System Study
We deployed RECA in two commercial buildings over four weeks
to evaluate energy savings, comfort improvement, and air quality
improvement of different strategies and recommendation policies.
In these deployments RECA ran on Δ = 1 hour time steps. Building
A is an office building consisting of 10 rooms, where 7 are rooms
of cubicles, 3 are lab areas, and 1 break room. Building B is another
office building consisting of 8 rooms, where 4 are open work areas,
2 are closed office spaces, and 2 are shared spaces. We recruited 10
occupants in Building 𝐴 and 13 occupants in Building B, ranging in
age from 22 to 40 from various academic disciplines, and collected
recommendation feedback from participants over the course of four
weeks. We obtained approval from Columbia University internal
review board for all our deployments.

Since our deployment can only measure one building state se-
quence, we decide to use the sensed building state to measure the
performance of RECA, while we simulate the energy consumption,
comfort, and air quality as the baseline, using the tools from our
simulation environment (Section 5.1). This is because once a user
takes a recommendation, we can no longer observe the state of
the building in the scenario where the occupant does not perform
the action, which is required to measure improvements in energy
consumption, comfort, and air quality. As such, we simulate sce-
narios where users do not accept any of the recommendations as
the baseline. As opposed to the pure simulation environment, we
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Figure 5: Location Optimization: At the red line, the occupant
moves to location B, and HVAC service is reduced in location
A. Due to differences in environment, the occupant’s thermal
comfort and air quality are improved.

Figure 6: Group Consolidation: At the blue and red lines,
occupants 1 and 2 move to location C (not shown). Locations
A and B reduce HVAC and lighting service, leading to energy
savings. Comfort and air quality for both occupants change
due to environmental differences.

directly measure changes in energy consumption, comfort, and air
quality in our real deployments as a result of RECA.

Figure 4 shows the number of accepted recommendations, bro-
ken down by recommendation type (move and setpoint). We sched-
uled RECA to retrain itself at two weeks (Section 5.2), using data
from the first two weeks. The control period refers to the first two
weeks, while the adapted period refers to the latter two weeks
after retraining. There is a dramatic increase in recommendation
acceptances, across both types of recommendations, in the adapted
period because the retraining process allowed RECA to learn rec-
ommendations that users are more likely to accept. Across both
deployments, we saw an 80% increase in accepted recommendations
during the adapted period.

6.3 Learned Action Sequences
Throughout our study, we noticed and categorized three types of
regularly occurring action sequences, that RECA recommended,
with greater effects than individual actions: location optimization,
group consolidation, and group disbanding.

Figure 7: GroupDisbanding: At the red line, occupant 2moves
from location A to location B. Since only occupant 1 remains,
HVAC service is reduced in locationA at the blue line, leading
to a comfort improvement for occupant 1.

Location Optimization: The most common complex action
sequence that we observed is location optimization. This sequence
is typically made up of a setpoint change and a move recommenda-
tion. The main purpose of this sequence is, in most cases, to reduce
the energy consumption of the starting location, without incurring
a thermal comfort or air quality penalty by moving the occupant
to another location. An example of this action sequence is shown
in Figure 5. Initially, a single occupant is working in location A.
At a certain time, indicated by the red line, the occupant increases
the setpoint temperature of location A, and moves to location B.
The normal consequence of increasing the setpoint is a reduction
in thermal comfort for the occupant as the temperature gradually
increases; however, moving to location B leads instead to an in-
crease in thermal comfort due to the environment in location B
being closer to the occupant’s thermal preference, as shown in the
bottom left plot. The green highlights the improvement in the occu-
pant’s measured PMV after the occupant moves to location B (lower
value = more comfortable). Increasing the setpoint temperature in
location A (upper left) reduces energy consumption of the space,
as shown by the green. After the occupant moves to location B,
the lights and electricity needed to service location B increases, as
shown by the red (upper right). However, this increase is more than
offset by the savings in location A. The air quality experienced by
the occupant remains relatively stable (lower right).

Group Consolidation: Action sequences involving multiple oc-
cupants can enable even more optimization opportunities. In group
consolidation, several occupants are brought to the same location
often with a reduction in energy consumption in the start locations.
As illustrated in Figure 6, occupants 1 and 2 are in locations A and
B, respectively. At different times, denoted by the blue and red lines,
occupants 1 and 2 increase the setpoint temperatures of locations A
and B, and subsequently move to location C. By increasing setpoint
temperatures, location A and B both experience a decrease in en-
ergy consumption as highlighted in green in the upper plots. The
thermal comfort and air quality for both occupants change depend-
ing on the environmental differences at location A, B, and C. In this
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example, the temperature preferences of location C is more suited
for occupant 1 than occupant 2. As such, we see that the thermal
comfort of occupant 1 improves (middle left plot highlighted in
green), while occupant 2 decreases (middle right plot highlighted in
red). The air quality for both occupants are improved in location C,
as compared to location A and B (lower plots highlighted in green).
Note that in location optimization and group consolidation, the
location that the occupants move to is critical. For example, if the
destination location is too hot or too cold, the result of the action
sequences may lead to an overall decrease in thermal comfort.

Group Disbanding: The final category of action sequence that
we observed is group disbanding. The primary challenge in opti-
mizing thermal comfort specifically, is that each occupant has a
different thermal preference. Two occupants with different thermal
preferences in the same location will require a compromise in set-
point temperature to prevent significant discomfort from one or
both of the occupants. Group disbanding seeks to resolve this chal-
lenge by separating the occupants into different locations and group
occupants with similar thermal preferences. In Figure 7, occupants
1 and 2 are in location A and have different thermal preferences. At
the red line, occupant 2 is recommended to move to location B. The
thermal comfort and air quality of occupant 2 increase as a result
of the change in location (middle and lower right plots highlighted
in green). Note that after occupant 2 leaves, occupant 1 changes
the setpoint temperature higher at the blue line, leading to reduced
energy consumption (upper left highlighted in green), improved
thermal comfort (middle left highlighted in green), with a slight
decrease in air quality (lower left highlighted in red).

6.4 Joint Optimization Results
In this section, we show the strengths of RECA against existing so-
lutions in two real commercial buildings. Specifically, we show the
versatility of RECA, allowing building managers to configure RECA
to improve any combination of energy, comfort, and air quality.
We also demonstrate how incorporating humans-in-the-loop allows
RECA to further improve these objectives over existing solutions
that only reduce services and change temperature setpoints.

Case 1: Energy Optimization: One of the most studied prob-
lems in commercial buildings is energy optimization. To study the
performance of RECA on energy optimization, we select weights
of the ranker to emphasize energy savings (𝛼 >> 𝛽 and 𝛾 ).

Figure 8a shows the percentage improvement of energy consump-
tion, occupant thermal comfort, and occupant air quality. Since the
baseline strategy only reduces service in locations with no occu-
pants, only energy consumption is improved. In comparison, the
setpoint only strategy further improves energy consumption, but
reduces occupant comfort. The reason is that increasing setpoint
temperature reduces HVAC service, but also increases the tempera-
ture, leading to a decrease in occupant comfort. Finally, by including
move recommendations, the system achieves a further 8% and 6%
increase in energy savings without sacrificing comfort in buildings
A and B, respectively. As described in Section 6.3, moving occu-
pants enables locations with high energy requirements to reduce
service without incurring penalties to thermal comfort. However,
we also observe a decrease in air quality in building A. There are
two reasons for this. First, moving more people into the same room

concentrates emissions; our system also reduces HVAC services in
more rooms, which leads to a decrease in air quality because less
air is being filtered. Second, in this scenario, the building manager
configured our system to increase energy efficiency without con-
sidering other factors. As such, our system focused on reducing as
much energy as possible, even at the cost of other factors.

Case 2: Joint Co-Optimization: In some cases, building man-
agers may wish to save energy without sacrificing comfort or air
quality. Joint co-optimization is a more complex problem, as many
actions lead to tradeoffs between the three objectives. To evaluate
the potential of our recommender system to jointly optimize all
three objectives at once, we set the weights of the ranker to balance
the three objectives (𝛼 = 𝛽 = 𝛾 ). We also deployed the setpoint and
service strategy, which combines both the setpoint only - comfort
strategy with the service strategy, as a comparison

As shown in Figure 8b, the setpoint and service strategy improves
thermal comfort and energy consumption, while minimally impact-
ing air quality. However, the complete recommender system makes
additional improvements of 5%, 7%, and 6%, for building A, and
9%, 9%, and 8%, for building B, in energy consumption, thermal
comfort, and air quality. With move recommendations enabled, the
recommender system can utilize more complex action sequences
to find significant optimization opportunities that are not possible
in the setpoint only strategy. Compared with case one, where a
building manager may only be concerned about energy savings,
we see that our system can jointly improve all three aspects at the
same time by incorporating humans-in-the-loop.

Case 3: Comfort and Air Quality Co-Optimization: In cer-
tain cases, it may be desirable to allow increases in energy con-
sumption to significantly increase occupant comfort and air quality.
Due to the recent COVID-19 pandemic, improving air quality is a
priority in work environments, while improving occupant thermal
comfort can improve productivity. We deployed our recommender
system with higher comfort and air quality weights (𝛽 = 𝛾 >> 𝛼)
to encourage recommendations of actions with high thermal com-
fort and air quality improvements. In comparison, we deployed the
setpoint only - with air quality emphasis strategy for A/B testing.

As shown in Figure 8c, the setpoint only baseline is able to pri-
oritize comfort and air quality improvements with the tradeoff of
increased energy consumption. However, by treating occupants as
immovable objects, we observed that many of the setpoint temper-
ature changes were compromises for multiple occupants. In con-
trast, the recommender system that utilizes move recommendations
shows a dramatic increase in comfort and air quality improvements
of 21% and 5% for building A and 11% and 4% for building B. We
noticed multiple instances of group disbanding, which allows for
more personalized thermal comfort by separating groups of people
with different thermal comfort preferences.

6.5 Scalability
The size of the network scales𝑂 ( |𝑂 | × |𝑆 |), where |𝑂 | is the number
of occupants we engage and |𝑆 | is the number of locations in the
building. Although this is linear in both occupants and locations, it
can become expensive if the building gets large. Table 2 shows the
execution time and scalability of RECA as the number of occupants
and spaces increases. We see that the majority of the computation
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(a) (b) (c)

Figure 8: Energy savings, comfort and air quality improvements, emphasizing energy savings (a), balanced improvements (b),
and comfort and air quality (c) in two deployments (A and B).

Table 2: Execution time for each component of RECA as the
number of people and spaces increase.

People Spaces State (Section 3.1) DQN (Section 3.2) Ranker (Section 3.3.1)
50 25 82ms 684ms 77ms
100 50 101ms 2505ms 96ms
200 100 131ms 4322ms 101ms
400 200 213ms 8857ms 142ms
800 400 297ms 14729ms 180ms

comes from the DQN. However, even as the number of occupants
and spaces increase to over 800 and 400, respectively, the total
execution time is around 15 seconds. This latency is more than
acceptable for our system, which updates once every hour.

In even larger deployments where computation time may exceed
one time step, we can use the observation that people will typically
use only a small portion of the building. As such, we can reduce the
state-action space by eliminating infeasible actions and/or create
multi-agent systems with smaller models to manage portions of
the building. We plan to explore these avenues in future work.

7 CONCLUSION
We present RECA, a recommender system that generates real-time,
human-centric, actionable recommendations for joint optimization
of energy, comfort and air quality in commercial buildings. Our
recommender system consists of a novel multi-task learning-based
deep Q-network to jointly learn energy consumption, comfort and
air quality improvement potential of different actions and is tunable
to allow building managers to emphasize different dimensions. We
conduct a four-week study in two real office buildings, and demon-
strate the ability of this system to achieve greater energy savings,
comfort improvements, and air quality improvements over prior
works by incorporating occupants in the co-optimization process.
Our multi-task learning based recommender system enables flexi-
bility in optimization goals and discovers impactful actions that en-
gage occupants in creating more energy efficient, comfortable, and
healthier built environments. We envision RECA being integrated
with mobile sensing and actuation platforms (e.g., drones [26]) to
achieve more savings in future smart buildings.
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